线性回归方程公式

合集下载

高中数学:线性回归方程

高中数学:线性回归方程

高中数学:线性回归方程线性回归是利用数理统计中的回归分析来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法,是变量间的相关关系中最重要的一部分,主要考查概率与统计知识,考察学生的阅读能力、数据处理能力及运算能力,题目难度中等,应用广泛.一线性回归方程公式二规律总结(3)回归分析是处理变量相关关系的一种数学方法.主要用来解决:①确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;②根据一组观察值,预测变量的取值及判断变量取值的变化趋势;③求线性回归方程.线性回归方程的求法1四线性回归方程的应用例2例3例4例5例6推导2个样本点的线性回归方程例7 设有两个点A(x1,y1),B(x2,y2),用最小二乘法推导其线性回归方程并进行分析。

解:由最小二乘法,设,则样本点到该直线的“距离之和”为从而可知:当时,b有最小值。

将代入“距离和”计算式中,视其为关于b的二次函数,再用配方法,可知:此时直线方程为:设AB中点为M,则上述线性回归方程为可以看出,由两个样本点推导的线性回归方程即为过这两点的直线方程。

这和我们的认识是一致的:对两个样本点,最好的拟合直线就是过这两点的直线。

上面我们是用最小二乘法对有两个样本点的线性回归直线方程进行了直接推导,主要是分别对关于a和b的二次函数进行研究,由配方法求其最值及所需条件。

实际上,由线性回归系数计算公式:可得到线性回归方程为设AB中点为M,则上述线性回归方程为。

求回归直线方程例8 在硝酸钠的溶解试验中,测得在不同温度下,溶解于100份水中的硝酸钠份数的数据如下0 4 10 15 21 29 36 51 6866.7 71.0 76.3 80.6 85.7 92.9 99.4 113.6 125.1 描出散点图并求其回归直线方程.解:建立坐标系,绘出散点图如下:由散点图可以看出:两组数据呈线性相关性。

设回归直线方程为:由回归系数计算公式:可求得:b=0.87,a=67.52,从而回归直线方程为:y=0.87x+67.52。

回归方程公式详解

回归方程公式详解

回归方程公式详解
回归方程(Regression Equation)是统计学中用来描述自变量与因变量之间关系的数学公式。

回归方程可以通过分析数据得到,并用于预测未来观测值或者理解变量之间的关系。

一般来说,回归方程的形式为:
Y = β0 + β1X1 + β2X2 + ... + βnXn + ε
其中,
Y 是因变量(被预测的变量);
X1, X2, ..., Xn 是自变量(影响因变量的变量);
β0, β1, β2, ..., βn 是回归系数(或称为斜率),表示每个自变量对因变量的影响;
ε是误差项(残差),表示不能被自变量解释的随机误差。

回归方程的目标是通过估计回归系数,找到最佳的拟合线来描述因变量和自变量之间的关系。

在实际应用中,可以使用不同的回归方法,如线性回归、多项式回归、逻辑回归等,具体选择取决于数据的性质和研究问题的需求。

对于线性回归模型(最常见的一种回归模型),回归方程的形式简化为:Y = β0 + β1X1 + ε
其中,Y 和X1 是一维变量(向量),β0 和β1 是回归系数,ε 是误差项。

线性回归的目标是找到最佳的拟合直线,使得观测数据点与该直线的拟合误差最小。

需要注意的是,回归方程所估计的系数可以提供关于自变量与因变量之间的定量关系和影响程度的信息。

此外,回归方程的使用也需要考虑一些假设和前提条件,如线性性、独立性、常态性、同方差性等。

在实际应用中,可以使用统计软件(如Python中的scikit-learn、R语言中的lm函数等)进行回归分析,从而得到具体的回归方程和系数。

线 性 回 归 方 程 推 导

线 性 回 归 方 程 推 导

线性回归——正规方程推导过程线性回归——正规方程推导过程我们知道线性回归中除了利用梯度下降算法来求最优解之外,还可以通过正规方程的形式来求解。

首先看到我们的线性回归模型:f(xi)=wTxif(x_i)=w^Tx_if(xi?)=wTxi?其中w=(w0w1.wn)w=begin{pmatrix}w_0w_1.w_nend{pmatrix}w=?w0?w1?. wn?,xi=(x0x1.xn)x_i=begin{pmatrix}x_0x_1.x_nend{pmatrix}xi?=?x0 x1.xn,m表示样本数,n是特征数。

然后我们的代价函数(这里使用均方误差):J(w)=∑i=1m(f(xi)?yi)2J(w)=sum_{i=1}^m(f(x_i)-y_i)^2J(w) =i=1∑m?(f(xi?)?yi?)2接着把我的代价函数写成向量的形式:J(w)=(Xw?y)T(Xw?y)J(w)=(Xw-y)^T(Xw-y)J(w)=(Xw?y)T(Xw?y) 其中X=(1x11x12?x1n1x21x22?x2n?1xm1xm2?xmn)X=begin{pmatrix}1 x_{11} x_{12} cdots x_{1n}1 x_{21} x_{22} cdots x_{2n}vdots vdots vdots ddots vdots1 x_{m1} x_{m2} cdots x_{mn}end{pmatrix}X=?11?1?x11?x21?xm1?x12?x22?xm2?x1n?x2n?xmn?最后我们对w进行求导,等于0,即求出最优解。

在求导之前,先补充一下线性代数中矩阵的知识:1.左分配率:A(B+C)=AB+ACA(B+C) = AB+ACA(B+C)=AB+AC;右分配率:(B+C)A=BA+CA(B+C)A = BA + CA(B+C)A=BA+CA2.转置和逆:(AT)?1=(A?1)T(A^T)^{-1}=(A^{-1})^T(AT)?1=(A?1)T,(AT)T=A(A^T)^T=A(AT)T=A3.矩阵转置的运算规律:(A+B)T=AT+BT(A+B)^T=A^T+B^T(A+B)T=AT+BT;(AB)T=BTAT(AB)^T=B^TA^T(AB)T=BTAT然后介绍一下常用的矩阵求导公式:1.δXTAXδX=(A+AT)Xfrac{delta X^TAX}{delta X}=(A+A^T)XδXδXTAX?=(A+AT)X2.δAXδX=ATfrac{delta AX}{delta X}=A^TδXδAX?=AT3.δXTAδX=Afrac{delta X^TA}{delta X}=AδXδXTA?=A然后我们来看一下求导的过程:1.展开原函数,利用上面的定理J(w)=(Xw?y)T(Xw?y)=((Xw)T?yT)(Xw?y)=wTXTXw?wTXTy?yTXw+yT yJ(w)=(Xw-y)^T(Xw-y)=((Xw)^T-y^T)(Xw-y)=w^TX^TXw-w^TX^Ty-y^TXw+y^TyJ(w)=(Xw?y)T(Xw?y)=((Xw)T?yT)(Xw?y)=wTXTXw?wTXTy?yT Xw+yTy2.求导,化简得,δJ(w)δw=(XTX+(XTX)T)w?XTy?(yTX)T=0?2XTXw?2XTy=0?XTXw=X Ty?w=(XXT)?1XTyfrac{delta J(w)}{delta w}=(X^TX+(X^TX)^T)w-X^Ty-(y^TX)^T=0implies2X^TXw-2X^Ty=0implies X^TXw=X^Tyimplies w=(XX^T)^{-1}X^TyδwδJ(w)?=(XTX+(XTX)T)w?XTy?(yTX)T=0?2XTX w?2XTy=0?XTXw=XTy?w=(XXT)?1XTy最后补充一下关于矩阵求导的一些知识,不懂可以查阅:矩阵求导、几种重要的矩阵及常用的矩阵求导公式这次接着一元线性回归继续介绍多元线性回归,同样还是参靠周志华老师的《机器学习》,把其中我一开始学习时花了较大精力弄通的推导环节详细叙述一下。

线性回归方程公式_数学公式

线性回归方程公式_数学公式

线性回归方程公式_数学公式线性回归方程公式线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。

线性回归方程公式求法:第一:用所给样本求出两个相关变量的(算术)平均值:x_=(x1+x2+x3+...+xn)/ny_=(y1+y2+y3+...+yn)/n第二:分别计算分子和分母:(两个公式任选其一)分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_分母=(x1^2+x2^2+x3^2+...+xn^2)-n__x_^2第三:计算b:b=分子/分母用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零。

其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。

先求x,y的平均值X,Y再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)后把x,y的平均数X,Y代入a=Y-bX求出a并代入总的公式y=bx+a得到线性回归方程(X为xi的平均数,Y为yi的平均数)线性回归方程的应用线性回归方程是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。

这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。

线性回归有很多实际用途。

分为以下两大类:如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。

当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。

给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。

回归方程b的两个公式

回归方程b的两个公式

回归方程b的两个公式第一个公式是简单线性回归方程b的公式。

简单线性回归方程b通常用来描述一个自变量对一个因变量的影响。

这个公式是y = bx + a,其中y是因变量,x是自变量,b是斜率,a是截距。

通过简单线性回归方程b,我们可以计算出斜率b的值,从而了解自变量对因变量的影响程度。

斜率b的值越大,自变量对因变量的影响越大,反之亦然。

通过简单线性回归方程b,我们可以进行预测和分析,帮助我们更好地理解数据背后的规律。

第二个公式是多元线性回归方程b的公式。

多元线性回归方程b通常用来描述多个自变量对一个因变量的影响。

这个公式是y = b0 + b1x1 + b2x2 + ... + bnxn,其中y是因变量,x1、x2、...、xn是自变量,b0是截距,b1、b2、...、bn是系数。

通过多元线性回归方程b,我们可以计算出各个自变量的系数,从而了解它们对因变量的影响程度。

不同自变量的系数可以帮助我们理解各个因素对结果的影响,进行因果分析和预测。

回归方程b的两个公式在实际应用中具有广泛的用途。

在统计学中,我们可以利用回归方程b来分析数据之间的关系,进行预测和决策。

例如,在市场营销领域,我们可以利用回归分析来预测产品销量,制定营销策略。

在经济学中,我们可以利用回归分析来研究经济现象,制定政策措施。

回归方程b的两个公式可以帮助我们更好地理解数据,作出科学的决策。

回归方程b的两个公式在统计学和经济学中扮演着重要的角色。

通过这两个公式,我们可以深入分析数据之间的关系,揭示规律,进行预测和决策。

回归分析是一种强大的工具,可以帮助我们更好地理解世界,做出明智的选择。

希望通过学习回归方程b的两个公式,我们可以更好地应用它们,提升自己的分析能力和决策水平。

线性回归方程b的公式推导

线性回归方程b的公式推导

线性回归方程b的公式推导线性回归方程b是统计学中一种重要的回归分析技术,它是为了预测一个或多个变量之间的关系而拟合的数学模型,它可以帮助我们更好地理解模型中的变量之间的特定关系,并可以用来预测未知的分类问题。

线性回归方程b属于传统的机器学习算法之一,广泛用于各行各业。

线性回归方程b的定义为:Y或者Yi是解释变量,X者 Xi解释变量,b系数,u残差项。

如果某一变量Yi具有另一变量Xi的线性拟合关系,则Yi可以用Xi来描述,这个关系可以用线性回归方程b 来表达:Yi = bX1 + bX2 + + bXn + u。

线性回归模型的参数b又分成两部分,一部分是回归系数,是描述变量的关系的,一部分是残差项,即残差是形成的拟合曲线的垂直距离,表示因为未知的原因而无法拟合的数据。

有了线性回归方程b,此时我们就可以开始推导线性回归方程b 的公式来求解回归系数b了。

首先,将方程Yi = bX1 + bX2 + + bXn + u转换为矩阵形式,Yi = BX + u,其中,B为系数矩阵(由回归系数b组成),X为自变量矩阵(由解释变量Xi组成),u为残差项。

接着,在只有唯一解的前提下,可用最小二乘法(OLS)来求解回归系数b的值:BOLS=(XX)^(-1)XY,其中XX是X的转置矩阵乘以X矩阵为正定阵,XY是X的转置矩阵乘以Y矩阵。

有了上述的公式,我们就可以进行求解回归系数b的值了。

回归系数b的求解可分为以下几步:首先,从样本中抽取多个解释变量和一个被解释变量;然后,计算XX和XY;接下来,计算BOLS,即(XX)^(-1)XY;最后,根据BOLS确定其中的回归系数b。

以上就是线性回归方程b的推导过程。

线性回归方程b不仅可以用于求解拟合程度,而且可以用来预测未知的数据。

此外,它也不仅仅可以用于线性回归,还可以用于其他类型的回归分析,比如多项式回归、局部加权回归、非线性回归等。

以上就是关于线性回归方程b推导公式的相关内容,线性回归方程b是统计学中一种重要的回归分析技术,它可以用来推导回归系数b的计算,并可以用来预测未知的分类问题。

线 性 回 归 方 程 推 导

线 性 回 归 方 程 推 导

线性回归之最小二乘法线性回归Linear Regression——线性回归是机器学习中有监督机器学习下的一种简单的回归算法。

分为一元线性回归(简单线性回归)和多元线性回归,其中一元线性回归是多元线性回归的一种特殊情况,我们主要讨论多元线性回归如果因变量和自变量之间的关系满足线性关系(自变量的最高幂为一次),那么我们可以用线性回归模型来拟合因变量与自变量之间的关系.简单线性回归的公式如下:y^=ax+b hat y=ax+by^?=ax+b多元线性回归的公式如下:y^=θTx hat y= theta^T x y^?=θTx上式中的θthetaθ为系数矩阵,x为单个多元样本.由训练集中的样本数据来求得系数矩阵,求解的结果就是线性回归模型,预测样本带入x就能获得预测值y^hat yy^?,求解系数矩阵的具体公式接下来会推导.推导过程推导总似然函数假设线性回归公式为y^=θxhat y= theta xy^?=θx.真实值y与预测值y^hat yy^?之间必然有误差?=y^?yepsilon=haty-y?=y^?y,按照中心极限定理(见知识储备),我们可以假定?epsilon?服从正态分布,正态分布的概率密度公式为:ρ(x)=1σ2πe?(x?μ)22σ2rho (x)=frac {1}{sigmasqrt{2pi}}e^{-frac{(x-mu)^2}{2sigma^2}}ρ(x)=σ2π1e2σ2(x?μ)2?为了模型的准确性,我们希望?epsilon?的值越小越好,所以正态分布的期望μmuμ为0.概率函数需要由概率密度函数求积分,计算太复杂,但是概率函数和概率密度函数呈正相关,当概率密度函数求得最大值时概率函数也在此时能得到最大值,因此之后会用概率密度函数代替概率函数做计算.我们就得到了单个样本的误差似然函数(μ=0,σmu=0,sigmaμ=0,σ为某个定值):ρ(?)=1σ2πe?(?0)22σ2rho (epsilon)=frac {1}{sigmasqrt{2pi}}e^{-frac{(epsilon-0)^2}{2sigma^2}}ρ(?)=σ2π?1?e?2σ2(?0)2?而一组样本的误差总似然函数即为:Lθ(?1,?,?m)=f(?1,?,?m∣μ,σ2)L_theta(epsilon_1,cdots,e psilon_m)=f(epsilon_1,cdots,epsilon_m|mu,sigma^2)Lθ?(?1?,? ,?m?)=f(?1?,?,?m?∣μ,σ2)因为我们假定了?epsilon?服从正态分布,也就是说样本之间互相独立,所以我们可以把上式写成连乘的形式:f(?1,?,?m∣μ,σ2)=f(?1∣μ,σ2)?f(?m∣μ,σ2)f(epsilon_1,cdots,epsilon_m|mu,sigma^2)=f(epsilon_1|mu,sigma^2)*cdots *f(epsilon_m|mu,sigma^2)f(?1?,?,?m?∣μ,σ2)=f(?1?∣μ,σ2)?f(?m?∣μ,σ2) Lθ(?1,?,?m)=∏i=1mf(?i∣μ,σ2)=∏i=1m1σ2πe?(?i?0)22σ2L_theta(epsilon_1,cdots,epsilon_m)=prod^m_{i=1}f(epsilon _i|mu,sigma^2)=prod^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(epsilon_i-0)^2}{2sigma^2}}Lθ? (?1?,?,?m?)=i=1∏m?f(?i?∣μ,σ2)=i=1∏m?σ2π?1?e?2σ2(?i?0)2?在线性回归中,误差函数可以写为如下形式:i=∣yiy^i∣=∣yiθTxi∣epsilon_i=|y_i-haty_i|=|y_i-theta^Tx_i|?i?=∣yi?y^?i?∣=∣yi?θTxi?∣最后可以得到在正态分布假设下的总似然估计函数如下:Lθ(?1,?,?m)=∏i=1m1σ2πe?(?i?0)22σ2=∏i=1m1σ2πe?(yi θTxi)22σ2L_theta(epsilon_1,cdots,epsilon_m)=prod^m_{i=1} frac{1}{sigmasqrt{2pi}}e^{-frac{(epsilon_i-0)^2}{2sigma^2}}=pro d^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}L θ?(?1?,?,?m?)=i=1∏m?σ2π?1?e?2σ2(?i?0)2?=i=1∏m?σ2π?1 e2σ2(yi?θTxi?)2?推导损失函数按照最大总似然的数学思想(见知识储备),我们可以试着去求总似然的最大值.遇到连乘符号的时候,一般思路是对两边做对数运算(见知识储备),获得对数总似然函数:l(θ)=loge(Lθ(?1,?,?m))=loge(∏i=1m1σ2πe?(yi?θTxi)22σ2)l(theta)=log_e(L_theta(epsilon_1,cdots,epsilon_m))=log_ e(prod^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}) l(θ)=loge?(Lθ?(?1?,?,?m?))=loge?(i=1∏m?σ2π?1?e?2σ2(yi θTxi?)2?)l(θ)=loge(∏i=1m1σ2πe?(yi?θTxi)22σ2)=∑i=1mloge1σ2πexp(?(yi?θTxi)22σ2)=mloge1σ2π?12σ2∑i=1m(yi?θTxi)2l (theta) = log_e(prod^m_{i=1}frac {1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}) = sum_{i=1}^mlog_efrac {1}{sigmasqrt{2pi}}exp({-frac{(y_i-theta^Tx_i)^2}{2sigma^2} })=mlog_efrac{1}{sigmasqrt{2pi}}-frac{1}{2sigma^2}sum^m_{i= 1}(y^i-theta^Tx^i)^2l(θ)=loge?(i=1∏m?σ2π?1?e?2σ2(yi?θTxi?)2?)=i=1∑m?loge?σ2π?1?exp(?2σ2(yi?θTxi?)2?)=mloge?σ2π?1?2σ21?i=1∑m?(yi?θTxi)2前部分是一个常数,后部分越小那么总似然值越大,后部分则称之为损失函数,则有损失函数的公式J(θ)J(theta)J(θ):J(θ)=12∑i=1m(yi?θTxi)2=12∑i=1m(yi?hθ(xi))2=12∑i=1m (hθ(xi)?yi)2J(theta)=frac{1}{2}sum^m_{i=1}(y^i-theta^Tx^i)^2=frac{1}{2} sum^m_{i=1}(y^i-h_theta(x^i))^2=frac{1}{2}sum^m_{i=1}(h_the ta(x^i)-y^i)^2J(θ)=21?i=1∑m?(yi?θTxi)2=21?i=1∑m?(yi?hθ?(xi))2=21?i=1∑m?(hθ?(xi)?yi)2解析方法求解线性回归要求的总似然最大,需要使得损失函数最小,我们可以对损失函数求导.首先对损失函数做进一步推导:J(θ)=12∑i=1m(hθ(xi)?yi)2=12(Xθ?y)T(Xθ?y)J(theta)=fr ac{1}{2}sum^m_{i=1}(h_theta(x^i)-y^i)^2=frac{1}{2}(Xtheta-y )^T(Xtheta-y)J(θ)=21?i=1∑m?(hθ?(xi)?yi)2=21?(Xθ?y)T(Xθy)注意上式中的X是一组样本形成的样本矩阵,θthetaθ是系数向量,y也是样本真实值形成的矩阵,这一步转换不能理解的话可以试着把12(Xθ?y)T(Xθ?y)frac{1}{2}(Xtheta-y)^T(Xtheta-y)21?(Xθ?y) T(Xθ?y)带入值展开试试.J(θ)=12∑i=1m(hθ(xi)?yi)2=12(Xθ?y)T(Xθ?y)=12((Xθ)T? yT)(Xθ?y)=12(θTXT?yT)(Xθ?y)=12(θTXTXθ?yTXθ?θTXTy+yTy)J(theta)=frac{1}{2}sum^m_{i=1}(h_theta(x^i)-y^i)^2=frac{1} {2}(Xtheta-y)^T(Xtheta-y)=frac{1}{2}((Xtheta)^T-y^T)(Xtheta -y)=frac{1}{2}(theta^TX^T-y^T)(Xtheta-y)=frac{1}{2}(theta^T X^TXtheta-y^TXtheta-theta^TX^Ty+y^Ty)J(θ)=21?i=1∑m?(hθ?( xi)?yi)2=21?(Xθ?y)T(Xθ?y)=21?((Xθ)T?yT)(Xθ?y)=21?(θTXT yT)(Xθ?y)=21?(θTXTXθ?yTXθ?θTXTy+yTy)根据黑塞矩阵可以判断出J(θ)J(theta)J(θ)是凸函数,即J(θ)J(theta)J(θ)的对θthetaθ的导数为零时可以求得J(θ)J(theta)J(θ)的最小值.J(θ)?θ=12(2XTXθ?(yTX)T?XTy)=12(2XTXθ?XTy?XTy)=XTXθXTyfrac{partialJ(theta)}{partialtheta}=frac{1}{2}(2X^TXtheta-(y^TX)^T-X^Ty )=frac{1}{2}(2X^TXtheta-X^Ty-X^Ty)=X^TXtheta-X^Ty?θ?J(θ)? =21?(2XTXθ?(yTX)T?XTy)=21?(2XTXθ?XTy?XTy)=XTXθ?XTy 当上式等于零时可以求得损失函数最小时对应的θthetaθ,即我们最终想要获得的系数矩阵:XTXθ?XTy=0XTXθ=XTy((XTX)?1XTX)θ=(XTX)?1XTyEθ=(XTX)?1 XTyθ=(XTX)?1XTyX^TXtheta-X^Ty=0X^TXtheta=X^Ty((X^TX)^{-1}X^TX)theta=(X^TX)^{-1}X^TyEtheta=(X^TX)^{-1}X^Tytheta=(X^TX)^{-1}X^TyXTXθ?XTy=0XT Xθ=XTy((XTX)?1XTX)θ=(XTX)?1XTyEθ=(XTX)?1XTyθ=(XTX)?1XTy (顺便附上一元线性回归的系数解析解公式:θ=∑i=1m(xi?x ̄)(yi?y ̄)∑i=1m(xi?x  ̄)2theta=frac{sum^m_{i=1}(x_i-overline{x})(y_i-overline{y} )}{sum^m_{i=1}(x_i-overline{x})^2}θ=∑i=1m?(xi?x)2∑i=1m?( xi?x)(yi?y?)?)简单实现import numpy as npimport matplotlib.pyplot as plt# 随机创建训练集,X中有一列全为'1'作为截距项X = 2 * np.random.rand(100, 1)y = 5 + 4 * X + np.random.randn(100, 1)X = np.c_[np.ones((100,1)),X]# 按上面获得的解析解来求得系数矩阵thetatheta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)# 打印结果print(theta)# 测试部分X_test = np.array([[0],X_test = np.c_[(np.ones((2, 1))), X_test]print(X_test)y_predict = X_test.dot(theta)print(y_predict)plt.plot(X_test[:,-1], y_predict, 'r-')plt.axis([0, 2, 0, 15])plt.show()sklearn实现import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegression X = 2 * np.random.rand(100, 1)y = 5 + 4 * X + np.random.randn(100, 1)X = np.c_[np.ones((100,1)),X]# 新建线性回归模型model = LinearRegression(fit_intercept=False)# 代入训练集数据做训练model.fit(X,y)# 打印训练结果print(model.intercept_,model.coef_)X_test = np.array([[0],X_test = np.c_[(np.ones((2, 1))), X_test]print(X_test)y_predict =model.predict(X_test)print(y_predict)plt.plot(X_test[:,-1], y_predict, 'r-')plt.axis([0, 2, 0, 15])plt.show()使用解析解的公式来求得地模型是最准确的.计算量非常大,这会使得求解耗时极多,因此我们一般用的都是梯度下降法求解.知识储备距离公式机器学习中常见的距离公式 - WingPig - 博客园中心极限定理是讨论随机变量序列部分和分布渐近于正态分布的一类定理。

标准曲线回归方程公式

标准曲线回归方程公式

标准曲线回归方程公式标准曲线回归方程是统计学中常用的一种方法,用于描述两个或两个以上变量之间的关系。

在实际应用中,我们经常需要根据已知数据建立回归方程,从而进行预测和分析。

本文将介绍标准曲线回归方程的计算方法和应用技巧。

一、线性回归方程。

线性回归方程是描述两个变量之间线性关系的数学模型,通常表示为y = ax + b,其中y是因变量,x是自变量,a和b分别是回归系数和截距。

在实际应用中,我们需要利用最小二乘法来估计回归系数a和b的取值,从而得到最佳拟合的回归方程。

二、曲线回归方程。

除了线性关系,变量之间的关系往往是复杂的曲线形式。

在这种情况下,我们可以利用多项式回归方程来描述变量之间的非线性关系。

多项式回归方程的一般形式为y = a0 + a1x + a2x^2 + ... + anx^n,其中n为多项式的次数。

通过拟合数据,我们可以得到最佳拟合的曲线回归方程。

三、标准曲线回归方程公式。

对于标准曲线回归方程,我们通常采用最小二乘法来估计回归系数的取值。

最小二乘法是一种常用的参数估计方法,通过最小化实际观测值与回归方程预测值之间的误差平方和来确定回归系数的取值。

具体而言,对于多项式回归方程,我们可以通过矩阵运算来求解回归系数的值,进而得到最佳拟合的曲线回归方程。

四、应用技巧。

在实际应用中,建立标准曲线回归方程需要注意以下几点技巧:1. 数据预处理,在建立回归方程之前,我们需要对数据进行预处理,包括数据清洗、异常值处理和变量转换等操作,以确保数据的质量和可靠性。

2. 模型选择,在选择回归模型时,需要根据实际问题和数据特点来确定回归方程的形式,包括线性回归、多项式回归和其他非线性回归模型。

3. 模型评估,在建立回归方程后,需要对模型进行评估,包括残差分析、拟合优度检验和预测效果评估等,以确保模型的准确性和可靠性。

4. 结果解释,最后,需要对回归方程的结果进行解释和应用,包括回归系数的含义和预测结果的解释,以指导实际决策和应用。

线性回归方程的求法(需要给每个人发)

线性回归方程的求法(需要给每个人发)

耿老师总结的高考统计部分的两个重要公式的具体如何应用第一公式:线性回归方程为ˆˆˆy bx a =+的求法:(1) 先求变量x 的平均值,既1231()n x x x x x n=+++⋅⋅⋅+ (2) 求变量y 的平均值,既1231()n y y y y y n=+++⋅⋅⋅+ (3) 求变量x 的系数ˆb,有两个方法 法1121()()ˆ()niii nii x x y y bx x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=⎡⎤-+-++-⎣⎦(需理解并会代入数据)法2121()()ˆ()niii nii x x y y bx x ==--=-∑∑(题目给出不用记忆)[]1122222212...,...n n n x y x y x y nx y x x x nx ++-⋅=⎡⎤+++-⎣⎦(这个公式需要自己记忆,稍微简单些)(4) 求常数ˆa,既ˆˆa y bx =- 最后写出写出回归方程ˆˆˆybx a =+。

可以改写为:ˆˆy bx a =-(ˆy y 与不做区分) 例.已知,x y 之间的一组数据:求y 与x 的回归方程:解:(1)先求变量x 的平均值,既1(0123) 1.54x =+++= (2)求变量y 的平均值,既1(1357)44y =+++= (3)求变量x 的系数ˆb,有两个方法 法1ˆb =[]11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=⎡⎤-+-+-+-⎣⎦--+--+--+--==⎡⎤-+-+-+-⎣⎦法2ˆb =[][]11222222222212...011325374 1.5457...0123n n n x y x y x y nx y x x x nx ++-⋅⨯+⨯+⨯+⨯-⨯⨯==⎡⎤⎡⎤+++-+++⎣⎦⎣⎦ (4)求常数ˆa,既525ˆˆ4 1.577a y bx =-=-⨯=最后写出写出回归方程525ˆˆˆ77ybx a x =+=+第二公式:独立性检验两个分类变量的独立性检验: 注意:数据a 具有两个属性1x ,1y 。

回归方程计算

回归方程计算

回归方程计算回归方程是用来描述一个或多个自变量与因变量之间的关系的数学模型。

在统计学中,回归分析是一种常用的方法,用来估计自变量和因变量之间的关联度。

回归方程的计算涉及到很多数学知识和统计方法,下面我们来详细介绍一下回归方程的计算过程。

首先,我们需要明确回归方程的形式。

在简单线性回归中,回归方程通常表示为y = β0 + β1x + ε,其中 y 表示因变量,x 表示自变量,β0 和β1 分别是截距和斜率,ε 表示误差项。

而在多元线性回归中,回归方程的形式为y = β0 + β1x1 + β2x2 + ... + βnxn + ε,其中 x1, x2, ..., xn 分别表示多个自变量。

其次,我们需要通过最小二乘法来估计回归方程的参数。

最小二乘法是一种常用的参数估计方法,通过最小化观测值与回归方程预测值的残差平方和来确定参数的值。

对于简单线性回归来说,参数β0 和β1 的估计值可以通过以下公式计算得到:β1 = Σ((xi - x)(yi - ȳ)) / Σ((xi - x)²)β0 = ȳ - β1x其中,x和ȳ 分别表示自变量 x 和因变量 y 的均值,xi 和 yi 分别表示第 i 个观测值,Σ 表示求和符号。

对于多元线性回归来说,参数的估计需要使用矩阵的运算方法。

参数向量β 的估计值可以通过以下公式计算得到:β = (X^T X)^(-1) X^T y其中,X 是自变量 x 的设计矩阵,y 是因变量 y 的观测向量,^T 表示矩阵的转置,^(-1) 表示矩阵的逆运算。

最后,我们需要检验回归方程的拟合程度。

通常使用残差分析、方差分析和回归系数的显著性检验来评估回归方程的拟合效果。

残差分析用于检验误差项的独立性和常数方差性,方差分析用于检验回归模型的显著性,回归系数的显著性检验用于确定自变量对因变量的影响是否显著。

综上所述,回归方程的计算涉及到参数估计和拟合效果检验两个方面。

通过适当的数学推导和统计方法,我们可以得到有效的回归方程,从而描述自变量和因变量之间的关系。

线形回归方程公式

线形回归方程公式

线形回归方程公式
线性回归方程是指对于一系列自变量与因变量之间存在线性关系
的数据,通过求解最小二乘法得到的一条直线方程,用于描述自变量
与因变量之间的关系。

其具体的数学公式为:
y = b0 + b1x1 + b2x2 + … + bnxn
其中,y表示因变量,x1 ~ xn表示n个自变量,b0 ~ bn表示
n+1个回归系数,表示自变量对因变量的影响程度。

线性回归方程就是找到一组最佳的回归系数,使得该方程最小化各数据点与该直线之间
的距离和。

线性回归方程在数据分析、金融预测、医学研究等诸多领域中都
有广泛应用。

在金融研究中,线性回归方程可用于分析股票市场中股
票价格与各种因素之间的关系,帮助投资者更准确地预测市场发展趋势。

在医学领域,线性回归方程可以用于分析药品的剂量与患者的病
情之间的关系,为医生提供更科学的治疗方案。

但是,在使用线性回归方程时,我们也需要注意到它的局限性。

例如,线性回归方程假定自变量与因变量之间存在线性关系,但在实
际应用中,许多自变量与因变量之间的关系并不满足这个条件。

此外,也需要考虑到可能存在的多重共线性问题,避免因为自变量之间存在
相关性而对回归系数的估计产生误差。

因此,在使用线性回归方程时,需要结合实际情况做出合理的分析和判断。

总之,线性回归方程是数据分析中的重要工具,能够帮助我们发
现数据中存在的关系,并为我们提供预测和决策的参考。

但在使用时,我们也需要注意它的限制和适用条件,以免误导我们的决策。

线性回归方程的求法(需要给每个人发)

线性回归方程的求法(需要给每个人发)

耿老师总结的高考统计部分的两个主要公式
的具体如何利用之杨若古兰创作
第一公式:
(1)
(2)

3)

代入数据)

微简单些)
(4)

不做区分)
0 1 2 3
1 3 5 7
解:(1
(2
(3


(4)求
第二公式:独立性检验
两个分类变量的独立性检验:
留意:数据a
数据b
数据
c
d
且列出表格是最主要.解题步调如下
第一步:提出假设检验成绩
(普通假设两个变量不相干)
第二步:列出上述表格 第三步:计算检验的目标
总计

第四步:查表得出结论
上述结论都是概率性总结.切记事实结论.只是大概行描述.具体发生情况要和实际联系!!!!。

线性回归方程的求法(需要给每个人发)

线性回归方程的求法(需要给每个人发)

高考统计部分的两个重要公式的具体如何应用第一公式:线性回归方程为ˆˆˆybx a =+的求法: (1) 先求变量x 的平均值,既1231()n x x x x x n=+++⋅⋅⋅+ (2) 求变量y 的平均值,既1231()n y y y y y n=+++⋅⋅⋅+ (3) 求变量x 的系数ˆb,有两个方法 法1121()()ˆ()niii nii x x y y bx x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=⎡⎤-+-++-⎣⎦(需理解并会代入数据)法2121()()ˆ()niii nii x x y y bx x ==--=-∑∑(题目给出不用记忆)[]1122222212...,...n n n x y x y x y nx y x x x nx ++-⋅=⎡⎤+++-⎣⎦(这个公式需要自己记忆,稍微简单些)(4) 求常数ˆa,既ˆˆa y bx =- 最后写出写出回归方程ˆˆˆybx a =+。

可以改写为:ˆˆy bx a =-(ˆy y 与不做区分) 例.已知,x y 之间的一组数据:求y 与x 的回归方程:解:(1)先求变量x 的平均值,既1(0123) 1.54x =+++= (2)求变量y 的平均值,既1(1357)44y =+++= (3)求变量x 的系数ˆb,有两个方法 法1ˆb= []11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=⎡⎤-+-+-+-⎣⎦--+--+--+--==⎡⎤-+-+-+-⎣⎦法2ˆb=[][]11222222222212...011325374 1.5457...0123n n n x y x y x y nx y x x x nx ++-⋅⨯+⨯+⨯+⨯-⨯⨯==⎡⎤⎡⎤+++-+++⎣⎦⎣⎦(4)求常数ˆa,既525ˆˆ4 1.577a y bx =-=-⨯= 最后写出写出回归方程525ˆˆˆ77ybx a x =+=+第二公式:独立性检验两个分类变量的独立性检验:注意:数据a 具有两个属性1x ,1y 。

一元线性回归方程公式

一元线性回归方程公式

一元线性回归方程公式
一元线性回归方程公式:
y = ax + b
元线性回归方程反映一个因变量与一个自变量之间的线性关系,当直线方程Y'=a+bx的a和b确定时,即为一元回归线性方程。

经过相关分析后,在直角坐标系中将大量数据绘制成散点图,这些点不在一条直线上,但可以从中找到一条合适的直线,使各散点到这条直线的纵向距离之和最小,这条直线就是回归直线,这条直线的方程叫作直线回归方程。

注意:一元线性回归方程与函数的直线方程有区别,一元线性回归方程中的自变量X对应的是因变量Y的一个取值范围。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性回归方程公式
线性回归是一种用于预测连续数值变量的统计方法。

它基于一个线性
的数学模型,通过寻找最佳的拟合直线来描述自变量和因变量之间的关系。

线性回归方程公式为:
Y=β0+β1X1+β2X2+...+βnXn+ε
其中,Y是因变量,X1,X2,...,Xn是自变量,β0,β1,β2,...,βn
是回归系数,ε是误差项。

回归系数表示自变量对因变量的影响程度。

线性回归的基本假设是:
1.线性关系:自变量和因变量之间存在线性关系,即因变量的变化可
以通过自变量的线性组合来解释。

2.残差独立同分布:误差项ε是独立同分布的,即误差项之间不存
在相关性。

3.残差服从正态分布:误差项ε服从正态分布,即在每个自变量取
值下,因变量的观测值呈正态分布。

4.残差方差齐性:在每个自变量取值下,因变量的观测值的方差是相
等的。

线性回归的求解方法是最小二乘法,即通过最小化实际观测值与回归
方程预测值之间的平方差来估计回归系数。

具体步骤如下:
1.数据收集:收集自变量和因变量的观测数据。

2.模型设定:根据自变量和因变量之间的关系设定一个线性模型。

3.参数估计:通过最小化平方误差来估计回归系数。

4.模型检验:通过检验残差的随机性、正态性和方差齐性等假设来检验模型的合理性。

5.模型拟合:利用估计的回归系数对未知自变量的观测值进行预测。

6.模型评估:通过评估预测结果的准确性来评估模型的性能。

Y=β0+β1X1+β2X2+...+βnXn+ε
其中,Y是因变量,X1,X2,...,Xn是自变量,β0,β1,β2,...,βn 是回归系数,ε是误差项。

多元线性回归方程可以更准确地描述自变量和因变量之间的关系。

除了最小二乘法,还有其他方法可以用来求解线性回归模型,如梯度下降法和最大似然估计法等。

这些方法可以在不同的情况下选择使用,以获得更好的回归模型。

线性回归是一种经典的预测分析方法,被广泛应用于各个领域,如经济学、金融学、社会科学、自然科学等。

通过建立合适的线性回归模型,可以帮助我们理解自变量和因变量之间的关系,并用于预测未来的趋势和变化。

相关文档
最新文档