盾构推进计算

合集下载

盾构主要参数的计算和确定

盾构主要参数的计算和确定

盾构主要参数的计算和确定1、盾构外径:盾构外径D=管片外径D S+2(盾尾间隙δ+盾尾壳体厚度t)盾尾间隙δ--为保证管片安装和修复蛇行,以及其他因素的最小富余量,一般取25—40mm;结合五标地质取多少?2、刀盘开挖直径:软土地层,一般大于前盾0—10mm,砂卵石地层或硬岩地层,一般大于前顿外径30mm,五标刀盘开挖直径如何确定的?3、盾壳长度盾壳长度L=盾构灵敏度ξx盾构外径D小型盾构D≤3.5M,ξ=1.2—1.5;中型3.5M<D≤9M,ξ=0.8—1.2;大型盾构D>9M;ξ=0.7—0.8;4、盾构重量泥水盾构重量=(45---65)D2,由于本线路存在线下溶土洞的可能,再掘进中能否通过此核算,盾构主机是否沉陷?5、盾构推力盾构总推力F e=安全储备系数AX盾构推进总阻力F d安全储备系数A---一般取1.5---2.0。

盾构推进总阻力F d=盾壳与周边地层间阻力F1+刀盘面板推进阻力F2+管片与盾尾间摩擦力F3+切口环贯入地层阻力F4+转向阻力F5+牵引后配套拖车阻力F6盾壳与周边地层间阻力F1计算中,静止土压力系数或土的粘聚力取盾体范围内的何点的?刀盘面板推进阻力F2,对于泥水盾构或土压盾构土仓压力如何确定的?管片与盾尾间摩擦力F3中,盾尾刷与管片的摩擦系数取偏大好吗?盾尾刷内的油脂压力如何定?计算中土压力计算是按郎肯土压公式或库仑土压计算?6、刀盘扭矩刀盘设计扭矩T=刀盘切削扭矩T1+刀盘自重形成的轴承旋转反力矩T2+刀盘轴向推力形成的旋转反力矩T3+主轴承密封装置摩擦力矩T4+刀盘前面摩擦扭矩T5+刀盘圆周摩擦反力矩T6+刀盘背面摩擦力矩T7+刀盘开口槽的剪切力矩T8刀盘切削扭矩T1中的切削土的抗压强度q u如何确定?刀盘轴向推力形成的旋转反力矩T3计算中土压力计算是按郎肯土压公式或库仑土压计算?,刀盘圆周摩擦反力矩T6计算中,土压力计算是按郎肯土压公式或库仑土压计算?刀盘背面摩擦力矩T7中土仓压力P W如何确定?7、主驱动功率主驱动工率储备系数一般为1.2---1.5,主驱动系统的效率η如何确定?8、推进系统功率推进系统功率W f=功率储备系数A W X最大推力FX最大推进速度VX推进系统功率ηW功率储备系数A W一般取1.2---1.5, 最大推力F、最大推进速度V如何定?推进系统功率ηW=推进泵的机械效率X推进泵的容积率X连轴器的效率9、同步注浆能力每环管片理论注浆量Q=0.25X(刀盘开挖直径D2—管片外径D S2)X管片长度L推进一环的最短时间t=管片长度L/最大推进速度v理论注浆能力q=每环管片理论注浆量Q/推进一环的最短时间t额定注浆能力q p=地层的注浆系数λX理论注浆能力q/注浆泵效率η地层的注浆系数λ因地层而变一般取1.5---1.8。

盾构管片排版计算公式

盾构管片排版计算公式

盾构管片排版计算公式
盾构管片排版计算公式F e=安全储备系数AX盾构推进总阻力F d 安全储备系数A---一般取1.5---2.0。

盾构推进总阻力F d=盾壳与周边地层间阻力F1+刀盘面板推进阻力F2+管片与盾尾间摩擦力F3+
切口环贯入地层阻力F4+转向阻力F5+牵引后配套拖车阻力F6
1、依据盾构隧道平竖曲线要素、横纵断面及螺栓等设计信息,自动对通用管片进行通缝或错缝拟合排版;
2、管片和螺栓布局用户可指定;
3、通用管片环形式有:等腰梯形和直角梯形;
4、是否错缝拼接可控制,封顶块位置亦可控制;
5、由交点信息确定平曲线和竖曲线;
6、自动进行管片拟合排版,可生成三维管片排版图和二维展开图;
7、可生成拟合排版偏差图;
8、排版结果可以导入到CAD中;
9、计算结果图可自动输出到文件中,里程间隔用户可以指定。

盾构机推力扭矩计算依据

盾构机推力扭矩计算依据

6.34m土压平衡d1型地铁盾构(液压系统)计算书Ф6340土压平衡d1型盾构推力扭矩计算书2.设计依据Φ6.34m土压平衡盾构掘进机的设计根据上海地区的软土地质条件和工程条件进行,土质主要包括灰色淤泥质粘土层、灰色粘土层、粉质粘土、砂质粉土等。

2.1 地质条件隧道需穿越的地层主要是灰色淤泥质粘土层、灰色粘土层、灰色粉质土层,其特点:饱和、流塑,属高压缩性土,受扰动后沉降大,易发生流砂。

(见图一)其主要力学指标:a.平均值:N=2~8b.内摩擦角:Φ=7.5°~19.5°c.凝聚力:C=4.0~25.0kpad.渗透系数:K V20=1.77×10-5~1.58×10-4cm/secK H20=2.02×10-5~2.49×10-4cm/sec3.2 推进系统3.2.1盾构的载荷条件及盾构总推力3.2.1.1盾构的载荷条件盾构在地下推进时,盾构壳体所受荷载基本有以下几种:垂直土压、水平土压、地下水压、土体抗力、自重、地面荷载、施工荷载、其它荷载。

P g—自重抵抗土压(kN/m2);P w1—顶部垂直水压(kN/m2);P w2—底部垂直水压(kN/m2);q e1—顶部土体侧压(kN/m2);q e2—底部土体侧压(kN/m2);q w1—顶部侧向水压(kN/m2);q w2—底部侧向水压(kN/m2);q fe1—顶部水平土压(kN/m2);q fe2—底部水平土压(kN/m2);q fw1—顶部水平水压(kN/m2);q fw2—底部水平水压(kN/m2)。

其中q fe1=q e1,q fe2=q e2,q fw1=q w1,q fw2=q w2。

垂直土压:P e1=W0+γt H0+γ'H w(1)式中:W0—地面荷载(kN/m2);H0—地下水位高度(m);H w—H-H0;H—覆土厚度(m);γt—地下水位上部的土体容重(kN/m2);γ'—地下水位下部的土体容重(kN/m2)。

盾构顶进力学计算

盾构顶进力学计算

盾构顶进力学计算一、按悬挑模型框架柱受力连接计算1、中荷载2、动力系数简支或连续钢桥1+μ=1+28/(40+L)取L=12m 因为其中一跨为12m1+μ=1.543、支座处受力分析⑴、考虑平均覆土厚度2m,每方土容重取20kN ;20×2=40KN/m2⑵、考虑两股道同时来车荷载布置如下图所示A点受力最大∑M B=0220×1.54=339KN92×1.54=142 KN/m142×4.5×4.5/2+339×(6+7.5+9+10.5+12)=R A×12 解得:R A=1391KN∑Y=0 R B=142×4.5+339×5-R A=943 KN⑶边框架柱受力分析R BC=(40×6×7.7×7.7/2+1391×6.95+893×2.95)/(7.7/1.414)R BC=3566kNR AC=3566/1.414=2522 kN∑Y=0 R AB=40×6×7.7+1391+893-3082/1.414=1610 kN 边框架柱连接计算:预埋钢筋面积=2522000/170=14835mm2选用φ22钢筋,螺纹净直径φ19每根螺栓净面积=284 mm2共需要预埋钢筋的根数=14835/284=53根设4排每排16根共64根大于53根,设在上部顶板范围内钢筋间距45mm,预埋钢筋长度取1m。

每根螺栓承受拉力N t=2522/64=39.4 kN剪力N v=1610/64=25.16 kN检算在拉剪共同作用下螺栓的承载力:N t b=192π/4×170=48.200 kNN v b=222π/4×130=49.417 kN[(N t/ N t b)2+(N v/ N v b)2]0.5=0.963≤1能满足要求。

盾构机推力和扭矩计算

盾构机推力和扭矩计算

盾构机推力和刀盘扭矩的地层适应性评价1、推力计算盾构的推力应包含以下几个部分:1)盾壳和土层的摩擦力 FM其中μ为盾壳和土体间的摩擦系数,根据经验值取0.25。

计算得:FM=8074KN2)盾构推进正时面推进阻力其中Di 为盾构机内径Ps 为设计掘削土压(kN/m2)设计掘削土压Ps=地下水压+土压+预压其中地下水压在粘土层处相对于隧道中部的水头最大约11.5m ,那么水压力为115kN/m 2;土压按静止土压力计算:Po=Ko γH上式中:Po—静止土压力H—覆土厚度Ko—静止土压系数Ko=1-sin φ式中:φ—有效内摩擦角经计算Po=127 kN/m2预压力一般取30 kN/m2Ps=115+127+30=272kN/m2M BA S NL F F F +F +F =+∑()[]4/11h h V V M P P P P L D F +++⨯⨯⨯=πμBA F 214BA i s F D p π==9109.3 KN3)盾尾密封的摩擦力(经验值,周向每米密封的摩擦力) (管片外径6.4m )4)拖拉后配套的力 FNL (经验值)5)总推力计算ΣF=17943.3KN在盾构上坡和转弯时盾构的推力按直线水平段的1.5倍考虑,盾构的实际推力应为:ΣF=17943.3×1.5=26914.95KN盾构机实际配备推力:S -488/S -698盾构机实际推力分别为34210KN 和50668KN 。

均能满足盾构的实际需要.2、扭矩计算1)刀具切削扭矩推进速度:刀盘转速: (根据类似工程选取经验值) 刀盘每转切深:岩土的抗压强度: ;刀盘直径: Dd=6.68mT 1=0.5x[100x0.0667x(6.68x0.5)2]=37.2KNm214BA i s F D p π=2S 'F i s F D π=S'10/F KN m=KN F NL 750=h m V /8.4max =rpm n 2.1=cm n V h 67.6/max ==100u q KPa =()[]2max 15.05.0⨯⨯⨯⨯=d u D h q T2)刀盘自重产生的主轴承旋转反力矩:其中:刀盘自重:主轴承滚动半径:滚动摩擦系数:3)刀盘推力荷载产生的旋转阻力矩 其中:推力载荷 ;刀盘不开口率: a=0.4;刀盘半径;P t =0.4x3.14x3.34x102=428KNT 3=428x1.3x0.004=2.23KN.m4)密封装置摩擦力矩式中:密封与钢之间的摩擦系数:;密封的推力:;密封数:密封的安装半径:5)刀盘前表面上的摩擦力矩; g R G T μ⨯⨯=12570G KN =m R 3.1=004.0=g μ2570 1.30.00429.6.T KN m=⨯⨯=g t R P T μ⨯⨯=3d t P R P ⨯⨯⨯=2παm R 14.32=()1/2102/d h h P P P KN m =+=2142m m m R n F T ⨯⨯⨯⨯=μπ2.0=m μKPa F m 5.1=3=n m R m 25.11=mKN T m .8.825.135.12.02214=⨯⨯⨯⨯=π()d p P R T ⨯⨯⨯⨯⨯=32532μπα其中土层和刀盘间的摩擦系数:;T5=2/3x(0.7x3.14x0.15x3.343x102)=835KN.m6)刀盘圆周的摩擦反力矩其中刀盘边缘宽度:;刀盘圆周土压力:T 6=2x3.14x6.68x0.45x205x0.15=580KN.m7)刀盘背面的摩擦力矩刀盘背面的摩擦力矩由土腔室内的压力所产生,假定土仓室内的土压力为Pd8)刀盘开口槽的剪切力矩其中土的抗剪应力:在切削腔内,由于碴土含有水,取C=15KPa ,内摩擦角为 T 8=2/3x3.14x23x3.343x(1-0.7)=538KN.m9)刀盘土仓内的搅动力矩T 9其中刀盘支撑柱直径:;刀盘支撑柱长度;支撑柱数量刀盘支撑柱外端半径:;刀盘支撑柱内端半径:所以,刀盘总扭矩15.0=p μp z d P B D T μπ⨯⨯⨯⨯=26m B 45.0=()11/4205z h h v v P P P P P KPa =+++=()3722722.94.3p d T R P KN m απμ=⨯⨯⨯⨯⨯=()απτ-⨯⨯⨯⨯=132328R C T 15102523d C C P tg tg KPa τφ=+=+⨯︒=︒=5φ()b d z b n r r P L T ⨯+⨯⨯⨯=2/219φm b 6.0=φm L z 1.1=4=b n m r 4.12=m r 7.01=()m KN T .5.44442/7.04.136.1601.16.09=⨯+⨯⨯⨯=,此为额定扭矩。

盾构推进阻力计算

盾构推进阻力计算

计算公式说明:以下各式中c (土的粘聚力)、φ(内摩擦角)、K 0(静止侧压力系数)等按龙华站-浦江南浦站-大木桥路站地质勘查报告取值。

土的重度γ取18KN/m ³K 1、K 2为上海地区经验系数取值K 1=4.3、K 2=1.8 H 为盾构中心埋深本次计算以863盾构为基础,D=6.34m 、L=8.6m ,盾构机自重N=2500KN1、 正面阻力210D H4f k =πγ2、摩阻力0221+k tan DL=H DL 2k f N =⋅⋅⋅⋅φμπγπ3、自重阻力3tan f N N ==⋅μφ4、粘结力41DL cf k =π推进阻力1234f f f f +++浦江南浦-大木桥路区间泵站位置 断面中心埋深:H=27.4m 断面土质构成及土力学参数计算过程中c 、k 、φ按各土层所占比例取加权平均值 1正面阻力23210D H 0.43818KN/m 27.431.5568154f k m m KN ==⋅⋅⋅=πγ22摩阻力02231+k tan DL=H DL2k 1+0.4380.43=18KN/m 27.4171.214502KN2 1.8f N m =⋅⋅⋅⋅⋅⋅⋅=φμπγπ㎡ 3自重阻力3tan KN 0.431075KN f N N ==⋅⋅=μφ=25004粘结力4116.2KPa DL=171.2645KN 4.3c f k =⋅=π㎡推进阻力12346815KN 14502KN 1075KN 645KN 23037KNf f f f +++=+++=龙华站-浦江南浦站区间出洞位置 断面中心埋深:H=18.37m 断面土质构成及土力学参数计算过程中c 、k 、φ按各土层所占比例取加权平均值 2、正面阻力23210D H 0.3718KN/m 18.3731.5538604f k m m KN==⋅⋅⋅=πγ2、摩阻力02231+k tan DL=H DL2k 1+0.370.6=18KN/m 18.37171.212926KN2 1.8f N m =⋅⋅⋅⋅⋅⋅⋅=φμπγπ㎡ 3、自重阻力3tan KN 0.61500KN f N N ==⋅⋅=μφ=25004、粘结力41 4.7KPa DL=171.2187KN 4.3c f k =⋅=π㎡推进阻力12343860KN 12926KN 1500KN 187KN 18437KNf f f f +++=+++=。

盾构推进计算

盾构推进计算

5.1 盾构推进力⑴、盾构推力盾构机推进必须确保盾构足够的推力来维持和平衡土压平衡压力T1、开挖阻力H、盾壳与围岩摩擦阻力飞、后配配套牵引力等等。

通常,上述值比盾构推力要低,盾构推进油缸的配置受管片形式的影响,盾构机一般必须保证盾构圆周压力均等(有时盾构底部压力稍高),避免盾构油缸尾部衬垫作用在管片接缝处,为保证这些,一般盾构机都安装了超出正常配置的额外推进油缸,然后降低盾构系统工作压力,该压力在正常推进时采用,只有在艰难地层时才采用额外推力。

①计算原理盾构千斤顶应有足够的推力克服盾构推进时所遇到的阻力,这些阻力主要有:a、盾构四周与地层间的摩擦阻力或粘结力F i ;b、盾构刀具切入土层产生在切削刀盘上的推进阻力F2;c、开挖面正面作用在切削刀盘上的推进阻力F3d、盾尾处盾尾板与衬砌间的摩擦阻力F4;e、盾构后面台车的牵引力F5;以上各种推进阻力的总和用下式表示,在使用时,须考虑各种盾构机械的具体情况,并留出一定的富裕量,即为盾构千斤顶的总推力。

地层所需推力F b=F 水土压力+F 摩擦力1+F 摩擦力 2 +F 牵引力+F 切入力其中:F 水土压力—刀盘表面水土压力F 摩擦力1—盾构克服上部土体摩擦力所需推力F 摩擦力2—盾构克服与围岩间摩擦力所需推力F 切入力—开挖所需推力(刀具)切入力F 牵引力—后配套牵引推力R—盾构半径(mD—隧道深度(mL—盾构长度(mF r—盾构与土层间摩擦系数(0.25)W—土体比重(20kN/m3)W t —盾构重量( t )W—后配套重量(t)F rb—后配套与管片间摩擦系数A—单把刀具表面积C o —土体粘滞系数S r —土体内摩擦角1 )、作用在盾构上的平均土压力地层所需推力F b=E F=F 水土压力+F 摩擦力1+F 摩擦力2+F 牵引力+F 切入力=941t+706t+100t+161.3=1908.3tF 水土压=(R2xn) x最大土压平衡压力23= (3.17 xn)x 3kN/m=9233 kN=941tF 水土压=D x Wx L x (2 xnx R+ 4) x F r3= 20x20 kN/m x 7.5 x (2 xnx 3.7m-4) x 0.25=6933 kN=706tF 摩擦力2=W t x F r=220t x 0.25=80tF 牵引力=W b x F rb=100 x 0.2=20t2F 切入力二刀具数量x A x (D x W x tan (450+S/2)+2 xG xtan(450+S r/2))2=73 x 0.0094 m2x (30 x 20 kN/m3 x tan (62.50)+23x 30 kN/m3x tan(62.50)) =1596.81 kN=161.3t=941t+706t+80t+20t+161.3t=1908.3t 实际配备装机推力系统最大压力350bar 时:3892t 设计准则:最大突破压力大于2.0 X所需推力最大操作推力大于1.5 X所需推力⑵、刀盘扭矩切削刀盘装备扭矩要考虑围岩条件、盾构要型式、盾构机构造和盾构机直径等因素来确定,总扭矩N b=N1+N2+N3+N4式中:N—开挖阻力矩;N 2—切削刀盘正面,外围面及后面围岩间的摩擦阻力矩;N 3—机械及驱动阻力矩;N 4—开挖土砂搅拌混合阻力矩;根据实例可知刀盘装备转矩与盾构机直径大小有很大关系,一般可按下式计算:N b=D3X2.0式中:D——盾构直径(m土压平衡连续开挖所需最大扭矩:N b=D3X 2.0=6.34 3X2.0=509.9tm(约5500kN-m)实际配备装机扭矩:N=593.1tm 一般在盾构推进中,盾构机的设计推进都比实际推进要大得多,盾构的实际推进与地表土质、地面载荷、周围环境而密切的关系,当地面周围的环境比较空旷,对地面的沉降要求不高(不在+10〜-30 )时,在盾构机械性能(最大推进力和最大扭矩范围内)允许的前提下,可适当的提高盾构的推进力,加大施工进度。

硬岩地层盾构机推力计算

硬岩地层盾构机推力计算

1、盾体的摩擦力F1=0.25πDL(2P a+2K0P a+K0γD)×μ1+W×μ1式中:D——盾构机直径L——主机长度W——盾构机主机重量(KN)γ——掘削断面上的土体浮重度(KN/m³)K0——掘削断面上土体的静止土压系数,取值0.5μ1——地层与盾构机外壳间摩擦系数,通常取μ1=0.5tanφφ——掘削断面上土体的摩擦角(°)n Pa——作用在盾构机上顶部的竖直土压强度(kpa),Pa=∑γiHii=1 n—地表至盾构机外壳上顶区域内的不同浮重度的土层数γi——第i层的浮重度(KN/m³)H i——第i层的厚度F1=0.25×3.14×6.45×9.135×(2×300+2×0.5×300+0.5×20×6.45)×0.31+3100×0.31≈14790KN2、盾尾与管片间的摩擦力F2=n1×Ws×μ2+π×D0×b×p2×n2×μ3n1——盾尾内管片环数Ws——1环管片的重量(Kn)μ2——管片与盾尾间的摩擦系数μ3——管片与盾尾密封刷的摩擦系数D0——管片外径b——盾尾密封刷与管片的接触长度n2——盾尾密封刷的层数p2——盾尾密封刷内油脂压力F2=2×282×0.3+3.14×6.2×0.1×300×4×0.15=520KN3、开挖面的支撑力开挖面的支撑力按公式(3)计算,对于土压平衡盾构计算公式如下×P SF3=π×D24式中:P S——设计掘进土压,此处去200KPaF3=3.14×6.45²×200/4=6532KN4、后配套拖车的拖拉力后配套的拖拉力由公式(4)计算F4=W4×μ4式中W4——后备套的自重(KN)μ4——后备套拖车与轨道的摩擦系数F4=1500×0.15=225KN5、刀具上的推力现按照轨道方式计算推力,滚刀共40刃,按每把单刃滚刀的最大承载力按250KN计算。

盾构出土量计算公式

盾构出土量计算公式

盾构出土量计算公式盾构出土量计算公式1. 引言在盾构施工过程中,了解和计算盾构出土量是非常重要的一项工作。

盾构出土量的准确计算可以帮助工程师合理安排施工进度、材料采购以及项目预算等方面。

本文将为您介绍盾构出土量计算的相关公式和示例。

2. 盾构出土量计算公式下面列举了三种常用的盾构出土量计算公式,并给出了具体的计算示例。

矩形隧道盾构出土量计算公式矩形隧道盾构出土量的计算公式如下:出土量 = (A + B) × C × D其中,A为隧道底面宽度,B为隧道顶部宽度,C为隧道高度,D 为盾构推进距离。

示例:假设矩形隧道底面宽度为10米,顶部宽度为12米,高度为6米,盾构每次推进10米,那么出土量计算如下:出土量 = (10 + 12) × 6 × 10 = 1320立方米圆形隧道盾构出土量计算公式圆形隧道盾构出土量的计算公式如下:出土量= π × (A + B) × C × D其中,π为圆周率(取),A为隧道内径,B为隧道壁厚,C为盾构推进距离,D为圆周角度(以弧度为单位)。

示例:假设圆形隧道内径为8米,壁厚为1米,盾构每次推进10米,圆周角度为1弧度,那么出土量计算如下:出土量 = × (8 + 1) × 10 × 1 = 立方米椭圆形隧道盾构出土量计算公式椭圆形隧道盾构出土量的计算公式如下:出土量= π × (A + B) × C × D其中,π为圆周率(取),A为椭圆短轴长,B为椭圆长轴长,C 为盾构推进距离,D为圆周角度(以弧度为单位)。

示例:假设椭圆形隧道短轴长为8米,长轴长为12米,盾构每次推进10米,圆周角度为1弧度,那么出土量计算如下:出土量 = × (8 + 12) × 10 × 1 = 立方米通过本文的介绍,我们了解了盾构出土量的计算公式,并通过具体示例进行了说明。

盾构机推力和扭矩计算

盾构机推力和扭矩计算

盾构机推力和刀盘扭矩的地层适应性评价1、推力计算盾构的推力应包含以下几个部分:1)盾壳和土层的摩擦力 FM其中μ为盾壳和土体间的摩擦系数,根据经验值取0.25。

计算得:FM=8074KN2)盾构推进正时面推进阻力其中Di 为盾构机内径Ps 为设计掘削土压(kN/m2)设计掘削土压Ps=地下水压+土压+预压其中地下水压在粘土层处相对于隧道中部的水头最大约11.5m ,那么水压力为115kN/m 2;土压按静止土压力计算:Po=Ko γH上式中:Po—静止土压力H—覆土厚度Ko—静止土压系数Ko=1-sin φ式中:φ—有效内摩擦角经计算Po=127 kN/m2预压力一般取30 kN/m2Ps=115+127+30=272kN/m2M BA S NL F F F +F +F =+∑()[]4/11h h V V M P P P P L D F +++⨯⨯⨯=πμBA F 214BA i s F D p π==9109.3 KN3)盾尾密封的摩擦力(经验值,周向每米密封的摩擦力) (管片外径6.4m )4)拖拉后配套的力 FNL (经验值)5)总推力计算ΣF=17943.3KN在盾构上坡和转弯时盾构的推力按直线水平段的1.5倍考虑,盾构的实际推力应为:ΣF=17943.3×1.5=26914.95KN盾构机实际配备推力:S -488/S -698盾构机实际推力分别为34210KN 和50668KN 。

均能满足盾构的实际需要.2、扭矩计算1)刀具切削扭矩推进速度:刀盘转速: (根据类似工程选取经验值) 刀盘每转切深:岩土的抗压强度: ;刀盘直径: Dd=6.68mT 1=0.5x[100x0.0667x(6.68x0.5)2]=37.2KNm214BA i s F D p π=2S 'F i s F D π=S'10/F KN m=KN F NL 750=h m V /8.4max =rpm n 2.1=cm n V h 67.6/max ==100u q KPa =()[]2max 15.05.0⨯⨯⨯⨯=d u D h q T2)刀盘自重产生的主轴承旋转反力矩:其中:刀盘自重:主轴承滚动半径:滚动摩擦系数:3)刀盘推力荷载产生的旋转阻力矩 其中:推力载荷 ;刀盘不开口率: a=0.4;刀盘半径;P t =0.4x3.14x3.34x102=428KNT 3=428x1.3x0.004=2.23KN.m4)密封装置摩擦力矩式中:密封与钢之间的摩擦系数:;密封的推力:;密封数:密封的安装半径:5)刀盘前表面上的摩擦力矩; g R G T μ⨯⨯=12570G KN =m R 3.1=004.0=g μ2570 1.30.00429.6.T KN m=⨯⨯=g t R P T μ⨯⨯=3d t P R P ⨯⨯⨯=2παm R 14.32=()1/2102/d h h P P P KN m =+=2142m m m R n F T ⨯⨯⨯⨯=μπ2.0=m μKPa F m 5.1=3=n m R m 25.11=mKN T m .8.825.135.12.02214=⨯⨯⨯⨯=π()d p P R T ⨯⨯⨯⨯⨯=32532μπα其中土层和刀盘间的摩擦系数:;T5=2/3x(0.7x3.14x0.15x3.343x102)=835KN.m6)刀盘圆周的摩擦反力矩其中刀盘边缘宽度:;刀盘圆周土压力:T 6=2x3.14x6.68x0.45x205x0.15=580KN.m7)刀盘背面的摩擦力矩刀盘背面的摩擦力矩由土腔室内的压力所产生,假定土仓室内的土压力为Pd8)刀盘开口槽的剪切力矩其中土的抗剪应力:在切削腔内,由于碴土含有水,取C=15KPa ,内摩擦角为 T 8=2/3x3.14x23x3.343x(1-0.7)=538KN.m9)刀盘土仓内的搅动力矩T 9其中刀盘支撑柱直径:;刀盘支撑柱长度;支撑柱数量刀盘支撑柱外端半径:;刀盘支撑柱内端半径:所以,刀盘总扭矩15.0=p μp z d P B D T μπ⨯⨯⨯⨯=26m B 45.0=()11/4205z h h v v P P P P P KPa =+++=()3722722.94.3p d T R P KN m απμ=⨯⨯⨯⨯⨯=()απτ-⨯⨯⨯⨯=132328R C T 15102523d C C P tg tg KPa τφ=+=+⨯︒=︒=5φ()b d z b n r r P L T ⨯+⨯⨯⨯=2/219φm b 6.0=φm L z 1.1=4=b n m r 4.12=m r 7.01=()m KN T .5.44442/7.04.136.1601.16.09=⨯+⨯⨯⨯=,此为额定扭矩。

盾构主要参数的计算和确定

盾构主要参数的计算和确定

盾构主要参数的计算和确定1、盾构外径:盾构外径D=管片外径D S+2(盾尾间隙δ+盾尾壳体厚度t)盾尾间隙δ--为保证管片安装和修复蛇行,以及其他因素的最小富余量,一般取25—40mm;结合五标地质取多少?2、刀盘开挖直径:软土地层,一般大于前盾0—10mm,砂卵石地层或硬岩地层,一般大于前顿外径30mm,五标刀盘开挖直径如何确定的?3、盾壳长度盾壳长度L=盾构灵敏度ξx盾构外径D小型盾构D≤3.5M,ξ=1.2—1.5;中型3.5M<D≤9M,ξ=0.8—1.2;大型盾构D>9M;ξ=0.7—0.8;4、盾构重量泥水盾构重量=(45---65)D2,由于本线路存在线下溶土洞的可能,再掘进中能否通过此核算,盾构主机是否沉陷?5、盾构推力盾构总推力F e=安全储备系数AX盾构推进总阻力F d安全储备系数A---一般取1.5---2.0。

盾构推进总阻力F d=盾壳与周边地层间阻力F1+刀盘面板推进阻力F2+管片与盾尾间摩擦力F3+切口环贯入地层阻力F4+转向阻力F5+牵引后配套拖车阻力F6盾壳与周边地层间阻力F1计算中,静止土压力系数或土的粘聚力取盾体范围内的何点的?刀盘面板推进阻力F2,对于泥水盾构或土压盾构土仓压力如何确定的?管片与盾尾间摩擦力F3中,盾尾刷与管片的摩擦系数取偏大好吗?盾尾刷内的油脂压力如何定?计算中土压力计算是按郎肯土压公式或库仑土压计算?6、刀盘扭矩刀盘设计扭矩T=刀盘切削扭矩T1+刀盘自重形成的轴承旋转反力矩T2+刀盘轴向推力形成的旋转反力矩T3+主轴承密封装置摩擦力矩T4+刀盘前面摩擦扭矩T5+刀盘圆周摩擦反力矩T6+刀盘背面摩擦力矩T7+刀盘开口槽的剪切力矩T8刀盘切削扭矩T1中的切削土的抗压强度q u如何确定?刀盘轴向推力形成的旋转反力矩T3计算中土压力计算是按郎肯土压公式或库仑土压计算?,刀盘圆周摩擦反力矩T6计算中,土压力计算是按郎肯土压公式或库仑土压计算?刀盘背面摩擦力矩T7中土仓压力P W如何确定?7、主驱动功率主驱动工率储备系数一般为1.2---1.5,主驱动系统的效率η如何确定?8、推进系统功率推进系统功率W f=功率储备系数A W X最大推力FX最大推进速度VX推进系统功率ηW功率储备系数A W一般取1.2---1.5, 最大推力F、最大推进速度V如何定?推进系统功率ηW=推进泵的机械效率X推进泵的容积率X连轴器的效率9、同步注浆能力每环管片理论注浆量Q=0.25X(刀盘开挖直径D2—管片外径D S2)X管片长度L推进一环的最短时间t=管片长度L/最大推进速度v理论注浆能力q=每环管片理论注浆量Q/推进一环的最短时间t额定注浆能力q p=地层的注浆系数λX理论注浆能力q/注浆泵效率η地层的注浆系数λ因地层而变一般取1.5---1.8。

盾构施工计算

盾构施工计算

地面设备配置需求计算和说明概述:依据编制的《盾构区间施工计划》,两台盾构机都将在哈东站西向差时始发。

为满足两台盾构施工的需要,对主要地面配套设备需求参数进行计算。

哈尔滨东站现场具体情况如下:1、管片L=1.2M;2、盾构隧道通过土层主要为A3中砂层,A2粉砂层、粉质粘土层等,且中砂层表现透水、富水性好,易扰动等特性。

3、注浆带宽15cm;4、整环管片重量为:16.45T;5、区间最大坡度25‰;(南直-哈东区间)6、设备始发期间推进采用2+1+1的方式推进,当哈东站底板地连墙去除后,将采用5+2+1编组。

一、每环出渣量计算:出渣量V渣=L×S×n=1.2×3.14×3.142×1.4=52m3(L为管片宽度,S为最大开挖面积,N为松散系数1.4)每环渣重Q渣=ρ×V=1.4×52=72.8T(ρ为渣土密度,因地层主要是砂层和粘土层,选经验数据为1.4)依据上述参数,拟选用的渣土斗为12M3,自重约5T。

选用砂浆车自重约5T,选用管片小车自重约2T,初步选取单列编组方式为5+2+1。

即:5个渣土车、2个管片车和1个砂浆车。

Q砂浆=ρ×V=1.7×4=6.8T(ρ为砂浆密度,依据经验选1.7。

根据注浆带宽度和盾构机开挖直径及管片外径等参数,可计算出每环注浆量每环约4M3)二、电瓶车选择1、采用5+2+1模式运行电瓶车牵引力计算(以25T电瓶车为基础)T=Q渣+5G渣+2G管车+G砂浆+Q管片+Q砂浆+Q电瓶车=78.4+25+4+5+16.5+6.8+25=160.7T25T电瓶车在25‰的坡度下最大牵引力为120T,则实际负载为最大牵引力的:P=160.7/120=133.9%(25T牵引力不够)45T电瓶车在25‰的坡度下最大牵引力为250T,则实际负载为最大牵引力的:P=160.7/250=64.3%(可以满足使用要求)2、采用2+1+1模式T= Q渣1/2 +2G渣+G管车+G砂浆+Q管片+Q砂浆+Q电瓶车=39.2+10+4+5+16.5+6.8+25=106.5T25T电瓶车在25‰的坡度下最大牵引力为120T,则实际负载为最大牵引力的:P=106.5/120=88.7% < 90%考虑到现有电瓶车因老化等原因,各种性能参数下降,预计只能达到原设计参数的90%左右。

盾构推力计算

盾构推力计算

一、液压泵的选择
1、根据公式算出盾构推进所需的最小推力F0;
2、选择几种千斤顶油缸,根据其直径D0和压力P0算出单个油缸的推力
D2π×P
F1=1
4
3、已我们这边为例,盾构有16组千斤顶,每组有两个油缸,那么推力为:
F2=16×2×F1
4、选择适当型号的油缸,令F2>F0即可;
5、你说的“泵”应该叫做“推进泵”,是给油缸送油的,它的主要参数是流量Q0
(L/min)和压力P1(MPa);
6、先了解下你们这边隧道的最大允许推进速度V0,这个速度就是千斤顶的最大
D2π×16×2
伸出速度,则最大推进速度时的液压油需求量Q1=V0×1
4
7、Q0>Q1, P1>P0则推进泵满足要求,就确定了推进泵的型号。

如果是两个推进泵,则两个推进泵的流量总和大于Q1,任意压力大于P0。

8、具体多少组千斤顶根据盾构直径而定,地铁一般是16组32个。

警告:
纯属个人看法,慎用!
二、电机车的选择
1、根据盾构直径D和管片宽度L算出一环的挖掘量K=1
4
D2π×L
2、根据土的重度γ算出土体的质量M1=1
4
D2π×L×γ,容重查勘察报告。

3、管片的质量为M2、电机车及平板车的质量为M3
我们这边的形式如下
电机车浆车4节土箱平板车
2节管片平板车
4、一帮情况下M1>M2,则电机车的最大负载为M1+M3,
5、根据隧道最大坡度和摩擦系数可算出电机车的牵引力,则确定了电机车的型
号。

盾构选型及参数计算方法

盾构选型及参数计算方法

盾构选型及参数计算方法盾构选型及参数计算方法1.1、序言盾构是一种专门用于隧道工程的大型高科技综合施工设备,它具有一个可以移动的钢结构外壳(盾壳),盾构内装有开挖、排土、拼装和推进等机械装置,进行土层开挖、碴土排运、衬砌拼装和盾构推进等系列操作,使隧道结构施工一次完成。

它具有开挖快、优质、安全、经济、有利于环境保护和降低劳动强度的优点,从松散软土、淤泥到硬岩都可应用,在相同条件下,其掘进速度为常规钻爆法的4~10倍。

较长地下工程的工期对经济效益和生态环境等方面有着重大影响,而且隧道工程掘进工作面又常常受到很多限制,面对进度、安全、环保、效益等这些问题,使用盾构机无疑是最好的选择。

些外,对修建穿越江、湖、海底和沼泽地域隧道,采用盾构法施工,也具有十分明显的技术和经济优势。

采用盾构法施工,盾构的选型及配置是隧道施工中关键环节之一,盾构选型应根据工程地质水文情况、工期、经济性、环境保护、安全等综合考虑。

盾构的选型及配置是一种综合性技术,涉及地质、工程、机械、电气及控制等方面。

1.2盾构机选型主要原则1.2.1盾构的选型依据盾构选型主要应考虑以下几个因素:1)工程地质、水文条件及施工场地大小。

2)业主招标文件中的要求。

3)管片设计尺寸与分块角度。

4)盾构的先进性、适应性与经济性。

5)盾构机厂家的信誉与业绩。

6)盾构机能否按期到达现场。

1.2.2 盾构的型式1)敞开式型盾构敞开式型盾构是指盾构内施工人员可以直接和开挖面土层接触,对开挖面工况进行观察,直接排除开挖面发生的故障。

这种盾构适用于能自立和较稳定的土层施工,对不稳定的土层一般要辅以气压或降水,使土层保持稳定,以防止开挖面坍塌。

有人工开挖盾构、半机械开挖盾构、机械开挖盾构。

2)部分敞开式型盾构部分敞开式型盾构是在盾构切口环在正面安装挤压胸板或网格切削装置,支护开挖面土层,即形成挤压盾构或网格盾构,施工人员可以直接观察开挖面土层工况,开挖土体通过网格孔或挤压胸板闸门进入盾构。

盾构掘进主要参数计算方式

盾构掘进主要参数计算方式

盾构掘进主要参数计算方式Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】目录1、纵坡隧道纵坡:隧道底板两点间数值距离除以如图所示:隧道纵坡=(200-100)/500=2‰注:规范要求长达隧道最小纵坡>=%,最大纵坡=<%2、土压平衡盾构施工土压力的设置方法根据上述对地层土压力、水压力的计算原理分析,笔者总结出在土压平衡盾构的施工过程中,土仓内的土压力设置方法为:a 、根据隧道所处的位置以及隧道的埋深情况,对隧道进行分类,判断出隧道是属于深埋隧道还是浅埋隧道(一般来说埋深在2倍洞径以下时,算作是浅埋段,2倍以上算深埋);b 、根据判断的隧道类型初步计算出地层的竖向压力;c 、根据隧道所处的地层以及隧道周边地地表环境状况的复杂程度,计算水平侧向力;d 、根据隧道所处的地层以及施工状态,确定地层水压力;e 、根据不同的施工环境、施工条件及施工经验,考虑~的压力值作为调整值来修正施工土压力;f 、根据确定的水平侧向力、地层的水压力以及施工土压力调整值得出初步的盾构施工土仓压力设定值为: σ初步设定=σ水平侧向力+σ水压力+σ调整 式中,σ初步设定- 初步确定的盾构土仓土压力; σ水平侧向力-水平侧向力; σ水压力 -地层水压力; σ调整 -- 修正施工土压力。

g 、根据经验值和半经验公式进一步对初步设定的土压进行验证比较,无误时应用施工之中;h 、根据地表的沉降监测结果,对施工土压力进行及时调整,得出比较合理的施工土压力值。

深埋隧道土压计算深埋隧道σ水平侧向力= q ××ω q —水平侧向力系数见表1i=,当B>5m ,取i=;S —围岩级别,如Ⅲ级围岩,则S=3浅埋隧道的土压计算 2.2.1主动土压力与被动土压力 盾构隧道施工过程中,刀盘扰动改变了原状天然土体的静止弹性平衡状态,从而使刀盘附近的土体产生主动土压力或被动土压力。

土压盾构相关参数计算

土压盾构相关参数计算

盾构关键参数的计算1.1 说明盾构工作过程的力学参数计算是一个非常复杂的问题,由于地质因素、土层改良方法、掘进参数等一系列因素的影响,在盾构参数计算方法上存在很多不确定因素。

至今应用的盾构参数计算方法在很大程度上只是处于研究、探索阶段,甚至很大程度上是一些经验性的计算方法。

以下的计算在参考盾构生产厂家提供的有关计算资料及其它相关文献资料的基础上,根据南京地铁三号线地质勘察报告,结合我单位南京地铁二号线盾构施工经验,按照盾构厂商提供的设计方案来进行关键参数的校核计算。

1.2 推力计算1.2.1 盾构外荷载的确定由于盾构工程沿线的隧道埋深差别很大,在埋深最深处的隧道顶部的覆土厚度约为33m ,而在较浅处的隧道顶部距地面约为9.3m 。

根据常用算法,盾构的外部荷载将按照最大埋深处的松动土压和两倍盾构直径的全土柱高产生的土压计算,并取两者中的最大值作为盾构计算的外部荷载。

在新庄站—市政府站区间最大埋深位置在K19+342处,此处隧道处于全断面岩层中,上部覆土为②-1b2-3、②-1c2-3、②-2b4、③-1h1-2、③-2b2、③-3e1、③-3a1-2地层,埋深约33m ,所以对盾构计算取此断面埋深为最大埋深值。

软土计算中地质参数均按照此断面的③-3a1-2号地层选取如下:岩土容重:3/9.18m KN =γ 岩土的内摩擦角:φ=17.60土的粘结力: c=47KN/m2覆盖层厚度: mH 33max =地面荷载:2020/P KN m =水平侧压力系数:45.0=λ盾构外径:m D 4.6= 盾构主机长度: m L 38.7= 盾构主机重量: W=350t 经验土压力系数:01K =松动土压(泰沙基公式)计算:()()()()1010/0/0111/B H tg K B H tg K s e P e tg K B c B P φφφγ--⨯+-⨯⨯-⨯=其中B1=R ×ctg[(45°+φ/2)/2] =3.2×ctg[(45°+17.6°/2)/2] =6.3m代入上式得 P5=︒⨯.617)3.6/319.18(3.6tg -×[1-e -1×tg17.6°×(33/6.3)]+20×e -1×tg17.6°×(33/6.3)=228.7(KN/m 2)计算两倍掘进机直径的全土柱土压: Pq=γ×2×D=18.9×2×6.4=242(KN/m2)q sP P >qP ∴取作为计算的数据。

盾构机推力扭矩计算依据

盾构机推力扭矩计算依据

土压平衡d1型地铁盾构(液压系统)计算书Ф6340土压平衡d1型盾构推力扭矩计算书2.设计依据Φm土压平衡盾构掘进机的设计根据上海地区的软土地质条件和工程条件进行,土质主要包括灰色淤泥质粘土层、灰色粘土层、粉质粘土、砂质粉土等。

地质条件隧道需穿越的地层主要是灰色淤泥质粘土层、灰色粘土层、灰色粉质土层,其特点:饱和、流塑,属高压缩性土,受扰动后沉降大,易发生流砂。

(见图一)其主要力学指标:a.平均值:N=2~8b.内摩擦角:Φ=°~°c.凝聚力:C=~d.渗透系数:K V20=×10-5~×10-4cm/secK H20=×10-5~×10-4cm/sec推进系统3.盾构的载荷条件P g—自重抵抗土压(kN/m2); P w1—顶部垂直水压(kN/m2);P w2—底部垂直水压(kN/m2); q e1—顶部土体侧压(kN/m2);q e2—底部土体侧压(kN/m2); q w1—顶部侧向水压(kN/m2);q w2—底部侧向水压(kN/m2); q fe1—顶部水平土压(kN/m2);q fe2—底部水平土压(kN/m2); q fw1—顶部水平水压(kN/m2);q fw2—底部水平水压(kN/m2)。

其中q fe1=q e1,q fe2=q e2,q fw1=q w1,q fw2=q w2。

垂直土压: P e1=W0+γt H0+γ'H w(1)式中: W0—地面荷载(kN/m2); H0—地下水位高度(m);H w—H-H0; H—覆土厚度(m);γt—地下水位上部的土体容重(kN/m2);γ'—地下水位下部的土体容重(kN/m2)。

土体抗力的计算与垂直土压的计算相似。

水平土压(土体侧压)的计算可把垂直土压乘上侧压系数λ求出,即q e=λP e(2)水压通常指地下水位以下的静止水压,即P w =γw H w (3)依据上述情况可以计算盾构在推进过程中的受力进而可以计算盾构推进所需推力。

盾构机推力计算

盾构机推力计算

盾构机的推力和扭矩计算盾构机的推力和扭矩计算包括软土和硬岩两种情况进行。

在软土中掘进时盾构机的推力和扭矩的计算地层参数按〈6〉岩石全风化带选取,由于岩土体中基本无水,所以水压力的计算按水土合算考虑。

选取可能出现的最不利受力情况埋深断面进行计算。

根据线路的纵剖面图,〈6〉层埋深不大,在确定盾构机拱顶处的均布围岩竖向压力P e 时,可直接取全部上覆土体自重作为上覆土地层压力。

盾构机所受压力:Pe =γh+ P 0 P 01= P e + G/DL P 1=P e ×λ P 2=(P+γ.D) λh γ为土容重,γG 为盾构机重,G=340 tD 为盾构机外径,D= m ; L 为盾构机长度,L= m ; P 0为地面上置荷载,P 0=2 t/m 2; P 01为盾构机底部的均布压力;P 1为盾构机拱顶处的侧向水土压力;P 2为盾构机底部的侧向水土压力;P e =×+2= t/m 2 P 01=+340/(×)=m 2 P 1=×=m 2P 2 =+××=m 2盾构推力计算盾构的推力主要由以下五部分组成:54321F F F F F F ++++=式中:F 1为盾构外壳与土体之间的摩擦力 ;F 2为刀盘上的水平推力引起的推力F 3为切土所需要的推力;F 4为盾尾与管片之间的摩阻力F5为后方台车的阻力πμ.)(4121011DL P P P P F e +++=3.0=μμ数,计算时取:土与钢之间的摩擦系式中:t F 23.11443.032.825.63.1889.1437.3383.26411=⨯⨯⨯+++⨯=π)( )(d P D F 224π=为水平土压力式中:d P ,)(2Dh P d +=λγ m D h 93.15228.68.122=+=+2/52.1493.1594.147.0m t P d =⨯⨯=t F 48.44552.1428.64/22=⨯=)(π )(C D F 234/π=式中:C 为土的粘结力,C=m 2t F 06.1385.425.6423=⨯⨯=)(πc c W F μ=4式中:W C 、μC 为两环管片的重量(计算时假定有两环管片的重量作用在盾尾内,当管片容重为m3,管片宽度按计时,每环管片的重量为),两环管片的重量为考虑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1盾构推进力⑴、盾构推力盾构机推进必须确保盾构足够的推力来维持和平衡土压平衡压力T1、开挖阻力T2、盾壳与围岩摩擦阻力T3、后配配套牵引力等等。

通常,上述值比盾构推力要低,盾构推进油缸的配置受管片形式的影响,盾构机一般必须保证盾构圆周压力均等(有时盾构底部压力稍高),避免盾构油缸尾部衬垫作用在管片接缝处,为保证这些,一般盾构机都安装了超出正常配置的额外推进油缸,然后降低盾构系统工作压力,该压力在正常推进时采用,只有在艰难地层时才采用额外推力。

①计算原理盾构千斤顶应有足够的推力克服盾构推进时所遇到的阻力,这些阻力主要有:a、盾构四周与地层间的摩擦阻力或粘结力F1;b、盾构刀具切入土层产生在切削刀盘上的推进阻力F2;c、开挖面正面作用在切削刀盘上的推进阻力F3d、盾尾处盾尾板与衬砌间的摩擦阻力F4;e、盾构后面台车的牵引力F5;以上各种推进阻力的总和用下式表示,在使用时,须考虑各种盾构机械的具体情况,并留出一定的富裕量,即为盾构千斤顶的总推力。

地层所需推力F b=F水土压力+F摩擦力1+F摩擦力2+F牵引力+F切入力其中:F水土压力—刀盘表面水土压力F摩擦力1—盾构克服上部土体摩擦力所需推力F摩擦力2—盾构克服与围岩间摩擦力所需推力F切入力—开挖所需推力(刀具)切入力F牵引力—后配套牵引推力R—盾构半径(m)D—隧道深度(m)L—盾构长度(m)F r—盾构与土层间摩擦系数(0.25)W o—土体比重(20kN/m3)W t—盾构重量(t)W b—后配套重量(t)F rb—后配套与管片间摩擦系数A t—单把刀具表面积C o—土体粘滞系数S r—土体内摩擦角1)、作用在盾构上的平均土压力地层所需推力F b=∑F=F水土压力+F摩擦力1+F摩擦力2+F牵引力+F切入力=941t+706t+100t+161.3=1908.3tF水土压=(R2×∏)×最大土压平衡压力=(3.172×∏)×3kN/m3=9233 kN=941tF水土压=D×W o×L×(2×∏×R÷4)×F r=20×20 kN/m3×7.5×(2×∏×3.7m÷4)×0.25=6933 kN=706tF摩擦力2=W t×F r=220t×0.25=80tF牵引力=W b×F rb=100×0.2=20tF切入力=刀具数量×A t×(D×W o×tan2(450+S r/2)+2×C o×tan(450+S r/2))=73×0.0094㎡×(30×20 kN/m3×tan2(62.50)+2×30 kN/m3×tan(62.50))=1596.81 kN=161.3tF b=∑F=F水土压力+F摩擦力1+F摩擦力2+F牵引力+F切入力=941t+706t+80t+20t+161.3t=1908.3t实际配备装机推力系统最大压力350bar时:3892t设计准则:最大突破压力大于2.0×所需推力最大操作推力大于1.5×所需推力⑵、刀盘扭矩切削刀盘装备扭矩要考虑围岩条件、盾构要型式、盾构机构造和盾构机直径等因素来确定,总扭矩N b=N1+N2+N3+N4式中:N1—开挖阻力矩;N2—切削刀盘正面,外围面及后面围岩间的摩擦阻力矩;N3—机械及驱动阻力矩;N4—开挖土砂搅拌混合阻力矩;根据实例可知刀盘装备转矩与盾构机直径大小有很大关系,一般可按下式计算:N b=D3×2.0式中:D——盾构直径(m)土压平衡连续开挖所需最大扭矩:N b=D3×2.0=6.34 3×2.0=509.9tm(约5500kN-m)实际配备装机扭矩:N=593.1tm一般在盾构推进中,盾构机的设计推进都比实际推进要大得多,盾构的实际推进与地表土质、地面载荷、周围环境而密切的关系,当地面周围的环境比较空旷,对地面的沉降要求不高(不在+10~-30)时,在盾构机械性能(最大推进力和最大扭矩范围内)允许的前提下,可适当的提高盾构的推进力,加大施工进度。

5.2土仓压力⑴、盾构掘进土仓压力的初步计算与控制一般在软土地层中区间隧道大都采用土压平衡模式掘进,土压平衡是利用盾构机切削的泥土充满密封仓并保持适当的土压力来平衡开挖面的土体,从而达到对盾构正前方开挖面进行支护的目的。

平衡压力的设定是土压平衡盾构施工的关键,维持和调整设定的压力值又是盾构推进操作中重要环节,其中包括推力、推进速度和出土量三者的相互关系,对盾构施工轴线和地层变形量的控制起主导作用。

因此,盾构推进过程中,要根据不同地质泥土厚度、地面建筑情况并结合地表隆陷监测结果及时调整计算土仓压力。

①、土压计算(受力简图6.2.1-1如下)根据土压平衡工况的特点,确定并保持合理的土仓压力是关键因素。

因此,土压平衡工况中掘进参数的计算确定是以土仓压力为基准点来考虑,掘进控制程序也应以土仓压力的保持为目的,盾构在掘进过程中据此取得平衡压力的设定值,具体施工时,主要从以下二方面来控制:1)理论计算①土仓压力值P的计算P值应能与地层土压力和静水压力相平衡,设刀盘中心地层静水压力、土压力之和为P0,P0=γ.h(γ—土体的平均重度,h—刀盘中心至地表的垂直距离),则P=K.P0,K—土的侧向静止土压力系数。

2)施工状况①千斤顶推进速度控制,一般控制在2~4cm/min。

②螺旋排土器转数控制,最大为20rpm。

③两者的组合控制。

掘进前,按照地质情况、水文情况、隧道的埋深测算出理论土压值,以理论土压值控制土仓内的压力,随着推进时产生的地面沉降、排土状况、刀盘扭距等情况及时修正土压值;根据盾构所在的位置的埋深、土层状况及地表监测结果进行调整。

盾构推进过程中地表隆陷与工作面稳定的关系以及相应技术对策见表15.3盾构与隧道上浮6盾构防水施工技术一、防水工程施工为防止隧道内部渗漏,给竣工后隧道的运营管理和维修带来问题,盾构隧道工程的防水可分为两个阶段来进行防水处理。

第一阶段:施工阶段防水和管片自身防水。

第二阶段:隧道后期防水,上述两个阶段都必须在施工时应严格按设计要求及有关规范要求进行,对涉及到与防水有关的材料、机具、工艺进行严格控制和把关。

根据岩土的防水施工经验,除应对管片接缝防水进行重点处理外,还应对隧道底部和进出洞门、旁通道、螺栓孔和注浆孔等局部位置进行特殊处理,以确保建成的隧道不漏水,达到隧道的下列防水设计要求。

1)衬砌防水的要求区间隧道防水的设计原则是“以防为主,刚柔结合,多道防线,因地制宜,综合治理”。

以结构自防水为主,施工缝,变形缝等薄弱部位为重点,确保隧道整体防水;隧道防水要求是:2)整个标段区间盾构隧道应满足国标二级防水标准,同时满足初步设计技术要求的隧道上半部不允许渗漏水,结构表面偶见湿渍及隧道下半部、洞门及联络通道允许有少量漏水点,不得有线流和漏泥砂,实际渗漏量小于0.1L/m2·d。

3)隧道渗水量每昼夜不超过0.06升/平方米;任意100平方米每昼夜渗水量≤10升。

隧道顶不允许滴水,侧面允许有少量、偶见湿渍,即隧道内总湿渍面积≤4/1000总表面积,任意100m2隧道内表面的湿渍不超过4点,任一湿渍面积≤0.15平方米。

衬砌接头不允许漏泥砂和滴漏,拱底块在嵌缝后不允许有渗水。

二、具体的防水措施⑴、洞门衬砌防水构造和施工洞门防水可分为两个部分:洞门衬砌结构防水设计;洞门处的施工临时防水设计。

A.洞门衬砌结构防水①保留管片与现浇洞门圈之间的环向接缝嵌缝密封;并在现浇洞门圈与管片之间加设一道水膨胀型止水条。

②现浇洞门圈与车站内衬墙之间的施工缝处加设两道水膨胀型止水条。

③洞门衬砌施工前应对管片背后进行二次注浆来加强防水,确保洞门施工的干燥作业面。

B.洞门处的施工临时防水①洞门环板:在车站内衬墙施工中预埋一环形钢板,其宽度为150mm,内径φ6620mm,外径φ6820mm。

环形钢板上加焊72只M20螺母,通过与螺栓结合来固定帘布橡胶板。

②洞门环板是洞口防水止浆设计的主要预埋构件,其精度高低将会影响盾构进出洞,施工中应严格控制其定位。

③帘布橡胶板:由氯丁橡胶加棉纱线、尼龙线复合而成,通过它和管片的密贴来防止管片背后注浆时的浆液外流。

④扇形压板:通过调节扇形压板的位置来压紧帘布橡胶板,保证帘布橡胶板在注浆压力下不翻转。

C.管片及洞门衬砌防水施工①除管片自防水外,衬砌环向、纵向缝防水构造均采用弹性橡胶密封垫,材质为三元乙丙橡胶和遇水膨胀橡胶。

②所有螺栓均进行防腐镀锌处理,螺孔和回填注浆孔均设置密封圈,其材质为遇水膨胀橡胶。

③为防止安装时密封垫角部受损和漏水,在密封垫外角部贴自粘性橡胶薄板。

④对密封垫贮存应注意防潮、防水,安装前在密封垫表面涂缓膨胀剂。

⑤盾构底部易积聚泥砂和泥水,安装拱底块前应严格清除泥砂,防止密封垫间夹泥砂而影响密封防水效果。

⑥封顶块、邻接块纵缝密封垫内设尼龙绳或帆布衬里,以限制插入时橡胶条的延伸。

封顶块两侧的密封垫在拼装前表面涂水性润滑剂(粘度300cps),以减低插入时的摩阻力。

⑦密封垫与管片间采用单组分氯丁-酚醛胶粘剂粘接。

⑵.隧道嵌缝堵漏防水施工在盾构掘进结束后对管片预留的接缝、手孔等处进行沟槽嵌缝、手孔封堵等防水处理。

A.嵌缝防水施工①清缝:刷去缝内泥砂和杂物,用清水冲洗干净。

②嵌入工字型水膨胀橡胶,嵌好后表面应平整,无歪斜和翘曲。

③涂刷双组分YJ-302界面处理剂。

④界面处理剂配合比为:甲组∶乙组∶水泥=1∶3∶4,在容器内拌匀并必须在2小时内用完。

界面处理剂涂刷范围是缝槽内壁及纵缝两侧15mm、环缝两侧各16mm范围内。

⑤加封氯丁胶乳水泥保护层氯丁胶乳水泥配合比为氯丁胶乳∶水泥=0.4∶1,在界面处理剂干燥前进行封填。

用配好的氯丁胶乳水泥封堵约1/2孔隙,并用“Ω”型泥刀在嵌缝槽面压出宽50mm、高10mm的“Ω”封口。

⑶.手孔填充处理施工①对拼装螺栓外露部分进行防腐处理:对个别螺栓镀锌处理后受损的涂防锈漆,其余清除锈渣和浮锈,然后涂水性防锈漆,再用快凝水泥严密封头,最后套上塑料保护罩。

保护罩上应适当钻孔以利水泥粘接。

②隧道下半断面的手孔用掺有微膨胀剂的细石混凝土填充,要求表面平整光滑,但整体道床范围内的手孔无此要求。

③拱底块上的螺栓外露部分全部涂防腐涂料,其他部分如有锈蚀也需涂防腐涂料。

④填充细石混凝土前,必须用配好的界面处理剂涂刷。

⑤填充细石混凝土前可留少许高度不填平,用水泥浆抹平,使其平整美观。

相关文档
最新文档