基于单片机的智能电风扇
基于单片机的智能风扇的设计

基于单片机的智能风扇的设计智能风扇的设计是基于单片机的一种智能化家电产品,通过集成了传感器、单片机、通信模块和风扇控制电路等功能模块,能够实现自动感知环境温度、湿度等参数,并根据用户的需求自动调节风扇的转速和工作模式。
下面将详细介绍智能风扇的设计。
1.硬件设计智能风扇的硬件设计包括传感器模块、单片机模块、通信模块和控制电路模块。
传感器模块:智能风扇的传感器模块通常包括温度传感器和湿度传感器,用于感知环境的温度和湿度。
可以选择常见的数字温湿度传感器,如DHT系列传感器。
单片机模块:单片机模块是智能风扇的核心控制模块,可选择一款适合的单片机,如51单片机或STM32系列单片机,并结合开发板进行开发。
单片机模块负责读取传感器数据,并根据温度和湿度的变化进行风扇转速和工作模式的调节。
通信模块:通信模块用于实现智能风扇与其他设备的远程控制和数据传输功能。
可以选择Wi-Fi模块或蓝牙模块,实现与智能手机或其他智能设备的连接。
控制电路模块:控制电路模块包括电机驱动电路和电源电路。
电机驱动电路用于控制风扇电机的转速,可以选用H桥驱动芯片。
电源电路负责为各个模块供电,可以采用稳压模块和滤波电路,保证各个模块的正常运行。
2.软件设计智能风扇的软件设计主要包括数据采集、数据处理和控制策略。
数据采集:单片机模块通过传感器模块采集到温湿度数据,并将数据转换为数字信号以供程序识别。
数据处理:单片机模块通过算法处理采集到的温湿度数据,进一步计算出风扇应该运行的转速和工作模式。
可以根据不同的温湿度阈值设置不同的转速和工作模式,如低温低湿度下风扇停止运行,高温高湿度下风扇全速运行。
控制策略:单片机模块根据处理后的数据,通过控制电路模块控制风扇的转速和工作模式。
控制策略可以通过采用PID控制算法,根据环境温湿度的反馈信息进行动态调节,使风扇以最佳转速运行。
3.功能设计智能风扇可以通过通信模块与智能手机或其他智能设备连接,实现远程控制和数据传输的功能。
基于单片机的智能电风扇的设计

基于单片机的智能电风扇的设计
1. 系统设计思路:
智能电风扇系统由传感器、单片机以及电机驱动电路组成。
传感器检测环境温度、湿度和人体距离等参数,单片机根据这些参数控制电机的工作,并且可以根据预设程序自动调节电风扇的转速和运转模式。
2. 硬件设计:
(1) 传感器模块:
环境温湿度传感器模块和人体距离传感器模块分别采用DHT11和HC-SR501。
(2) 单片机模块:
根据项目需求,使用STM32F103ZET6单片机,主要处理传感器的读取和数据处理,并进行PWM波输出,控制电机转速。
(3) 电机驱动模块:
电机采用直流无刷电机,控制驱动电路采用L298N芯片。
3. 软件设计:
(1)初始化各个模块,包括传感器、GPIO等。
(2)读取传感器的数据,并根据不同温度、湿度和人体距离进行选择参数,设置不同的转速和运转模式。
(3)通过PWM波输出,控制电机的转速,实现电风扇的自动调节和控制。
4. 实现功能:
灵活的温湿度和人体距离检测,自动选择合适的电风扇运转模式和转速,节能环保,人性化的操作界面等。
总之,基于单片机的智能电风扇系统可以在提供便利的同时,达到节能环保的目的。
基于单片机的电风扇模拟控制系统设计

基于单片机的电风扇模拟控制系统设计一、引言电风扇是现代生活中常见的家用电器之一,它的使用方便、功能多样,深受人们喜爱。
随着科技的发展,基于单片机的电风扇控制系统逐渐成为研究的热点。
本文将介绍一种基于单片机的电风扇模拟控制系统设计,旨在提供一个可靠、智能的电风扇控制方案。
二、系统设计1. 系统框架基于单片机的电风扇模拟控制系统主要由单片机、传感器、电机驱动电路、显示器和按键等组成。
其中,单片机充当控制中心的角色,传感器用于采集环境参数,电机驱动电路用于控制电机的转速,显示器和按键用于用户与系统进行交互。
2. 传感器选择传感器的选择对于系统的精确性和稳定性至关重要。
在电风扇控制系统中,常用的传感器有温度传感器和湿度传感器。
温度传感器用于检测环境温度,湿度传感器用于检测环境湿度。
根据不同的需求,可以选择合适的传感器进行使用。
3. 单片机编程单片机是系统中的核心部件,其编程决定了整个系统的功能和性能。
在电风扇控制系统中,单片机需要实现以下功能:- 读取传感器采集到的温度和湿度数据;- 根据设定的温度和湿度阈值,控制电机的转速;- 实时显示温度、湿度和电机转速等信息;- 通过按键进行系统设置和操作。
4. 电机驱动电路电机驱动电路用于控制电机的转速。
常用的电机驱动电路有直流电机驱动电路和交流电机驱动电路。
根据不同的电机类型,选择适合的驱动电路。
在电风扇控制系统中,一般采用直流电机,因此需要设计一个合适的直流电机驱动电路。
5. 显示器和按键显示器和按键用于用户与系统进行交互。
显示器可以显示当前环境的温度、湿度和电机转速等信息,按键则可以用于设置温度和湿度阈值以及控制电机的开关。
合理设计显示器和按键的布局和界面,使用户操作方便,信息清晰。
三、系统优势1. 智能化控制基于单片机的电风扇模拟控制系统可以根据环境的温湿度变化自动调节电机的转速,实现自动控制。
用户只需设定好温湿度阈值,系统会自动根据环境参数进行调节,提供舒适的使用体验。
基于单片机的智能电风扇控制系统

目录第1节引言 (3)1.1 智能电风扇控制系统概述 (3)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (5)2.1 总体硬件设计 (5)2.2 数字温度传感器模块设计 (5)2.2.1 温度传感器模块的组成 (5)2.2.2 DS18B20的温度处理方法 (6)2.3 电机调速与控制模块设计 (7)2.3.1 电机调速原理 (7)2.3.2 电机控制模块硬件设计 (8)2.4 温度显示与控制模块设计 (9)第3节系统软件设计 (10)3.1 数字温度传感器模块程序设计 (10)3.2 电机调速与控制模块程序流程 (15)3.2.1 程序设计原理 (15)3.2.2 主要程序 (16)第4节结束语 (19)参考文献 (20)基于单片机的智能电风扇控制系统第1节引言电风扇曾一度被认为是空调产品冲击下的淘汰品,其实并非如此,市场人士称,家用电风扇并没有随着空调的普及而淡出市场,近两年反而出现了市场销售复苏的态势。
其主要原因:一是风扇和空调的降温效果不同——空调有强大的制冷功能,可以快速有效地降低环境温度,但电风扇的风更温和,更加适合老人儿童和体质较弱的人使用;二是电风扇有价格优势,价格低廉而且相对省电,安装和使用都非常简单。
尽管电风扇有其市场优势,但传统电风扇还是有许多地方应当进行改良的,最突出的缺点是它不能根据温度的变化适时调节风力大小,对于夜间温差大的地区,人们在夏夜使用电风扇时可能遇到这样的问题:当凌晨降温的时候电风扇依然在工作,可是人们因为熟睡而无法察觉,既浪费电资源又容易引起感冒,传统的机械定时器虽然能够控制电风扇在工作一定后关闭,但定时范围有限,且无法对温度变化灵活处理。
鉴于以上方面的考虑,我们需要设计一种智能电风扇控制系统来解决这些问题。
1.1 智能电风扇控制系统概述传统电风扇是220V交流电供电,电机转速分为几个档位,通过人为调整电机转速达到改变风力大小的目的,亦即,每次风力改变,必然有人参与操作,这样势必带来诸多不便。
基于51单片机的智能风扇控制系统设计与实现

基于51单片机的智能风扇控制系统设计与实现智能风扇控制系统是一种能够根据环境温度自动调节风扇速度的系统。
在本文中,将介绍基于51单片机的智能风扇控制系统的设计与实现。
首先,需要明确智能风扇控制系统的主要功能。
该系统的主要功能包括:根据环境温度自动调节风扇速度、显示当前环境温度和风速、设置风扇工作模式等。
下面将详细介绍智能风扇控制系统的硬件设计和软件实现。
硬件设计方面,系统需要使用51单片机作为主控芯片。
此外,还需使用一个温度传感器来感知环境温度。
为了实现显示功能,可以使用一个数码管或液晶显示屏。
此外,还需要一个电机驱动模块来控制风扇的转速。
软件实现方面,首先需要编写一个温度采集程序,从温度传感器中读取环境温度,并将其保存在一个变量中。
然后,需要编写一个风扇控制程序,根据环境温度的变化调节风扇的转速。
可以通过改变电机驱动模块中的PWM信号来控制风扇的转速。
同时,还需要编写一个显示程序,以实时显示当前环境温度和风速。
在风扇控制程序中,可以设置一些阈值来决定风扇的工作模式。
例如,可以设置一个最低温度阈值和一个最高温度阈值。
当环境温度低于最低温度阈值时,风扇停止工作;当环境温度高于最高温度阈值时,风扇以最大速度工作;在最低温度阈值和最高温度阈值之间,风扇的转速随着温度的升高而逐渐增加,以保持环境温度在一个合适的范围内。
此外,还可以为系统添加一些附加功能,如远程控制功能。
可以通过添加一个无线通信模块,使得用户可以通过手机或电脑远程控制智能风扇的开关和工作模式。
综上所述,基于51单片机的智能风扇控制系统可以通过温度传感器感知环境温度,并根据环境温度的变化来调节风扇的转速。
通过添加显示功能和远程控制功能,可以提高智能风扇控制系统的实用性和便利性。
该系统的设计与实现不仅可以提供更舒适的使用体验,还可以节省能源和降低使用成本。
基于单片机的智能温控风扇系统设计

基于单片机的智能温控风扇系统设计一、本文概述随着科技的快速发展,智能家居系统在人们的日常生活中扮演着越来越重要的角色。
其中,智能温控风扇系统作为智能家居的重要组成部分,通过自动调节风速和温度,为用户提供舒适的室内环境。
本文旨在探讨基于单片机的智能温控风扇系统的设计与实现。
本文首先介绍了智能温控风扇系统的背景和意义,阐述了其在现代家居生活中的重要性和应用价值。
接着,文章详细分析了系统的总体设计方案,包括硬件平台的选择、软件编程的思路以及温度控制算法的实现。
在此基础上,文章还深入探讨了单片机在智能温控风扇系统中的应用,包括单片机的选型、外设接口的设计以及控制程序的编写。
文章还注重实际应用的可行性,对智能温控风扇系统的硬件电路和软件程序进行了详细的说明,包括电路原理图的设计、元器件的选择以及程序的调试过程。
文章对系统的性能和稳定性进行了测试和分析,验证了系统的有效性和可靠性。
通过本文的阐述,读者可以全面了解基于单片机的智能温控风扇系统的设计和实现过程,为相关领域的研究和应用提供参考和借鉴。
本文也为智能家居系统的发展提供了新的思路和方法。
二、系统总体设计智能温控风扇系统的设计旨在实现根据环境温度自动调节风扇转速的功能,从而提高使用的舒适性和能源效率。
整个系统以单片机为核心,辅以温度传感器、电机驱动模块、电源模块以及人机交互界面等组成部分。
在总体设计中,首先需要考虑的是硬件的选择与配置。
单片机作为系统的核心控制器,需要选择运算速度快、功耗低、稳定性高的型号。
温度传感器则选用能够精确测量环境温度、响应速度快、与单片机兼容的型号。
电机驱动模块负责驱动风扇电机,需要选择能够提供足够驱动电流、控制精度高的模块。
电源模块需要为整个系统提供稳定可靠的电源。
人机交互界面则用于显示当前温度和风扇转速,同时提供用户设置温度阈值的接口。
在软件设计上,系统需要实现温度数据的采集、处理与传输,风扇转速的控制,以及人机交互界面的管理等功能。
设计题目基于单片机智能温控风扇的设计

基于单片机的智能温控风扇设计
简介:本设计旨在利用单片机技术实现智能温控风扇系统,通过测量环境温度并根据预设的温度阈值自动调节风扇的转速,以达到舒适的室内温度。
设计要求:
1. 硬件设计:选择适当的单片机开发板和传感器,能够测量环境温度并输出相应的控制信号给风扇。
2. 温度检测:使用温度传感器实时测量环境温度,并将数据传输给单片机进行处理。
3. 控制逻辑:设计合理的控制算法,通过单片机对温度数据进行处理,判断是否需要调节风扇的转速。
4. 风扇控制:根据控制逻辑的结果,通过单片机控制风扇的转速,可以采用PWM(脉宽调制)技术控制风扇速度。
5. 用户界面:设计友好的用户界面,使用户能够设定温度阈值和其他参数,同时显示当前温度和风扇状态等信息。
拓展要求:
1. 温度补偿:考虑环境温度对传感器的影响,设计温度补偿算法提高测量准确性。
2. 风扇速度调节:根据温度差异的大小,设计风扇转速的连续调节策略,以避免频繁启停。
3. 报警功能:当环境温度超过设定的安全范围时,通过警报或其他方式提醒用户。
4. 能耗优化:设计合理的功耗管理策略,尽可能降低系统的能耗。
5. 远程监控:通过无线通信模块(如Wi-Fi或蓝牙)实现远程监控和控制功能,使用户能够通过手机或电脑远程操作风扇系统。
注意事项:
1. 设计应考虑系统的稳定性、可靠性和安全性。
2. 设计过程中需考虑电路设计、软件编程和用户界面设计等方面的问题。
3. 设计完成后,应进行测试和验证,确保系统功能正常并满足设计要求。
基于单片机的智能电风扇系统设计与实现

1. 引言在现代科技日新月异的时代,智能化已经成为了各行各业的趋势之一。
智能电风扇作为家电中的一员,也不例外。
本文将从单片机的角度出发,探讨基于单片机的智能电风扇系统设计与实现,并带您深入了解这一主题。
2. 单片机技术简介单片机是一种集成了微处理器、存储器和各种输入输出设备的芯片,具有控制功能。
由于其体积小、价格低廉、功能强大等特点,因此在各种电子设备中得到了广泛的应用。
在智能电风扇系统中,我们可以利用单片机实现对风扇的控制、监测和反馈等功能,从而实现智能化。
3. 智能电风扇系统的设计要点(1)传感器的选择和应用在智能电风扇系统中,传感器起着至关重要的作用。
通过传感器可以实时监测环境温度、湿度、空气质量等参数,从而根据实时情况对电风扇进行智能化调节。
(2)风扇控制算法的设计为了实现对电风扇的智能控制,需要设计相应的控制算法。
这涉及到对传感器数据的处理、对电机的控制、对风速的调节等方面,需要深入研究和设计。
4. 基于单片机的智能电风扇系统的实现通过选取合适的单片机芯片,编写相应的程序,并结合传感器、电机等外围硬件设备,可以实现基于单片机的智能电风扇系统。
5. 个人观点与总结智能电风扇系统作为智能家居的一部分,正在逐渐走进人们的日常生活。
基于单片机的智能电风扇系统,通过利用单片机的强大功能和灵活性,可以实现更加智能化、便捷化的电风扇控制和使用体验。
基于单片机的智能电风扇系统设计与实现,是一个涉及到多方面知识的复杂课题。
通过本文的介绍,相信您已经对这一主题有了更深入的理解。
参考文献:[1] 王明. 单片机原理与应用. 北京:清华大学出版社,2018.[2] 张强. 智能家居系统设计与实现. 上海:上海科技教育出版社,2019.以上为文章草稿,我需要继续扩展和完善内容,敬请期待最终版本的文章。
智能电风扇系统的设计与实现在当今社会,智能化已经成为了各行各业的发展趋势。
智能家居作为智能化的重要组成部分,正在逐渐改变人们的生活方式。
基于51单片机的智能温控风扇毕业设计

基于51单片机的智能温控风扇毕业设计基于51单片机的智能温控风扇毕业设计引言:近年来,随着科技的不断进步,智能家居设备已经成为了人们生活中不可或缺的一部分。
在众多智能家居设备中,智能温控风扇作为一个重要的家居电器,为我们的生活带来了极大的便利和舒适。
本文旨在介绍一种基于51单片机的智能温控风扇毕业设计,通过深入探讨其原理、设计和应用,展示其在实际生活中的价值和应用潜力。
一、背景与需求分析1.1 背景过去的传统风扇只能通过手动调节风速和转动方向,无法根据环境温度进行智能调节。
现如今,人们迫切需要一种能够根据温度自动调节风速的智能风扇,以提供更加舒适和节能的生活体验。
1.2 需求分析为了满足人们对舒适和节能的需求,我们提出了以下需求:- 风扇能够根据环境温度自动调节风速。
- 风扇能够根据人体活动感知温度变化。
- 风扇能够通过遥控或手机应用进行远程控制。
- 风扇能够具备智能化的系统保护功能。
二、设计方案与实施2.1 传感器选用为了实现风扇的智能温控功能,我们需要选用适当的温度传感器。
常用的温度传感器包括NTC热敏电阻、DS18B20数字温度传感器等。
根据需求,我们选择了DS18B20作为温度传感器,它能够准确地检测环境温度。
2.2 控制电路设计基于51单片机的智能温控风扇控制电路主要由以下几个部分组成:- 温度传感器模块:用于检测环境温度。
- 驱动电路:用于控制风扇的转速。
- 单片机板:用于处理温度数据和控制风扇运行状态。
- 通信模块:用于实现与遥控器或手机应用的远程通信。
2.3 系统设计与软件开发基于51单片机的智能温控风扇的系统设计主要包括以下几个方面:- 温度采集与处理:通过DS18B20温度传感器采集环境温度,并通过单片机进行数据处理。
- 控制与调速:根据采集到的温度数据,控制驱动电路实现风扇转速的智能调整。
- 远程控制:通过手机应用或遥控器与风扇进行远程通信,实现远程控制和监控。
三、系统实施与测试3.1 硬件实施根据设计方案,我们将电路图进行布局,选择合适的电子元件进行组装,完成基于51单片机的智能温控风扇的硬件实施。
基于单片机的智能温控风扇设计

设计目的和任务
设计目的
本设计旨在利用单片机实现智能温控风扇的控制,通过温度 传感器检测环境温度,并将温度信息传递给单片机进行处理 ,单片机根据温度信息控制风扇的转速,以达到节能、便捷 的目的。
负载测试
在模拟实际负载的情况下,测试系统的响应时间、吞吐量等性能指 标。
瓶颈分析
通过性能分析工具,找出系统的瓶颈所在,如CPU、内存、IO等资 源的使用情况。
优化建议
根据瓶颈分析结果,提出针对性的优化建议,如优化算法、减少内存 占用等措施。
01
结论与展望
设计成果总结
硬件设计
设计了一个以单片机为核心,搭配温度传感器和风扇控制 电路的智能温控风扇硬件系统。实现了温度监测、风扇转 速调节、自动关机等功能。
风扇控制策略
风速调节
01
根据环境温度和设定阈值,调节风扇转速,以实现风速的平滑
变化。
多种工作模式
02
设计多种工作模式,如高速、中速、低速等,以满足不同场景
和需求。
异常处理
03
当出现异常情况时,如风扇卡死、温度传感器故障等,触发应
急处理机制,如报警、停机等,以保障系统安全。
01
系统测试与性能分析
硬件测试
控制程序
根据温度数据,通过单片机控制风扇的转速,实现温度的调节。
01
单片机选择与硬件设计
单片机选择
8051单片机
8051单片机是一种经典的8位 单片机,具有丰富的指令集和 多种外设接口,适用于多种应
用场景。
STM32单片机
基于单片机的智能电风扇报告-9页

基于单片机的智能电风扇报告目录第一章引言 (2)第二章总体设计方案 (2)2.1 任务 (2)2.2 基本设计要求 (2)2.3 方案概述 (3)2.4 各模块功能简介 (3)第三章功能实现方案 (4)3.1 LCD液晶显示功能 (4)3.2 按键功能 (4)3.3 过热检测与保护功能 (5)3.4 环境温度的检测功能 (6)3.5 定时功能 (6)第四章硬件电路设计 (7)4.1 电源模块 (7)4.2 电机驱动电路 (7)第一章引言电子产品的设计应该使大众更能简单方便的使用,所以应该具有自动化、智能化的特点,智能家电也是目前的一个热门发展方向。
本智能电风扇通过引入单片机控制系统实现对电机的智能控制,通过LCD实时显示当前状态,通过按键实现人机交互,实现了风扇的智能化。
第二章总体设计方案2.1 任务设计并制作一个智能电风扇,采用单片机主控传统,能实现工作状态和外界温度的实时显示,有三种风类,能够摇头,并有过热检测与保护功能。
2.2基本设计要求(1)L CD液晶显示:实时显示电风扇的工作状态,最高位显示风类:“自然风”显示“1”、“常风”显示“2”、“睡眠风”显示“3”。
后3位显示定时时间:动态倒计时显示剩余的定时时间,无定时显示“000”等。
(2)按键功能:设计“自然风”、“常风”和“睡眠风”三个风类键用于设置风类;设计一个“定时”键,用于定时时间长短设置;设计一个“摇头”键用于控制电机摇头。
(3)设计过热检测与保护电路,若电风扇电机过热,则电机停止转动,电机冷却后电机又恢复转动。
(4)要求能实现环境温度的检测和显示。
2.3方案概述本智能电风扇以单片机为控制核心,由电源模块,单片机主控模块,LCD液晶显示模块,电机驱动及制动模块,功能按键模块,温度与转速采集模块,过热检测与保护模块组成。
2.4 各模块功能简介单片机主控模块负责数据的接收、处理,对LCD的显示控制,通过电机驱动电路实现对电机的控制。
基于单片机的智能电风扇控制设计

目录第1节引言 (3)1.1 智能电风扇控制系统概述 (3)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (5)2.1 总体硬件设计 (5)2.2 数字温度传感器模块设计 (5)2.2.1 温度传感器模块的组成 (5)2.2.2 DS18B20的温度处理方法 (6)2.3 电机调速与控制模块设计 (7)2.3.1 电机调速原理 (7)2.3.2 电机控制模块硬件设计 (8)2.4 温度显示与控制模块设计 (9)第3节系统软件设计 (10)3.1 数字温度传感器模块程序设计 (10)3.2 电机调速与控制模块程序流程 (15)3.2.1 程序设计原理 (15)3.2.2 主要程序 (16)第4节结束语 (19)参考文献 (20)第1节引言电风扇曾一度被认为是空调产品冲击下的淘汰品,其实并非如此,市场人士称,家用电风扇并没有随着空调的普及而淡出市场,近两年反而出现了市场销售复苏的态势。
其主要原因:一是风扇和空调的降温效果不同——空调有强大的制冷功能,可以快速有效地降低环境温度,但电风扇的风更温和,更加适合老人儿童和体质较弱的人使用;二是电风扇有价格优势,价格低廉而且相对省电,安装和使用都非常简单。
尽管电风扇有其市场优势,但传统电风扇还是有许多地方应当进行改良的,最突出的缺点是它不能根据温度的变化适时调节风力大小,对于夜间温差大的地区,人们在夏夜使用电风扇时可能遇到这样的问题:当凌晨降温的时候电风扇依然在工作,可是人们因为熟睡而无法察觉,既浪费电资源又容易引起感冒,传统的机械定时器虽然能够控制电风扇在工作一定后关闭,但定时范围有限,且无法对温度变化灵活处理。
鉴于以上方面的考虑,我们需要设计一种智能电风扇控制系统来解决这些问题。
1.1 智能电风扇控制系统概述传统电风扇是220V交流电供电,电机转速分为几个档位,通过人为调整电机转速达到改变风力大小的目的,亦即,每次风力改变,必然有人参与操作,这样势必带来诸多不便。
单片机的智能电风扇

目录第1节引言 (3)1.1 智能电风扇控制系统概述 (3)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (5)2.1 总体硬件设计 (5)2.2 数字温度传感器模块设计 (5)2.2.1 温度传感器模块的组成 (5)2.2.2 DS18B20的温度处理方法 (6)2.3 电机调速与控制模块设计 (7)2.3.1 电机调速原理 (7)2.3.2 电机控制模块硬件设计 (8)2.4 温度显示与控制模块设计 (9)第3节系统软件设计 (10)3.1 数字温度传感器模块程序设计 (10)3.2 电机调速与控制模块程序流程 (15)3.2.1 程序设计原理 (15)3.2.2 主要程序 (16)第4节结束语 (19)参考文献 (20)单片机的智能电风扇控制系统第1节引言随着空调机在日常生活中的普遍应用,很容易想到电风扇会成为空调的社会淘汰品,其实经过市场的考验和证实,真实的并不是这样的,在空调产品的冲击也,空调产品仍然具有很强大的生命力,电风扇在市场的考验中并没有淡出市场,反而销售在不停的复苏中具有强大的发展空间。
据市场调查,电风扇的不停复苏主要在以下原因:一是电风扇虽然没有空调机的强大的制冷功能,但电风扇是直接取风,风力更加温和,比较适合老年人、儿童以及体质虚弱的人使用。
二是电风扇经过多年的市场使用,较符合人们的使用习惯,而且结构简单、操作方便、安装简易。
三是电风扇比起空调产品而言,其价格低廉,相对省电,更易的进入老百姓的家庭。
在激烈的市场竞争下,虽然电风扇具有广阔的市场空间,但不断新生产品的出现,要使产品更具市场优势,仅仅是靠传统型的电风扇是远远不够的,因此要对传统的电风扇根据市场的需要进行不断的更新,不断的改进,以使自己的产品立于不败之地。
传统的电风扇较为突出的缺点是:①风扇的风力大小不能根据温度的变化自动的调节风速,对于那些昼夜温差比较大的地区,这个自动调节风速就显得优其的重要了,特别是人们在熟睡时常常没有觉察到夜间是温度变化,那样既浪费电资源又容易引起感冒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第1节引言 (3)1.1智能跟踪电风扇控制系统概述 (3)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (5)2.1 总体硬件设计 (5)2.2 数字温度传感器模块设计 (5)2.2.1 温度传感器模块的组成 (5)2.2.2 DS18B20的温度处理方法 (6)2.3 电机调速与控制模块设计 (7)2.3.1 电机调速原理 (7)2.3.2 电机控制模块硬件设计 (8)2.4 温度显示与控制模块设计 (9)第3节系统软件设计 (10)3.1 数字温度传感器模块程序设计 (10)3.2 电机调速与控制模块程序流程 (15)3.2.1 程序设计原理 (15)主要程序 (16)第4节完毕语 (19)参考文献 (20)基于单片机的智能跟踪电风扇控制系统第1节+ 引言随着空调机在日常生活中的普遍应用,很容易想到电风扇会成为空调的社会淘汰品,其实经过市场的考验和证实,真实的并不是这样的,在空调产品的冲击也,空调产品仍然具有很强大的生命力,电风扇在市场的考验中并没有淡出市场,反而销售在不停的复苏中具有强大的开展空间。
据市场调查,电风扇的不停复苏主要在以下原因:一是电风扇虽然没有空调机的强大的制冷功能,但电风扇是直接取风,风力更加温和,比拟适合老年人、儿童以及体质虚弱的人使用。
二是电风扇经过多年的市场使用,较符合人们的使用习惯,而且构造简单、操作方便、安装简易。
三是电风扇比起空调产品而言,其价格低廉,相对省电,更易的进入老百姓的家庭。
在剧烈的市场竞争下,虽然电风扇具有广阔的市场空间,但不断新生产品的出现,要使产品更具市场优势,仅仅是靠传统型的电风扇是远远不够的,因此要对传统的电风扇根据市场的需要进展不断的更新,不断的改良,以使自己的产品立于不败之地。
传统的电风扇较为突出的缺点是:①风扇的风力大小不能根据温度的变化自动的调节风速,对于那些昼夜温差比拟大的地区,这个自动调节风速就显得优其的重要了,特别是人们在熟睡时常常没有觉察到夜间是温度变化,那样既浪费电资源又容易引起感冒。
②传统的风扇是用机械式的定时方式,机械式的定时方式常常会伴随着很大的机械运动的声音,特别是在夜间影响人们的睡眠质量,另个机械式的定时有一定的局限性,定时*围有限,而且机械式的容易坏。
③传统的电风扇没有远程遥控控制电风扇的功能,对平时调节风扇风速或其它对风扇的调节,而又不想走近风扇带来很多的不便。
鉴于以上方面的考虑,我们需要设计一种智能电风扇控制系统来解决这些问题。
1.1智能电风扇控制系统概述日常我们使用的都是220V的交流电,而我们常用的电风扇一般也是220V的交流电,在传统的电风扇中,电风扇的转速是分为几个档位的,也就是说每一个档位就相当于一个开关,用于改变对电机的不同供电方式来改变电动机的转速以改变风力的大小。
本创造涉及一种智能跟踪摇头电风扇,包括:人体检测系统,用于获取即时的视频信号,根据视频信号的图像片段是否有人体存在,如果无,则发送控制信号到电机控制电路,控制电机控制电路停顿扇叶电机转动,如果有人体存在,则将视频信号发送到人体位置定位电路;人体位置定位电路,根据具有人体图像的视频信号,计算人体位置,根据计算结果控制摇头控制电路将电风扇的扇头对准人体的位置。
该电风扇可以根据人体的位置自动调节风向,当人开场走动的时候自动控制扇头的转动,而动人们离开的时候自动分停顿扇叶的转动,既能延长电风扇的使用寿命,又能节约电源。
再者,本设计中的智能电风扇控制系统,是以电风扇的电机工作状态作为被控量,并引入微机系统,通过对电风扇的工作状态以及周围的温度环境的信号分析采集,由微机系统对所得的信号处理后,再通过各种可控的电子元器件对风扇的电动机进展控制,同时智能的微机自动控制能力。
1.2设计任务和主要内容本设计是以51单片机为主要控制核心,用51单片机系统对用户设定信号数据的采集以及分析,能过各种可控型电子元器件对电风扇各种工作状态的控制,以到达用户需求。
设计的主要内容①风速从高到低设置5个档位,并且每个档位都可以由用户设置是否参加睡眠控制方式,睡眠方式就是让风扇循环的转一段时间停一段时间。
②长*围可控的定时方式,可以设置12小时以内的定时开机与定时关机。
③风扇可以自动的根据环境的温度调节风扇风速的档位,温度上升3℃自动上升一个档位,温度每降低3℃自动下降一个档位。
④参加远程红外遥控,可以用遥控器控制电风扇的各种工作状态。
⑤设置数码管显示当前的工作状态,使其更具人性化。
⑥参加串口控制功能,对于工业应用的风扇,可以通过RS232接口用电脑上位机控制风扇,同时可以对控制芯片重新编程,以实现不强大的功能第2节系统主要硬件电路设计2.1总体硬件设计系统总体设计框图如图2-1所示的2.2温度传感器可以选用LM324A的运算放大器,将其设计成比例控制调节器,输出电压与热敏电阻的阻值成正比,但这种方案需要屡次检测前方可使采样准确,过于烦琐。
所以我采用更为优秀的DS18B20数字温度传感器,它可以直接将模拟温度信号转化为数字信号,降低了电路的复杂程度,提高了电路的运行质量。
温度传感器模块组成本模块以DS18B20作为温度传感器,AT89C51作为处理器,配以温度显示作为温度控制输出单元。
整个系统力求构造简单,功能完善。
电路图如图2-2所示。
系统工作原理如下:DS18B20进展现场温度测量,将测量数据送入AT89C51的P3.7口,经过单片机处理后显示温度值,并与设定温度值的上下限值比拟,假设高于设定上限值或低于设定下限值则控制电机转速进展调整。
图2-2DS18B20温度计原理图2.2.2 DS18B20的温度处理方法DS18B20直接将测量温度值转化为数字量提交给单片机,工作时必须严格遵守单总线器件的工作时序。
表2-1 局部温度值与DS18B20输出的数字量对照表2.3 电机调速与控制模块设计电机调速是整个控制系统中的一个重要的方面。
通过控制双向可控硅的导通角,使输出端电压发生改变,从而使施加在电风扇的输入电压发生改变,以调节风扇的转速,实现各档位风速的无级调速。
2.3.1 电机调速原理可控硅的导通条件如下: 1〕阳-阴极间加正向电压; 2〕控制极-阴极间加正向触发电压;3〕阳极电流I A 大于可控硅的最小维持电流I H 。
电风扇的风速设为从高到低5、4、3、2、1档,各档风速都有一个限定值。
在额定电压、额定功率下,以最高转速运转时,要求风叶最大圆周上的线速度不大于2150m/min 。
且线速度可由以下公式求得式中,V 为扇叶最大圆周上的线速度(m/min),D 为扇中的最大顶端扫出圆的直径(mm);n 为电风扇的最高转速(r/min)。
代入数据求得5n 1555r/min,取5n =1250 r/min.又因为: 取n1=875 r/min.则可得出五个档位的转速值:5n =1250r/min 4n =1150r/min 3n =1063r/min温度值/℃ 数字输出〔二进制〕 数字输出〔十六进制〕 +85℃ 0000 0101 0101 0000 0550H +25.625℃ 0000 0001 1001 0001 0191H +10.125℃ 0000 0000 1010 0010 00A2H+0.5℃ 0000 0000 0000 1000 0008H 0℃ 0000 0000 0000 0000 0000H -0.5℃ 1111 1111 1111 1000 FFF8H -10.125℃ 1111 1111 0110 1110 FF5EH -25.625℃ 1111 1111 0110 1111 FF6FH -55℃ 1111 1100 1001 0000 FC90H2n =980r/min 1n =875r/min又由于负载上电压的有效值其中,u1 5α =0°4α =23.5° t=1.70ms 3α =46.5° t=2.58ms2α =61.5° t=3.43ms 1α =76.5° t=4.30ms以上计算出的是控制角和触发时间,当检测到过零点时,按照所求得的触发时间延时发脉冲,便可实现预期转速。
2.3.2 电机控制模块硬件设计电路中采用了过零双向可控硅型光耦MOC3041 ,集光电隔离、过零检测、过零触发等功能于一身,防止了输入输出通道同时控制双向可控硅触发的缺陷, 简化了输出通道隔离2驱动电路的构造。
所设计的可控硅触发电路原理图见图2-3 。
其中RL 即为电机负载,其工作原理是:单片机响应用户的参数设置, 在I/ O 口输出一个高电平, 经反向器反向后, 送出一个低电平,使光电耦合器导通, 同时触发双向可控硅, 使工作电路导通工作。
给定时间内,负载得到的功率为:式中: P 为负载得到的功率, kW; n 为给定时间内可控硅导通的正弦波个数; N 为给定时间内交流正弦波的总个数; U 为可控硅在一个电源周期全导通时所对应的电压有效值,V; I 为可控硅在一个电源周期全导通时所对应的电流有效值,A 。
由式(1) 可 知,当U , I , N 为定值时, 只要改变n 值的大小即可控制功率的输出,从而到达调节电机转速的目的。
0u u =图2-3 电机控制原理图2.4温度显示与控制模块设计通过HD7279A控制芯片组建一个单片机键盘输入与显示模块,其中包括一个2*8的键盘矩阵。
和8段动态扫描数码管显示。
与单片机通过接插件连接,可以用于系统的控制和输出,其原理图如图2-4所示。
图2-4 HD7279A键盘和显示器控制模块电路原理图第三节系统软件设计3.1 数字温度传感器模块程序设计本系统的运行程序采用汇编语言编写,采用模块化设计,整体程序由主程序和子程序构成。
图3-1 数字温度传感器模块程序流程图如图3-1所示,主机控制DS18B20完成温度转换工作必须经过三个步骤:初始化、ROM操作指令、存储器操作指令。
单片机所用的系统频率为12MHz。
根据DS18B20初始化时序、读时序和写时序分别可编写4个子程序:初始化子程序、写子程序、读子程序、显示子程序。
DS18B20芯片功能命令表如下:表2 DS18B20功能命令表命令功能描述命令代码CONVERT 开场温度转换 44HREAD SCRATCHPAD 读温度存放器〔共9字节〕 BEHREAD ROM 读DS18B20序列号 33H WRITE SCRATCHPAD 将警报温度值写如暂存器第2、3字节 4EHMATCH ROM 匹配ROM 55HSEARCH ROM 搜索ROM F0HALARM SEARCH 警报搜索 ECH SKIP ROM 跳过读序列号的操作 CCH READ POWER SUPPLY 读电源供电方式:0为寄生电源,1为外电源 B4H 主要程序如下:…MAIN: ;初始化LCALL RST_DS18B20LCALL GET_TEMPERMOV A,20HMOV C,08HRRC AMOV C,09HRRC AMOV C,10HRRC AMOV C,11HRRC AMOV 20H,ALCALL DISPLAY AJMPMAINRST_DS18B20:SETB P3. 7NOPCLR P3. 7MOV R1, *3RST1:MOV R0, *110 DJNZ R0, $DJNZ R1,RST1SETB P3. 7NOPNOPMOV R0, *25HRST2:JNB P3. 7,RST3 DJNZ R0,RST2LJMP RST4RST3: SETB FLAG-LJMP RST5RST4:CLR FLAGLJMP RST7RST5:MOV R0, *115RST6:DJNZ R0, $RST7: SETB P3. 7RETWR_DS18B20: ;写数据子程序MOV R2, *8CLR CWR1: CLR P3. 7MOV R3, *6DJNZ R3, $RRC AMOV P3. 7,CMOV R3, *25DJNZ R3, $SETB P3. 7NOPDJNZ R2,WR1SETB P3. 7RETRD_DS18B20: ;读数据子程序MOV R4, *2MOV R1, *20H READ1:MOV R2, *8 READ2:CLR CSETB P3.7 NOPNOPCLR P3.7 NOPNOPNOPSETB P3.7 MOV R3, *9 READ3:DJNZ R3,READ3 MOV C, P3. 7 MOV R3, *23 READ4:DJNZ R3,READ4 RRC ADJNZ R2,READ2 MOV R1,AINC R1DJNZ R4,READ1RET3.2 电机调速与控制模块程序流程程序设计原理采用双向可控硅过零触发方式,由单片机控制双向可控硅的通断,通过改变每个控制周期内可控硅导通和关断交流完整全波信号的个数来调节负载功率,进而到达调速的目的。