千斤顶设计
千斤顶设计计算说明
目录第一章设计题目及材料选择 (2)1.1 设计要求 (2)1.2 主要零件的常用材料 (2)1.3 千斤顶结构示意图 (2)第二章螺杆的设计计算 (3)2.1螺杆材料级牙型选择 (3)2.2耐磨性计算 (3)2.3验算螺纹的自锁条件 (4)2.4螺杆强度校核 (4)2.5稳定性校核 (5)2.5螺杆其他结构设计 (6)第三章螺母的设计计算 (7)3.1确定螺母高度H及螺纹工作圈数u (7)3.2校核螺纹牙强度 (7)3.3螺母的其他设计要求 (8)第四章托杯的设计与计算 (8)第五章手柄设计与计算 (9)5.1手柄材料 (9)5.2手柄长度L p (9)5.3手柄直径d p (10)5.4结构 (10)第六章底座设计 (11)第一章设计题目及材料选择1.1 设计要求设计简单千斤顶的螺杆和螺母级其他结构的主要尺寸。
起重量为40000N,起重高度为200mm,材料自选.。
传力螺旋传动要求以小的扭矩产生较大的轴向推力,一般为间歇性工作,每次的工作时间较短,工作速度也不高,通常有自锁能力,所以千斤顶设计采用此结构。
1.2 主要零件的常用材料螺杆:45# 钢,采用带有外螺纹的杆件螺母:青铜,带有内螺纹的构件底座:灰铸铁HT200 带1:10斜度手柄:Q2351.3 千斤顶结构示意图第二章 螺杆的设计计算2.1螺杆材料级牙型选择选用45#钢,螺杆螺纹类型选择梯形螺纹。
梯形螺纹牙型为等腰梯形,牙形角α=300,梯形螺纹的内外螺纹以锥面贴紧不易松动;它的基本牙形按GB5796.1—86的规定。
2.2耐磨性计算滑动螺旋的磨损与螺纹工作面上的压力、滑动速度、螺纹表面粗糙度以及润滑状态等因素有关。
其中最主要的是螺纹工作面上的压力,压力越大螺旋副间越容易形成过度磨损。
因此,滑动螺旋的耐磨性计算,主要是限制螺纹工作面上的压力p ,使其小于材料的许用压力[p]。
假设作用于螺杆的轴向力为F(N ),螺纹的承压面积(指螺纹工作表面投影到垂直于轴向力的平面上的面积)为A (2mm ),螺纹中径为小(mm ),螺纹工作高度为H (mm ),螺纹螺距为 P (mm ),螺母高度为 D (mm ),螺纹工件圈数为 u =H/P 。
千斤顶的设计
简易千斤顶设计书一.设计要求采用螺旋传力,最大其中重量40000N,工作行程200mm。
二.结构原理图为最终产品结构图。
如图,托杯起支承重物的作用,使用时转动手柄则螺杆将与落幕之间产生相对转动,从而带动重物上升,底座则起支撑作用。
三.设计计算1.螺杆材料:40Cr 。
φ的取值一般在1.2~2.5,为使螺纹工作圈数不至于过大,将φ值定为2,滑动螺旋副许用压力][p 取MPa 20。
][581.195150.252500.235.2850.222850.25298.25202400008.0][8.02221122p MPa hu d FP hu d F A F p m mm m d H P D D d d m md m m m m p F d ≤=====⨯=========⨯⨯==ππφφ则滑动螺旋副设计符合要求。
再对螺旋副自锁性进行校核:VV d nP f ϕψππψβϕ<======57.35.255arctan arctan 323.515cos 09.0arctan cos arctan2 则螺旋副自锁性符合要求。
确定螺杆的尺寸,2l 为工作行程。
mmb l mmD l mmd D mm mm P l H P l l l 185.12.675.18.446.1266)1520051(334232221=======++=++=++= 再对螺杆进行强度校核: 螺杆小径截面面积222214.397450.224mm m d A ===ππ螺旋副摩擦力矩m N m N d F T V ⋅=⋅⨯⨯=+=6.7925.25156.0400002)tan(2ϕψ 查表得许用应力MPa MPa 15757855][===σσ ][6.1005.226.7943400004.397143122212σσ<=⎪⎭⎫ ⎝⎛⨯⨯+=⎪⎪⎭⎫ ⎝⎛+=MPa MPa d T F A ca 则螺杆强度符合要求。
机械毕业设计1229千斤顶设计报告
螺旋千斤顶设计方案班级 A05机械(2)姓名学号指导老师目录一千斤顶设计任务分析 (3)1.1 千斤顶载荷Q及起重高度L (3)1.2 螺旋传动的特点、结构及材料..................................................... 错误!未定义书签。
1.3 千斤顶组成 (3)二千斤顶总体示意图 (4)三各部件参数设定及强度校核 (5)3.1 螺母材料、尺寸的选定及校核 (5)3.1.1 螺母材料及尺寸的基本参数 (5)3.1.2 螺纹牙的强度校核 (5)3.1.3 螺纹自锁性校核 (7)3.1.4 螺母其他尺寸设定 (6)3.1.5 螺母凸缘强度校核 (6)3.2 螺杆材料、尺寸的设定及强度校核 (7)3.2.1 螺杆材料选取及强度计算 (7)3.2.2 螺杆稳定性校核 (8)3.3 底座及机架材料的选定及校核 (9)3.3.1 底座及机架基本参数与结构的设定 (9)3.3.2 底座内外径的设定 (9)3.4 托杯的材料及尺寸的设定 (10)3.4.1材料及尺寸的设定 (10)3.4.2强度校核 (10)3.5 手柄材料及尺寸的设定 (11)3.5.1 手柄材料及长度的选定 (11)3.5.2 手柄直径的选定 (11)3.6 其他保险零件的选定 (12)3.6.1螺杆及手柄处挡圈及螺杆上端螺钉选取 (12)3.6.2 底座与螺母间紧定螺钉得选取 (12)四设计结果(主要参数列表) (13)五参考文献 (14)一千斤顶设计任务分析1.1 千斤顶载荷Q和重高度L已知条件:最大载荷Q=60000KG起重高度L=180mm手动分析已知可得:(1)Q=60KN(2)因为设计的千斤顶是手动,故对螺纹的精度要求不高。
可以采用9级梯形螺纹。
(3)可选用45钢作为千斤顶材料,调质HB=217~255,α=315(课本P362表15-1)(4)千斤顶的组成:A)螺纹B)螺母:为青铜或球墨铸铁C)底座:HT180灰铸铁E)手柄D)其他保险圈,螺钉等1.2材料选择因为设计的千斤顶是手动的,故对螺纹的精度要求不是很高。
千斤顶设计
千斤顶设计过程1螺杆螺母的材料选择考虑到此设计的千斤顶最大承重10kN ,以及耐磨性,所以选用45#调质钢,它的特点是具有一定的耐磨性,可用于用于载荷较大而工作不频繁的升降螺杆。
根据参考文献[1]表10.2查得抗拉强度b 600 MPa σ=,s 355 MPa σ=;螺母选用青铜材料,由机械设计手册可以查到其许用弯曲应力σbp=40~60MPa ,许用切应力τp=30~40MPa 。
2选择牙型考虑到自锁性和牙根强度,设计时选用梯形螺纹。
3根据耐磨性确定初选螺纹中径为了防止过度磨损,需要限制螺纹工作表面压强p 使之不要超过螺纹传动副的许用压强[p],][22p hHd QPhZ d Q p ≤==ππ (1)Q----------------轴向载荷,N ; d 2----------------螺纹中径,mm ;H----------------螺母高度(旋合长度),mm ; P-----------------螺距,mm ;h-----------------螺纹接触高度,mm ;Z-----------------旋合长度内工作圈数,Z=H/P ; [p]---------------螺旋传动副许用压力,MPa 。
根据(1)式,可得螺纹中径计算公式:][2p Qd πϕψ≥(2)其中2d H =ψ、Ph=ϕ,由于是梯形螺纹,所以ϕ=0.5,对于整体螺母,5.2~2.1=ψ,取2=ψ。
螺母选用青铜材料,由参考资料[2]表5-2可查到刚对青铜的螺旋副许用压强[P]=18~25MPa (人力传动),在此我们取[p]=25MPa ,则可算出d 2 mm d 28.112=根据机械设计手册梯形螺纹基本尺寸(GB/T 5796.3—2005),选取标准梯形螺纹公称直径20=d mm ,螺距4=p mm ,中径182=d mm ,小径5.153=d mm ,内螺纹大径5.204=D mm 。
4螺杆强度校核螺杆危险截面应满足的条件:][1634323322322σππτσσ≤⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+=d T d Q c (3)[σ]-------------螺杆材料许用应力,[σ]=)5~3/(s σ,MPa ; T----------------螺杆承受的最大扭矩,N .mm ;d 3----------------螺纹小径,mm 。
千斤顶设计计算说明
目录第一章设计题目及材料选择 (1)1.1设计要求 (1)1.2主要零件的常用材料 (1)1.3千斤顶结构示意图 (1)第二章螺杆的设计计算 (2)2.1螺杆材料级牙型选择 (2)2.2耐磨性计算 (2)2.3验算螺纹的自锁条件 (3)2.4螺杆强度校核 (3)2.5稳定性校核 (4)2.5螺杆其他结构设计 (5)第三章螺母的设计计算 (5)3.1确定螺母高度H及螺纹工作圈数u (5)3.2校核螺纹牙强度 (6)3.3螺母的其他设计要求 (6)第四章托杯的设计与计算 (7)第五章手柄设计与计算 (7)5.1手柄材料 (7)5.2手柄长度L p (7)5.3手柄直径d p (8)5.4结构 (8)第六章底座设计 (9)第一章设计题目及材料选择1.1设计要求设计简单千斤顶的螺杆和螺母级其他结构的主要尺寸。
起重量为40000N,起重高度为200mm,材料自选.。
传力螺旋传动要求以小的扭矩产生较大的轴向推力,一般为间歇性工作,每次的工作时间较短,工作速度也不高,通常有自锁能力,所以千斤顶设计采用此结构。
1.2主要零件的常用材料螺杆:45# 钢,采用带有外螺纹的杆件螺母:青铜,带有内螺纹的构件底座:灰铸铁HT200 带1:10斜度手柄:Q2351.3千斤顶结构示意图图1:千斤顶示意图第二章 螺杆的设计计算2.1螺杆材料级牙型选择选用45#钢,螺杆螺纹类型选择梯形螺纹。
梯形螺纹牙型为等腰梯形,牙形角α=300,梯形螺纹的内外螺纹以锥面贴紧不易松动;它的基本牙形按GB5796.1—86的规定。
2.2耐磨性计算滑动螺旋的磨损与螺纹工作面上的压力、滑动速度、螺纹表面粗糙度以及润滑状态等因素有关。
其中最主要的是螺纹工作面上的压力,压力越大螺旋副间越容易形成过度磨损。
因此,滑动螺旋的耐磨性计算,主要是限制螺纹工作面上的压力p ,使其小于材料的许用压力[p]。
假设作用于螺杆的轴向力为F(N ),螺纹的承压面积(指螺纹工作表面投影到垂直于轴向力的平面上的面积)为A (2mm ),螺纹中径为小(mm ),螺纹工作高度为H (mm ),螺纹螺距为 P (mm ),螺母高度为 D (mm ),螺纹工件圈数为 u =H/P 。
【说明书】千斤顶课程设计
【关键字】说明书千斤顶设计说明书院系班级学号设计人指导教师完成日期螺旋千斤顶设计过程千斤顶一般由底座1,螺杆4、螺母5、托杯10,手柄7等零件所组成(见图1―1)。
螺杆在固定螺母中旋转,并上下升降,把托杯上的重物举起或放落。
设计时某些零件的主要尺寸是通过理论计算确定的,其它结构尺寸则是根据经验公式或制造工艺决定的,必要时才进行强度验算。
设计的原始数据是:最大起重量F=20KN和最大提升高度H=.1.5结构(见图1―2)螺杆上端用于支承托杯10并在其中插装手柄7,因此需要加大直径。
手柄孔径d k的大小根据手柄直径d p决定,d k≥d p十0.5mm。
由后面的计算可知手柄的直径pd=25mm,所以mmdk8.268.026=+=。
为了便于切制螺纹,螺纹上端应设有退刀槽。
退刀槽的直径d4应比螺杆小径d1约小0.2~0.5mm。
mmdd6.204.014=-=。
退刀槽的宽度可取为1.5P=15mm。
为了便于螺杆旋入螺母,螺杆下端应有倒角或制成稍小于d1的圆柱体。
为了防止工作时螺杆从螺母中脱出,在螺杆下端必须安置钢制挡圈(GB/T891-1986)mmHmmD5,45==,挡圈用紧定螺钉(GB/T68-2000)166⨯M固定在螺杆端部。
1.5P=15mm计算项目计算及说明计算结果(1)螺母与底座的配合常用或等;(2)为防止螺母转动,应设紧定螺钉,直径常取M6~M12,根据起重大小决定;(3)为防止托杯脱落和螺杆旋出螺母,在螺杆上下两端安装安全挡圈;(4)连接螺钉,挡圈,挡环的规格尺寸按结构需要选取或设计;(5)为减少摩揩、磨损及托杯工作时不转动,螺旋副及托杯与螺杆的接触面均需润滑;(6)装配图尺寸标注应包括特性尺寸(如最大起落高度)、安装尺寸、外形尺寸(总厂、总宽、总高)和派和尺寸等;(7)图面应注明技术特性及技术要求;(8)图纸规格应符合之徒规定,绘图要按国家标准,标题栏和明细表的格式应符合要求,详见课程设计教材,或采用学生用标题栏及明细表格式;(9)设计计算说明书应在全部计算及图纸完成后进行整理编写。
机械设计-千斤顶-设计计算说明书
退刀槽的宽度 mm。故此处取 mm。
为了便于螺杆旋入螺母,螺杆下端应制有倒角,如图1(a)所示。或制成稍小于小径 的短圆柱体,如图1(b)所示。
图1
螺杆选用45钢
mm
mm
计算及说明
主要结果
4.3自锁性校核
自锁性条件为 。
螺纹升角
经查表,摩擦因数 取0.08,螺纹牙侧角 取 ,当量摩擦角 。
螺旋副的摩擦阻力距
kN·mm。
螺杆端面与托杯之间的摩擦阻力矩
手柄长度 mm。
手柄的计算长度 是螺杆中心至人手施力点间的距离。考虑到螺杆头部尺寸及手握的距离,手柄的实际长度应为
mm
为减小千斤顶的存放空间,一般取实际手柄长度 不大于千斤顶的高度。当举重量较大的时候,可在手柄上套一长套管,以增大力臂达到省力的目的。
4.5稳定性校核
螺杆危险界面惯性半径 mm。由3.2知 mm,则螺杆头部高度取 mm,螺杆最大工作长度 mm,长度系数 ,则柔度 mm<85mm,故
故 ,所以满足稳定性条件。
五、螺母的设计计算
5.1材料
螺母和螺杆旋合工作时,应具有较高的耐磨性和较低的摩擦因数,通常选用螺母材料比螺杆材料硬度低。耐磨性较好的螺母材料有:铸锡青铜ZCuSn10Pb1、铸锡锌铅青铜ZCuSn5Pb5Zn5和铸铝铁青铜ZCuAl10Fe3;当低速、轻载或不经常使用时,也可选用耐磨铸铁或铸铁。这里我们选用铸铝铁青铜,即ZCuAl10Fe3。
由于影响摩擦因数 的因素很多,其值并不稳定,为保证螺旋起重器有可靠的自锁能力,可取 。由上述计算可得 ,所以自锁性满足要求。
4.4强度校核
螺杆工作时,扭矩产生剪应力,轴向力产生正应力,升至最高位置时,载荷分布如图2所示。
千斤顶设计要求
受力分析
(1)当拧紧螺纹时: F=Q t g (ψ + ρ ) F力对螺纹轴心线的力矩T(螺纹力矩) 力对螺纹轴心线的力矩T(螺纹力矩)
d 2 Fa d 2 T =F× = tg (ψ + ρ ) 2 2
有效功w2 FaS Faπd 2tgψ tgψ 机械效率η = = = = Fad 2 输入功w1 2πT 2π tg (ψ + ρ ) tg (ψ + ρ ) 2
1.滑动螺旋的结构 螺旋传动的结构主要是指螺杆、螺母的固定和支承 的结构形式。螺旋传动的工作刚度与精度等和支承 结构有直接关系。 1)当螺杆短而粗且垂直布置时,如起重及加压装置的 传力螺旋,可以利用螺杆本身作为支承。 2)当螺杆细长且水平布置时,如机床的传导螺旋(丝 )当螺杆细长且水平布置时,如机床的传导螺旋( 杠)等,应在螺杆两端或中间附加支承,以提高螺杆 的工作刚度。 3)螺杆的支承结构和轴的支承结构基本相同。此外, 对于轴向尺寸较大的螺杆,应采用对接的组合结构 代替整体结构,以减少制造工艺上的困难。 4)螺母的结构:整体螺母、组合螺母和剖分螺母等 5)滑动螺旋采用的螺纹类型:矩形、梯形和锯齿形。 螺杆常用右旋螺纹 6)传力螺旋和调整螺旋要求自锁时,应采用单线螺 纹。对于传导螺旋,为了提高其传动效率及直线运 动速度,可采用多线螺纹
cos22coscos22fffafnfffanffanf??????????????????????????????????????????????????????????????????????????????自锁条件切向水平推力下滑螺纹效率螺纹力矩切向水平推力上升则公式变为代替
二、滑动螺旋的结构和材料
对于经常双向传动的传导螺旋,为了消除轴向 间隙和补偿旋合螺纹的磨损,避免反向传动时 的空行程,常采用组合螺母或剖分螺母。
《千斤顶的设计》word文档
《千斤顶的设计》word文档千斤顶是一种具有机械优势的工具,能够实现较大力量的转化和传递。
在生产和生活中,千斤顶的应用十分广泛。
它可以用于车辆维修、建筑施工、重型机械安装等多个领域。
千斤顶的设计直接影响其使用效果和安全性能。
下面,将从千斤顶的类型、结构、材料、制造工艺等多个方面,探讨千斤顶的设计。
一、千斤顶的类型按照使用原理不同,千斤顶可分为机械千斤顶、液压千斤顶和螺旋千斤顶等。
其中,机械千斤顶是最为常见的类型。
它采用螺旋轮和丝杠原理,通过靠拨杆或曲柄的转动,推动螺丝母的上下运动,实现顶升或压缩的效果。
液压千斤顶则是利用液体介质的原理,通过活塞的上下移动来产生力量。
液压千斤顶有很好的稳定性和承重性能,广泛应用于建筑、航空、科研等多个领域。
螺旋千斤顶则是将力通过螺旋推动杆的上下运动来传递的。
它的结构简单,易于制造和维修,但承受力小,限制了其使用范围。
千斤顶的结构一般由顶部、底部、顶升杆和支撑杆四部分组成。
顶部一般呈圆形或方形,用于支撑和固定顶升杆和支撑杆。
底部通常为六角形或圆形,可以将千斤顶牢固地固定在地面上。
顶升杆则是千斤顶的主体部分,通过旋转,使丝杆向上推动螺母,升起顶部,实现顶升的效果。
支撑杆则是千斤顶用于支撑顶部的部分,一般用于加固一些重型物体。
此外,千斤顶还有其他部件,如拨杆、曲柄、活塞等,用于控制、传递力量。
千斤顶制造材料一般采用高强度钢或合金材料。
这些材料具有高强度、耐腐蚀、耐高温等性能,能够承受较大的力量和重量,确保千斤顶的使用安全性。
其中,高强度钢的使用范围较广,具有较高的强度和韧性,适合制造大型千斤顶。
合金材料则是千斤顶制造的新兴材料,具有耐磨损、耐腐蚀、轻量化等特点,适合制造高质量、轻便的小型千斤顶。
四、千斤顶的制造工艺千斤顶的制造工艺主要分为铸造、锻造和加工三个阶段。
在铸造阶段,根据千斤顶的结构和类型,确定千斤顶的模具和铸造工艺,并采用熔融金属注入模具、凝固成型的方法,生产出千斤顶的主体部件。
千斤顶毕业设计说明书
目录第1章千斤顶的概述......................................... 11.1千斤顶的工作原理...................................... 11.1.1千斤顶原理实验................................. (1)1.2千斤顶的介绍.......................................... 11.3千斤顶的分类....................................... (1)1.3.1按结构划分3种 (2)1.3.2量具千斤顶 (3)1.3.3其他分类 (4)1.4千斤顶使用说明 (4)第2章千斤顶的设计任务 (5)2.1毕业设计方案选择 (5)2.2千斤顶的设计任务要求 (5)2.2.1设计题目及任务要求 (5)第3章千斤顶的结构设计 (7)3.1结构设计的意义 (7)3.2千斤顶的结构 (7)3.2.1螺旋传动选择 (7)3.2.2螺纹类型选择 (8)第4章千斤顶各部件参数的设定及强度校核 (9)4.1螺母、螺杆的材料及尺寸的选定与校核 (9)4.1.1螺母、螺杆的材料和许用应力.............................. .94.1.2螺母、螺杆的尺寸设计与校核 (10)4.2底座的设计计算..................................... (13)4.2.1底座材料的选定 (13)4.2.2底座的尺寸确定 (13)4.3手柄的设计计算 (14)4.3.1手柄的材料选择 (15)4.3.2手柄的尺寸确定 (15)4.4托杯的设计计算 (15)4.4.1托杯材料的选择 (16)4.4.2托杯的尺寸确定 (16)4.5千斤顶的效率计算 (16)4.6千斤顶其他附件的尺寸设定 (16)第5章计算结论 (17)5.1千斤顶的总体装配图 (17)5.2设计各零件图及画图的具体步骤 (17)5.2.1螺母的设计 (17)5.2.2起重螺杆的设计 (20)5.2.3底座的设计 (22)5.2.4手柄的设计 (23)5.3千斤顶的各零件尺寸工程图............................. .255.4千斤顶的装配图 (27)5.5千斤顶的爆炸分解图................................... .28第1章千斤顶的概述1·1千斤顶工作原理千斤顶有机械千斤顶和液压千斤顶等几种,原理各有不同。
机械设计千斤顶设计
机制081胡凯雷30806110095-11设计简单千斤顶的螺纹和螺母的主要尺寸。
起 重量为20000N ,起重高度为150nmi 5材料自选。
解:1.、螺杆的设计与计算 〔1〕选用材料。
螺杆材料选用45号钢,=300MPa °查表确定需用[p]=15MPa °〔2〕确定螺纹牙型。
梯形螺纹的工艺性好,牙根强度高,对中性好,本设计采用梯形螺纹。
〔3〕按耐磨性计算初选螺纹的中径。
因选用梯形螺纹且螺母兼作支承,故取卩二2. 5,根据教材式(5-43)=18.5 nin )(4) 按螺杆抗压强度初选螺纹的内径。
根据第四强度理论,其强度条件为% =yjcr 2+3r 2 <[a]但对中小尺寸的螺杆,可认为r^0.5a,所以上式可简化为式中,A 为螺杆螺纹段的危险截面,A 二和% 〃和;S 为螺杆稳定性平安系数,对于传力螺纹,S=3. 5—5.0 ;对于传导螺旋,S=2. 5—4.0;对于精细螺杆或水平,S>4.本千斤顶取值S 二5.故/2OOOOVd 〉4xl.3xSxQ 3.14x3004x1.3x5x20000 — c ----------------------- =23. J mm(5)综合考虑,确定螺杆直径.比拟耐磨性计算和抗压强度计算的结果,可知本例螺杆直径的选定应以抗压强度计算的结果为准,按国家标准GB/T5796—1986选定螺杆尺寸参数:公称自径d=24mm,螺纹外径4 = 24.5〃川;螺纹内径d2 = 18.5〃"";螺纹中径M()= 21.5mm;螺纹线数n= 1,螺距P=5mm.(6)校核螺旋的自锁能力。
对传力螺纹传动来说,一般应确保自锁性要求,以防止事故.本螺旋的材料为钢,螺母的材料为青铜,钢对青铜的摩擦系数f=0. 09(查《机械设计手册>>).因梯形螺纹牙型角a = 3O , 0 = # = 15。
,所以.nP , 70 = arctan ------ = arctan --------------- = 39叫 3.14x40.5£f0.09p Y = arctan r. = arctan ——— =arctan --------- =519cos p cos 15因,可以满足自锁要求.注意:假设自锁型缺乏,可增大螺杆直径或减小螺距进展调整.(7)螺纹牙的强度计算.由于螺杆材料强度一般远大于螺母材料强度,因此只需要校核螺母螺纹的牙根强度.(8)螺杆的稳定性计算.当轴向压力大于某一临界值时,螺杆会发生测向弯曲,丧失稳定性.取B=40mm, 那么螺杆的工作长度/ = L + B + — = 150 + 40 + 25 = 215mm2螺杆危险截面的惯性半径i =—=空丄=4 4螺杆的长度系数:按一端自由,一端固定考虑,取螺杆的柔度:A= —= ^77^ = 93-48i 4.6因此本例螺杆40<〈<10(),为中柔度压杆,其失稳时的临界载荷按欧拉公式计算得3.142X2.06X10'X3.14X18.5°Q == -------------- ---------------- = 613.29K(///)■(2x215)- S. =^= 613-29 = 30.66 > 3.5 - 5.0£ Q 20所以满足稳定性要求.2、螺母的设计与计算(1)选取螺母材料螺母材料一般可选用青铜,对于尺寸较大的螺母可采用钢或铸铁制造,其内孔浇注青铜或巴氏合金,次选青铜。
机械设计-千斤顶_设计计算说明书
机械设计-千斤顶_设计计算说明书机械设计-千斤顶_设计计算说明书1、引言本文档旨在提供一份详细的机械设计计算说明书,用于千斤顶的设计。
千斤顶是一种常见的机械工具,用于举升重物。
在本文档中,我们将介绍千斤顶的设计原理、材料选择、力学计算和安全性考虑等相关内容。
2、设计原理2.1、工作原理:千斤顶利用手动或液压的方式,将力转化为一个能够举升重物的力。
在操作过程中,通过控制手柄或液压泵的运动,使得活塞在主缸体内上下运动,从而实现重物的举升和下放。
2.2、原理图:包括主缸体、活塞、液压泵等组成的千斤顶原理图,详细标注各个组件的名称和功能。
3、材料选择3.1、主缸体:使用高强度钢材料,以承受大的压力和重载。
3.2、活塞:采用钢材料,具有良好的耐磨和密封性能。
3.3、液压泵:选择合适的液压泵类型和材料,以确保泵的稳定性和工作效率。
4、力学计算4.1、举升能力计算:根据设计需求和预期工作负荷,计算千斤顶的最大举升能力和承受重量。
4.2、压力计算:通过力学分析和压力平衡方程,计算千斤顶在不同工作条件下的压力大小。
4.3、强度计算:使用强度学原理,计算主缸体和活塞的最大应力,以确保结构的强度和可靠性。
4.4、传动效率计算:通过液压系统的分析和参数计算,评估千斤顶的传动效率和功率损失。
5、安全性考虑5.1、载荷限制:根据设计和制造标准,确定千斤顶的额定工作载荷和最大承载能力,并进行标识。
5.2、安全阀:为防止过载和压力过高,安装安全阀以保护千斤顶和操作者的安全。
5.3、密封性能:确保千斤顶的密封性能良好,防止泄漏和波动导致的意外事故。
5.4、操作规程:提供详细的操作规程和注意事项,包括保养、维修和安全操作等指导。
附件:- 图纸和设计图册- 强度计算报告- 结构分析报告- 材料选型数据表- 液压系统参数表法律名词及注释:1、《安全生产法》:指中华人民共和国国家安全生产法,该法规定了生产、经营单位的安全生产责任和相关要求。
螺旋千斤顶设计
在优化改进后,完成螺旋千斤顶 的最终图纸,准备进行生产制造。
04
螺旋千斤顶设计实例
轻型螺旋千斤顶设计
轻便易携带
轻型螺旋千斤顶通常采用轻质材料制成,体积小 巧,便于携带和存放。
适合小负载
适用于负载较小的场合,如家庭维修、小型设备 提升等。
操作简单
轻型螺旋千斤顶结构简单,操作方便,一般人员 经过简单培训即可掌握使用方法。
确定总体结构
根据需求分析和技术参数, 初步确定螺旋千斤顶的总 体结构形式和尺寸。
选择材料和规格
根据承载能力和使用环境, 选择合适的材料和规格, 确保螺旋千斤顶的强度和 稳定性。
绘制初步图纸
根据初步确定的总体结构 和尺寸,绘制螺旋千斤顶 的初步图纸。
详细设计
细化结构设计
对螺旋千斤顶的各个部件进行详细的结构设计,确保 其稳定性和可靠性。
重型螺旋千斤顶设计
高承载能力
重型螺旋千斤顶采用高强度材料和结构设计,具有较高的承载能 力,能够承受较大的重量。
稳定性好
重型螺旋千斤顶具有较好的稳定性和可靠性,适用于重型设备、车 辆等的升降和支撑。
适合专业操作
由于其高承载能力和稳定性要求,重型螺旋千斤顶通常需要专业人 员进行操作和维护。
高空作业螺旋千斤顶设计
03
螺旋千斤顶设计流程
设计需求分析
01
02
03
明确设计目标
确定螺旋千斤顶的功能需 求,如起升高度、承载能 力、使用环境等。
收集相关资料
收集同类产品资料,了解 市场趋势和用户需求,为 设计提供参考。
确定技术参数
根据设计目标,确定螺旋 千斤顶的主要技术参数, 如起升扭矩、起升速度、 承载能力等。
千斤顶设计报告
千斤顶设计报告设计报告:千斤顶设计背景:千斤顶是一种用于提升重物的工具,常用于汽车维修、建筑施工等领域。
它的设计目标是能够承受高压力和扭力,同时具有稳定性和易于操作的特点。
设计目标:1. 承受高压力:千斤顶需要能够提升重物,因此它的设计需要考虑到承受高压力的能力。
2. 承受扭力:由于千斤顶需要调整高度,因此需要能够承受扭转力,保证稳定性。
3. 稳定性:在使用千斤顶时,特别是在提升重物的过程中,稳定性是一个重要的考虑因素。
设计需要确保千斤顶在使用过程中不会倒塌或失去平衡。
4. 易于操作:千斤顶需要能够轻松操作,以提高工作效率和安全性。
设计方案:1. 结构设计:千斤顶采用三脚架结构,以提高稳定性和承受力。
依靠在底座上的三个支点,可以有效地分散重量,并确保千斤顶保持平衡。
2. 使用材料:为了承受高压力和扭力,千斤顶的主要结构部件应选用高强度的金属材料,如钢材。
同时,材料需要经过适当的处理,以提高其耐腐蚀性和耐磨性。
3. 液压系统:千斤顶采用液压系统实现提升重物的功能。
液压系统包括液压缸、液压油和手柄等部件。
通过手柄的操纵,液压油被压入液压缸,从而推动活塞提升重物。
4. 设计考虑:在设计过程中,需要注意以下几点:a) 底座设计应具有良好的稳定性和抗滑能力,以确保千斤顶在使用时不会滑动。
b) 手柄设计应人性化,易于操作。
c) 千斤顶的结构应紧凑,以便在使用时方便携带和存储。
总结:千斤顶是一种重要的工具,用于提升重物。
在设计千斤顶时,需要考虑到它的承受能力、稳定性和易于操作等因素。
通过合理的结构设计和材料选择,可以实现千斤顶的高效、安全和稳定的使用。
机械设计-千斤顶_设计计算说明书
机械设计-千斤顶_设计计算说明书机械设计-千斤顶_设计计算说明书一、引言本文档介绍了千斤顶的机械设计和计算。
千斤顶作为一种用于举升和承重的装置,在工程应用中具有重要的作用。
本文档将详细介绍千斤顶的设计原理、构造和计算方法,以便工程师和设计人员能够正确使用和设计千斤顶。
二、设计原理千斤顶的设计基于杠杆原理和液压原理。
通过施加力在活塞上产生压力,通过液体传递力量,从而实现举升和承重的目的。
千斤顶通常包括活塞、液压油箱、液压油泵、液压油管等组成部分。
三、构造设计1.活塞设计:活塞是千斤顶的核心部件,承受着巨大的力量。
活塞的设计应考虑材料的强度和刚度,尺寸的合理选择,密封设计等因素。
2.液压油箱设计:液压油箱用于储存液压油,需要具备足够的容积和耐压能力。
同时,在设计时还应考虑油箱的密封性和散热性能。
3.液压油泵设计:液压油泵是千斤顶的动力来源,需要根据需要的举升力和速度选择合适的泵型,并考虑泵的效率和可靠性。
4.液压油管设计:液压油管用于传递液压油,设计时需要考虑油管的耐压能力和密封性。
四、计算方法1.千斤顶的举升力计算:根据活塞面积和液压力计算举升力。
举升力 = 活塞面积 × 液压力。
2.千斤顶的自重计算:考虑千斤顶本身的重量对举升力的影响。
自重计算需要考虑材料密度和千斤顶的几何形状。
3.千斤顶的稳定性计算:考虑千斤顶在举升过程中的稳定性问题,需要根据千斤顶的几何形状和负载情况来进行计算。
五、附件本文档涉及的附件包括:设计图纸、材料表、力学计算表等。
六、法律名词及注释1.杠杆原理:杠杆原理是物理学中的基本原理,指的是通过杠杆的作用,可以改变力的作用效果。
在千斤顶中,通过杠杆原理可以实现力的放大或减小。
2.液压原理:液压原理是应用于流体力学和工程中的一种原理,通过液体的传递和传力来实现机械运动和工作的原理。
在千斤顶中,液压原理可以将施加的力通过液体传递到活塞上,并产生举升力。
《机械设计》课程设计(千斤顶)
《机械设计》课程设计——螺旋千斤顶的设计设计要求:设计一个人力驱动的螺旋千斤顶,示意图如下:一、千斤顶的概述千斤顶是一种起重高度小(小于1m)的最简单的起重设备。
它有机械式和液压式两种。
机械式千斤顶又有齿条式与螺旋式两种。
千斤顶按工作原理分为:螺旋千斤顶、齿条千斤顶、油压千斤顶。
二、螺旋传动的设计和计算1、螺旋传动的应用和类型螺旋传动是利用螺杆(丝杠)和螺母组成的螺旋副来实现传动要求的。
它主要用于将回转运动转变为直线运动,同时传递运动和动力。
它具有结构紧凑、转动均匀、准确、平稳、易于自锁等优点,在工业中获得了广泛应用。
(1)按螺杆与螺母的相对运动方式,螺旋传动可以有以下四种运动方式:①螺母固定不动,如图螺杆转动并往复移动,这种结构以固定螺母为主要支承,结构简单,但占据空间大。
常用于螺旋压力机、螺旋千斤顶等。
②螺母转动,如图螺杆做直线移动,螺杆应设防转机构,螺母转动要设置轴承均使结构复杂,且螺杆行程占据尺寸故应用较少。
③螺母旋转并沿直线移动,如图由于螺杆固定不动,因而二端支承结构较简单,但精度不高。
有些钻床工作台采用了这种方式。
④螺杆转动,如图螺母做直线运动,这种运动方式占据空间尺寸小,适用于长行程螺杆。
螺杆两端的轴承和螺母防转机构使其结构较复杂。
车床丝杠、刀架移动机构多采用这种运动方式。
本次设计的螺旋千斤顶是运用了上图(a)的运动方式,即螺母固定不动。
(2)按照用途不同,螺旋传动分为三种类型。
①传力螺旋以传递动力为主,要求以较小的转矩产生较大的轴向推力,一般为间歇性工作,工作速度较低,通常要求具有自锁能力。
如图:②传导螺旋以传递运动为主,这类螺旋常在较长的时间内连续工作且工作速度较高,传动精度要求较高,如图:③调整螺旋用于调整并固定零件间的相对位置,一般不经常转动,要求能自锁,有时也要求很高精度,如带传动张紧装置、机床卡盘和精密仪表微调机构的螺旋等。
本次设计的螺旋千斤顶就是运用了传力螺旋这种传动类型。
千斤顶的设计毕业设计 精品
伴随着千斤顶市场的快速发展,我国千斤顶产量也结束了长期徘徊的局面,实现了高速增长。我国千斤顶产量从2000年的46万吨增长到2004年的236万吨,年平均增长率在82.6%,占国内市场需求的比重也由2000年的24.47%提高到2004年的52.80%。而同期,世界千斤顶产量则仅以6%左右的速度增长。
第3章千斤顶的结构设计...................................... 7
3.1结构设计的意义........................................7
3.2千斤顶的结构.......................................... 7
4.1螺母、螺杆的材料及尺寸的选定与校核..................... 9
4.1.1螺母、螺杆的材料和许用应力.............................. .9
4.1.2螺母、螺杆的尺寸设计与校核...............................10
4.2底座的设计计算........................................13
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
千斤顶设计
千斤顶是一种常见的工具,它可以帮助我们将重物提起或放下。
它主要由杆、活塞、活塞杆、液压油和液压缸等组成。
下面我们将详细介绍千斤顶的设计。
首先是杆的设计,它是整个千斤顶的支撑架。
在设计杆的材质时,我们需要考虑到它的承重能力和耐用性。
一般来说,千斤顶的杆都是由钢铁材质制成,因为钢铁具有高强度和耐腐蚀性,非常适合作为千斤顶的支撑杆。
接着是活塞的设计,它是千斤顶的最关键组件。
活塞的设计需要考虑到它的密封性,保证工作过程中没有漏油现象。
我们一般使用橡胶O型圈来实现活塞的密封。
此外,活塞的直径也非常重要,它必须足够大,能够产生足够的力来支持和提起重物。
然后是液压油的设计,它是千斤顶中液压系统的重要组成部分。
我们需要选择一种适合千斤顶工作的液压油,具有高的粘度和稳定性,能够在高压下保持其密度。
一般来说,使用矿物油或液压油作为液压系统的工作介质,它们不仅密度稳定,而且价格相对较低,适合千斤顶的使用。
最后是液压缸的设计,它是千斤顶中实现液压功能的部件。
液压缸的设计需要考虑到它的耐久性和稳定性。
我们一般采用精密加工的钢管和铸造的活塞头来制作液压缸,这些部件具有高的耐磨性和抗腐蚀能力,能够长期保持千斤顶的稳定性。
综上所述,千斤顶的设计需要考虑到每个组件的特性和作用,使其能够在实际工作中产生强大的承载力和稳定性,满足我们的需求。