磁珠与电感

合集下载

电感和磁珠的区别与联系

电感和磁珠的区别与联系

电感与磁珠区别:1.电感是储能元件,而磁珠是能量转换(消耗)器件。

电感和磁珠都可以用于滤波,但是机理不一样。

电感滤波是将电能转化为磁能,磁能将通过两种方式影响电路:一种方式是重新转换回电能,表现为噪声;一种方式是向外部辐射,表现为EMI(电磁干扰)。

而磁珠是将电能转换为热能,不会对电路构成二次干扰。

2.电感在低频段滤波性能较好,但在50MHz以上的频段滤波性能较差;磁珠利用其电阻成分能充分地利用高频噪声,并将之转换为热能已达到彻底消除高频噪声的目的。

3.从EMC(电磁兼容)的层面说,由于磁珠能将高频噪声转换为热能,因此具有非常好的抗辐射功能,是常用的抗EMI器件,常用于用户接口信号线滤波、单板上高速时钟器件的电源滤波等。

4.电感和电容构成低通滤波器时,由于电感和电容都是储能器件,因此两者的配合可能产生自激;磁珠是耗能器件,与电容协同工作时,不会产生自激。

5.电源用电感的额定电流相对较大,因此,电感常用于需要通过大电流的电源电路上,如用于电源模块滤波;而磁珠一般仅用于芯片级电源滤波(不过,目前市场上已经出现了大额定电流的磁珠)。

6.磁珠和电感都具有直流电阻,磁珠的直流电阻相对于同样滤波性能的电感更小一些,因此用于电源滤波时,磁珠上的压降更小。

7.用于滤波时,电感的工作电流小于额定电流,否则,电感不一定会损坏,但是电感值会出现偏差。

电感与磁珠相同点:1.额定电流。

当电感的额定电流超过其额定电流时,电感值将迅速减小,但电感器件未必损坏;而磁珠的工作电流超过其额定电流时,将会对磁珠造成损伤。

2.直流电阻。

用于电源线路时,线路上存在一定的电流,如果电感或磁珠本身的直流电阻较大,则会产生一定压降。

因此选型中,都要求选择直流电阻小的器件。

3.频率特性曲线。

电感和磁珠的厂家资料都附有器件频率特性曲线图。

在选型中,需仔细参考这些曲线,以选择合适的器件。

应用时,注意其谐振频率。

磁珠的选型由磁珠的阻抗特性曲线可知:转换频率点以下,磁珠体现电感性,转换频率点以上,磁珠体现电阻性。

磁珠和绕线电感的区别

磁珠和绕线电感的区别

一、电感器的定义。

1.1 电感的定义:电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。

当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。

根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。

当形成闭合回路时,此感应电势就要产生感应电流。

由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。

由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。

电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。

总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。

这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。

由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。

1.2 电感线圈与变压器电感线圈:导线中有电流时,其周围即建立磁场。

通常我们把导线绕成线圈,以增强线圈内部的磁场。

电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。

一般情况,电感线圈只有一个绕组。

变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。

两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。

1.3 电感的符号与单位电感符号:L电感单位:亨(H)、毫亨(mH)、微亨(uH),1H=103mH=106uH。

1.4 电感的分类:按电感形式分类:固定电感、可变电感。

磁珠和电感的区别

磁珠和电感的区别

磁珠和电感的区别简介:磁珠和电感作为两种常见的电子元件,在电子领域使用广泛。

它们都能够在电路中起到储存和释放能量的作用,但是它们的工作原理和特点略有不同。

本文将从磁性特性、工作原理、应用领域等方面探讨磁珠和电感之间的区别。

一、磁性特性1. 磁珠:磁珠是一种由磁性材料制成的小圆球状物体。

它具有良好的磁性,往往适用于高频电路中。

磁珠一般采用铁氧体等材料制成,具有高磁导率和强磁饱和特性,可以在高频电路中提供较低的电感值。

磁珠在电路中起到滤波、隔离和储能的作用。

2. 电感:电感是一种由导体线圈制成的元件,主要使用导体线圈的电磁感应原理。

电感的磁性取决于线圈中的线圈材料和线圈的形状。

线圈中的磁性材料一般采用镍铁合金,具有较高的磁导率和饱和磁感应强度。

电感可以在电路中储存和释放能量,具有阻抗变化和滤波功能。

二、工作原理1. 磁珠:磁珠主要通过磁导率和磁感应强度来调整电路中的电感值。

当电流通过磁珠时,磁珠内部会产生磁场,通过改变磁场强度和方向,可以改变电感的大小和性质。

磁珠可根据不同的工作频率和电流条件选择合适的材料和尺寸。

2. 电感:电感基于电磁感应原理工作。

当电流通过线圈时,产生的磁场会自感应回到线圈中,产生感应电动势,并对电路中的电流起到调节的作用。

线圈的大小和形状以及线圈中的材料都会影响电感的大小和性能。

通过改变线圈的参数,可以实现对电流和电压的调控。

三、应用领域1. 磁珠:磁珠常见于高频电路和无线通信领域。

它们广泛应用于滤波器、隔离器和匹配器等电路中,可提供较低的电感值和较高的频率响应。

磁珠还可用于电源管理电路和射频功率放大器等应用,具有稳定性和可靠性的特点。

2. 电感:电感广泛应用于电源电路、放大器、射频通信和变频器等领域。

在直流电源电路中,电感可用于稳定电流和降低电压波动。

在放大器和射频通信领域,电感可用于匹配和调谐,提高信号转换效率。

电感还常用于变频器中的滤波和电路保护等方面。

结论:磁珠和电感作为常见的电子元件,在电子领域起到重要作用。

磁珠和电感的失效模式

磁珠和电感的失效模式

磁珠和电感的失效模式
首先,让我们来看看磁珠的失效模式。

磁珠通常用于电源滤波、信号传输和噪声抑制等应用中。

它们的失效模式主要包括短路、开
路和磁性衰减。

短路可能是由于磁珠内部的金属颗粒短路引起的,
这会导致电路中的电流异常增加,甚至损坏其他元件。

而开路则可
能是由于磁珠内部的绝缘层破裂或连接引脚断裂引起的,这会导致
电路中的信号传输中断。

此外,磁性衰减也会导致磁珠的失效,这
可能是由于磁珠材料的老化或磁场的外部干扰引起的。

接下来,让我们来看看电感的失效模式。

电感通常用于滤波、
阻抗匹配和能量存储等应用中。

它们的失效模式主要包括线圈断路、短路和铁芯饱和。

线圈断路可能是由于线圈内部的导线断裂引起的,这会导致电路中的信号传输中断。

而线圈短路则可能是由于线圈内
部的绝缘层破裂引起的,这会导致电路中的电流异常增加。

此外,
铁芯饱和也会导致电感的失效,这可能是由于电感工作在超过其设
计磁场范围内引起的。

为了避免磁珠和电感的失效,我们可以采取一些预防措施。

首先,选择质量可靠的磁珠和电感元件,避免使用劣质产品。

其次,
合理设计电路,避免在磁珠和电感上施加过大的电流或磁场。

此外,
定期检查和维护设备,及时更换老化或损坏的磁珠和电感元件,也是很重要的。

总之,磁珠和电感在电子设备中扮演着重要的角色,但它们也会出现失效的情况。

了解其失效模式和采取预防措施,可以有效提高设备的可靠性和稳定性。

希望本文对大家有所帮助。

磁珠和电感在EMCEMI电路的作用

磁珠和电感在EMCEMI电路的作用

磁珠和电感在EMCEMI电路的作用磁珠是一种电子元器件,由铁氧体或磁性材料制成,通常具有一个或多个线圈穿过其孔内。

磁珠在EMC、EMI电路中主要起到以下几个作用:1.防止高频信号的波导现象:磁珠的线圈孔具有一定的电感性质,可以形成电磁感应场,进而阻碍高频信号在线路上的传播。

通过将磁珠串联到信号线路上,可以有效地抑制高频信号的波导现象,减少信号的辐射和传导。

2.滤波和抑制电磁干扰:磁珠能够对高频信号进行滤波和抑制。

由于磁珠具有一定的电感和电阻,可以形成一个带通滤波器,对高频信号进行滤波和抑制,从而减少其在线路中的传播和辐射。

同时,磁珠的电阻特性还可以吸收和消散电磁干扰,保护其他设备免受干扰。

3.增加传导电容:磁珠通过线圈穿过的方式,可以将信号线路与地面或其他线路形成电容耦合,从而增加传导电容。

这样可以降低信号线路的电压和电流变化对地面或其他线路的干扰,提高电路的抗干扰能力。

电感是一种储存电能的元器件,其主要作用是阻碍变化电流的流动。

在EMC、EMI电路中,电感主要发挥以下几个作用:1.抑制电流突变:电感的阻抗随着频率增加而增加,可以阻碍高频信号的流动。

当电路中的电流突变时,电感会阻碍这种变化电流的流动,从而起到抑制电磁干扰的作用。

2.滤波和降噪:电感可以形成LC滤波器,对高频信号进行滤波和降噪。

通过将电感串联到信号线路中,可以形成一个低通滤波器,将高频信号滤除,从而减少信号的辐射和传导,降低电磁干扰。

3.平衡电流:在差分信号传输中,电感可以平衡信号中的共模干扰。

通过将两个信号线圈串联,可以形成一个差模电感,将共模干扰抵消,提高信号的抗干扰能力。

总之,磁珠和电感在EMC、EMI电路中的作用主要是抑制高频信号的传导和辐射,滤除电磁干扰,并提高电路的抗干扰能力。

它们是保证电子设备满足EMC要求的重要组件。

电感与磁珠比较分析

电感与磁珠比较分析

2. 磁珠结构
X射线
3. 磁珠分类
插装式磁珠
叠层片式磁珠
按照功能划分: 低速信号线用磁珠、高速信号线用磁珠、大电流线路用磁珠、抑制高频噪声(1GHz以以上)
和高频大电流线路用磁珠等。
4. 磁珠工作原理
• 低频时,阻抗主要由电感感抗构成,磁芯的磁导率较高, 电感量较大,电感起主要作用,电磁干扰被反射而受到 抑制,并且这时磁芯的损耗较小,整个器件是一个低损 耗、高品质因素Q特性的电感,这种电感特性容易引成谐 振,因此在低频段时可能会出现使用铁氧体磁珠后干扰 增强的现象。
额定电流表征了通过磁珠的直流电流的强度, 提高额定电流可以通过减小直流电阻或者增大产品 尺寸来实现。一般实际使用时会考虑降额使用,一般 至少降额80% ,推荐降额50%以下。
L
Rac
Rdc
C
磁珠的等效电路
7. 磁珠特性(封装影响)
Part Number / Size (All 600 Ohm chip beads)
E
时钟发生电路
F
计算机,打印机,录像机 电视系统和手提电话中 的EMI噪声抑制
9. 磁珠典型应用
1.电源应用
① 工作频率:开关电源工作频率几百KHz-几MHz,对应的电源辐射EMI噪声通 常小于100MHz-300MHz范围, 选用峰值频率小于300MHz低频型磁珠。
② 工作电流:按照交流信号有效值选择磁珠额定电流。电源磁珠在满足布局空间 设计要求下尽量选用大尺寸的磁珠。
1206C601R 1206size 0805E601R 0805size 0603C601R 0603size 0402A601R 0402size
Z(Ω) @100MHz
Zero Bias

电感和磁珠

电感和磁珠

电感的参数:1,电感值高频用电感0.6-390n,一般信号用电感10n-1000u H,电源用电感:1 -470 u H2,直流电阻几mΩ-几Ω,感值越大,直流阻抗越大。

3,自谐振频率(Q最大时的频率)几n H的可以达到12G,几百n H的可达几百M,几u H的可以达到几十M.4,额定电流几m A-几A ,并不是电感值越大,额定电流越小;对于同种类别的是这样(信号用,电源用),但是信号用电感额定电流一般比电源用额定电流小,电源用电感可达到几A。

应用要点:工作频率小于谐振频率时,电感值基本保持不变;应用时应使谐振频率高于工作频率。

高于谐振点,电感呈现容性。

电感用于电源滤波时,需要考虑直流电阻引起的压降,电感的工作电流小于额定工作电流。

电感不单独使用滤波,(低频时阻抗很小)考虑电感输出波形,需要和电容配合;而电容可以单独滤波,滤波时是否需要电感,参见电源设计解析。

磁珠:磁珠的单位为Ω/100MHz,根据特性曲线,选取滤波频段,磁珠阻抗越大越好。

Date-sheet上,磁珠的参数是100MHz时的阻抗值。

磁珠的应用要点:1,磁珠等效为电阻和电感串联,但是有趣的是在低频Z L>Z R,磁珠表现为感性,反射噪声;高频时表现为阻性,吸收噪声转化成热能。

转折点是Z L=Z R。

即使磁珠阻抗Z(总阻抗)相同,转折点却不一定相同,转折点频率越低表现的电阻性越强,表示吸收频谱范围越大,同时波形震荡和失真越小。

在选择磁珠时,应使电路噪声大于转折点频率磁珠吸收噪声,工作频率(有用信号)小于转折点频率,防止有效信号被磁珠衰减。

2,电路工作频率小于谐振频率。

3,同电感类似电源滤波时要考虑直流阻抗,压降,额定电流。

电感磁珠比较:电感优点:低频<50MHz滤波性能良好,>50MHz滤波性能较差;电感电容配合滤波可能产生自激;电源用电感额定电流大。

磁珠:EMI EMC性能好不会形成二次干扰,与电容配合不会产生自激;额定电流小,仅适用于芯片级电源滤波;。

电感与贴片磁珠的区别

电感与贴片磁珠的区别

电感与贴片磁珠的区别
1、有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈习惯称之为磁珠;
2、电感是储能元件,而贴片磁珠是能量转换(消耗)器件;
3、电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策;
4、贴片磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰.
两者都可用于处理EMC、EMI问题;
5、新晨阳电容电感一般用于电路的匹配和信号质量的控制上.在模拟地和数字地结合的地方用贴片磁珠.
6、贴片磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。

他比普通的电感有更好的高频滤波特性,在高频时呈现阻性,所以能在相当宽的频率范围内保持较高的阻抗,从而提高调频滤波效果。

7、作为电源滤波,可以使用电感。

磁珠的电路符号就是电感但是型号上可以看出使用
的是磁珠在电路功能上,磁珠和电感是原理相同的,只是频率特性不同罢了
8、磁珠由氧磁体组成,电感由磁心和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去。

9、贴片磁珠对高频信号才有较大阻碍作用,一般规格有100欧/100mMHZ ,它在低频时电阻比电感小得多。

电路图识别之磁珠和电感的区别篇

电路图识别之磁珠和电感的区别篇

电路图识别之磁珠和电感的区别篇可能一些新的朋友在刚看维修MP3技术资料时或电路图时常会看到磁珠这个词,可在网上粗略一查,好像他和电感差不多,其实则不然下面我就说一下他们之间的区别:磁珠的作用要从其结构来着手分析,磁珠的结构可以看成一个电阻和电感的串接(许多人容易把它和电感混淆,它和电感的区别就在于多了电阻的分量)。

其作用主要是在高频率下利用电感成分反射噪声,利用电阻成分把噪音转换成热量,由此达到抑制噪声的作用。

使用方法比较简单,直接插入信号线、电源线中就可以通过吸收、反射来实现抑制噪声和执行EMC对策的功能。

电感的作用:储能、滤波、阻抗、扼流、谐振和变压的作用。

电阻器识别电阻电阻,用符号R表示。

其最基本的作用就是阻碍电流的流动。

衡量电阻器的两个最基本的参数是阻值和功率。

阻值用来表示电阻器对电流阻碍作用的大小,用欧姆表示。

除基本单位外,还有千欧和兆欧。

功率用来表示电阻器所能承受的最大电流,用瓦特表示,有1/16W,1/8W,1/4W,1/2W,1W,2W等多种,超过这一最大值,电阻器就会烧坏。

根据电阻器的制作材料不同,有水泥电阻(制作成本低,功率大,热噪声大,阻值不够精确,工作不稳定),碳膜电阻,金属膜电阻(体积小,工作稳定,噪声小,精度高)以及金属氧化膜电阻等等。

根据其阻值是否可变可分为微调电阻,可调电阻,电位器等。

可调电阻(电位器)电路符号如下:电阻在标记它的值的方法是用色环标记法。

它的识别方法如下:色别第一位色环(电阻值的第一位)第二位色环(电阻值的第二位)第三位色环(乘10的倍数)第四位色环(表误差)棕1110--红2 2 100 --橙3 3 1000 --黄4 4 10000 --绿5 5 100000 --蓝6 6 1000000 --紫7 7 10000000 --灰8 8 100000000 --白9 9 1000000000 --黑0 0 1 --金-- -- 0.1 +-0.05银-- -- 0.01 +-0.1无色-- -- -- +-0.2电容,用符号C表示。

在电路中是选用磁珠还是电感更好一点?

在电路中是选用磁珠还是电感更好一点?

在电路中是选用磁珠还是电感更好一点?
有些人在为电子电路选用电感时很纠结,不知选用贴片磁珠还是贴片电感会更好一些。

归根结底还是得看主要运用于什么产品领域的电路上,那么简单地说,在谐振电路中需要使用贴片电感;消除不需要的EMI噪声时,使用贴片磁珠是较好的选择。

磁珠和电感的应用场合:电感:射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,音频设备,PDAs(个人数字助理),无线遥控系统以及低压供电模块等。

磁珠:时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口,并口,键盘,鼠标,长途电信,本地局域网),射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS),电视系统和手提电话中的EMI噪声抑止。

总结一下,电感滤除噪声或者射频电路里面做电源地去耦,靠的是高阻抗阻挡。

由于感值比较准,截止频率可以预期。

但有电感就有可能谐振,产生意外地麻烦,而且阻挡在外面,并能量没有消失。

磁珠滤除噪声,靠高阻抗,同时也靠磁珠自身的消耗,把电磁能
量转换成了热能。

磁珠的问题是感值非线性,在不同频段不相同,其次是容易饱和,真的大能量干扰来了,顶不住。

本文分享于平尚。

工程师教你:磁珠(bead)和电感(inductance)的区别

工程师教你:磁珠(bead)和电感(inductance)的区别

工程师教你:磁珠(bead)和电感(inductance)的区别
磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。

他比普通的电感有更好的高频滤波特性,在高频时呈现阻性,所以能在相当宽的频率范围内保持较高的阻抗,从而提高调频滤波效果。

 作为电源滤波,可以使用电感。

磁珠的电路符号就是电感,但是型号上可以看出使用的是磁珠。

在电路功能上,磁珠和电感是原理相同的,只是频率特性不同罢了。

 磁珠由氧磁体组成,电感由磁心和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去。

 磁珠对高频信号才有较大阻碍作用,一般规格有100欧/100mMHZ,它在低频时电阻比电感小得多。

 铁氧体磁珠(FerriteBead)是目前应用发展很快的一种抗干扰元件,廉价、易用,滤除高频杂讯效果显着。

 在电路中只要导线穿过它即可(我用的都是象普通电阻模样的,导线已穿过并胶合,也有表面贴装的形式,但很少见到卖的)。

当导线中电流穿过时,铁氧体对低频电流几乎没有什幺阻抗,而对较高频率的电流会产生较大衰减作用。

高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个元件的值都与磁珠的长度成比例。

磁珠种类很多,制造商应提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。

 铁氧体是磁性材料,会因通过电流过大而产生磁饱和,导磁率急剧下降。

大电流滤波应採用结构上专门设计的磁珠,还要注意其散热措施。

 铁氧体磁珠不仅可用于电源电路中滤除高频杂讯(可用于直流和交流输。

电子电路中电感与磁珠的讲解

电子电路中电感与磁珠的讲解
如何区分电感器和磁珠
电感是储能元件,而磁珠是能量转换(耗费)器件
电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策
磁珠重要用于抑制电磁辐射搅扰,而电感用于这方面则侧重于抑制传导性搅扰。两者都可用于处置EMC、EMIIssue(问题)。
磁珠是用来吸收超高频信号,象少许RF电路,PLL,振荡电路,含超高频存储器电路(DDR SDRAM,RAMBUS等)都需求在电源输出局部加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其使用频率领域很少超越错50MHZ。
比方1000R@100Mhz就是说对100M频率的信号有1000欧姆的电阻
由于磁珠的单位是依据它在某一频率发生的阻抗来标称的,阻抗的单位也是欧姆。磁珠的datasheet上普通会附有频率和阻抗的特性曲线图。普通以100MHz为规范,比方2012B601,就是指在100MHz的时分磁珠的Impedance为600欧姆。
地的衔接普通用电感,电源的衔接也用电感,而对信号线则采用磁珠?
但实践上磁珠应该也能到达吸收高频搅扰的目的啊?并且电感在高频谐振过后都不能再起电感的作用了……
还请各位大侠明示
先必需明白EMI的两个途径,即:辐射和传导,不同的途径采用不同的抑制办法。前者用磁珠,后者用电感。
关于扳子的IO局部,是不是基于EMC的目的能够用电感将IO局部和扳子的地实行隔离,比方将USB的地和扳子的地用10uH的电感隔离能够避免插拔的噪声搅扰地立体?
做为电源滤波,能够运用电感。
磁珠的电路符号就是电感
但是型号上能够看出运用的是磁珠
在电路功效上,磁珠和电感是原理相反的,不过频率特性Байду номын сангаас同而已
线圈,磁珠

磁珠与电感详解

磁珠与电感详解
要正确的选择磁珠,必须注意以下几点:
(1) 不需要的信号的频率范围为多少;
(2) 噪声源是谁;
(3) 需要多大的噪声衰减;
(4) 环境条件是什么(温度,直流电压,结构强度);
(5) 电路和负载阻抗是多少;
(6) 是否有空间在PCB板上放置磁珠。
前三条通过观察厂家提供的阻抗频率曲线就可以判断。在阻抗曲线中三条曲线都非常重要,即电阻、感抗和总阻抗。
对于抑制电磁干扰用的铁氧体,最重要的性能参数为磁导率u和饱和磁通密度。
它的等效电路为一个电感和一个电阻串联,两个元件的值都与磁珠的长度成比例。
当导线穿过这种铁氧体磁芯时,所构成的电感阻抗是随着频率的升高而增加。
高频电流在其中以热量形式散发。
在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感。电感是衡量线圈产生电磁感应能力的物理量。
通过总阻抗曲线,选择在希望衰减噪声的频率范围内具有最大阻抗而在低频和直流下信号衰减尽量小的磁珠型号。
片式磁珠在过大的直流电压下,阻抗特性会受到影响,另外,如果工作温升过高或者外部磁场过大,磁珠的阻抗都会受到不利的影响。
4、电感器的作用及如何选择电感器
电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。
1、什么是磁珠,什么是电感
磁珠的全称为铁氧体磁珠滤波器(另有一种是非晶合金磁性材料制作的磁珠),铁氧体材料的特点是高频损耗非常大,具有很高的导磁率,使电感的线圈绕组之间在高频高阻的情况下产生的电容最小。
当磁珠中有电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大的衰减。
片式磁珠: 时钟发生电路、模拟电路和数字电路之间的滤波、I/O内部连接器(比如串口、并口、键盘、鼠标、长途电信、本地局域网)、射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS)、电视系统和手提电话中的EMI噪声抑止。

磁珠、电感和零欧电阻的区别

磁珠、电感和零欧电阻的区别

磁珠、电感和零欧电阻的区别【磁珠】磁珠(ferrite bead)的材料是铁镁或铁镍合金,这些材料具有有很高的电阻率和磁导率,在高频率和高阻抗下,电感内线圈之间的电容值会最小。

磁珠通常只适用于高频电路,因为在低频时,它们基本上是保有电感的完整特性(包含有电阻性和电抗性分量),因此会造成线路上的些微损失。

而在高频时,它基本上只具有电抗性分量(jωL),并且抗性分量会随着频率上升而增加。

象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDR,SDRAM,RAMBUS等)都需要在电源输入部分加磁珠。

实际上,磁珠是射频能量的高频衰减器。

其实,可以将磁珠视为一个电阻并联一个电感。

在低频时,电阻被电感“短路”,电流流往电感;在高频时,电感的高感抗迫使电流流向电阻。

本质上,磁珠是一种“耗散器件(dissipative device)”,它会将高频能量转换成热能。

因此,在性能上,它只能被当成电阻来解释,而不是电感。

【电感】电感是储能元件,多用于电源滤波回路、LC振荡电路、中低频的滤波电路等,其应用频率范围很少超过50MHz.对电感而言,它的感抗是和频率成正比的。

这可以由公式:XL = 2πfL来说明,其中XL是感抗(单位是Ω)。

例如:一个理想的10mH电感,在10kHz时,感抗是628Ω;在100MHz时,增加到6.2MΩ。

因此在100MHz时,此电感可以视为开路(open circuit)。

在100MHz时,若让一个信号通过此电感,将会造成此信号品质的下降。

【零欧姆】指阻值为零的电阻。

电路板设计中两点不能用印刷电路连接,常在正面用跨线连接,这在普通板中经常看到,为了让自动贴片机和自动插件机正常工作,用零电阻代替跨线。

零欧电阻的作用如下:(1)在电路中没有任何功能,只是在PCB上为了调试方便或兼容设计等原因。

(2)可以做跳线用,如果某段线路不用,直接补贴该电阻即可(不影响外观)。

(3)在匹配电路参数不确定的时候,以0ohm代替,实际调试的时候,确定参数,再以具体数值的元件代替。

磁珠(bead)和电感(inductance)的区别与联系

磁珠(bead)和电感(inductance)的区别与联系

磁珠(bead)和電感(inductance)的區別與聯繫磁珠有很高的電阻率和磁導率,他等效於電阻和電感串聯,但電阻值和電感 值都隨頻率變化。

他比普通的電感有更好的高頻濾波特性,在高頻時呈現阻性, 所以能在相當寬的頻率範圍內保持較高的阻抗,從而提高調頻濾波效果。

作為電源濾波,可以使用電感。

磁珠的電路符號就是電感,但是型號上可以 看出使用的是磁珠。

在電路功能上,磁珠和電感是原理相同的,只是頻率特性不 同罷了。

磁珠由氧磁體組成,電感由磁心和線圈組成,磁珠把交流信號轉化為熱能, 電感把交流存儲起來,緩慢的釋放出去。

磁珠對高頻信號才有較大阻礙作用,一般規格有 100 歐/100mMHZ,它在低頻 時電阻比電感小得多。

鐵氧體磁珠(FerriteBead)是目前應用發展很快的一種抗干擾元件,廉價、易 用,濾除高頻雜訊效果顯著。

在電路中只要導線穿過它即可(我用的都是象普通電阻模樣的,導線已穿過 並膠合,也有表面貼裝的形式,但很少見到賣的)。

當導線中電流穿過時,鐵氧 體對低頻電流幾乎沒有什麼阻抗,而對較高頻率的電流會產生較大衰減作用。

高 頻電流在其中以熱量形式散發,其等效電路為一個電感和一個電阻串聯,兩個元 件的值都與磁珠的長度成比例。

磁珠種類很多,製造商應提供技術指標說明,特 別是磁珠的阻抗與頻率關係的曲線。

鐵氧體是磁性材料,會因通過電流過大而產生磁飽和,導磁率急劇下降。

大 電流濾波應採用結構上專門設計的磁珠,還要注意其散熱措施。

鐵氧體磁珠不僅可用於電源電路中濾除高頻雜訊(可用於直流和交流輸 出),還可廣泛應用於其他電路,其體積可以做得很小。

特別是在數位電路中, 由於脈衝信號含有頻率很高的高次諧波,也是電路高頻輻射的主要根源,所以可 在這種場合發揮磁珠的作用。

鐵氧體磁珠還廣泛應用於信號電纜的雜訊濾除。

磁珠的原理 磁珠的主要原料為鐵氧體。

鐵氧體是一種立方晶格結構的亞鐵磁性材料。

鐵 氧體材料為鐵鎂合金或鐵鎳合金,它的製造工藝和機械性能與陶瓷相似,顏色為 灰黑色。

磁珠和电感

磁珠和电感

磁珠的应用一、磁珠的原理磁珠的主要原料为铁氧体。

铁氧体是一种立方晶格结构的亚铁磁性材料。

铁氧体材料为铁镁合金或铁镍合金,它的制造工艺和机械性能与陶瓷相似,颜色为灰黑色。

电磁干扰滤波器中经常使用的一类磁芯就是铁氧体材料,许多厂商都提供专门用于电磁干扰抑制的铁氧体材料。

这种材料的特点是高频损耗非常大,具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。

对于抑制电磁干扰用的铁氧体,最重要的性能参数为磁导率μ和饱和磁通密度Bs。

磁导率μ可以表示为复数,实数部分构成电感,虚数部分代表损耗,随着频率的增加而增加。

因此,它的等效电路为由电感L 和电阻R 组成的串联电路,L 和R 都是频率的函数。

当导线穿过这种铁氧体磁芯时,所构成的电感阻抗在形式上是随着频率的升高而增加,但是在不同频率时其机理是完全不同的。

在低频段,阻抗由电感的感抗构成,低频时R 很小,磁芯的磁导率较高,因此电感量较大,L 起主要作用,电磁干扰被反射而受到抑制,并且这时磁芯的损耗较小,整个器件是一个低损耗、高Q 特性的电感,这种电感容易造成谐振因此在低频段,有时可能出现使用铁氧体磁珠后干扰增强的现象。

在高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。

铁氧体抑制元件广泛应用于印制电路板、电源线和数据线上。

如在印制板的电源线入口端加上铁氧体抑制元件,就可以滤除高频干扰。

铁氧体磁环或磁珠专用于抑制信号线、电源线上的高频干扰和尖峰干扰,它也具有吸收静电放电脉冲干扰的能力。

两个元件的数值大小与磁珠的长度成正比,而且磁珠的长度对抑制效果有明显影响,磁珠长度越长抑制效果越好。

二、磁珠和电感的区别电感是储能元件,而磁珠是能量转换(消耗)器件。

电感多用于电源滤波回路,侧重于抑止传导性干扰;磁珠多用于信号回路,主要用于EMI 方面。

电感、磁珠、0欧姆电阻的区别

电感、磁珠、0欧姆电阻的区别

j电感、磁珠和零欧电阻的区别电感是储能元件,多用于电源滤波回路、LC振荡电路、中低频的滤波电路等,其应用频率范围很少超过50MHz。

对电感而言,它的感抗是和频率成正比的。

这可以由公式:XL = 2πfL 来说明,其中XL 是感抗(单位是Ω)。

例如:一个理想的10mH电感,在10 kHz时,感抗是628Ω;在100 MHz时,增加到6.2MΩ。

因此在100MHz 时,此电感可以视为开路(open circuit)。

在100MHz时,若让一个讯号通过此电感,将会造成此讯号品质的下降。

磁珠(ferrite bead)的材料是铁镁或铁镍合金,这些材料具有有很高的电阻率和磁导率,在高频率和高阻抗下,电感内线圈之间的电容值会最小。

磁珠通常只适用于高频电路,因为在低频时,它们基本上是保有电感的完整特性(包含有电阻和抗性分量),因此会造成线路上的些微损失。

而在高频时,它基本上只具有抗性分量(jωL),并且抗性分量会随着频率上升而增加。

象一些RF 电路,PLL,振荡电路,含超高频存储器电路(DDR,SDRAM,RAMBUS 等)都需要在电源输入部分加磁珠。

实际上,磁珠是射频能量的高频衰减器。

其实,可以将磁珠视为一个电阻并联一个电感。

在低频时,电阻被电感「短路」,电流流往电感;在高频时,电感的高感抗迫使电流流向电阻。

本质上,磁珠是一种「耗散装置(dissipative device)」,它会将高频能量转换成热能。

因此,在效能上,它只能被当成电阻来解释,而不是电感。

零欧电阻的作用如下:1,在电路中没有任何功能,只是在PCB 上为了调试方便或兼容设计等原因。

2,可以做跳线用,如果某段线路不用,直接补贴该电阻即可(不影响外观)3,在匹配电路参数不确定的时候,以0ohm代替,实际调试的时候,确定参数,再以具体数值的元件代替。

4,想测某部分电路的耗电流的时候,可以去掉0ohm电阻,接上电流表,这样方便测耗电流。

5,在布线时,如果实在布不过去了,也可以加一个0ohm的电阻(感觉应该是用直插的,不应该是表贴的[luther.gliethttp])6,在高频信号下,充当电感或电容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁珠与电感
对磁珠和电感的应用也有一些了,现在就对它们作一下简要的总结吧。

在我们的电路设计中,磁珠主要是对高频传导干扰信号进行抑制;而电感则主要是对低频干扰信号进行抑制。

当要对频带很宽的干扰信号进行EMI抑制时,就必须同时采用多个不同性质的电感或磁珠才会有效。

电感的高频等效电路如下:
可见,在频率较高时,电感线圈是有分布电容的。

而电感的阻抗曲线如下:
理论上,对传导干扰信号进行抑制,电感量是越大越好,但同时电感的分布电容也会越大,这时两者的作用就会相互抵消,就如图中所示,当电感很大时,它对高频干扰信号的阻抗可能还不如小一些的电感。

那么,若是要对抑制的频率进一步提高,电感线圈只好用它的最小极限值,只有1圈或不到1圈。

磁珠,即穿心电感,它就是匝数小于1圈的电感线圈,它的电感量都比较小,只有几uH—几十uH。

当然,磁珠也不是对频率很高的信号都能有抑制的,它也有它的截止频率(这与磁珠的材料有关,通常用的比较多的都是铁氧体磁珠),一般是几十MHz到几百MHz,因此,我们通常所说的磁珠的有效导磁率,也是指的它在某个工作频率范围下的相对磁导率。

对于磁珠的作用,它不仅能有效抑制一些高频的传导干扰,另外还有一个重要的作用就是进行电磁屏蔽,其屏蔽效果甚至比屏蔽线还要好,而且可免去屏蔽线要求接地的麻烦,对共模干扰信号有很强的抑制作用。

进行电磁屏蔽的方法也很简单,让一双导线从磁珠中间穿过即可。

总之,我们在使用磁珠和电感的时候,要充分认识到它们的基本特性和不同点,根据不同的场合选择不同的器件,这样才能把它们用得恰到好处。

相关文档
最新文档