中考应用题精选(含答案)
中考数学专题实际应用题(解析版)
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)
中考应用题精选(含答案)
中考综合应用题精选(含答案)1.小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物651140第二次购物371110第三次购物981062(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?2.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.3.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?4.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.5.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B 两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.6.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是50元;信息2:甲商品零售单价比进货单价多10元,乙商品零售单价比进货单价的2倍少10元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了190元.请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品60件和乙商品40件,经调查发现,甲、乙两种商品零售单价分别每降1元,这两种商品每天可多卖出10件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?7.某商品现在的售价为每件40元,每天可以卖出200件,该商品将从现在起进行90天的销售:在第x(1≤x≤49)天内,当天售价都较前一天增加1元,销量都较前一天减少2件;在第x(50≤x≤90)天内,每天的售价都是90元,销量仍然是较前一天减少2件,已知该商品的进价为每件30元,设销售该商品的当天利润为y元.(1)填空:用含x的式子表示该商品在第x(1≤x≤90)天的售价与销售量.第x(天)1≤x≤4950≤x≤90当天售价(元/件)当天销量(件)(2)求出y与x的函数关系式;(3)问销售商品第几天时,当天销售利润最大,最大利润是多少?(4)该商品在销售过程中,共有多少天当天销售利润不低于4800元?请直接写出结果.8.我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:成活率品种购买价(元/棵)甲2090%乙3295%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)求y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?9.某加工企业生产并销售某种农产品,假设销售量与加工产量相等.已知每千克生产成本y1(单位:元)与产量x(单位:kg)之间满足关系式y1=.如图中线段AB表示每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式.(1)试确定每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式,并写出自变量的取值范围;(2)若用w(单位:元)表示销售该农产品的利润,试确定w(单位:元)与产量x(单位:kg)之间的函数关系式;(3)求销售量为70kg时,销售该农产品是盈利,还是亏本?盈利或亏本了多少元?10.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?11.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,是甲、乙两人离B地的距离y (km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)A、B两地之间的距离为km;(2)直接写出y甲,y乙与x之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时x的取值范围.12.科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:①在科研所到宿舍楼之间修一条笔直的道路;②对宿舍楼进行防辐射处理,已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=a+b(0≤x≤9).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理.设每公里修路的费用为m万元,配套工程费w=防辐射费+修路费.(1)当科研所到宿舍楼的距离x=9km时,防辐射费y=万元,a=,b=;(2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,求每公里修路费用m万元的最大值.13.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?14.某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=95,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?15.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:(1)根据图象,直接写出y1、y2关于x的函数图象关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.16.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?17.有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.(1)设X天后每千克活蟹的市场价为P元,写出P关于x的函数关系式.(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额﹣收购成本﹣费用),最大利润是多少?计划投资15万元种植花卉和树木.根据市场调查与预测,种植树木的利润y1(万元)与投资量x(万元)成正比例关系:y1=2x;种植花卉的利润y2(万元)与投资量x(万元)的函数关系如图所示(其中OA是抛物线的一部分,A为抛物线的顶点;AB∥x轴).(1)写出种植花卉的利润y2关于投资量x的函数关系式;(2)求此专业户种植花卉和树木获取的总利润W(万元)关于投入种植花卉的资金t(万元)之间的函数关系式;(3)此专业户投入种植花卉的资金为多少万元时,才能使获取的利润最大,最大利润是多少?林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?中考综合应用题精选一.解答题(共19小题)1.(2014•连云港)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物651140第二次购物371110第三次购物981062(1)小林以折扣价购买商品A、B是第三次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?【解答】解:(1)小林以折扣价购买商品A、B是第三次购物.故答案为:三;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打a折出售这两种商品,由题意得,(9×90+8×120)×=1062,解得:a=6.答:商店是打6折出售这两种商品的.2.(2014•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.3.(2014•扬州)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?【解答】解:(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由图象可得,解得.∴y=﹣2x+140.当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得,解得,∴y=﹣x+82,综上所述:y=;(2)设人数为a,当x=48时,y=﹣2×48+140=44,∴(48﹣40)×44=106+82a,解得a=3;(3)设需要b天,该店还清所有债务,则:b[(x﹣40)•y﹣82×2﹣106]≥68400,∴b≥,当40≤x≤58时,∴b≥=,x=﹣时,﹣2x2+220x﹣5870的最大值为180,∴b,即b≥380;当58<x≤71时,b=,当x=﹣=61时,﹣x2+122x﹣3550的最大值为171,∴b,即b≥400.综合两种情形得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.4.(2014•潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.5.(2014•台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A 类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.6.(2013•许昌二模)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是50元;信息2:甲商品零售单价比进货单价多10元,乙商品零售单价比进货单价的2倍少10元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了190元.请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品60件和乙商品40件,经调查发现,甲、乙两种商品零售单价分别每降1元,这两种商品每天可多卖出10件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?【解答】解:(1)设甲商品的进价为x元,乙商品的进价为y元,由题意,得,解得:.∴甲种商品的进价为:20元,乙种商品的进价为:30元.(2)设经销甲、乙两种商品获得的总利润为W,甲种商品每件的利润为(30﹣m﹣20)元,销售数量为(60+10m),乙种商品每件的利润为(50﹣m﹣30)元,销售数量为(40+10m),则W=(10﹣m)(60+10m)+(20﹣m)(40+10m)=﹣20m2+200m+1400=﹣20(m﹣5)2+1900∵﹣20<0,∴当m定为5元时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1900元.7.(2014秋•硚口区期中)某商品现在的售价为每件40元,每天可以卖出200件,该商品将从现在起进行90天的销售:在第x(1≤x≤49)天内,当天售价都较前一天增加1元,销量都较前一天减少2件;在第x(50≤x≤90)天内,每天的售价都是90元,销量仍然是较前一天减少2件,已知该商品的进价为每件30元,设销售该商品的当天利润为y元.(1)填空:用含x的式子表示该商品在第x(1≤x≤90)天的售价与销售量.第x(天)1≤x≤4950≤x≤90当天售价(元/件)40+x90当天销量(件)200﹣2x200﹣2x(2)求出y与x的函数关系式;(3)问销售商品第几天时,当天销售利润最大,最大利润是多少?(4)该商品在销售过程中,共有多少天当天销售利润不低于4800元?请直接写出结果.【解答】解:(1)由题意,得当1≤x≤49时,当天的售价为:(40+x)元,当天的销量为:(20﹣2x)件.当50≤x≤90时,当天的售价为:90元,当天的销量为:(20﹣2x)件.故答案为:40+x,20﹣2x,90,20﹣2x;(2)由题意,得当1≤x≤49时,y=(40+x﹣30)(200﹣2x)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)(200﹣2x)=﹣120x+12000.∴y=(3)由题意,得当1≤x≤49时,y=﹣2x2+180x+2000,y=﹣2(x﹣45)2+6050∴a=﹣2<0,=6050元.∴x=45时,y最大当50≤x≤90时,y=﹣120x+12000.∴k=﹣120<0,∴当x=50时,y最大=6000元,∴销售商品第45天时,当天销售利润最大,最大利润是6050元;(4)由题意,得当﹣2x2+180x+2000≥4800时,∴(x﹣20)(x﹣70)≤0,∴或,∴20≤x≤70.∵x≤49,∴20≤x≤49,当﹣120x+12000≥4800时x≤60.∵x≥50,∴50≤x≤60,∴当天销售利润不低于4800元共有:49﹣20+1+60﹣50+1=41天答:当天销售利润不低于4800元共有41天.8.(2014•襄阳)我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:成活率品种购买价(元/棵)甲2090%乙3295%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)求y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?【解答】解:(1)y=260000﹣[20x+32(6000﹣x)+8×6000]=12x+20000,自变量的取值范围是:0<x≤3000;(2)由题意,得12x+20000≥260000×16%,解得:x≥1800,∴1800≤x≤3000,购买甲种树苗不少于1800棵且不多于3000棵;(3)①若成活率不低于93%且低于94%时,由题意得,解得1200<x≤2400在y=12x+20000中,∵12>0,∴y随x的增大而增大,∴当x=2400时,y最大=48800,②若成活率达到94%以上(含94%),则0.9x+0.95(6000﹣x)≥0.94×6000,解得:x≤1200,由题意得y=12x+20000+260000×6%=12x+35600,∵12>0,∴y随x的增大而增大,∴当x=1200时,y=50000,最大值综上所述,50000>48800∴购买甲种树苗1200棵,乙种树苗4800棵,可获得最大利润,最大利润是50000元.9.某加工企业生产并销售某种农产品,假设销售量与加工产量相等.已知每千克生产成本y1(单位:元)与产量x(单位:kg)之间满足关系式y1=.如图中线段AB表示每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式.(1)试确定每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式,并写出自变量的取值范围;(2)若用w(单位:元)表示销售该农产品的利润,试确定w(单位:元)与产量x(单位:kg)之间的函数关系式;(3)求销售量为70kg时,销售该农产品是盈利,还是亏本?盈利或亏本了多少元?【解答】解:(1)设y2=kx+b,将点A(0,160)、B(150,10)代入,得:,解得:,∴y2=﹣x+160(0≤x≤150);(2)根据题意,当0≤x<80时,w=[﹣x+160﹣(﹣0.5x+100)]•x=﹣0.5x2+60x,当80≤x≤150时,w=[﹣x+160﹣(3x﹣180)]•x=﹣4x2+340x;(3)∵当x=70时,w=﹣0.5×702+60×70=1750>0,∴销售量为70kg时,销售该农产品是盈利的,盈利1750元.。
初中应用题大全及答案
初中应用题大全及答案1. 应用题:小明的爸爸给他买了一辆自行车,原价为500元,现在打八折出售,请问小明的爸爸实际支付了多少钱?答案:原价为500元,打八折后的价格为500元× 0.8 = 400元。
所以小明的爸爸实际支付了400元。
2. 应用题:一个班级有40名学生,其中男生占60%,女生占40%,现在要选出10%的学生参加学校的运动会,请问需要选出多少名男生和女生?答案:班级总人数为40人,选出10%的学生参加运动会,即40人× 10% = 4人。
男生占60%,所以需要选出的男生人数为4人× 60% = 2.4人,取整数为2人。
女生占40%,所以需要选出的女生人数为4人× 40% = 1.6人,取整数为1人。
因此,需要选出2名男生和1名女生。
3. 应用题:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。
答案:长方体的体积可以通过长、宽、高的乘积来计算,即体积 = 长× 宽× 高 = 10厘米× 8厘米× 6厘米 = 480立方厘米。
4. 应用题:一个工厂生产了100个零件,其中有2%是次品,合格的零件有多少个?答案:次品占总零件数的2%,即100个零件× 2% = 2个。
所以合格的零件数为100个 - 2个 = 98个。
5. 应用题:一个水池,每小时流入4立方米的水,同时每小时流出3立方米的水,如果水池原本有20立方米的水,那么5小时后水池里有多少水?答案:每小时流入4立方米的水,流出3立方米的水,所以每小时净增加1立方米的水。
5小时后,水池净增加的水为5小时× 1立方米/小时 = 5立方米。
原本有20立方米的水,所以5小时后水池里的水量为20立方米 + 5立方米 = 25立方米。
6. 应用题:小华在书店买了3本书,每本书的价格是30元,书店正在进行满100元减20元的优惠活动,请问小华实际支付了多少钱?答案:3本书的总价为3本× 30元/本 = 90元,未达到满100元减20元的优惠条件,所以小华实际支付了90元。
初三年级数学应用题
初三年级数学应用题题目一:速度与时间问题小华骑自行车从家到学校,如果以每小时15公里的速度行驶,他需要40分钟。
现在小华决定加快速度,以每小时20公里的速度行驶,求他需要多少时间才能到达学校。
解答:首先,我们需要将40分钟转换为小时,即40分钟 = 40/60 = 2/3小时。
已知速度v1 = 15公里/小时,时间t1 = 2/3小时。
根据速度、时间和距离的关系:距离 = 速度× 时间,我们可以求出小华家到学校的距离:距离= v1 × t1 = 15 × (2/3) = 10公里。
现在,小华以v2 = 20公里/小时的速度行驶,我们可以求出他需要的时间t2:t2 = 距离 / v2 = 10 / 20 = 1/2小时。
将1/2小时转换为分钟,即1/2 × 60 = 30分钟。
所以,小华以20公里/小时的速度行驶,需要30分钟到达学校。
题目二:成本与利润问题一家工厂生产一种商品,每件商品的成本是50元,如果以每件100元的价格出售,工厂每天可以卖出200件。
现在工厂决定降价销售,每件商品降价10元,求降价后每天的利润和销量。
解答:首先,我们计算原来的利润和销量:每件商品的利润 = 售价 - 成本 = 100 - 50 = 50元。
每天的总利润 = 每件商品的利润× 销量= 50 × 200 = 10000元。
现在,每件商品降价10元,新的售价为90元。
每件商品的新利润 = 新售价 - 成本 = 90 - 50 = 40元。
假设降价后销量增加到x件,我们可以根据利润不变的原则建立方程:原来的总利润 = 新的总利润10000 = 40 × x解得 x = 10000 / 40 = 250件。
所以,降价后每天的利润仍然是10000元,但是销量增加到了250件。
题目三:浓度问题一个容器内装有100升的盐水,其中盐的浓度为5%。
现在向容器中加入50升的纯水,求混合后的盐水浓度。
中考数学专题练习应用题
A M 4530B 北第4题 中考应用题附参考答案1。
(2010年广西桂林适应训练)某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),该同学只带了400元钱,他能否在这两家超市都可以买下看中的这两样商品?若两家都可以选择,在哪一家购买更省钱?2。
(2010年黑龙江一模)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品?设改进操作方法后每天生产x 件产品,则改进前每天生产(10)x -件产品.3。
(2010广东省中考拟)A,B 两地相距18km ,甲工程队要在A ,B 两地间铺设一条输送天然气管道,乙工程队要在A,B 两地间铺设一条输油管道,已知甲工程队每周比乙工程队少铺设1km ,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙工程队每周各铺设多少管道?4.(2010年广东省中考拟)如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300m ,求点M 到直线AB 的距离(精确到整数).并能设计一种测量方案?(参考数据:7.13≈,4.12≈)5。
(2010年湖南模拟)某花木园,计划在园中栽96棵桂花树,开工后每天比原计划多栽2棵,•结果提前4天完成任务,问原计划每天栽多少棵桂花树。
6。
(2010年厦门湖里模拟)某果品基地用汽车装运A 、B 、C三种不同品牌的水果到外地销售,按规定每辆汽车只能装同种水果,且必须装满,其中A 、B 、C 三种水果的重量及利润按下表提供信息: 水果品牌 A B C每辆汽车载重量(吨) 2.2 2.1 2每吨水果可获利润(百元) 6 8 5(1)若用7辆汽车装运A 、C 两种水果共15吨到甲地销售,如何安排汽车装运A 、C 两种水果?(2)计划用20辆汽车装运A 、B 、C 三种不同水果共42吨到乙地销售(每种水果不少于2车),请你设计一种装运方案,可使果品基地获得最大利润,并求出最大利润.7.(2010年杭州月考)某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A 型利润B 型利润 甲店 200 170乙店 160 150(1)设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A B ,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?8.(2010年河南中考模拟题1)某市一些村庄发生旱灾,市政府决定从甲、乙两水库向A 、B 两村调水,其中A 村需水15万吨,B 村需水13万吨,甲、乙两水库各可调出水14万吨。
初三数学应用题大全及答案
初三数学应用题大全及答案例1、今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元。
假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500(B.2500(1+x)2=3500C.2500(1+x%)2=3500D.2500(1+x)+2500(1+x)2=3500【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.例2、为落实素质教育要求,促进学生全面发展,某市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。
则该学校为新增电脑投资的年平均增长率是,从2009年到2011年,该中学三年为新增电脑共投资万元。
【解答】解:设该学校为新增电脑投资的年平均增长率是x11(1+x)2=18.59x=30%(则该学校为新增电脑投资的年平均增长率是30%11×(1+30%)=14.3万元11+14.3+18.59=43.89万元故答案为:30%;43.89练习1、股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。
已知一只股票某天跌停,之后两天时间又涨回到原价。
若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=【解答】解:设平均每天涨x,则90%(1+x)2=1,即(1+x)2=,故选B。
(2、某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%【解答】解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%,故选:A3、随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆。
初三数学应用题大全及答案
初三数学应用题大全及答案
初三数学应用题大全及答案
1. 小珠旅游团里有男生9人,女生3人。
他们分为三个组,每组男生
和女生的比例相同,每组人数为4人。
请问小珠团里有几组?
答案:小珠团里有3组。
2. 一班有20名学生,其中10名男生,10名女生,两人两人一组,每
个组一个男生一个女生,每组都不一样,写出所有可能的组合方式。
答案:男生女生组合方式为:1男1女,2男2女,3男3女,4男4女,5男5女,6男6女,7男7女,8男8女,9男9女,10男10女。
3. 一条条形码共有32位,每8位作为一组,每组有多少个?
答案:一条条形码共有32位,每8位作为一组,则一共有4组。
4. 一家餐馆有4桌正在用餐,每桌客人人数相同,共有28人,请问每桌客人数有多少?
答案:每桌客人数有7人。
5. 有3把锁,组合为ABC,其中A、B、C代表3种颜色,则有多少种组合方式?
答案:有6种组合方式,分别为:ABC、ACB、BAC、BCA、CAB、CBA。
人教版九年级数学中考应用题专项练习及参考答案
人教版九年级数学中考应用题专项练习例1. 某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率)-==利润售价进价进价进价. (2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x 元,根据题意得:16350.89%x x⨯-=, 解得:1200x =,经检验:1200x =是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:10012009%10800⨯⨯=元.例2. 某电器商场销售A 、B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)(2)商场准备用不多于2500元的资金购进A 、B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【解答】解:(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩, 解得:4256x y =⎧⎨=⎩; 答:A 种型号计算器的销售价格是42元,B 种型号计算器的销售价格是56元;(2)设购进A 型计算器a 台,则购进B 型计算器:(70)a -台,则3040(70)2500a a +-,解得:30a ,答:最少需要购进A 型号的计算器30台.例3.某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:100x=,经检验100x=是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加%y,可得:120012002 100100100%y=++,解得:20y=,经检验20y=是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.例4.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:3020680 50401240x yx y+=⎧⎨+=⎩,解得:1216xy=⎧⎨=⎩.答:男生志愿者有12人,女生志愿者有16人.20.(7分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:100x=,经检验100x=是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加%y,可得:120012002 100100100%y=++,解得:20y=,经检验20y=是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.例5. 某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?【解答】解:(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(9)x -元/条, 根据题意得:312042009x x=-, 解得:35x =,经检验,35x =是原方程的解,926x ∴-=.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200)a -条B 型芯片,根据题意得:2635(200)6280a a +-=,解得:80a =.答:购买了80条A 型芯片.例6. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【解答】解:设每轮感染中平均每一台电脑会感染x 台电脑,依题意得:1(1)81x x x +++=, 整理得2(1)81x +=,则19x +=或19x +=-,解得18x =,210x =-(舍去), 2233(1)(1)(1)(18)729700x x x x ∴+++=+=+=>.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.例7. 某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【解答】解:(1)设租用甲车x 辆,则乙车(10)x -辆.根据题意,得4030(10)3401620(10)170x x x x +-⎧⎨+-⎩, 解,得47.5x .又x 是整数,4x ∴=或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为420006180018800⨯+⨯=元;②甲5辆,乙5辆;总费用520005180019000⨯+⨯=元;③甲6辆,乙4辆;总费用为620004180019200⨯+⨯=元;④甲7辆,乙3辆.总费用为720003180019400⨯+⨯=元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.例8. 某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?【解答】解:设该品牌饮料一箱有x 瓶,依题意,得26260.63x x -=+,化简,得231300x x +-=,解得113x =-(不合题意,舍去),210x =,经检验:10x =符合题意,答:该品牌饮料一箱有10瓶.例9. 据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?【解答】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x .根据题意得:25000(1)7200x +=,解得10.220%x ==,2 2.2x =-(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1)7200(120%)8640x +=⨯+=(万人次). 答:预测2012年我国公民出境旅游总人数约8640万人次.例10.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?【解答】解:(1)设捐款增长率为x,根据题意列方程得,210000(1)12100x⨯+=,解得10.1x=,22.1x=-(不合题意,舍去);答:捐款增长率为10%.(2)12100(110%)13310⨯+=元.答:第四天该单位能收到13310元捐款.。
数学中考应用题及答案
数学中考应用题及答案1. 某工厂生产一种产品,原计划每天生产100件,实际每天生产120件。
若原计划生产时间为30天,实际生产时间为25天,求实际生产效率比原计划提高了百分之几?答案:解:首先计算原计划和实际的生产总量。
原计划生产总量 = 100件/天× 30天 = 3000件实际生产总量 = 120件/天× 25天 = 3000件接下来计算提高的百分比。
提高的百分比 = [(实际生产量 - 原计划生产量) / 原计划生产量] × 100%提高的百分比 = [(3000 - 3000) / 3000] × 100% = 0%答:实际生产效率与原计划相比没有提高。
2. 某商店购进一批商品,进价为每件20元,若按每件30元出售,可售出500件。
若每件商品提价1元,销售量将减少20件。
求该商店为获得最大利润,每件商品应定价多少元?答案:解:设每件商品提价x元,则每件商品的售价为(30+x)元,销售量为(500-20x)件。
利润函数为:y = (30+x-20)(500-20x) = -20x^2 + 300x + 5000这是一个开口向下的二次函数,对称轴为x = 7.5。
当x = 7.5时,y取得最大值,此时售价为30 + 7.5 = 37.5元。
答:每件商品应定价为37.5元,此时利润最大。
3. 某校组织学生去春游,若租用45座客车,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,其余车刚好坐满。
求该校共有多少名学生?答案:解:设租用45座客车x辆,则学生总数为45x + 15。
根据题意,租用60座客车时,有(x-1)辆坐满,一辆空着,所以学生总数为60(x-1)。
将两个表达式相等,得到方程:45x + 15 = 60(x-1)解方程得:45x + 15 = 60x - 6015 + 60 = 60x - 45x75 = 15xx = 5所以,学生总数为:45 × 5 + 15 = 240人。
中考数学专题:实际应用题带答案
1.2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.2.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?3.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.4.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x 支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B 型画笔?5.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.甲、乙两种书柜每个的价格分别是多少元?若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.6.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2016年利润为2亿元,2018年利润为2.88亿元.(1)求该企业从2016年到2018年利润的年平均增长率;(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?7.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?8.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?9.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.10.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元.答案和解析1.【答案】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由题意可得:12a+4(20-a)≤216,∴a≤17,∵w=(18-12)a+(6-4)(20-a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.【解析】(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由“某医药公司每月生产甲、乙两种型号的防疫口罩共20万只和该公司三月份的销售收入为300万元”列出方程组,可求解;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由“四月份投入成本不超过216万元”列出不等式,可求a的取值范围,找出w与a的函数关系式,由一次函数的性质可求解.本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,弄清题中的等量关系是解本题的关键.2.【答案】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,依题意,得:(x-100)[300+5(200-x)]=32000,整理,得:x2-360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.3.【答案】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x 天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)设甲工程队做a天,乙工程队做b天根据题意得a/15+b/30=1整理得b+2a=30,即b=30-2a所需费用w=4.5a+2.5b=4.5a+2.5(30-2a)=75-0.5a根据一次函数的性质可得,a 越大,所需费用越小,即a=15时,费用最小,最小费用为75-0.5×15=67.5(万元)所以选择甲工程队,既能按时完工,又能使工程费用最少.答:选择甲工程队,既能按时完工,又能使工程费用最少.【解析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.4.【答案】解:(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据题意得,=,解得a=5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x-20)=4x+10.所以,y关于x的函数关系式为y=(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.【解析】(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据等量关系:第一次花60元买A型画笔的支数=第二次花100元买B型画笔的支数列出方程,求解即可;(2)根据超市给出的优惠方案,分x≤20与x>20两种情况进行讨论,利用售价=单价×数量分别列出y关于x的函数关系式;(3)将y=270分别代入(2)中所求的函数解析式,根据x的范围确定答案.本题考查了一次函数的应用,分式方程的应用等知识,解题的关键是:(1)理解题意找到等量关系列出方程;(2)理解超市给出的优惠方案,进行分类讨论,得出函数关系式;(3)根据函数关系式中自变量的取值范围对答案进行取舍.5.【答案】(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:,解之得:,答:甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m个,则乙种书柜购买(20-m)个;由题意得:,解之得:8≤m≤10,因为m取整数,所以m可以取的值为:8,9,10,即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【解析】本题主要考查二元一次方程组、一元一次不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.(1)设甲种书柜单价为x元,乙种书柜的单价为y元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程组求解即可;(2)设甲种书柜购买m个,则乙种书柜购买(20-m)个.根据:购买的乙种书柜的数量≥甲种书柜数量且所需资金≤4320列出不等式组,解不等式组即可得不等式组的解集,从而确定方案.6.【答案】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1 =0.2=20%,x2 =-2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2019年仍保持相同的年平均增长率,那么2019年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2019年的利润能超过3.4亿元.【解析】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解方程即可;(2)根据该企业从2016年到2018年利润的年平均增长率来解答.7.【答案】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10-a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【解析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.本题考查了一元一次不等式组的应用,二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.8.【答案】解:(1)当售价为55元/千克时,每月销售水果=500-10×(55-50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x-40)[500-10(x-50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m-40)[500-10(m-50)]=-10(m-70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【解析】本题主要考查二次函数的应用,一元二次方程的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.(1)由月销售量=500-(销售单价-50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,由二次函数的性质可求解.9.【答案】解:(1)设这一批树苗平均每棵的价格是x元,根据题意列,得:,解这个方程,得x=20,经检验,x=20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),设购进A种树苗t棵,这批树苗的费用为w元,则:w=18t+24(5500-t)=-6t+132000,∵w是t的一次函数,k=-6<0,∴w随t的增大而减小,又∵t≤3500,∴当t=3500棵时,w最小,此时,B种树苗每棵有:5500-3500=2000(棵),w=-6×3500+132000=111000,答:购进A种树苗3500棵,BA种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.【解析】【试题解析】(1)设这一批树苗平均每棵的价格是x元,根据题意列方程解答即可;(2)分别求出A种树苗每棵的价格与B种树苗每棵的价格,设购进A种树苗t棵,这批树苗的费用为w元,根据题意求出w与t的函数关系式,再根据一次函数的性质解答即可.本题考查了分式方程的应用,一次函数的应用以及一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.10.【答案】解:(1)y=300-10(x-44),即y=-10x+740(44≤x≤52);(2)根据题意得(x-40)(-10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x-40)(-10x+740)=-10x2+1140x-29600=-10(x-57)2+2890,而a=-10<0,且对称轴为直线x=57,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为-10(52-57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】(1)销售单价每上涨1元,每天销售量减少10本,则销售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x-40)(-10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.。
中考化学之化学方程应用题精选含答案
中考化学之化学方程应用题精选含答案
一、单项选择题
1. 将自来水中的氯离子用卤素原子数表示,正确的是?
A. Cl4
B. Cl3
C. Cl2
D. Cl
答案:B
2. 下列关于单质与化合物的叙述,正确的是?
A. 除不规则多面体外,单质都是晶体。
B. 除简单氧化物外,化合物都是非晶体。
C. 金刚石、石墨是同质异相的物质。
D. 熔化物质后得到的物质,一般为单质。
答案:D
二、填空题
1. 用氮气和氢气制备氨气的反应方程式为__N2+3H2↔2NH3__。
2. 硫酸与钠氢氧化物反应产生的水化合物是
__Na2SO4•10H2O__。
三、简答题
1. 蒸馏的基本原理是什么?
蒸馏的基本原理是液体在加热条件下,因分子间力的影响,相
对软弱的分子首先被蒸发离开液面,再被冷凝成液滴从高出液面的
凝集器流出。
2. 化学方程式有哪些要素?
化学方程式有反应物、生成物及其生成比例、反应条件等要素。
四、综合题
1. 下列有关氧化还原反应的叙述,正确的是?
(1)单质在氧化剂作用下被氧化成多价
(2)不可避免地伴随着电子转移
(3)自身原子价数不变
(4)可用原子式或离子式表示反应
A. 1,2
B. 1,3
C. 2,4
D. 1,2,3,4
答案:D
2. 甲烷燃烧生成的主要产物是二氧化碳,将甲烷完全燃烧的化学方程式为__CH4+2O2→CO2+2H2O__。
其中需要斜体部分填入什么?
将甲烷完全燃烧,需要加入足量氧气。
中考数学应用题分类及参考答案(精编)
中考数学应用题分类及参考答案(精编)一、方程应用1.为加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.求月平均增长率.2.一带一路给沿线地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,甲志愿者计划完成此项工作的天数?二、一次函数应用4.低碳生活绿色出行的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为_________;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?三、二次函数应用5.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.四、解直角三角形应用6.灯塔是港口城市的标志性建筑之一,如图所示,在点B处测得灯塔最高点A的仰角∠ABD=45°,再沿BD方向前进至C处测得最高点A的仰角∠ACD=60°,BC=15.3m,求灯塔的高度AD(结果精确到1m,参考数据:√ 2≈1.41,√ 3≈1.73)7.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:√ 3,且点A,B,C,D,E 在同一平面内,求小明同学测得古塔AB的高度.8.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,求甲楼的高度.五、方程与不等式应用9.某市为创建文明城市,开展美化绿化城市活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?六、方程与函数应用10.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?七、一次函数与二次函数应用11.某汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数y(辆)有如下关系:(1)观察表格,辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:请求出公司的最大月收益是多少元.八、解直角三角形与方程应用12.如图是某滑雪场的横截面示意图,雪道分为AB,BC两部分,小明同学在C点测得雪道BC 的坡度i=1:2.4,在A点测得B点的俯角∠DAB=30°.若雪道AB长为270m,雪道BC长为260m.(1)求该滑雪场的高度h;(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m3,且甲设备造雪150m3所用的时间与乙设备造雪500m3所用的时间相等.求甲、乙两种设备每小时的造雪量.九、解直角三角形与圆应用13.如图1,Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90°,其外接圆半径为R.根据锐角三角函数的定义:sinA=ac ,sinB=bc,可得asinA=bsinB=csinC=2R,即asinA=bsinB=csinC=2R(规定sin90°=1).(1)探究活动:如图2,在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,其外接圆半径为R,那么:asinA ( )bsinB( )csinC(用>、=或<连接),并说明理由.事实上,以上结论适用于任意三角形.(2)初步应用:在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠A=60°,∠B=45°,a=8,求b.(3)综合应用:如图3,在某次数学活动中,小玲同学测量一古塔CD的高度,在A处用测角仪测得塔顶C的仰角为15°,又沿古塔的方向前行了100m到达B处,此时A,B,D三点在一条直线上,在B处测得塔顶C的仰角为45°,求古塔CD的高度.(结果保留小数点后一位,参考数据:√3≈1.732,sin15°=√6−√24)十、方程、不等式与函数应用14.要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲,乙两种切割方式,如图2.切割,拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒__________个;若使用甲种方式切割的木板材y 张,则使用乙种方式切割的木板材__________张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20-12a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.参考答案1.解:设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,依题意,得1000+1000(1+x)+1000(1+x)2=3990. 2.解:设每件产品的实际定价是x 元,则原定价为(x+40)元.5000x+40=4000x,解得x =160 ,经检验x =160是原方程的解.3.解:设甲志愿者计划完成此项工作需x 天,故甲的工效都为:1x ,由于甲、乙两人工效相同,则乙的工效为1x ,甲前两个工作日完成了1x ×2,剩余的工作量甲完成了1x (x −2−3),乙在甲工作两个工作日后完成了1x (x −2−3),则2x +2(x−2−3)x=1,解得x=8,经检验,x=8是原方程的解.4.解析:(1)在OA 段,速度=100.5 =20km/h(2)当1.5≤x ≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,y=20x ﹣20,当x=2.5时,解得y=30,乙地离小红家30千米.5(1)证明:∵矩形MEFN 与矩形EBCF 面积相等 ∴ME =BE,AM =GH∵四块矩形花圃的面积相等,即S 矩形AMND =2S 矩形MEFN ∴AM =2ME ∴AE =3BE (2)∵篱笆总长为100m∴2AB+GH+3BC =100即2AB+12AB+3BC=100 ∴AB=40-65 BC 设BC 的长度为xm,矩形区域ABCD 的面积为ym 2则y=BC ·AB=x(40- 65x)=−65x 2+40x ∵x>0,40- 65x>0 ∴0<x<1003∴ y=−65x 2+40x(0<x<1003)6.36m7.(20+10√ 3)m 8.(36﹣10√ 3)m9(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得360x−3601.6x =4解得x=33.75,经检验x=33.75是原分式方程的解,1.6x=1.6×33.75=54(2)设平均每年绿化面积增加a 万平方米,根据题意得54×2+2(54+a)≥360,解得a ≥72,则至少每年平均增加72万平方米. 10(1)y =10x+100(2)由题意得(10x+100)×(55﹣x ﹣35)=1760,整理得x 2﹣10x ﹣24=0,x 1=12,x 2=﹣2(舍去),55﹣x =43,这种消毒液每桶实际售价43元.11(1)设解析式y=kx+b,由题意得{3000k +b =1003200k +b =96,解得{k =−150b =160 ∴y 与x 间的函数关系是y =−150x +160(2)填表如下:(3)W =(−50x +160)(x −150)−(x −3000) =(−150x 2+163x −24000)−(x −3000) =−150x 2+162x −21000=−150(x −4050)2+307050当x=4050时,W 最大=307050,所以,当每辆车的月租金为4050元时,公司获得最大月收益307050元.12(1)过B 作BF ∥AD,过D 过AF ⊥AD,两直线交于F,过B 作BE 垂直地面交地面于E,如图:根据题知∠ABF =∠DAB =30°,AF =12AB =135m,BE:CE =1:2.4 设BE 长t 米,则CE 长2.4t 米. ∵BE 2+CE 2=BC2∴t 2+(2.4t)2=2602,解得t =100m(负值舍去),h =AF+BE =235m(2)设甲种设备每小时的造雪量是xm 3,则乙种设备每小时的造雪量是(x+35)m 3,根据题意得150x=500x+35,解得x =15,经检验,x =15是原方程的解,也符合题意,x+35=50.答:甲种设备每小时的造雪量是15m 3,则乙种设备每小时的造雪量是50m 3. 13(1)探究活动:a sinA = b sinB = csinC理由:如图2,过点C 作直径CD 交⊙O 于点D,连接BD. ∴∠A=∠D,∠DBC=90°∴sinA=sinD,sinD=a 2R ∴asinA = aa 2R=2R同理可证:b sinB =2R,c sinC =2R ∴a sinA = b sinB = csinC =2R (2)初步应用:∵asinA = bsinB =2R ∴8sin60° = bsin45° ∴b=8sin45°sin60°=8√63(3)综合应用:由题意得:∠D =90°,∠A =15°,∠DBC =45°,AB =100 ∴∠ACB =30°设古塔高DC=x,则BC=√2x ,AB sin∠ACB =BCsinA ,100sin30°=√2xsin15°,x=50(√3-1=36.6,古塔CD=36.6m.14(1)要制作200个A,B 两种规格的顶部无盖木盒,制作A 种木盒x 个,故制作B 种木盒(200-x)个;有200张规格为40cm ×40cm 的木板材,使用甲种方式切割的木板材y 张, 故使用乙种方式切割的木板材(200-y)张.(2)使用甲种方式切割的木板材y 张,则可切割出4y 个长、宽均为20cm 的木板,使用乙种方式切割的木板材(200-y)张,则可切割出8(200-y)个长为10cm,宽为20cm 的木板; 设制作A 种木盒x 个,则需要长、宽均为20cm 的木板5x 个,制作B 种木盒(200-x)个,则需要长、宽均为20cm 的木板(200-x)个,需要长为10cm 、宽为20cm 的木板4(200-x)个; 故{4y =5x +(200−x)8(200−y)=4(200−x),解得{x =100y =150 故制作A 种木盒100个,制作B 种木盒100个,使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张.(3)用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,总成本为150×5+8×50=1150(元)两种木盒的销售单价均不能低于7元,不超过18元,所以{7≤a ≤187≤20−12a ≤18,解得{7≤a ≤184≤a ≤26,a 的取值范围为7≤a ≤18. 设利润为W,则W=100a+100(20-12a)-1150整理得W=850+50a,当a=18时,W 有最大值,最大值为850+50×18=1750,此时B 种木盒的销售单价定为20-12×18=11(元)即A 种木盒的销售单价定为18元,B 种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.。
中考专题----一元一次分式方程的应用题(90题附答案)
中考专题------一元一次分式方程的应用题(90题)附答案1. 一辆快客车和一辆中巴车同在公路上行驶。
已知快客车每小时比中巴车多行驶20千米,快客车行驶80千米所需的时间与中巴车行驶60千米所需的时间相同,求快客车的速度。
2.轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相等,已知水流的速度是每小时3千米,求轮船在静水中的速度。
3.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.求江水的流速为多少km/h?4.重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求出这两种商品每千克的价值。
5.甲乙两人同时开始工作,当乙加工56个机器零件时,甲只加工42个机器零件.已知两人每小时共做28个机器零件,每人每小时各做多少个机器零件?6.A市与甲乙两地的距离分别为400千米和350千米,从A市开往甲地的列车速度比从A 市开往乙地的速度快15千米/小时,结果从A市到甲乙两地所需要的时间相同,求A市开往甲乙两地的列车的速度。
7.甲做180个机器零件所用的时间与乙做240个所用的时间相等。
已知两人每小时共做70个,两人每小时各做多少个机器零件?8某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需要时间和原计划采23100吨煤的时间相等,问现在平均每天采煤多少吨?9某休闲品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成。
(1)按此计划,该公司平均每天该生产帐篷_________顶;(2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的工作效率比原来提高了25%,结果提前2天完成任务。
求该公司原计划安排多少名工人生产帐篷?10.便民服装店的老板在北京看到一种夏季衬衫,就用8000元购进若干件,以每件58元的价格出售,很快销售完,又用17600购进同种衬衫,数量是第一次的2倍,每一件比第一次多了4元,服装店扔按每件58元出售,全部售完。
中考数学实际应用问题及答案
中考实际应用题1. 为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m-3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过164万元,问最多购买A型污水处理器多少台?并求购买A型最多时每月处理污水量的吨数.2. 某厂家生产甲、乙两种零部件,已知甲种零部件每件的成本比乙种零部件每件的成本多1500元,且投入40000元生产甲种零部件的件数和投入28000元生产乙种的件数相同.(1)求甲、乙两种零部件每件成本各是多少元?(2)如果两种零部件共生产70件,该集团至少要投入290000元,那么,甲种零部件至少生产多少件?3. 某家电商场今年1月份开始销售一批某品牌液晶电视,1月份每台按所标价格销售,售出40台,2月份商场搞降价促销活动,每台降价400元销售,这样2月份比1月份多售出10台,销售款比1月份多40000元.(1)求这批电视1月份每台标价是多少元?(2)进入3月份,公司又按1月份所标价格的九折销售,将这批电视全部售出,销售款总量超过568600元,求这批电视最少有多少台?4. 为了解决农民工子女入学难的问题,哈市建立了一套进城农民工子女就学的保障机制,其中一项就是免交“借读费”。
据统计,2013年秋季有5000名农民工子女进入主城区中小学学习,预测2014年秋季进入主城区中小学学习的农民工子女将比2013年有所增加,其中小学增加20%,中学增加30%,这样,2014年秋季将新增1160名农民工子女在主城区中小学学习。
(1)如果按小学每生每年收“借读费”500元,中学每生每年收“借读费”1000元计算,求2014年新增的1160名中小学生共免收多少“借读费”?(2)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,若按2014年秋季入学后,农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?5. 冰雪大世界决定在寒假期间举办学生专场游园会,入场券分为团体票和零售票,其中团体票占总票数的23,已知一张团体票比一张零售票少20元,买20张团体票和买15张零售票所花的钱是相同的.(1)求每张团体票和零售票各为多少元钱?(2)在第一周内,共售出团体票的35,售出零售票的一半;如果在第二周内,团体票按每张80元出售,并计划在该周内售出全部余票,那么零售票应按每张多少元定价才能使第二周的票款与第一周的票款收入持平?(3)在(2)的条件下,若该专场的入场卷共发行了1500张,主办方准备拿出全部票款的10%进行“为贫困山区的孩子购买学习用具”的慈善公益活动.已知每套A型图书50元,每套B型图书40元.该地区需要两种图书共260套.则最多可以购买多少套A型图书?6. 丑小鸭电器超市购进A、B两种型号的电风扇进行销售,若一台A种型号的进价比一台B 种型号的进价多30元,用2000元购进A种型号的数量是用3400元购进B种型号的数量的一半.(1)求每台A种型号和B种型号的电风扇进价分别是多少元?(2)该超市A种型号电风扇每台售价260元,B种型号电风扇每件售价l90元,超市根据市场需求,决定再采购这两种型号的电风扇共30台,若本次购进的两种电风扇全部售出后,总获利不少于1400元,求该超市本次购进A种型号的电风扇至少是多少台?7.在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.(1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?8. 电动自行车已成为市民日常出行的首选工具。
中考二次函数应用题(含答案)
中考二次函数应用题(含答案)1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件。
商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件。
1) 求商家降价前每星期的销售利润为多少元?解:每件滑板的利润为售价减去进价,即130-100=30元。
每星期的销售利润为80件乘以每件的利润,即80×30=2400元。
2) 降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?解:设降价后每件滑板的售价为x元,则每星期的销售量为80+20(x-130)/5=80+4(x-130)件。
每星期的销售利润为销售量乘以每件的利润,即(80+4(x-130))×(x-100)元。
化简得到销售利润的函数为y=4x-0.04x^2-600.这是一个开口向下的二次函数,最大值出现在顶点处,即x=50时,y=2200元。
因此,商家应将售价定为80元,最大销售利润为2200元。
2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施。
调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台。
1) 假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式。
解:每台冰箱的利润为售价减去进价,即2400-2000=400元。
每天销售的利润为销售量乘以每台冰箱的利润,即8×400=3200元。
每降价50元,销售量就增加4台,因此销售量与售价之间的函数表达式为销售量=8+4(x-2400)/50=8+0.08x-38.4.每天销售的利润为销售量乘以每台冰箱的利润,即y=400(8+0.08x-38.4)=3200-16x元。
2) 商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?解:每天销售的利润为4800元,代入y=3200-16x中,得到16x=1600,即x=100元。
河北中考应用题及答案
河北中考应用题及答案
题目:某工厂生产一种新型节能灯,其成本价为每盏15元。
根据市场调查,若定价为每盏20元,则每月可销售800盏;若定价每增加1元,则每月少销售40盏。
设每盏灯的定价为x元,每月利润为y元。
要求:①求y与x的函数关系式;②若要使利润最大,每盏灯的定价应为多少元?
答案:
① 根据题意,每盏灯的利润为(x-15)元,每月销售量为[800-40(x-
20)]盏。
因此,每月利润y=(x-15)[800-40(x-20)]。
② 将①中的函数关系式展开,得到y=-40x^2+1800x-18000。
这是一个二次函数,其开口向下,因此存在最大值。
通过求导数或配方法,可以求得当x=22.5时,y取得最大值。
分析:此题考查了二次函数的应用,关键在于理解题意,找到等量关系,列出函数关系式。
通过分析函数的性质,可以求得最大利润对应的定价。
解答:
① 首先,我们根据题意列出利润函数关系式。
每盏灯的利润为售价减去成本价,即(x-15)元。
每月销售量为800-40(x-20)盏。
因此,每月利润y可以表示为:
y = (x-15)[800-40(x-20)]
② 接下来,我们需要求出使利润最大的定价。
将上述函数关系式展开,得到:
y = -40x^2 + 1800x - 18000
这是一个二次函数,其开口向下,因此存在最大值。
我们可以通过求
导数或配方法找到最大值对应的x值。
通过计算,我们可以得到当
x=22.5时,y取得最大值。
结论:为了使利润最大,每盏灯的定价应为22.5元。
中考数学应用题练习题库及答案
中考数学应用题练习题库及答案在下面的文章中,我将提供一些中考数学应用题的练习题库及答案。
文章将根据合适的格式书写,以确保信息的清晰呈现。
请阅读以下内容:题目:中考数学应用题练习题库及答案一、选择题:1. 一根铁丝长2米,要将它剪成两段,使得其中一段是另一段的3倍,求两段铁丝各有多长?A. 1米和1米B. 0.8米和1.2米C. 0.6米和1.4米D. 0.5米和1.5米答案:C2. 如果一个等差数列的首项是3,公差是4,那么它的第8项是多少?A. 27B. 28C. 29D. 30答案:C3. 一块面积为64平方厘米的正方形纸板,从中剪掉一个面积为36平方厘米的小正方形纸板,剩下的形状是什么?A. 长方形B. 正方形C. 圆形D. 梯形答案:A二、填空题:1. 已知正方形边长为5厘米,求其周长是多少?答案:20厘米2. 某商品原价为100元,现以8折优惠出售,打完折后的价格是多少元?答案:80元3. 若两根相交线段的长度分别为5厘米和12厘米,求它们的夹角的正弦值。
答案:0.8三、解答题:1. 一连数的和是12345,已知这个连数有45个数,第一个数和最后一个数依次为a和b,求a和b的大小。
答案:a=1,b=45解析:连续数的和等于首项和末项乘以项数的一半,即(a+b) * 45/2 = 12345。
解方程得到a=1,b=45。
2. 高为15厘米的三角形与高为12厘米的梯形的面积相等,那么这两个多边形底边之间的长度差是多少?答案:4厘米解析:三角形的面积为底边乘以高的一半,梯形的面积为上底加下底再乘以高的一半。
用等式表示为(15 * 底边) / 2 = (12 * (上底 + 下底)) / 2。
整理得底边 = 上底 + 下底 - 4。
以上是一些中考数学应用题的练习题库及答案,希望对你的学习有所帮助。
中考复习《应用题》专题试卷含答案解析
2017届中考复习应用题专题试卷一、单选题1、互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A、120元B、100元C、80元D、60元2、已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为(?)A、518=2(106+x)B、518﹣x=2×106C、518﹣x=2(106+x)D、518+x=2(106﹣x)32个螺母,()AC、4有xA、C、5多50A、、﹣=2C、﹣=26度为xA、B、C D7场比赛,得了12A、1或2B、2或3C、3或4D、4或58、某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有(?)A、103块B、104块C、105块D、106块9、一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组(?)A、B、C、D、10、2016年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2018年投入将达9800万元,若每年增长率都为x,根据题意列方程(?)A、7200(1+x)=9800B、7200(1+x)2=9800C、7200(1+x)+7200(1+x)2=9800D、7200x2=980011、某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是(?)A、560(1+x)2=315B、560(1﹣x)2=315C、560(1﹣2x)2=315D、560(1﹣x2)=315二、解答题12、某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2(113(1)14(1(2本可以享受8多少人?15度的2(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?16、某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?17、五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?18、一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.19年以来,某县加大了教育经费的投入,2014年该县投入教育经费相同.(1)(2)少万元.20(1)(2)21万元.(1)求(2)22、(花费90(1)(2)方案,使所需总费用最低.23、孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.24、为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.25、随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求(2)(326可发电5(1)(2)(不27124元(1(2)28地用电行(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?29、早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?30、为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?31、()在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)321000件.已知与用120(1)求A(2)33200元.(1)(2)34元第(1)(2)35270元;(1)(2)两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.36、2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?37、某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?38、大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?(2)设每件商品的售价为x元,超市所获利润为y元.①求y与x之间的函数关系式;3910%(1)A(2)型车数量240040米后,为27(1)(2)413(1)(2)用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?42、济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?43、在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?答案解析部分一、单选题1、【答案】C【考点】一元一次方程的应用【解析】)÷=200解得:故选C.x的一元(x+20)(或2、【考点】【解析】故选C.【分析】3、【考点】【解析】1000(26故选C【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.4、【答案】D【考点】二元一次方程的应用【解析】【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.【分析】根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.5、【答案】A【考点】由实际问题抽象出分式方程【解析】【解答】解:设原计划每天施工x米,则实际每天施工(x+50)米,根据题意,可列方程:﹣=2,故选:A.【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,根据:原计划所用时间﹣实6、【考点】【解析】﹣故选C.【分析】20分钟7、【考点】【解析】x=,∵x、y∴当y=0故选:C【分析】设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.8、【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选C.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.9、【答案】A【考点】二元一次方程组的应用【解析】【解答】解:由题意可得,,故选A.【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.10、【考点】【解析】故选B【分析】11、【考点】【解析】560(1﹣故选:B12、=﹣解之得经检验,2x=2×100=200答:第二次购进200件文具.(2)(100+200)×15﹣1000﹣2500=1000(元).答:盈利1000元.【考点】分式方程的应用【解析】【分析】(1)设第一次购进x件文具,则第二次就购进2x件,根据第二次购进时发现每件文具进价比第一次上涨了2.5元,所购进文具的数量是第一次购进数量的2倍,可列方程求解.(2)利润=售价﹣进价,根据(1)算出件数,然后算出总售价减去成本即为所求.13、【答案】(1)解:设采摘黄瓜x千克,茄子y千克.根据题意,得,解得.答:采摘的黄瓜和茄子各30千克、10千克(2)解:30×(1.5﹣1)+10×(2﹣1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元【考点】二元一次方程组的应用【解析】【分析】(1)设他当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,14、解得(2解得经检验,【考点】【解析】价钱=8.5(2)如果多买15、【答案】(1)解:设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟(2)解:∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.【考点】一元一次方程的应用【解析】【分析】(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意列方程即可得到结论;(2)300×2=600米即可得到结果.此题主要考查了一元一次方程的应用,分式方程的应用,根据题意得到乙的运动速度是解题关键.16、【答案】(1)解:设每吨水的政府补贴优惠价为m元,市场调节价为n元.,解得:,答:每吨水的政府补贴优惠价2元,市场调节价为3.5元(2当x>14(3∴小英家【考点】【解析】17、)元,根据题意得,,解得:.经检验,(2解得m=500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元).答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.【考点】一元一次方程的应用,分式方程的应用【解析】【分析】本题考查分式方程、一元一次方程的应用,分析题意,找到合适的等量关系是解决问题的关键.(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同列出方程,求解即可;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据该爱心组织按照此需求的比例购买这2000件物品列出方程,求解即可.18、【答案】(1)解:根据题意可知,横彩条的宽度为xcm,∴y=20×x+2×12?x﹣2×x?x=﹣3x2+54x,即y与x之间的函数关系式为y=﹣3x2+54x;(2)解:根据题意,得:﹣3x2+54x=×20×12,整理,得:x2﹣18x+32=0,解得:x1=2,x2=16(舍),∴x=3,【考点】【解析】知横彩条的宽度为xcm条面积=)根据:19、6000(解得:(2所以答:预算【考点】【解析】6000即可.此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.20、【答案】(1)解:设每个站点造价x万元,自行车单价为y万元.根据题意可得:解得:答:每个站点造价为1万元,自行车单价为0.1万元.(2)解:设2016年到2018年市政府配置公共自行车数量的年平均增长率为a.根据题意可得:720(1+a)2=2205解此方程:(1+a)2=,即:,(不符合题意,舍去)答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%.【考点】二元一次方程组的应用,一元二次方程的应用【解析】【分析】此题主要考查了二元一次方程的应用以及一元二次方程的应用,正确得出等式是解题关键.(1)分别利用投资了112万元,建成40个公共自行车站点、配置720辆公共自行车以及投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车进而得出等式求出答案;(2)利用2016年配置720辆公共自行车,结合增长率为x,进而表示出2018年配置公共自行车数量,得出等式求出答案.21、解得:x1答:2014(2故a【考点】【解析】的量为a2=b.(1)即可;()根据:×100%≤15%解不等式求解即可.22、根据题意得:,解得:;(2)解:设购买桂味t千克,总费用为W元,则购买糯米糍(12﹣t)千克,根据题意得:12﹣t≥2t,∴t≤4,∵W=15t+20(12﹣t)=﹣5t+240,k=﹣5<0,∴W随t的增大而减小,∴当t=4时,W的最小值=220(元),此时12﹣4=8;答:购买桂味4千克,糯米糍8千克时,所需总费用最低.【考点】二元一次方程组的应用,一次函数的应用【解析】【分析】(1)设桂味的售价为每千克x元,糯米糍的售价为每千克y元;根据单价和费用关系列出方程组,解方程组即可;(2)设购买桂味t千克,总费用为W元,则购买糯米糍(12﹣t)千克,根据题意得出12﹣t≥2t,得出t≤4,由题意得出W=﹣5t+240,由一次函数的性质得出W随t的增大而减小,得出当t=4时,W的最小值=220(元),求出12﹣4=8即可.本题考查了一次函数的应用、二元一次方程组的应用;根据题意方程方程组和得出一次函数解析式是解决问题的关键.23、【答案】(1)解:设A种树每棵x元,B种树每棵y元,依题意得:,解得.答:A(2则解得∵18>0∴当即当【考点】【解析】B种树木5(2)设购买A B种树木数量的+B种树的金额)24、把(20,解得:∴y=6.4x+32(2)解:∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W=﹣0.6×35+347=137(元)最低【考点】一元一次不等式组的应用,一次函数的应用【解析】【分析】(1)利用得到系数法求解析式,列出方程组解答即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答.此题主要考查了一次函数的应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.25、【答案】解:(1)当0≤x≤90时,设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:.则y=20x+900.当x>90∴y=(2∵x=0(3【考点】【解析】(2(3)+改进技26、【答案】(1)解:设这个月有x天晴天,由题意得30x+5(30﹣x)=550,解得x=16,故这个月有16个晴天.(2)解:需要y年才可以收回成本,由题意得(550﹣150)?(0.52+0.45)?12y≥40000,解得y≥8.6,∵y是整数,∴至少需要9年才能收回成本.【考点】一元一次不等式的应用【解析】【分析】(1)设这个月有x天晴天,根据总电量550度列出方程即可解决问题.(2)需要y年才可以收回成本,根据电费≥40000,列出不等式即可解决问题.本题考查一元一次不等式、一元一次方程等知识,熟练应用方程或不等式解决实际问题是解题的关键,属于中考常考题型.27、【答案】解:(1)设每个书包和每本词典的价格各是x元,y元,根据题意得出:,解得:.答:每个书包的价格是28元,每本词典的价格是20元;(2)设购买z个书包,则购买词典(40﹣z)本,根据题意得出:28z+20(【考点】【解析】个书包和2(228、=解得,经检验,即每行驶(20.26y+(【考点】【解析】76元,从A0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.本题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,列出相应的分式方程与不等式,注意分式方程在最后要检验.29、【答案】(1)解:设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)解:小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.【考点】分式方程的应用,一元一次不等式的应用【解析】【分析】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.(1)设小明步行的速度是x米/分,根据题意可得等量关系:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程即可;(2)根据(1)中计算的速度列出不等式解答即可.30、【答案】(1)解:设一个足球的单价x元、一个篮球的单价为y元,根据题意得解得:(2103m+56解得:m≤9∵m∴m【考点】【解析】+1(2)设买足球m31、10(x+6解得x=24.答:甲、乙两种门票每张各30元、24元(2)解:设可购买y张甲种票,则购买(35﹣y)张乙种票,根据题意得30y+24(35﹣y)≤1000,解得y≤26.答:最多可购买26张甲种票【考点】一元一次方程的应用,一元一次不等式的应用【解析】【分析】(1)设乙种门票每张x元,则甲种门票每张(x+6)元,根据“买甲种票10张,乙种票15张共用去660元”列方程即可求解;(2)设可购买y张甲种票,则购买(35﹣y)张乙种票,根据购票费用不超过1000元列出不等式即可求解.本题考查了一元一次方程与一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的关系,列出方程或不等式,再求解.32、【答案】(1)解:设A型学习用品单价x元,根据题意得:=,解得:x=20,经检验x=20是原方程的根,x+10=20+10=30.答:A型学习用品20元,B型学习用品30元;(2)解:设可以购买B型学习用品a件,则A型学习用品(1000﹣a)件,由题意,得:20(1000﹣a【考点】【解析】120a件,则A33、解得:(2【考点】【解析】2)设应次方程组的应用,一元一次不等式的解法的运用,解答时建立方程和不等式是关键.34、【答案】(1)解:设该商家第一次购进机器人x个,依题意得:+10=,解得x=100.经检验x=100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个(2)解:设每个机器人的标价是a元.则依题意得:(100+200)a﹣11000﹣24000≥(11000+24000)×20%,解得a≥1190.答:每个机器人的标价至少是1190元【考点】分式方程的应用,一元一次不等式的应用【解析】【分析】(1)设该商家第一次购进机器人x个,根据“第一次用11000元购进某款拼装机器人,用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元”列出方程并解答;(2)设每个机器人的标价是a元.根据“全部销售完毕的利润率不低于20%”列出不等式并解答.本题考查了分式方程和一元一次不等式的应用.解答分式方程时,一定要注意验根.35、【答案】(1)解:设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:,(2设卖完A则w=(∴当元.【考点】【解析】甲商品2x、y m件,则mw,根(1)36、根据题意可知:y=180﹣10(x﹣12)=﹣10x+300(12≤x≤30)(2)解:设王大伯获得的利润为W,则W=(x﹣10)y=﹣10x2+400x﹣3000,令W=840,则﹣10x2+400x﹣3000=840,解得:x1=16,x2=24,答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元(3)解:∵W=﹣10x2+400x﹣3000=﹣10(x﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元【考点】一元二次方程的应用,二次函数的应用【解析】【分析】(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据“当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个”,即可得出y关于x的函数关系式;(2)设王大伯获得的利润为W,根据“总利润=单个利润×销售量”,即可得出W关于x的函数关系式,代入W=840求出x的值,由此即可得出结论;(3)利用配方法将W关于x的函数关系式变形为W=﹣10(x﹣20)2+1000,根据二次函数的性质即可解决最值问题.本题考查了二次函数的应用,解题的关键是:(1)根据数量关系找出y关于x的函数关系式;(2)根据数量关系找出W 关于x的函数关系式;(3)利用二次函数的性质解决最值问题.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出函数的关系式是关键.37、【答案】(1)解:设y=kx+b,把(22,解得:则y=﹣(2x元,则(x﹣整理得:(x﹣25解得:x1(3w=(x﹣=﹣2x2=﹣2(x此时当∴x<30答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【考点】一元二次方程的应用,二次函数的应用【解析】【分析】(1)设y=kx+b,根据题意,利用待定系数法确定出y与x的函数关系式即可;(2)根据题意结合销量×每本的利润=150,进而求出答案;(3)根据题意结合销量×每本的利润=w,进而利用二次函数增减性求出答案.此题主要考查了二次函数的应用以及一元二次方程的应用、待定系数法求一次函数解析式等知识,正确利用销量×每本的利润=w得出函数关系式是解题关键.38、【答案】(1)解:设商品的定价为x元,由题意,得(x﹣20)[100﹣2(x﹣30)]=1600,解得:x=40或x=60;答:售价应定为40元或60元(2)解:①y=(x﹣20)[100﹣2(x﹣30)](x≤40),即y=﹣2x2+200x﹣3200;②∵a=﹣2<0,∴当x==50时,y取最大值;又x≤40,则在x=40时,y取最大值,即y=1600,最大值答:售价为40元/件时,此时利润最大,最大利润为1600元【考点】一元二次方程的应用,二次函数的应用【解析】【分析】(1)设商品的定价为x元,根据总利润=单件利润×销售量,列出关于x的一元二次方程求解可得;(2)①根据(1)中相等关系即可得函数解析式;②根据二次函数的性质即可39、得=解得:经检验,答:去年(2y=(1800y=﹣∵B∵y=﹣∴k=﹣∴y随a∴a=20∴B∴当新进A型车20辆,B型车40辆时,这批车获利最大.【考点】分式方程的应用,一元一次不等式的应用【解析】【分析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y 元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.40、【答案】(1)解:设原计划每天铺设管道x米,依题意得:+=27,解得:x=10,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考应用题精选(含答案)
中考应用题精选(含答案)
一、小明购买水果
小明去水果店购买了一些苹果和橙子,苹果的单价为5元/斤,橙子的单价为4元/斤。
小明共购买了9斤水果,支付了43元。
1. 请问小明购买了多少斤苹果,多少斤橙子?
解答:
设小明购买的苹果为x斤,橙子为y斤,则由题意可得以下方程组:x + y = 9 (1)
5x + 4y = 43 (2)
(1)式乘以4,再与(2)式相减可得:
4x + 4y - 5x - 4y = 36 - 43 => -x = -7 => x = 7
所以小明购买了7斤苹果,9 - 7 = 2斤橙子。
2. 小明购买水果总共需要支付多少金额?
解答:
设小明购买的苹果总价为a元,橙子总价为b元,由题意可得以下
方程组:
a +
b = 43 (3)
5a + 4b = 9 * 5 (4)
将(3)式乘以4,再与(4)式相减可得:
4a + 4b - 5a - 4b = 172 - 45 => -a = 127 => a = -127(舍去)所以小明购买水果总共需要支付43元。
二、小明的年龄问题
小明的爷爷今年87岁,小明今年10岁。
已知小明的爸爸在小明出生时是小明年龄的2倍,现在的爸爸年龄是小明年龄的3倍。
1. 请问小明的爸爸今年多少岁?
解答:
设小明的爸爸今年为x岁,则可得以下方程:
10 - x = 2(x - 10) (5)
将(5)式化简,得:
10 - x = 2x - 20
3x = 30
x = 10
所以小明的爸爸今年10岁。
2. 请问小明的爷爷今年多少岁?
解答:
根据题意,小明的爷爷今年是小明爸爸的3倍,而小明爸爸今年是10岁,所以小明的爷爷今年87岁。
三、小明和小红的比例题
小明和小红一起种植蔬菜,小明每天需要花费2小时来照料蔬菜园,小红每天需要花费3小时来照料蔬菜园。
已知小明比小红每天多照料
蔬菜园1小时,两人一共照料蔬菜园13天。
1. 请问小明独自照料蔬菜园需要多少天才能完成任务?
解答:
设小明独自照料蔬菜园需要x天才能完成任务。
根据题意可得以下方程:
2x + 1 = 3(x - 13) (6)
将(6)式化简,得:
2x + 1 = 3x - 39
x = 40
所以小明独自照料蔬菜园需要40天才能完成任务。
2. 请问小红独自照料蔬菜园需要多少天才能完成任务?
解答:
设小红独自照料蔬菜园需要y天才能完成任务。
根据题意可得以下方程:
3y = 2(y - 13) (7)
将(7)式化简,得:
3y = 2y - 26
y = 26
所以小红独自照料蔬菜园需要26天才能完成任务。
四、购买图书
小明去书店购买了几本图书,已知每本图书的原价为35元,小明共支付了420元。
1. 请问小明购买了多少本图书?
解答:
设小明购买的图书数量为x本。
根据题意可得以下方程:
35x = 420
解方程可得:
x = 12
所以小明购买了12本图书。
2. 如果在购买完图书后,书店进行打折促销,每本图书打八折,小明需要支付多少金额?
解答:
打八折即为原价的0.8倍。
所以小明需要支付的金额为12 * 35 * 0.8 = 336元。
通过以上应用题的解答,我们可以培养学生的应用数学能力,帮助他们将数学知识应用到生活实际问题中,提高解决实际问题的能力。