分式方程无解和增根的区别
浅谈分式方程的增根与无解
【八年级】浅谈分式方程的增根与无解在学习分式方程时,增根与无解是避不开的话题,也是绝大部分同学弄不清楚的地方。
今天,给大家带来 2 类典型的问题。
一、解分式方程时,增根是如何产生的?增根到底有多少个?二、增根与无解到底有怎样的区别与联系。
1.有关增根的问题1.1增根是如何产生的先看一个有意思的问题:x-1=0显然,我们都知道原方程的解为 x=1,但是如果我们没有直接移项,而是在方程的两边同时乘以 x,则原方程可化为 x(x-1)=0,可解得 x=0 或x=1.我们当然知道第一种方法是正确的,但是为什么我在等号两边同时乘了一个 x,就会变成两个解呢?这是因为两边同时乘的这个 x,我们没有确保它是不等于 0 的。
换言之,第二种解法的 x=0 就是这个一元一次方程的增根。
因为我在方程 x-1=0 两边同时乘以 x 后,得到的方程 x(x-1)=0 与原方程不是同解方程。
而我们解分式方程时,总是将分式方程化成整式方程进行求解。
由于这个过程扩大了原来末知数的取值范围,使得所化成的整式方程与原分式方程不是同解方程,带来了可能使所化成的整式方程成立,而使原分式方程分母为零的末知数的值,也即增根。
1.2增根到底有多少个再看一个有意思的问题,也是以前很多老师争论不休的问题。
故原方程无解,因此原方程的增根有 0 个。
这个问题为什么会产生歧义呢?这个方程的增根到底有几个?解法一、二、三到底哪个是正确的?首先,需要明确一点:解所有不含参数的分式方程,按照所有项移到方程左边,进而通分,这样的方式解得的分式方程永远都不会有增根,即解法三这样的。
因为这种解法,一直在进行等价转化,即都是同解方程。
那既然这种解法不会产生增根,为什么教材不提倡这种做法呢?笔者觉得原因有两个。
一、通过通分化简求值的方法相比于去分母化成整式方程更加麻烦,虽然不需要验根,但是对于复杂一些的分式方程,通分的计算量不小。
二、更重要的一点,通分的方法无法处理含参数的分式方程。
浅谈分式方程的增根和无解
浅谈分式方程的增根和无解作者:黄礼波来源:《新课程·上旬》 2013年第23期文/黄礼波分式方程的增根和无解是分式方程中两个重要的概念,学生在学习分式方程的过程中,常常对这两个概念混淆不清,总认为分式方程的无解和增根是同一回事,然而事实并非如此。
分式方程有增根,是指解分式方程时,在把分式方程转化为整式方程的过程中,方程两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值。
分式方程无解是指无论x为何值,都不能使方程两边的值相等,它包含两种情况:(1)原分式方程去分母后的整式方程无解。
(2)原方程去分母后的整式方程有解,但是这个解却使得原分式方程的分母为零,它是原分式方程的增根,从而原方程无解。
一、初步认识无解和增根例1.解分式方程解:方程两边同乘x+2,得x-3=4-x+2(x+2)②整理得-7=4因为方程②无解,所以原分式方程①无解。
点评:此例说明了分式方程转化为整式方程后,整式方程无解,因此原分式方程无解。
例2.解分式方程解:方程两边同乘x(x+1),得5x+2=3x ②解之得x=-1检验:当x=-1,x(x+1)=0,所以x=-1是原方程的增根,从而原分式方程无解。
点评:方程①中x的取值范围是x≠-1且x≠0,而在去分母化为整式方程②后,此时x 的取值范围扩大为全体实数。
所以当求得x的值恰好使最简公分母为零时,x的值就是增根,故原分式方程无解。
归纳总结:1.增根是分式方程转化为整式方程的根,但不是原分式方程的根。
2.无解要分两种情况,一种是分式方程转化为整式方程后整式方程无解,另一种是整式方程有解但所求的解都是原分式方程的增根。
二、提升对无解和增根的理解例3.关于x的方程无解,求k的值。
解:方程两边同乘x-3得:x=2(x-3)+k ①x=6-k因为原分式方程无解,但是①有解,所以这个解6-k一定是原方程的增根。
即x=3当x=3时,6-k=3,所以k=3。
分式方程中无解与增根有什么区别,做题时有什么不同的
分式方程中无解与增根有什么区别,做题时有什么不同的
解分式方程一般都要去分母化为整式方程,而整式方程只有:有解与无解二种情况.
当整式方程无解时,那么原来的分式方程也一定无解.
当整式方程有解时,原来的分式方程就不一定也有解,因为分式方程有产生增根的可能,
若整式方程的解代入原分式方程的所有分母中,只要有一个分母为0,
这个整式方程的解就不是原分式方程的根,它是一个增根.
若整式方程的解代入原分式方程的所有分母中全不为0,这个整式方程的解
才是原分式方程的解.
若整式方程的所有解都不是原分式方程的根(即都是增根),这时才能说
此分式方程无解.
无解与增根的关系不太大,有增根不一定无解,无解也不一定是因为有了增根才无解的.
这与解题毫无关系.。
【doc】怎样区别分式方程的增根与无解
怎样区别分式方程的增根与无解责旧.蝙辑:王二喜刘顿学习了解分式方程以后,不少同学把增根与无解混为一谈.为了掌握这两个概念,现举例说明这两个概念的区别和联系.一.岔将分式方程变形为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,可能产生不适合原分式方程的解或根,这种根称为增根.如,若方程—+3=有增根,则这个增根一定是=2.一二_徭绣罗解分式方程的关键是去分母将分式方程转化为整式方程.对原分式方程的解来说,各分式的分母不能为零,而对去分母后得到的整式方程来说,没有这个限制.因此,解分式方程时,必须检验.2O09.3的增根与无解怎样区剔分式方程课程_IiI赍源_…i庭裔锄辑分式方程无解有两种情形:一种是将原分式方程两边都乘以最简公分母,去分母并整理得到的整式方程为ax=b,若a=O,而b≠0,则此整式方程无解,即原分式方程无解;另一种是化分式方程为整式方程,整式方程的解是原分式方程的增根,此时分式方程无鳃.,ll如,若关于的方程一1=0无解,试求n的值.将原方程去分母转化为(o一1)x+2=O,即(n一1)一2.当n一1=0时,~Ja=l,此时整式方程无解.所以当n=1时,原方程无解.对于方程(.~1)x+2=O,当=1时,原方程无解.所以当(n一1)×1+2=0时,即o=一1,原方程无解.所以a为1或一1.在解本题时,考虑问题要全面,不要只考虑原分式方程有增根的情形,而忽略了整式方程无解,则原分式方程无解的情况.一分薅方癌警车麟按哮暴分式方程有增根,则增根是原分式方程变形后所得整式方程的根,但不是原分式方程的根,即这个根使最简公分母为0.如,解分式方程=3一刍,可得x=2,把=2代人(2一),得2一x=O,即=2使分式方程的分母2一为0.所以x=2不是原方程的解,x=2 是原方程的增根,此方程无解.在本题中,分式方程有增根,方程无解.请思考下面两道题:1.若关于的方程:m无解,求m的值.2.m为何值时,关于的方程+x2-4=会产生增根.目I2OO9.3。
八年级数学分式方程的增根与无解知识点讲解及典例解析
基础义务教育资料分式方程的增根与无解分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:例1 解方程2344222+=---x x x x . ① 解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).② 解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.【说明】显然,方程①中未知数x 的取值范围是x ≠2且x ≠-2.而在去分母化为方程②后,此时未知数x 的取值范围扩大为全体实数.所以当求得的x 值恰好使最简公分母为零时,x 的值就是增根.本题中方程②的解是x =2,恰好使公分母为零,所以x =2是原方程的增根,原方程无解.例2 解方程22321++-=+-xx x x . 解:去分母后化为x -1=3-x +2(2+x ).整理得0x =8.因为此方程无解,所以原分式方程无解.【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根.例3若方程32x x --=2m x-无解,则m=——————. 解:原方程可化为32x x --=-2m x -. 方程两边都乘以x -2,得x -3=-m .解这个方程,得x=3-m .因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m ,解得m=1.故当m=1时,原方程无解.【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解.但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会明白其中的道理,此处不再举例.例4当a 为何值时,关于x 的方程223242ax x x x +=--+①会产生增根? 解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原分式方程有增根,则x =2或-2是方程②的根.把x =2或-2代入方程②中,解得,a =-4或6.【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值.若将此题“会产生增根”改为“无解”,即:当a 为何值时,关于x 的方程223242ax x x x +=--+①无解? 此时还要考虑转化后的整式方程(a -1)x =-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原方程无解,则有两种情形:(1)当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解。
无解≠增根
陈峰
分式方程的无解和增根令许多初学分式 增根和整式方程无解这两种情况讨论。
方程的同学头疼,无解是不是一定意味着这个
解 :将 方 程 两 边 同 时 乘 x(x-1),得 x
方程有增根?本文试通过几道例题来谈谈它 (x-a)-3(x-1)=x(x-1),
们的差别。
整理方程,得(a+2)x=3。
又∵分式方程无解,∴x=1 即为增根。
不能等于 1,而对于变形后的方程来说,x=1。
当增根为 1 时,得 a+2=3,解得 a=1。
因此 x=1 是在去分母过程中“增加”的根,这个
综上所述,当 a=-2 或 a=1 时,该分式方程
根原本是不存在的,这样的根就是增根。
无解。
例1
若方程
x x-3
-2=
m x-3
二、无解可能出现增根,也可能真没解
分式方程的根如果是增根,则分式方程无
解。反之却不一定成立。如果分式方程无解,
还有可能是化为整式方程后,整式方程就是无
解的。
例2
若关于 x 的分式方程
x-a x-1
-
3 x
=
1
无解,则 a=
。
【分析】分式方程无解,需要分分式方程有
技巧点评:已知分式方程无解,可先考虑
去分母,将它们化成整式方程,然后讨论是整
x=
k
5
3
。
因为
x<0,所以
k
5
3
<
k
5
3
≠-3,所以 k≠-12。
所以当 k<3 且 k≠-12 时,原分式方程的解
为负数。
(作者单位:海安高新区仁桥初级中学)
46 策略方法
分式方程无解和增根的区别
分式方程无解和增根的区别分式方程无解和增根的区别 1无解是指在指定的范围和条件内,没有一个数能满足方程。
增根是指可以通过方程找到的解,但只有在不满足条件的情况下才能丢弃。
常见于分数方程。
分式方程无解和增根的区别 2分式方程是方程中的一种,是指分母里含有未知数的有理方程,或者等号左右两边至少有一项含有未知数,该部分知识属于初等数学知识.以下为解法:①去分母方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互为相反数时。
不要忘了改变符号。
(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)②移项移项,若有括号应先去括号,注意变号,合并同类项,把系数化为1 求出未知数的值;③验根(解)在求了未知量的值之后,一定要查根,因为在分数方程转化为积分方程的过程中,未知量的取值范围扩大了,可能导致根增加。
求根时,把积分方程的根代入最简单的公分母。
如果最简单的公分母等于0,这个根就是增广根。
否则这个根就是原分式方程的根。
如果求解的根都是增广根,则原方程无解。
如果分数本身是约分的,也要代入测试。
用分数阶方程解决实际问题时,需要检查得到的解是否符合方程和问题的含义。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.★注意(1)注意分母,不要漏掉代数表达式项。
(2)根是去掉分式方程的分母后的积分方程的根,但不是原分式方程的根。
(3)根使最简单的公分母等于0。
(4)分式方程中,如果x为分母,则x应不等于0。
分式方程的增根和无解
分式方程的增根和无解黄石市白马山学校 胡优武知识重点:同学们在平时解答分式方程时,经常对分式方程的增根和无解混淆不清,容易错解、漏解。
为了学生好区分这两个概念,特制定以下例子加以说明。
(一)所求出的根使分式方程分母为零,这个根叫增根。
假定分母为零的值不一定是分式方程的增根。
例1:若解关于x 的分式方程234222+=-+-x x mx x 会产生增根,求m 的值. 解:方程两边都乘最简公分母(x+2)(x-2),得2(x+2)+mx=3(x-2)∵最简公分母为(x+2)(x-2),∴原方程增根为x=±2,∴把x=2代入整式方程,得m=-4.把x=-2代入整式方程,得m=6.综上,可知m=-4或6.本例具有常规性,一般学生都可以看出增根是x=±2,从而求出两个m 的值。
例2:关于分式方程xx x x x +=-+-2227163增根的情况,说法正确的是( ) A .有增根是0和-1 B .有增根是0和1、-1C .有增根是-1D .有增根是1一般的学生会假定最简公分母x(x+1)(x-1)=0,得出B 选项,那么就错了。
大家先看看解答过程。
解:方程两边乘以最简公分母为x (x+1)(x-1),得3(x+1)-6x=7(x-1),x=1;当x=1时,x (x+1)(x-1)=0,x=1是增根.原方程无解故选D .以上说明面对分式方程增根时,不能通过假定分母为零的所有x 的值是方程增根,必须动手计算。
(二)分式方程得的无解,要从两个角度分析,①无解:使分式方程分母为零的根叫增根,此时分式方程无解。
②无解:分式方程化成整式方程ax=b , 当 a=0 ,b ≠0时,方程无解。
例3:若关于x 的分式方程131=---xx m x 无解,求m 的值. 解:方程两边同时乘以x (x-1)得,x (x-m )-3(x-1)=x (x-1),整理得 (m+2)x=3①当x=0时原分式方程无解,此时0=3,无意义;②当x=1时原分式方程无解,此时解得m=1.③当m+2=0时,即m=-2时,整式方程(m+2)x=3无解,即原分式方程无解.故m=1或-2.上面的第③步,是学生最容易遗漏的。
分式方程的“无解”与“有增根”的区别
分式方程的“无解”与“有增根”的区别作者:徐丽娟来源:《中学生数理化·教与学》2011年第10期初学分式方程的学生经常受到有无增根的困扰,搞不清楚什么时候方程有增根,什么时候无增根,因而时常出错。
尤其是在含有字母的分式方程中,求字母为何值时方程有增根或者方程无解。
遇到这样的问题,学生总是经常出错,究其原因,主要是学生认为既然方程有增根,方程就无解;反之,若方程无解,就表示方程一定有增根。
其实这是一种错误的认识,方程是否有解与方程是否有增根是有着本质的区别,它们之间是不能划等号的。
现举例说明。
一、若整式方程解出的值都是增根,则分式方程一定无解例1 解方程3x+6x-1-x+5x(x-1)=0。
解:两边同时乘以最简公分母x(x-1),得3(x-1)+6x-(x+5)=0。
解这个方程,得x=1。
检验:当时x=1,x(x-1)=0,所以x=1是原方程的增根,即原方程无解。
点评:求出整式方程的根都是增根时,必须交代“原方程无解”。
二、若分式方程有增根,则整式方程解出的值一定等于增根例2 若关于的方程x-2x-3=mx-3+2有增根,求m的值。
分析:分式方程有增根,表明在转化为整式方程之后解出的未知数的值能使最简公分母的值为0,因此方程的增根是x=3。
解:两边同时乘以x-3,得x-2=m+2(x-3)。
即x=4-m。
因为方程有增根,且只能x=3,所以4-m=3,即m=1。
点评:若分式方程无解,则解出的x=4-m一定是增根,所以4-m=3,从而m=1。
在这里有增根与无解的含义的等同的。
三、若分式方程无解,则可能有两种情况例3 若关于x的方程ax+1x-1-1=0无解,求a的值。
分析:对于分式方程来说,方程无解可能有两种情况:一是解出的值都是增根,则方程无解;二是在转化为整式方程的时候,整式方程本身就无解。
解:两边同时乘以(x-1),得ax+1-(x-1)=0,即(a-1)x=-2。
(1)若a-1≠0,即a≠1时,x=-2a-1。
分式方程的增根与无解
的值 就 是 增 根 . 分式方 程转化 为整式方程 的变形过 程 中 , 好使最 简公 分母 为零 时 , 本 题 转 化 的 整 式 方 程 的解 J  ̄ x = 2 , 恰 好 使 公 方 程 的两 边 都 乘 了 一 个 可 能 使 分 母 为 零 所 以x = 2 是原方 程的增根 , 原 方 的整 式 , 从 而 扩 大 了 未 知 数 的 取 值 范 围而 分 母 为 零 ,
【 点评 】 本 题 考 查 了分 式 方 程 的解 .方 数 的 值 即 为 增 根 , 最 后 将 增 根 代 入 转 化 得 程 的 解 即 为 能 使 方 程 左 右 两 边 相 等 的 未 到 的整 式 方 程 中 , 求 出原 方 程 中所 含 字 母
知 数 的值 .因为 同学 们 目前 所 学 的是 能 化 的 值 . 为一元 一 次方程 的分式方 程 , 而 一元一 次 方程 只有一 个根 , 所 以如 果 这 个 根 是 原 方 程 的增 根 ,那 么 原 方 程 无 解 . 1.
2
x 2 -4
增根 .
解: 多 } - 碍: 一 ( + 2 ) 2 + 1 6 = 4 一 ,
去括 号 得 : 一 2 一 一 4 + 1 6 = 4 ,
—
例3 ( 2 0 1 3 ・ 山 东威 海 ) 若 关 于 的 方 程
=
+ 2 .
【 解析 】 去分 母 后 化 为 一 1 = 3 + 2 ( 2 ) .
整 理 得 = 8 .
去 分 母 后 的整 式 方 程 有 解 , 但这个解 却使
原 方 程 的分 母 为 0 ,它 是 原 方 程 的增 根 , 从
而原方程无解 .
因为此方 程无 解 , 所 以原 分式方 程无 解 .
浅谈分式方程的增根和无解
2013-12课堂内外分式方程的增根和无解是分式方程中两个重要的概念,学生在学习分式方程的过程中,常常对这两个概念混淆不清,总认为分式方程的无解和增根是同一回事,然而事实并非如此。
分式方程有增根,是指解分式方程时,在把分式方程转化为整式方程的过程中,方程两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值。
分式方程无解是指无论x为何值,都不能使方程两边的值相等,它包含两种情况:(1)原分式方程去分母后的整式方程无解。
(2)原方程去分母后的整式方程有解,但是这个解却使得原分式方程的分母为零,它是原分式方程的增根,从而原方程无解。
一、初步认识无解和增根例1.解分式方程x-3x+2=4-xx+2+2①解:方程两边同乘x+2,得x-3=4-x+2(x+2)②整理得-7=4因为方程②无解,所以原分式方程①无解。
点评:此例说明了分式方程转化为整式方程后,整式方程无解,因此原分式方程无解。
例2.解分式方程5x+2x2+x=3x+1①解:方程两边同乘x(x+1),得5x+2=3x②解之得x=-1检验:当x=-1,x(x+1)=0,所以x=-1是原方程的增根,从而原分式方程无解。
点评:方程①中x的取值范围是x≠-1且x≠0,而在去分母化为整式方程②后,此时x的取值范围扩大为全体实数。
所以当求得x的值恰好使最简公分母为零时,x的值就是增根,故原分式方程无解。
归纳总结:1.增根是分式方程转化为整式方程的根,但不是原分式方程的根。
2.无解要分两种情况,一种是分式方程转化为整式方程后整式方程无解,另一种是整式方程有解但所求的解都是原分式方程的增根。
二、提升对无解和增根的理解例3.关于x的方程xx-3=2+k x-3无解,求k的值。
解:方程两边同乘x-3得:x=2(x-3)+k①x=6-k因为原分式方程无解,但是①有解,所以这个解6-k一定是原方程的增根。
即x=3当x=3时,6-k=3,所以k=3。
分式方程的增根与无解(1)
分式方程的增根与无解分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此. 分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:例1 解方程2344222+=---x x x x . ① 解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.例2 解方程22321++-=+-xx x x . 解:去分母后化为x -1=3-x +2(2+x ).整理得0x =8.因为此方程无解,所以原分式方程无解.例3(2007湖北荆门)若方程32x x --=2m x-无解,则m=——————. 解:原方程可化为32x x --=-2m x -. 方程两边都乘以x -2,得x -3=-m .解这个方程,得x=3-m .因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m ,解得m=1.故当m=1时,原方程无解.例4当a 为何值时,关于x 的方程223242ax x x x +=--+①会产生增根? 解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原分式方程有增根,则x =2或-2是方程②的根.把x =2或-2代入方程②中,解得,a =-4或6.若将此题“会产生增根”改为“无解”,即:当a 为何值时,关于x 的方程223242ax x x x +=--+①无解? 此时还要考虑转化后的整式方程(a -1)x =-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原方程无解,则有两种情形:(1)当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解。
例谈分式方程的“增根”与“无解”问题
数学篇学思导引在解分式方程问题时,经常会碰到“增根”或“无解”的情形.许多同学对这两个概念混淆不清,认为分式方程无解或有增根是同样的概念.事实上,“增根”与“无解”是两个不同的数学概念.抓住概念本质是理解概念的关键.下面,笔者就分式方程的“增根”与“无解”问题进行了剖析,希望同学们能够理解两者的概念,掌握不同问题的解法.一、分式方程的“增根”问题分式方程的“增根”是在去分母的过程中,方程两边同乘了一个能使最简公分母为零的整式,致使未知数的取值范围扩大,从而产生了增根,所以在得出分式方程的解后往往需要进行检验,若经过验证发现是增根,则应舍去;若此“增根”是分式方程唯一的解,则说明该分式方程无解.一般而言,分式方程产生“增根”,应满足如下两个条件:一是去分母时,能使方程两边同时乘以的最简公分母等于零;二是能使分式方程转化后的整式方程成立.例1(1)解方程2x x +1-2x 2+x=x +1x ;(2)解方程3x -3-6x x 2-9=4x +3;(3)当m 为何值时,关于x 的方程4x -4+mx x 2-16=5x +4会产生增根?解:(1)方程两边同时乘以最简公分母x (x +1),可得2x 2-2=(x +1)2,整理可得x 2-2x -3=0,解得x 1=3,x 2=-1.经检验,当x 2=-1时,分母为0,原方程无意义,所以x 2=-1为增根,应舍去,所以原方程的解为x =3.(2)方程两边同时乘以最简公分母(x +3)⋅(x -3),可得3(x +3)-6x =4(x -3),整理可得x =3.经检验,当x =3时,原方程无意义,所以x =3为增根,应舍去,所以原方程无解.(3)原分式方程两边同时乘以最简公分母(x -4)(x +4),可得4(x +4)+mx =5(x -4),整理可得(1-m )x =36.因为原分式方程有增根,所以(x -4)(x +4)=0,例谈分式方程的“增根”与“无解”问题甘肃省张掖市山丹育才中学韩永年29数学篇学思导引所以x =4或x =-4是整式方程(1-m )x =36的根,所以361-m =4或361-m =-4,解得m =-8或m =10.评注:分式方程的“增根”必定使方程两边同时乘以的最简公分母等于0,但是并非同时乘以的最简公分母等于0的未知数的值,都是分式方程的增根,也不是所有的分式方程都会产生增根.二、分式方程的“无解”问题分式方程无解是指不管未知数取何值时,都无法使得分式方程两边的值相等.一般情况下,当分式方程出现无解时,同学们需要注意如下两种情况:一是把原来的分式方程转化为整式方程后,该整式方程无解,则原分式方程无解;二是把原来的分式方程转化为整式方程后,该整式方程有解,但此解是原方程的增根(能使最简公分母为0),所以原分式方程亦无解.例2(1)解方程x -3x +4=5-x4+x+2;(2)倘若关于x 的方程2x -1-kx +3x 2+x -2=5x +2无解,则实数k 的值为;(3)求证:不论实数t 取何值时,关于x 的方程x -4t x -1+4t 2+2t x 2-x=1x 无实数解.解:(1)方程两边同时乘以最简公分母x +4,可得x -3=5-x +2(x +4),整理得0=16,显然,该整式方程无解,所以原分式方程无解.(2)原分式方程两边同时乘以最简公分母(x -1)(x +2),可得2(x +2)-(kx +3)=5(x -1),整理可得:(k +3)x =6.因为原方程无解,所以需要讨论如下两种情况:①当k =-3时,所得的整式方程为0·x =6,显然方程是无解的,所以原分式方程无解.②当k ≠-3时,所得的整式方程有解,且x =6k +3为原分式方程的增根,所以有6k +3=1或6k +3=-2,解得k =3或k =-6.综上所述,当k =-3或k =3或k =-6时,原分式方程无解.(3)证明:方程两边同乘以最简公分母x (x -1),可得x (x -4t )+4t 2+2t =x -1,整理可得x 2-(4t +1)x +4t 2+2t +1=0.因为△=(4t +1)2-4(4t 2+2t +1)=-3<0,所以整理后的方程无实数解,所以不论实数t 取何值时,原分式方程无实数解.评注:当分式方程无解时,该分式方程可能有增根,也可能没有增根;当分式方程去分母后所得的整式方程无解时,分式方程一定无解;当分式方程去分母后所得的整式方程为一元二次方程,需要对分式方程的无解、有解以及增根等情况进行探讨,如果该一元二次方程没有实数解,则表明该分式方程无解.从这两道例题可以看出,分式方程有增根与无解是完全不同的两个概念.分式方程与去分母后得到的整式方程是不等价的,这就是分式方程要验根的重要原因.同学们在解题时要用心区别,仔细辨析,明确其差异,准确把握数学概念,从而提高解分式方程的准确性.30。
分式方程的增根与无解的区别及联系
分式方程的增根与无解的区别及联系分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.【说明】显然,方程①中未知数x的取值范围是x≠2且x≠-2.而在去分母化为方程②后,此时未知数x的取值范围扩大为全体实数.所以当求得的x值恰好使最简公分母为零时,x 的值就是增根.本题中方程②的解是x=2,恰好使公分母为零,所以x=2是原方程的增根,原方程无解.解:去分母后化为x-1=3-x+2(2+x).整理得0x=8.因为此方程无解,所以原分式方程无解.【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根.方程两边都乘以x-2,得x-3=-m.解这个方程,得x=3-m.因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m,解得m=1.故当m=1时,原方程无解.【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解.但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会明白其中的道理,此处不再举例.解:方程两边都乘以(x+2)(x-2),得2(x+2)+ax=3(x-2)整理得(a-1)x=-10 ②若原分式方程有增根,则x=2或-2是方程②的根.把x=2或-2代入方程②中,解得,a=-4或6.【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值.此时还要考虑转化后的整式方程(a-1)x=-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x+2)+ax=3(x-2)整理得(a-1)x=-10 ②若原方程无解,则有两种情形:(1)当a-1=0(即a=1)时,方程②为0x=-10,此方程无解,所以原方程无解。
分式方程的无解与增根
分式方程的增根与无解
分式方程的增根:在分式方程化为整式方程 的过程中,若整式方程的解使最简公分母为0, 那么这个根叫做原分式方程的增根。
分式方程无解则是指不论未知数取何值,都 不能使方程两边的值等.它包含两种情形:
小结: 1、分式方程的增根是在分式方程化为整式 方程的过程中,整式方程的解使最简公分母 为0的未知数的值。 2、分式方程无解则包含两种情形:
1)原方程去分母后的整式方程无解,
2)原方程去分母后的整式方程有解,但解 是增根。 3、分式方程有增根和无解时:
方法总结:(1)化为整式方程。(2)确定增根。
课堂练习:
ห้องสมุดไป่ตู้
1.当m为何值时,方程
x x 1
m 1 x2 x
x 1 x
有增根.
2、关于x的方程 x a - 3 1无解,求a。 x -1 x
知识回顾 Knowledge Review
祝您成功!
分式方程的增根与无解
知识回顾:
解分式方程的一般步骤
分式方程 去分母 整式方程
一化
解整式方程
二解
目标
X=a
检验
三检验
X=a是分式 最简公分母不为0 最简公分母为0 X=a不是分式
方程的解
方程的解
X=a就是分式 方程的增根
例1 解方程: x -1 = 3 - x + 2
x +2 x +2
解:方程两边同乘以(x+2),得x-1=3-x+2(x+2) 整理得 0x=8.
解,则m的取值是( A )
分式方程的增根与无解的区别及联系
分式方程的增根与无解的区别分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:例1 xx.①解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.【说明】显然,方程①中未知数x的取值范围是x≠2且x≠-2.而在去分母化为方程②后,此时未知数x的取值范围扩大为全体实数.所以当求得的x值恰好使最简公分母为零时,x的值就是增根.本题中方程②的解是x=2,恰好使公分母为零,所以x =2是原方程的增根,原方程无解.例2 xx.解:去分母后化为x-1=3-x+2(2+x).整理得0x=8.因为此方程无解,所以原分式方程无解.【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根.例3(2007xxxx)若方程=无解,则m=——————.解:原方程可化为=-.方程两边都乘以x-2,得x-3=-m.解这个方程,得x=3-m.因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m,解得m=1.故当m=1时,原方程无解.【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解.但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会xx其中的道理,此处不再举例.例4当a为何值时,关于x的方程①会产生增根?解:方程两边都乘以(x+2)(x-2),得2(x+2)+ax=3(x-2)整理得(a-1)x=-10②若原分式方程有增根,则x=2或-2是方程②的根.把x=2或-2代入方程②中,解得,a=-4或6.【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值.若将此题“会产生增根”改为“无解”,即:当a为何值时,关于x的方程①无解?此时还要考虑转化后的整式方程(a-1)x=-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x+2)+ax=3(x-2)整理得(a-1)x=-10②若原方程无解,则有两种情形:(1)当a-1=0(即a=1)时,方程②为0x=-10,此方程无解,所以原方程无解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程无解和增根的区别
1、当分式方程中使分母为零的根为增根,使分母不为零的根不是增根;当方程推出矛盾等式或解出的根全部是增根时,方程无解。
2、增根时,可能还有合理根存在;无解时,没有合理根。
3、无解指在规定范围和条件内,没有任何数可以满足方程;增根是指可以通过方程求出,但是不满足条件只能舍去的解。
常见于分式方程。
无解与增根的区别
1、解分式方法是通过去分母把把分式方程转化为整式方程;
2、要求分式方程的根,是先要求出转化后的整式方程的根;
3、验证通过整式方程求出来的根是不是分式方程的根;
4、把通过整式方程求出来的根代入分式方程中,若使分式方程中的分母不为0,则所求出的根也就是分式方程的根,否则便是分式方程增根;
5、于是有结论:分式方程的根一定是化简后的整式方程的根,化简后整式方程的根不一定是分式方程的根,有可能是增根,分式方程无解,就是说化简后的整式方程无解。