中职数学基础模块下册《随机事件与概率》word教案
《随机事件与概率》教案

《随机事件与概率》教案《《随机事件与概率》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!【教学目标】1.掌握必然事件、不可能事件和随机事件的概念,能够判断某一事件属于哪一类事件;2.掌握概念的定义,理解概念的意义,能计算简单事件的概率,并知道不可能事件和必然事件的概率.【教学重、难点】重点:1.判断一个事件是必然事件、不可能事件还是随机事件;2.求简单事件的概率.难点:1.生活中概率的应用;2.根据题意设计方案.【教学过程】活动一.探究新知问题1.5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸盒,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:⑴抽到的数字有几种可能?⑵抽到的数字小于6吗?⑶抽到的数字会是0吗?⑷抽到的数字会是1吗?问题2.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,在骰子向上的一面上,⑴可能出现哪些点数?⑵出现的点数大于0吗?⑶出现的点数会是7吗?⑷出现的点数会是4吗?问题3.请你将以上两个问题中出现的6个事件分类,并说出分类依据.归纳:的事件称为必然事件.的事件称为不可能事件.的事件称为随机事件.其中和统称为确定性事件.练习1.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(填序号)⑴通常加热到100℃时,水沸腾;⑵篮球队员在罚球线上投篮一次,未投中;⑶任意画一个三角形,其内角和是360°;⑷经过有交通信号灯的路口,遇到红灯;⑸射击运动员射击一次,命中靶心.⑹瓮中捉鳖;⑺拔苗助长;⑻守株待兔;⑼水中捞月.问题4.在问题1中,抽到的数字是2的可能性和抽到的数字小于3的可能性一样吗?抽到的数字是奇数的可能性和抽到的数字大于4的可能性一样吗?归纳:随机事件发生的可能性是.问题5.在问题1中每个数字被抽到的可能性相等,我们用表示每一个数字被抽到的可能性大小.在问题2中每种点数出现的可能性相等,我们用表示每种点数出现的可能性大小.归纳:1.以上两个问题有两个共同的特点:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.2.对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记作P(A).练习:⑴你能求出问题1中“抽到奇数”这个事件的概率吗?⑵你能求出问题1中“抽到的数大于4”这个事件的概率吗?⑶在思考上面两个问题时,分母、分子分别具有什么意义?归纳:一般地,如果在一次试验中,有种可能的结果,并且他们发生的可能性都相等,事件A包含其中的种结果,那么事件A发生的概率P(A).活动二.新知应用例1:掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:⑴点数为2;⑵点数为奇数;⑶点数大于2且小于5;⑷点数为0;⑸点数为1到6的自然数.追问:这五个事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.必然事件的概率为,不可能事件的概率为.归纳:练习:商场有一个可以自由转动的转盘,转盘分为7个大小相同的扇形:三块红色、两块绿色、两块黄色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交界时,当作指向右边的扇形).求下列事件的概率:⑴指针指向红色;⑵指针指向红色或黄色;⑶指针不指向红色.分析:⑴问题中可能出现的结果有种,三块红色如何来表示?⑵指针不指向红色就是.例2.在围棋盒中有颗黑色棋子和颗白色棋子,从盒中随机地取出一颗棋子,它是黑色棋子的概率是.⑴试用含的代数式表示;⑵若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为,求和的值例3.五一期间,某书城为了吸引读者,设计了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.如果读者不愿意转转盘,那么可以直接获得10元的购书券.⑴求转一次转盘获得45元购书券的概率.⑵转转盘和直接获得购书券,你认为哪种方式对读者较合算?请说明理由.活动二:归纳新知什么是随机事件?什么是必然事件?什么是不可能事件?如何求随机事件发生的概率?不可能事件和必然事件的概率是多少?活动三:课堂检测1.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.⑴通常温度降到0℃以下,纯净的水结冰;⑵随意翻开一本书的某页,这页的号码是奇数;⑶太阳从东方升起;⑷购买一张彩票,中奖;⑸从地面发射1枚导弹,未击中空中目标.2.(2015河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是.不透明袋子中有2个红球,3个绿球和4个蓝球,这些球出颜色外无其他差别.从袋子中随机取出一个球.⑴能够事先确定取出的球是哪种颜色吗?⑵取出每种颜色的球的概率会相等吗?⑶取出哪种颜色的球的概率最大?⑷如何改变各色球的数目,使取出每种颜色的球的概率都相等?4.(2014青岛)某商场为了吸引顾客,设立了可以自由转动的转盘,转盘被均匀分成20份,并规定:顾客每购买200元的商品,就可获得一次转转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购书券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.⑴求转一次转盘获得购物券的概率.⑵转转盘和直接获得购物券,你认为哪种方式对读者更合算?.【每日一题】只有一张电影票,小明和小刚想通过抽取扑克牌的方式来决定谁去看电影.现有一副扑克牌,请你设计对小明和小刚都公平的抽签方案,你能设计出几种?《随机事件与概率》教案这篇文章共7208字。
“随机事件的概率”说课稿

《随机事件的概率》说课稿高等教育出版社《中职数学(基础模块)下册》第10章第2节学校:××××××姓名:××××××《随机事件的概率》说课稿尊敬的各位专家、评委老师,大家好!今天我说课的课题是高等教育出版社中职数学(基础模块)下册第十章第二节的第一课时《随机事件的概率》。
下面我就从教材分析、学情分析、教学目标分析、教学模式及教法和学法分析、教学过程分析、板书设计、教学评价与教学反思等八个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委老师批评指正。
一、教材分析:《随机事件的概率》是学生学习《概率》的入门课,也是一堂概念课。
现实生活中存在大量的不确定事件,而概率正是研究不确定事件的一门学科。
本节课主要是通过试验让学生体会“随机事件发生的不确定性以及大量重复试验下又表现出的频率的稳定性”这一抽象知识点;通过剖析试验数据理解频率与概率的关系。
由于学生在初中阶段已经学习了概率初步,因此本节课是对已学内容的深化和延伸;同时,又是对后面拓展模块学习的古典概型、几何概型等内容的一个铺垫,具有承上启下的作用。
二、学情分析:1.知识方面:学生在初中阶段学习了概率初步,所以学生具备了一定的认知结构;2.能力方面:对于中一的学生来说已经具备了一定的动手试验、观察、归纳、概括能力;3.情感方面:学生知道概率与游戏、博彩等有关,多数学生兴趣浓厚,能积极主动的参与教学活动,但少数学生的主动性还需要营造一定的学习氛围加以带动。
三、教学目标及重难点(一)教学目标:知识与技能:(1)结合一些具体实例了解随机事件、必然事件、不可能事件的概念;(2)通过亲身实验,了解随机事件发生的不确定性和频率的稳定性;(3)理解当实验次数较大时实验频率稳定于理论概率,并据此估计某一事件发生的概率。
过程与方法:(1)发现法教学——经历抛硬币试验获取数据的过程,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)培养能力——通过三种事件的区分及用统计算法计算随机事件的概率,提高学生分析问题、解决问题的能力。
随机事件及其概率教案(精)

<随机事件及其概率>教案(一)教学目标:1、知识目标:使学生掌握必然事件,不可能事件,随机事件的概念及概率的统计定义,并了解实际生活中的随机现象,能用概率的知识初步解释这些现象2、能力目标:通过自主探究,动手实践的方法使学生理解相关概念,使学生学会主动探究问题,自主实践,分析问题,总结问题。
3、德育目标:1.培养学生的辩证唯物主义观点.2.增强学生的科学意识(二)教学重点与难点:重点:理解概率统计定义。
难点:认识频率与概率之间的联系与区别。
(三)教学过程:一、引入新课:试验1:扔钥匙,钥匙下落。
试验2:掷色子,数字几朝上。
讨论:下列事件能否发生?(1)“导体通电时,发热”---------------必然发生(2)“抛一石块,下落”---------------必然发生(3)“在常温下,铁熔化” -------------不可能发生(4)“某人射击一次,中靶” -----可能发生也可能不发生(5)“掷一枚硬币,国徽朝上” -----可能发生也可能不发生(6)“在标准大气压下且温度低于0℃时,冰融化” ---不可能发生思考:1、“结果”是否发生与“一定条件”有无直接关系?2、按事件发生的结果,事件可以如何来分类?二、新授:(一)随机事件:定义1、在一定条件下必然要发生的事件叫必然事件。
定义2、在一定条件下不可能发生的事件叫不可能事件。
定义3、在一定条件下可能发生也可能不发生的事件叫随机事件。
例1、指出下列事件是必然事件,不可能事件,还是随机事件:(1)扬中明年1月1日刮西北风;x(2)当x是实数时,20(3)手电筒的电池没电,灯泡发亮;(4)一个电影院某天的上座率超过50%。
(5)从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签。
讨论:各举一个你生活或学习中的必然事件、不可能事件、随机事件的例子做一做:(投币实验)抛掷一枚硬币,观察它落地时哪一面朝上?(两人一组)1.你的结果和其他同学一致吗?为什么会出现这样的情况?2.重复试验10次并记录结果(正面朝上的次数)。
随机事件与概率 教案

随机事件与概率教案教案标题:随机事件与概率教案目标:1. 理解随机事件的概念和特征。
2. 掌握计算随机事件的概率的方法。
3. 能够应用概率计算解决实际问题。
教案步骤:引入活动:1. 向学生介绍随机事件的概念,例如抛硬币、掷骰子、抽牌等,并让学生观察这些事件的特征和规律。
2. 引导学生思考随机事件与概率的关系,为后续学习做铺垫。
知识讲解:1. 解释随机事件的定义,即在相同条件下,可能发生也可能不发生的事件。
2. 介绍概率的定义,即某一事件发生的可能性大小。
3. 引导学生理解概率的计算方法,包括频率法和几何法。
示例演练:1. 提供一些简单的随机事件,如抛硬币、掷骰子等,让学生通过实际操作计算事件发生的概率。
2. 引导学生思考概率与事件发生次数、总次数之间的关系。
拓展应用:1. 提供一些实际问题,让学生运用所学的概率计算方法解决问题,如抽奖、赌博等。
2. 引导学生思考概率在日常生活中的应用,如天气预报、交通拥堵等。
总结复习:1. 对本节课所学内容进行总结,强调随机事件与概率的重要性和应用价值。
2. 回顾学生在示例演练和拓展应用中的表现,对他们的学习成果给予肯定和鼓励。
教案评估:1. 设计一些小组或个人练习题,测试学生对随机事件和概率的理解和应用能力。
2. 观察学生在课堂讨论和实际操作中的参与度和表现,评估他们的学习效果。
教案扩展:1. 针对不同学生的学习能力和兴趣,设计一些扩展活动,如探究更复杂的随机事件,引入条件概率等。
2. 提供一些拓展阅读材料,让学生进一步了解概率的应用领域和发展历程。
教案反思:1. 对本节课的教学效果进行反思和总结,分析学生的学习情况和问题。
2. 根据学生的反馈和表现,调整教学方法和策略,进一步提高教学质量。
注:以上教案仅供参考,具体教学内容和步骤可根据教育阶段和学生实际情况进行调整和优化。
高教版中职数学(基础模块)下册10.2《概率》word教案

一引入新课一、概率论研究的对象1、两类现象---确定现象与不确定现象先从实例来看自然界和社会上存在着两类不同的现象。
例1、水在一个大气压力下,加热到100℃就沸腾。
例2、向上抛掷一个五分硬币,往下掉。
例3、太阳从东方升起。
例4、一个大气压力下,20℃的水结冰。
例1,例2,例3是必然发生的,而例4是必然不发生的。
条件完全决定结果的现象称之为确定性现象或必然现象.微积分,线性代数等就研究必然现象的数学工具.与此同时,在自然界和人类社会中,人们还发现具有不同性质的另一类现象先看下面实例。
例5、用大炮轰击某一目标,可能击中,也可能击不中。
例6、在相同的条件下,抛一枚质地均匀的硬币,其结果可能是正面(我们常把有币值的一面称作正面)朝上,也可能是反面朝上。
例7、次品率为50%的产品,任取一个可能是正品,也可能是次品。
例8、次品率为1%的产品,任取一个可能是正品,也可能是正品。
例5~例8这类现象归纳起来可以看作在相同条件下一系列的试验或观察,而每次试验或观察的可能结果不止一个,在每次试验或观察之前无法预知确切结果,即呈现出不确定性(即这些现象的结果事先不能完全确定)。
条件不能完全决定结果的现象称之为不确定性现象或偶然现象,也称之为随机现象。
2、统计规律性、概率论研究的对象对于不确定性现象,人们经过长时期的观察或实践的结果表明,这些现象并非是杂乱无章的,而是有规律可寻的.例如,大量重复抛一枚硬币,得正面朝上的次数与正面朝下的次数大致都是抛掷总次数的一半.在大量地重复试验或观察中所呈现出的固有规律性,就是我们以后所说的统计规律性.而概率论正是研究这种随机(偶然)现象,寻找他们的内在的统计规律性的一门数学学科。
概率论是数理统计的基础,由于随机现象的普遍性,使得概率与数理统计具有及其广泛的应用。
另一方面,广泛的应用也促进概率论有了极大的发展。
二、随机试验对随机现象进行的试验或观察称为随机试验,简称试验,它具有下列特性(征):(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前不能肯定这次试验会出现哪一个结果。
随机事件及其概率教案

课题:随机事件及其概率一、教学目标分析:1、知识与技能:⑴了解随机事件、必然事件、不可能事件的概念;⑵通过试验了解随机事件发生的不确定性和频率的稳定性;2、过程与方法:⑴创设情境,引出课题,激发学生的学习兴趣和求知欲;⑵发现式教学,通过抛硬币试验,获取数据,归纳总结试验结果,体会随机事件发生的随机性和规律性,在探索中不断提高;⑶明确概率与频率的区别和联系,理解利用频率估计概率的思想方法.3、情感态度与价值观:⑴通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;⑵培养学生的辩证唯物主义观点,增强学生的科学意识,并通过数学史实渗透,培育学生刻苦严谨的科学精神.二、重点与难点:⑴重点:通过抛掷硬币了解概率的定义、明确其与频率的区别和联系;⑵难点:利用频率估计概率,体会随机事件发生的随机性和规律性;三、学法与教学用具:⑴指导学生通过实验,发现随机事件随机性中的规律性,更深刻的理解事件的分类,认识频率,区分概率;⑵教学用具:硬币,表格,幻灯片,计算机及多媒体教学.四、教学基本流程:创设情境、引出课题↓温故知新、巩固练习↓师生合作、共探新知↓讨论探究、例题演练↓课堂小结、布置作业五、教学情境设计:1、创设情境,引出课题通过福利彩票3D和双色球中奖可能大小,提出引入概率的的必要性,激发学生的学习兴趣2、温故知新、承前启后——温习随机事件概念:⑴必然事件:在条件S下,一定会发生的事件,叫相对于条件S的~;⑵不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的~;⑶随机事件:在条件S下可能发生也可能不发生的事件,叫相对于S的~;⑷确定事件:必然事件和不可能事件统称为相对于条件S的确定事件.判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;(4)“如果实数a>b,那么a-b>0”;(5)“掷一枚硬币,出现正面”;(6)如果,a b都是实数,a b b a+=+;(7)“导体通电后,发热”;(8)“在常温下,焊锡熔化”.(9)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(10) “某电话机在1分钟内收到2次呼叫”; (11) “没有水份,种子能发芽”*频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=nn A 为事件A 出现的频率.随机事件、必然事件、不可能事件频率的取值范围?必然事件出现的频率为1,不可能事件出现的频率为0,随机事件出现的频率介于0和1之间.3、师生合作,共探新知——抛掷硬币试验:*试验步骤:第一步,个人试验,收集数据第二步,小组统计,上报数据:每小组轮流将试验结果汇报给老师; 第三步,班级统计,分析数据:利用EXCEL 软件分析抛掷硬币“正面朝上”的频率分布情况,并利用计算机模拟掷硬币试验说明问题;组别 第一大组第二大组小组 正面朝上次数 正面朝上比例 正面朝上次数 正面朝上比例 1 2 3 4 5 6 合计第四步,数据汇总,统计“正面朝上”次数的频数及频率;第五步,对比研究,探讨“正面朝上”的规律性.(教师引导、学生归纳) ①随着试验次数的增加,硬币“正面朝上”的频率稳定在0.5附近; ②抛掷相同次数的硬币,硬币“正面朝上”的频率不是一成不变的。
随机事件的概率教案

随机事件的概率教案教案标题:随机事件的概率教案教案目标:1. 理解随机事件和概率的基本概念。
2. 掌握计算简单随机事件的概率方法。
3. 能够应用概率概念解决实际问题。
教学时长:2个课时教学步骤:第一课时:步骤一:引入概率概念(10分钟)1. 向学生解释随机事件的概念,例如掷骰子、抽卡片等。
2. 引导学生思考,随机事件的结果可能有哪些?步骤二:介绍概率的定义(10分钟)1. 解释概率的定义:某个事件发生的可能性大小。
2. 引导学生思考,概率的取值范围是什么?步骤三:计算概率的方法(20分钟)1. 介绍计算概率的方法:概率=有利结果数/总结果数。
2. 通过示例,引导学生计算简单随机事件的概率。
步骤四:练习与巩固(15分钟)1. 分发练习题,让学生自行计算各种随机事件的概率。
2. 随堂检查学生的答案,并解答学生疑惑。
第二课时:步骤一:复习概率计算方法(10分钟)1. 复习上节课学习的概率计算方法。
2. 提醒学生注意计算时的注意事项。
步骤二:应用概率解决实际问题(15分钟)1. 给出一些实际问题,例如抽奖概率、赌博概率等。
2. 引导学生运用概率的概念解决这些问题。
步骤三:讨论与总结(10分钟)1. 学生分享他们解决实际问题的方法和思路。
2. 教师总结本节课的重点内容和学生的表现。
步骤四:拓展与延伸(10分钟)1. 引导学生思考更复杂的随机事件和概率计算方法。
2. 鼓励学生自主学习和探索更多相关知识。
教学资源:1. PowerPoint演示文稿,用于引入概念和示例演示。
2. 练习题,用于学生练习和巩固。
3. 实际问题案例,用于应用概率解决问题。
评估方法:1. 随堂检查学生对概率概念的理解和计算方法的掌握程度。
2. 通过学生的练习题答案和解决实际问题的表现评估学生的应用能力。
3. 学生之间的讨论和分享,评估他们对概率概念的理解深度。
教学延伸:1. 鼓励学生自主学习更复杂的概率计算方法,如条件概率和独立性等。
随机事件与概率教案

随机事件与概率教案教案标题:随机事件与概率一、教学目标:1. 理解随机事件的概念和特征;2. 掌握计算简单随机事件的概率;3. 能够应用概率计算解决实际问题。
二、教学准备:1. 教师准备:课件、黑板、白板笔、投影仪等;2. 学生准备:教材、练习册。
三、教学过程:1. 导入(5分钟):通过提问和讨论,引导学生回顾并复习前几节课所学的概率基础知识,如样本空间、事件等。
2. 概念讲解(15分钟):a. 随机事件的概念:解释随机事件的定义,并通过实例说明随机事件的特征和分类。
b. 概率的基本概念:介绍概率的定义和基本性质,如必然事件、不可能事件、事件的互斥与对立等。
3. 计算概率(20分钟):a. 独立事件的概率计算:通过示例和练习,教授如何计算两个或多个独立事件的概率。
b. 互斥事件的概率计算:通过示例和练习,教授如何计算两个或多个互斥事件的概率。
c. 非互斥事件的概率计算:通过示例和练习,教授如何计算两个或多个非互斥事件的概率。
4. 应用实例(15分钟):通过实际生活中的例子,引导学生将所学的概率知识应用到解决实际问题中,如抽奖、投掷硬币等。
5. 深化拓展(10分钟):通过一些拓展性问题和思考题,引导学生进一步思考和应用概率知识解决更复杂的问题。
6. 小结与作业布置(5分钟):对本节课所学内容进行小结,并布置相关的练习作业,以巩固学生的概率计算能力。
四、教学评价:1. 教师通过观察学生的课堂表现,判断学生是否理解了随机事件和概率的概念;2. 教师批改学生的作业,评价学生对计算概率的掌握情况;3. 教师可以设计一些小组或个人活动,让学生展示他们对概率知识的应用能力,进行综合评价。
五、教学延伸:1. 鼓励学生通过实际观察和实验,探索更多的概率问题,并进行总结和归纳;2. 引导学生学习使用数学软件或工具,进行更复杂的概率计算和模拟实验;3. 鼓励学生参加数学竞赛或活动,提升他们的概率思维和解决问题的能力。
概率论与数理统计教案随机事件与概率

概率论与数理统计教案-随机事件与概率一、教学目标1. 了解随机事件的定义和分类,理解必然事件、不可能事件和随机事件的概念。
2. 掌握概率的基本性质,理解概率的计算公式。
3. 学会使用概率论解决实际问题,提高分析问题和解决问题的能力。
二、教学内容1. 随机事件的定义和分类2. 必然事件、不可能事件和随机事件的概念3. 概率的基本性质4. 概率的计算公式5. 概率论在实际问题中的应用三、教学重点与难点1. 教学重点:随机事件的定义和分类,概率的基本性质,概率的计算公式。
2. 教学难点:概率的计算公式的灵活运用,概率论在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解随机事件的定义和分类,概率的基本性质,概率的计算公式。
2. 采用案例分析法,分析概率论在实际问题中的应用。
3. 采用互动教学法,引导学生积极参与课堂讨论,提高学生的思维能力和解决问题的能力。
五、教学步骤1. 导入新课:通过生活中的实例,引入随机事件的概念,激发学生的学习兴趣。
2. 讲解随机事件的定义和分类:讲解必然事件、不可能事件和随机事件的定义,引导学生理解这些概念。
3. 讲解概率的基本性质:讲解概率的定义、概率的基本性质,如加法原理、乘法原理等。
4. 讲解概率的计算公式:讲解必然事件的概率、不可能事件的概率、独立事件的概率等计算公式。
5. 案例分析:分析实际问题,如抛硬币、抽奖等,引导学生运用概率论解决实际问题。
6. 课堂互动:引导学生积极参与课堂讨论,解答学生的疑问。
7. 总结与复习:总结本节课的主要内容,布置课后作业,要求学生巩固所学知识。
8. 课后作业:布置相关的习题,巩固随机事件与概率的知识。
六、教学拓展1. 讲解条件概率和联合概率的概念,引导学生理解这两个概念的区别和联系。
2. 讲解贝叶斯定理,让学生了解如何利用条件概率和联合概率进行推断。
3. 通过实例讲解概率论在实际领域的应用,如统计学、经济学、生物学等。
七、教学互动1. 组织学生进行小组讨论,探讨随机事件与概率之间的关系。
随机事件与概率教案

随机事件与概率教案一、教学目标:1.了解随机事件的概念和特点。
2.掌握计算随机事件的概率的方法。
3.能够应用概率的知识解决实际生活中的问题。
二、教学重点:1.了解随机事件的概念和特点。
2.掌握计算随机事件的概率的方法。
三、教学难点:1.掌握计算随机事件的概率的方法。
2.能够应用概率的知识解决实际生活中的问题。
四、教学内容和步骤:1.引入:通过举一个猜硬币正反面的例子,引导学生思考随机事件的概念。
2.概念解释:讲解随机事件的概念和特点,如不确定性、多样性等。
3.实例分析:通过石头剪刀布的游戏,引导学生思考互斥事件和相互独立事件的特点。
4.计算方法:讲解计算随机事件的概率的方法,如频率概率和理论概率。
5.练习:布置一些练习题,让学生运用所学的知识计算概率。
6.拓展:引导学生思考如何应用概率的知识解决实际生活中的问题,如购买彩票、投掷骰子等。
7.总结:对本节课的内容进行小结,并强调概率是研究随机事件的数学工具。
五、教学方法:1.探究式教学法:通过引导学生思考和分析实例,培养学生主动学习的能力。
2.讲解式教学法:通过讲解概念和计算方法,帮助学生理解和掌握知识。
六、教学手段:1.黑板、彩色粉笔。
2.实物如硬币、骰子、纸牌等。
七、教学评价方法:1.观察学生在课堂上的表现。
2.布置练习题,对学生的解题情况进行评价。
3.进行课堂讨论和问答,检查学生对概念和计算方法的理解情况。
八、教学反思:本节课通过引入、分析实例和讲解的方式,详细介绍了随机事件和概率的概念和计算方法。
但在实际教学中,可以更加注重培养学生的实际运用能力,增加一些实际生活中的例子和应用题目,提高学生的实践能力。
另外,需要注意课堂时间的安排,合理分配知识点的讲解和练习的时间,保证教学的效果。
随机事件的概率教案

随机事件的概率教案《25.1随机事件与概率》教案教学目标1. 了解必然发生的事件、不可能发生的事件、随机事件的特点和概率的意义,通过学习,渗透随机的概念.2. 在具体情境中了解概率的意义,能估算一些简单随机事件的概率.3. 学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.5. 能根据随机事件的特点,辨别哪些事件是随机事件.引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点1. 在具体情境中了解概率和概率的意义,知道随机事件的特点.2. 会用列举法求概率.教学难点1. 判断现实生活中哪些事件是随机事件.2. 应用概率解答实际问题.课时安排3课时.第1课时教学内容25.1.1 随机事件.教学目标1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.3.能根据随机事件的特点,辨别哪些事件是随机事件.4.引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点教学难点判断现实生活中哪些事件是随机事件.教学过程一、导入新课摸球游戏:三个不透明的袋子中分别装有10个白色的乒乓球、5个白色的乒乓球和5个黄色的乒乓球、10个黄色的乒乓球.(挑选3名同学来参加).游戏规则:每人每次从自己选择的袋子中摸出一球,记录下颜色,放回.然后搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序.次数最多的为第一名.其次为第二名、第三名.学生积极参加游戏,通过操作、观察、归纳,猜测出在第1个袋子中摸出黄色球是不可能的;在第2个袋子中能否摸出黄色球是不确定的;在第3个袋子中摸出黄色球是必然的.通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件.这样不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.二、新课教学问题1 五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3, 4, 5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字小于6吗?(3)抽到的数字会是0吗?(4)抽到的数字会是1吗?通过简单的推理或试验,可以发现:(1)数字1, 2,3,4,5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1 ,事先无法确定.问题2 小伟掷一枚质地均匀的骸子,骸子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骸子,在骸子向上的一面上(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?通过简单的推理或试验.可以发现:(1)从1到6的每一个点数都有可能出现,所有可能的点数共有6种,但是事先无法预料掷一次骰子会出现哪一种结果;(2)出现的点数肯定大于0;(3)出现的点数绝对不会是7;(4)出现的点数可能是4.也可能不是4,事先无法确定.在一定条件下,有些事件必然会发生.例如,问题1中“抽到的数字小于6”,问题2中“出现的点数大于0”,这样的事件称为必然事件.相反地,有些事件必然不会发生.例如,问题1中“抽到的数字是0”.问题2中“出现的点数是7”,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.在一定条件下,有些事件有可能发生,也有可能不发生,事先无法确定.例如,问题1中“抽到的数字是1”,问题2中“出现的点数是4”.这两个事件是否发生事先不能确定.在一定条件下,可能发生也可能不发生的事件,称为随机事件.问题3袋子中装有4个黑球、2个白球.这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?《25.1随机事件与概率》课时练习1. 下列事件:(1)地球绕太阳转;(2)从一副扑克牌中随意抽出一张,结果是大王;(3)海南岛地面温度低于零下130℃;(4)明天会刮大风;(5)作两条相交直线,则对顶角相等;(6)测量一个三角形的三边长分别是6cm,4cm,10cm.其中________是必然事件;________是不可能事件;________是随机事件.(填序号)25.1随机事件:同步测试一、选择题1.下列事件中,哪一个是确定事件?()A.明日有雷阵雨B.小胆的自行车轮胎被钉扎环C.小红买体彩中奖D.抛掷一枚正方体骰子,出现7点朝上2.下列事件中,属于不确定事件的有()①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下;④小明长大后成为一名宇航员.A.①②③B.①③④C.②③④D.①②④3.下列成语所描述的事件是必然事件的是()A.水中捞月B.守株待兔C.水涨船高D.画饼充饥4.下列说法正确的是()A.随机抛掷一枚均匀的硬币,落地后反面一定朝上B.从1,2,3,4,5中随机取一个数,取得奇数的可能性较大C.彩票中奖率为36%,说明买100张彩票,有36张中奖D.打开电视,中央一套正在播放新闻联播5.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是()A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件6.一个不透明的布袋里有30个球,每次摸一个,摸一次就一定摸到红球,则红球有()A.15个B.20个C.29个D.30个一、教学目标1. 能够理解随机事件的概念,区分随机事件与确定性事件;2. 能够掌握用频率和概率描述随机事件的方法;3. 能够应用概率的基本性质进行概率计算;4. 能够应用概率模型解决实际问题;5. 培养学生的逻辑思维和数学推理能力。
《随机事件的概率》教学设计

《随机事件的概率》教学设计一、教学目标:1. 知识与能力:让学生掌握随机事件、概率的基本概念,了解概率的计算方法和应用。
2. 过程与方法:通过教学设计,引导学生使用数学的思维方式解决实际问题,培养学生的逻辑思维和数学建模能力。
3. 情感态度与价值观:培养学生对数学的兴趣,增强学生对概率的认识和应用能力。
二、教学内容:1. 随机事件的概念:介绍随机事件的定义和特征,引导学生了解随机事件的概念和分类。
2. 概率的基本概念:通过例题和实例,让学生了解概率的含义和基本性质,引导学生学会计算简单概率。
3. 概率的计算方法:介绍古典概率和几何概率的计算方法,通过实例让学生了解概率计算的基本步骤和技巧。
4. 概率的应用:通过实际问题和案例,引导学生了解概率在现实生活中的应用场景,培养学生运用概率解决问题的能力。
三、教学过程:1. 导入环节:通过引入一些有趣的概率问题,引起学生的兴趣,如投硬币的概率问题,随机抽奖的概率问题等。
5. 练习与检测:设计一些练习题和测试题,让学生熟练掌握概率计算方法,检测学生的学习效果。
6. 总结与展望:对本节课的内容进行总结,展望下一节课的内容,引导学生对概率知识进行深入学习和探索。
四、教学方法:1. 启发式教学法:通过提出问题和引导思考,启发学生对概率问题的思考和解决。
2. 实例分析法:通过具体的例题和实例,引导学生掌握概率的计算方法和应用技巧。
3. 讨论交流法:通过小组讨论和师生互动,引导学生积极参与教学活动,共同解决难题。
五、教学手段:1. 多媒体教学:利用多媒体教学手段,向学生展示生动有趣的例题和案例,提高学生的学习兴趣和参与度。
2. 实物教具:通过一些实物教具,如纸牌、硬币等,进行概率实验和展示,让学生直观地感受概率问题。
3. 教学软件:利用一些数学软件,如Geogebra、MathType等,进行概率计算和图形展示,帮助学生更好地理解概率知识。
4. 小组讨论:组织学生进行小组讨论活动,促进学生之间的思想碰撞,激发学生学习兴趣和动力。
随机事件与概率教案

随机事件与概率教案一、教学目标1.了解什么是随机事件2.理解随机事件的基本概念3.掌握计算随机事件的概率的方法4.能够应用所学知识解决实际问题二、教学重点1.随机事件的概念和特征2.随机事件的计算方法三、教学难点1.随机事件的计算方法四、教学过程1.引入新知识通过举例引入随机事件的概念,如抛一枚硬币、掷一颗骰子等。
引导学生思考这些事件是否具有随机性,以及与随机性有关的因素。
2.讲解随机事件的概念和特征解释随机事件的概念和特征,并结合上述举例,引导学生理解随机事件的概念和特征。
强调随机性的不确定性和不可预测性。
3.讲解随机事件的计算方法a.确定样本空间:样本空间是随机事件的所有可能结果的集合。
举例说明如何确定样本空间,比如抛一枚硬币的样本空间是{正面,反面}。
b.确定事件的概率:事件的概率是指该事件发生的可能性大小。
讲解计算事件的概率的方法,如频率法和几何法。
强调事件的概率是介于0和1之间的实数。
4.练习与讨论让学生通过练习计算事件的概率,巩固所学知识。
鼓励学生进行小组讨论,互相帮助解决问题。
5.应用实例引导学生通过实际问题,将所学知识应用到实际生活中,如计算扔一颗骰子出现奇数的概率,或者计算猜硬币正反面的概率等。
6.总结与拓展对本节课所学内容进行总结,强调重要概念和计算方法。
鼓励学生拓展思维,思考更多的实际问题,并运用所学知识解决。
五、教学反思本节课通过举例引入随机事件的概念,引导学生理解随机事件的特征,讲解了计算随机事件的概率的方法,并通过练习和应用实例巩固了所学知识。
在今后的教学中,可以通过更多的实例和练习来帮助学生更好地理解和应用所学知识。
《随机事件的概率》教学设计

《随机事件的概率》教学设计一、教学目标1. 知识与技能:学生能够掌握随机事件的概率概念和基本原理,能够利用概率公式解决简单的概率问题。
2. 过程与方法:学生能够通过观察、实验和计算,了解随机事件的规律,并能够运用数学知识解决实际问题。
3. 情感态度与价值观:培养学生对数学的兴趣,增强他们对数学的信心,使他们了解数学在日常生活中的应用。
二、教学内容1. 随机事件的概念,随机事件的分类2. 概率的基本原理和性质3. 概率的计算方法4. 概率在日常生活中的应用三、教学重点和难点重点:随机事件的概念和概率的计算方法难点:概率的计算方法的运用四、教学方法和手段1. 讲授法:通过简单清晰的语言和例题,让学生了解随机事件的概念和基本原理。
2. 实验法:通过实际的实验操作,让学生亲自感受随机事件的规律。
3. 综合法:通过案例分析和讨论,让学生了解概率在日常生活中的应用。
五、教学过程1. 创设情境教师通过介绍某次抽奖活动的中奖规则,引出随机事件概率的概念。
让学生通过猜测自己中奖的概率,引发对概率的思考。
2. 教师讲解教师通过简单明了的语言,向学生介绍随机事件的概念、概率的基本原理和性质。
3. 实验操作教师设计一些简单的实验,让学生通过实际操作,了解随机事件的规律。
比如抛硬币的实验、掷骰子的实验等。
4. 计算概率教师向学生介绍概率的计算方法,并通过例题进行讲解,让学生掌握概率的计算方法。
5. 案例分析教师通过日常生活中的一些实例,让学生了解概率在现实生活中的应用,如购彩、抽奖、比赛等。
6. 练习教师布置一些练习题,让学生巩固所学的知识,并通过批改作业的方式检查学生的学习情况。
七、教学工具1. 实验器材:硬币、骰子等2. 教学课件:包括随机事件的概念、概率的计算方法等内容3. 教学案例:购彩、抽奖等实际案例八、教学评价1. 学生的日常表现:学生在课堂上的表现及实验操作的情况2. 练习成绩:学生完成的练习题的成绩3. 教学效果:学生对概率概念和计算方法的掌握情况九、教学反思在教学过程中,要注重培养学生的实际动手操作能力,让他们通过实验和计算,探究随机事件的规律。
中职数学第二册——随机事件及其概率教案

“随机事件及其概率”教学设计策略分析“概率”这部分知识十分抽象,但是它在实践生活中又被广泛的应用。
本节课作为学习“概率”的入门课,就尤为重要。
为了让学生们不惧怕“概率”,并且对“概率”知识产生学习兴趣,我将在教学中分解授课难点,降低知识难度。
本节内容3个课时完成,本节课为第一课时。
为了让学生们能够很透彻的理解,即而掌握本节课知识,我计划在这次教学中采取师生互动的方式,即:老师启发引导学生思考,学生在思考中提出疑问又带动老师讲解,充分调动学生积极地去理解新知识,进而掌握它。
课上将会借助多媒体课件,以增强课堂的趣味性,从而激发学生的学习热情。
为了能让学生们顺其自然的理解概念,我计划将他们分组做试验,然后组内讨论得出结论。
在授课过程中不但要面向全体,同时还要兼顾个体(包括成绩好的和成绩差的学生)。
具体教学思路如下:||教|师|引|导↓“随机事件及其概率”教学设计(第一课时)教材:职业高中《数学》第二册(基础版)年级:高中二年级课名:随机事件及其概率课堂时间:45分钟一、课前教师需准备工作:1、熟练掌握课本内容;2、搜集相关生活实例,查阅“概率发展”的相关资料;3、准备30枚硬币,制作课件。
二、教学目标:1、知识目标:(1)让学生理解“随机现象”和“概率”的概念;(2)让学生了解概率知识在日常生产和生活中的重要应用2、能力目标:发展学生自主探究的学习能力。
3、德育目标:让学生产生数学应用意识,激发他们的学习兴趣。
三、重点、难点分析:教学重点:理解“随机现象”和“概率”的概念,并且了解概率知识的实际应用。
教学难点:透彻理解概念是难点1;知识的应用是难点2。
四、教学对象分析:部分学生数学基础差,教师要培养他们对数学的学习兴趣,帮助他们树立学好数学的自信心。
五、授课方式:以学生为主,教师启发引导学生思考,师生互动。
六、教学工具:多媒体课件,硬币。
七、教学过程设计(一)组织教学(1′)(二)创设情景(2′)(结合实际,自然将学生引入新课内容)自从有人类社会以来,人们在日常生活中,在生产上,在社会活动中,都要应用概率这个数学工具。
中职数学随机事件与概率》教案

教学参考及教具(含多媒体教学设备): 《单招教学大纲》 、课件
授课执行情况及分析:
板书设计或授课提纲
1、三大现象
必然现象 随机现象 不可能现象
2、三大事件
必然事件 随机事件 不可能事件
§10.2 随机事件及概率
3.频率与概率
4.概率随机事件的概率 必然事件的概率 随机事件的概率 不可能事件的概率
教 学 内 容 、方 法 和 过 程
(1) 导体通电时发热; (2) 某人射击一次,中靶; (3) 抛一石块,下落; (4) 在常温下,焊锡融化; (5) 抛一枚硬币,正面朝上; (6) 在标准大气压下且温度大于 00 时,冰融化.
◆◆课堂学习 一、复习引入
1、复习加法原理和乘法原理
2、举例引入新课
二、课堂活动 【例 1】判断下列现象是确定性还是随机现象. (1)地球不停地转动; (2)木柴燃烧,产生能量; (3)在常温下,石头风化; (4)某人射击一次,中靶; (5)掷一枚硬币,出现正面; (6)在标准大气压下且温度低于 0℃时,雪融化.
【例 3】 在相同条件下对某种棉花种子进行发芽试验,结果如下表所 示: 每 批 试 验 粒 10 60 140 310 750 1600 2000 数 发芽的粒数 9 55 125 282 683 1369 1803 发芽的频率 求:(1)棉花种子发芽的频率;(2)棉花种子发芽的概率是多少?
南通工贸技师学院
D 是随机事件,E 是必然事件
关键
【 举一反三】 抛掷两枚骰子,下列哪些事件是必然事件?哪些不可能事件?哪些
是随机事件? A={两枚骰子点数之和等于 1} ;B={两枚骰子点数之和等于 3};C={两 枚骰子点数之和大于 12};D={两枚骰子都是 4 点};E={一枚骰子是 5 点,一枚骰子是 4 点}
中职数学基础模块下册第十单元《概率与统计初步》word教案

第十单元概率与统计初步教学设计课题1 频率与概率【教学目标】1.了解什么是随机现象的统计规律性;2.理解频率与概率的概念;3.了解频率与概率两个概念之间的异同;4.培养学生参与试验的热情和动手实验的能力.【教学重点】频率与概率的概念.【教学难点】频率与概率的概念.【教学过程】(一)复习提问1.什么叫随机现象?2.什么叫随机试验?3.什么叫随机事件?(二)讲解新课1.随机现象的统计规律性随机现象具有不确定性,但是它的发生是否就无规律可言呢?人们通过长期研究发现,观察一、两次随机现象,它的结果确实无法预料,也看不出什么规律.对同类现象做大量重复观察后,往往可归纳出一定的规律.这种规律叫做统计规律性.2.两个随机试验(1(mn的值由同学算出) 历史上有很多数学家利用抛掷一枚均匀硬币的方法做试验,这是几个比较著名的试验结果.观察结论:尽管每轮试验次数各不相同,但出现正面的次数与试验次数的比值mn 却呈现一定的规律性,就是它总在0. 5上下波动.(mn的值由同学算出) 这是对某品种大豆进行发芽试验.观察结论:尽管每批试验的种子数不同,发芽数也有变化,但发芽率mn 却呈现一定的规律性,就是它总稳定在0. 9左右.3.频率一般地,我们把事件A 发生的次数与试验次数的比值mn,叫做事件A 发生的频率,记做W (A )=mn ,其中m 叫做事件A 发生的频数. 显然,0≤W (A )≤1. 4.概率在大量重复试验时,事件A 发生的频率mn 总是接近某个常数,并在其附近摆动.我们就称这个常数为事件A 的概率,记做P (A ).这就是概率的统计定义.概率刻划了事件A 发生的可能性的大小. 5.频率与概率的区别频率和概率是两个不同的概念,随机事件的频率与试验次数有关,而概率与试验次数无关,因为事件发生的可能性的大小是客观存在的.在实际应用中,当试验次数足够大时,常常用频率近似代替概率,例如产品的合格率,人口的出生率,射击的命中率等.6.例题例(1)计算表中各次击中靶心的频率;(2)这个射手射击一次,击中靶心的概率是多少?解:(1)利用W (A )=mn 计算,结果如下:0. 5,0. 45,0. 46,0. 51,0. 49,0. 494.(2)这个射手射击一次,击中靶心的概率是0. 5. 7.练习教材 练习1—3.(三)作业学生学习指导用书 10. 2 随机事件与概率(二) 【教学设计说明】本课时的教学内容是概率学的开篇与入门部分.教材在前一节学习了随机现象,随机事件等基本概念的基础上,从学习频率与概率的概念入手,通过频率与概率的概念的学习,使学生逐步认识随机现象的统计规律性.从而为概率论的进一步学习打下基础,基于此,本教案确定了明确的教学目标,即让学生在理解频率与概率的概念的基础上,了解什么是随机现象的统计规律性.为了调动了学生学习的积极性,激发了他们的学习热情,教案设计了诸多环节,让学生参与教学过程,以确保良好的教学效果.从教学目标中,可以清楚地看出本节课的重点与难点是频率与概率的概念本身,因此本教案围绕这一点设置了例题,练习及习题,层层分析与阐述这两个概念,以突出重点,化解难点.课题2 概率的简单性质(4)【教学目标】1.了解相互独立事件的概念; 2.了解概率的性质(4); 3.了解概率的性质(4)的应用.【教学重点】概率的性质(4).【教学难点】概率的性质(4)的应用.【教学过程】(一)复习提问1.前一节课学习的概率的三个性质是什么?2.什么样的两个事件是互斥事件?3.什么样的两个事件是对立事件?(二)讲解新课1.相互独立事件如果一个事件的发生与否对另一个事件发生与否没有影响,那么我们把这样的两个事件叫做相互独立事件.例如,甲,乙二人同时射击,甲是否击中目标对乙是否击中目标没有影响,同样,乙是否击中目标对甲是否击中目标也没有影响,这样,“甲击中目标”和“乙击中目标”这两个事件就是相互独立事件.两个事件是否相互独立事件,一般要根据问题本身的性质由经验来判断.2.两个事件同时发生我们把事件A与事件B同时发生,记做事件“A·B”发生.P(A·B)表示事件A与B 同时发生的概率.3.概率的性质(4)如果A,B是相互独立事件,那么P(A·B)=P(A)·P(B).4.例题例甲,乙二人各进行一次射击,如果甲击中目标的概率是0. 6,乙击中目标的概率是0. 7,求二人都击中目标的概率.分析:甲,乙二人各进行一次射击,他们当中不管谁击中与否,对另一个人击中目标与否都没有影响.因此,可以断定“甲射击一次,击中目标”与“乙射击一次,击中目标”是两个相互独立事件,可以利用性质(4)求出它们同时发生的概率.解:记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则“二人都击中目标”为事件A·B,由题意可知,事件A与B相互独立,所以P(A·B)=P(A)·P(B)=0. 6×0. 7=0. 42.答:二人都击中目标的概率为0. 42.5.如果事件A与事件B相互独立,那么事件A与B,A与B,A与B也相互独立.6.练习教材练习(三)作业学生学习指导用书10. 3 概率的简单性质(二)【教学设计说明】本教案是教材中“概率的简单性质”一节的第二课时的教案.为了对比教学,教案首先安排了互斥事件及对立事件的概念的复习,以便在讲述独立事件的概念时加以区别与对照.教案中的两个例题是本节课的核心内容,通过对这两个例题的详细分析讲解,要使学生对简单性质(4)有清楚的理解与认识,并能了解这个性质的用法.考虑到对教材难度的控制,教案没有对该性质加以推广,以保证学生对性质(4)基本内容的掌握.课堂练习的安排,是让学生参与教学过程的必要环节,也是学生对本节课内容掌握与否的一个自我检测.课题3 用样本估计总体【教学目标】1.了解用样本均值对总体均值做估计的方法;2.了解用样本标准差对总体标准差做估计的方法;3.掌握计算器的使用方法.【教学重点】用样本估计总体的方法.【教学难点】用样本标准差对总体标准差做估计的方法.【教学过程】(一)复习提问1.什么叫样本均值,如何计算?2.什么叫样本标准差,如何计算?(二)讲解新课由于总体的庞大与复杂,对它直接进行研究,认识与掌握其数据的变化规律和数字特征,往往不便进行,在实际工作中,常常借助于样本进行研究,并利用对样本的研究所得到的信息,作出关于总体的推断与估计.1.对总体均值的估计例如为了了解全市初三学生的数学学习情况,对一次统测中的1000份试卷进行了统计,算得其均值为76分,那么我们就可以认为全市的初三学生的这次统测平均分大约为76分.2.对总体标准差的估计为了对总体标准差作估计常常利用样本标准差 S =1n -1i =1n(x i -x )2 作为总体标准差的估计值. 3.例题例 某厂生产螺母,从一天的产品中随机抽取8件,量得内径尺寸如下(单位:毫米): 15. 3,14. 9,15. 2,15. 1,14. 8,14. 6,15. 1,14. 7试估计该厂这天生产的全部螺母内径的均值及标准差.解:x =18(15. 3+14. 9+15. 2+15. 1+14. 8+14. 6+15. 1+14. 7)≈14. 96.S 2=17[(15. 3-14. 96)2+(14. 9-14. 96)2+(15. 2-14. 96)2+(15. 1-14. 96)2+(14. 8-14. 96)2+(14. 6-14. 96)2+(15. 1-14. 96)2+(14. 7-14. 96)2] ≈0. 0627.S =0.0627≈0. 2504.答:这些螺母内径的均值约为14. 96毫米,其标准差约为0. 2504. 4.用计算器计算均值及修正标准差 上例使用计算器的计算步骤如下: 第一步MODE 21;第二步15. 3 = 14. 9 =…15. 1 = 14. 7 =; 第三步 按AC 键;第四步SHIFT 152 =到此即可求得均值; 第五步SHIFT 1 54 =到此即可求得标准差. 5.练习在一批零件中随机抽取10个,其尺寸与规定尺寸的偏差如下(单位:微米):+2 +1 -2 +3 +2 +4 -2 +5 +3 +4 试对这批零件的尺寸偏差的均值与标准差作出估计.(三)作业作业册 10. 8用样本估计总体 【教学设计说明】本节课是在前一节课学习了均值与标准差的概念的基础上安排的.内容是如何利用样本的均值与标准差对总体的均值与标准差做估计.通过例题的计算及计算器的使用要注意对学生计算能力的训练与培养.至于教材中的计算软件的应用,教师可根据教学条件及实际情况安排处理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题 6:事件 A 发生的频率 f n ( A) 是不是不 变的?事件 A 的概率 P(A)是不是不变的?它 们之间有什么区别和联系? (1) 频率是概率的近似值 ,随着试验次数的增
四
n 理 2.频率: 我们称事件 A 出现的比例 f n ( A) A 为 加,频率回越来越接近概率. n 论 事件 A 出现的频率. (2) 频率本身是随机的,在试验前不能确定.
问题 5:找出抛掷硬币时正面朝上这个 事件发生的规律: 随着试验次数的增加, 正面向上的频率稳定在 0.5 附近.
II 观察 与归纳
接下来同学们观察课本表 3-1 计算机模拟掷硬币的试验结果、掷硬币的频率图 及表 3-2 历史上一些掷硬币试验的结果,我们发现: 规律:掷一枚硬币试验中, “正面向上”在每 次试验中是否发生是不能预知的,但大量重
2
(3) 没有水分,种子发芽; (4) 打开电视机,正在播放新闻. 解: (1)随机事件 (2)必然事件 (3)不可能事件
五 课 堂 练 习
(4)随机事件
2.某射手在同一条件下进行射击,结果如下表所示: 射击次数 n 击中靶心次数 m 击中靶心频率 m/n 10 8 0.8 20 19 0.95 50 44 0.88 100 92 0.92 200 178 0.89 500 455 0.91
二 件的类型: 事 (1) “导体通电时,发热” ; 件 (2) “抛一石块,下落” ; 分 融化” ; 类 (4) “在常温下,钢铁熔化” ;
(5) “某人射击一次,中靶” ; (6) “掷一枚硬币,出现正面”.
的 (3) “在标准大气压下且温度为 3℃时,冰 件 S 的不可能事件,简称不可能事件;
升 华 3.随机事件的概率的定义 对于给定的随机事件
A ,随着试验次数的增加,事件 A 发生的频率
(3) 概率是一个确定的数,是客观存在的,与每 次试验无关.
f n ( A) 总是接近于区间[0,1]中的某个常数,我们就
把这个常数叫做事件 A 的概率,记作 P(A). 1.指出下列事件是必然事件,不可能事件还是随机事件. (1) 某电话机在一分钟之内收到三次呼叫; (2) 当 x 是实数时, x 0 ;
I 试验
下面我们通过做一个抛掷硬币的试验,来了解“抛掷一枚硬币,正面向上”这个随机 事件发生的可能性大小. 问题 1:与其他同学的试验结果比较,
第一步:每人各取一枚同样的硬币,做 10 次抛掷硬币
试验,记录正面向上的次数,并计算正面向上的频率, 你的结果与他们一致吗?为什么会出现 将试验结果填入表中: 这样的情况?计算学生间的极差.
一 定)那就是可能中也可能不中,也就是说买彩票中奖这个事件可能发生也可能不发生,在数学中我 导 们把这类事件称为随机事件。 入
那“太阳从东方升起呢”?(必然事件) “没有水分,种子发芽”?(不可能事件) 请同学们利用初中所学的知识判断下列事 引出三类事件的概念: 在条件 S 下,一定会发生的事件,叫做相对于条件 S 的必然事件,简称必然事件; 在条件 S 下,一定不会发生的事件,叫做相对于条
教 学 目 标
教学重点 教学难点 教学方法 教学用具
事件的分类;概率的统计定义以及和频率的区别与联系; 用概率的知识解释现实生活中的具体问题. 学生探究、教师引导 硬币 彩票
回 顾 概 念
实验观察 教 学 流 程 理论提升 发现归纳
实际应用
教学过程
同学们,看我手里拿着什么?(彩票)对了,这是我早上刚买的彩票,大家说我一定能中奖吗?(不一
在条件 S 下,可能发生也可能不发生的事件,叫做 相对于条件 S 的随机事件,简称随机事件; 注:(1) 必然事件与不可能事件统称为确定事件. (2) 确定事件和随机事件统称为事件,一般用 大写字母 A,B,C„„表示. 在这三类事件中,必然事件一定会发生,不可能事件绝对不发生,而随机事件可能发生也可 能不发生。我们不仅关注它发生或者不发生,更关注它发生的可能性大小,对于“可能性大小” , 我们把它称为概率,这节课我们重点来研究随机事件的概率。那如何获得随机事件发生的可能性 大小呢?最有用最直接的方法就是试验。 随机事件在一次试验中是否发生是不能事先确定的,那么在大量重复试验的情况下,它的发 生是否会有规律性呢?
教学课题 授课年级 授课类型
3.1.1 随机事件的概率
高 一(116)班 新授课 (1) 了解随机事件,必然事件,不可能事件的概念; 知识与技 能目标 (2) 正确理解事件 A 出现的频率的意义; (3) 正确理解概率的概念和意义,明确事件 A 发生的频率 fn(A)与 事件 A 发生的概率 P(A)的区别与联系. 过程与方 法目标 发现法教学,通过在抛硬币的试验中获取数据,归纳总结试验结 果,发现规律,真正做到在探索中学习,在探索中提高. (1) 在探究过程中,鼓励学生大胆尝试,培养学生勇于创新,敢于 情感态度与价 值观目标 实践等良好的个性品质。 (2) 通过对概率的学习,渗透偶然寓于必然,事物之间既对立又统 一的辩证唯物主义。
姓名
试验次数 (n) 10
正面向上次数 (m)
频率 (m/n)
第二步:每个小组把本组的试验结果统计一下,填入下
问题 2:与其他小组的试验结果比较, 各组的结果一致吗?为什么?计算组与 组之间的极差.
三 表: 试 验 观 察 归 纳
第三步:统计全班的试验结果,填入下表: 组次 试验总次 正面向上 频率 (m/n) 数( n ) 总次数( m )
思想方法:统计的思想方法
七 布 置 作 业 课本 113 页,练习 1,2,3
(1) 计算表中击中靶心的各个频率; (2) 这个射手射击一次,击中靶心的概率约是多少? 解: (2)由于频率稳定在常数 0.89,所以这个射手射击一次击中靶心的概率为 0.89.
知识内容 (1) 三个事件:必然事件 六 课 堂 小 结 不可能事件 随机事件 (2)概率的统计定义 (3)频率和概率的区别与联系 (4) 解决问题的一种重要方法:试验
问题 3:比较全班的结果与多数小组的 结果哪个更接近 0.5?
班级
试验总次数 (n)
正面向上总 次数( m )
频率 (m/n)
第四步:把试验的结果看成一个样本,统计每个个体 的频数,并计算相应的频率:
问题 4:根据上表画出相应的正面朝上 次数的频率分布条形图:
第五步:找出抛掷硬币时正面朝上这个事件发生的规 律。
1. 频率折线图围绕在 0.4~0.8 之间上下波动.
2. 当试验次数很多时,出现正面向上的频率值 在 0.5 附近波动。
பைடு நூலகம்
复试验后,随着试验次数的增加,正面向上 的频率总在 0.5 附近摆动。
1.频数:在相同条件下重复 n 次试验,观察某一 事件 A 是否出现,称 n 次试验中事件 A 出现的次 数 n A 为事件 A 的频数.