(完整版)原子结构知识点汇总

合集下载

原子的结构-元素知识点与练习

原子的结构-元素知识点与练习

原子的结构和元素知识点1:一、原子构成1、原子结构:(原子:化学变化中的最小粒子)⎧⎧⎨⎪⎩⎨⎪⎩质子(带一个单位正电荷)原子核(带正电)原子中子(不带电)核外电子(带一个单位负电荷)(1)质子数=核外电子数=核电荷数=原子序数(2)质子数不一定等于中子数(3)原子中不一定含有中子(4)原子不显电性的原因:在原子中,由于质子(原子核)与电子所带电荷数相等,但电性相反,所以整个原子不显电性。

以碳原子为例描述原子的组成构成碳原子的粒子有6个质子,6个中子和6个电子。

其中6个质子和6个中子构成了原子核作为原子的中心,而6个电子在核外一定空间内绕核做高速运动.2、原子核外电子排布(1)原子结构示意图:①第一层最多容纳2个电子,第二层最多容纳8个电子,第三层最多容纳18个电子。

②最外层电子层不超过8个,(只有一层的不超过2个)(2)三决定:①决定元素种类: 质子数(核电荷数)②决定元素化学性质: 最外层电子数③决定原子的质量:原子核说明:最外层电子数相同其化学性质不一定都相同(Mg,He最外层电子数为2) 最外层电子数不同其化学性质有可能相似(He,Ne均为稳定结构)知识点2:离子1.定义:是带电的原子或原子团,离子符号的意义见右图所示(数字“2”的意义)。

2.表示方法及意义:如Mg2+ :一个镁离子带2个单位正电荷3.离子的形成:阳离子:质子数〉电子数阴离子:质子数<电子数(1)金属元素的原子容易_失去__最外层电子,失去m个电子就带m个单位正电荷,表示为R m+。

Al。

如铝原子Al→铝离子 3(13=2+8+3)原子结构示意图阳离子结构示意图(13>2+8)(2)非金属元素的原子容易_得到__电子,达到8电子稳定结构,得到n个电子,就带n个单位负电荷,表示为Rn-。

如氧原子O→氧离子O2-。

(8=2+6)原子结构示意图 (8<2+8)阴离子结构示意图4. 原子和离子的比较原子离子数量关系核电荷数=质子数=电子数核电荷数=质子数>电子数核电荷数=质子数<电子数电性__中性________ _带正电荷_________ __带负电荷________稳定性不稳定,金属原子易失电子非金属原子易得电子稳定符号元素符号:H Al Cl 阳离子符号H+ Al3+阴离子符号Cl-结构示意图特点比对应原子少一个电子层电子层数不变与相同电子层数的惰性原子的核外电子排布相同相互转化知识点3:相对原子质量原子的质量非常小,使用起来很繁琐,不方便,一般不采用。

高中化学-原子结构知识点汇总

高中化学-原子结构知识点汇总

高中化学-原子结构知识点汇总1. 原子的组成- 原子是物质最小的基本单位,由原子核和电子构成。

- 原子核包含了质子和中子,质子带正电荷,中子不带电荷。

- 电子带负电荷,围绕原子核的轨道上运动。

2. 原子尺寸- 原子的尺寸非常小,一般以皮米(pm)为单位来表示。

- 原子的尺寸可以通过原子的半径来表示,常用皮米或安格斯特罗姆(Å)作为单位。

3. 原子质量- 原子的质量可以通过质子和中子的质量总和来表示。

- 原子的质量一般以原子质量单位(amu)来表示。

4. 元素周期表- 元素周期表是一种按照元素的原子序数(或原子数)排列而成的表格。

- 元素周期表按照元素的化学性质和电子结构进行分组和分类。

- 元素周期表包含了元素的基本信息,如元素符号、原子序数、原子质量等。

5. 原子的能级和电子排布- 原子中的电子分布在不同能级上,能级从内到外依次增加。

- 每个能级最多可以容纳一定数量的电子,第一能级最多容纳2个电子,第二能级最多容纳8个电子,以此类推。

- 电子的排布遵循一定的顺序和规律,如填充顺序、分区原则等。

6. 原子的离子与化合价- 原子可以失去或获得电子形成带电的离子。

- 失去电子的原子形成正离子(阳离子),获得电子的原子形成负离子(阴离子)。

- 原子的化合价是指原子与其他原子形成化合物时发生电荷转移的能力。

7. 同位素- 同位素是指原子核中质子数相同、中子数不同的同类原子。

- 同位素具有相同的化学性质,但物理性质和放射性性质可能会有所不同。

- 同位素常用质量数来表示,即中子数加上质子数的总和。

以上是高中化学中关于原子结构的知识点的汇总。

希望对你有帮助!。

原子结构与性质知识点归纳

原子结构与性质知识点归纳

第一章 原子结构与性质知识点归纳2.位、构、性关系的图解、表解与例析3.元素的结构和性质的递变规律同位素(两个特性)4.核外电子构成原理(1)核外电子是分能层排布的,每个能层又分为不同的能级。

(2)核外电子排布遵循的三个原理:a .能量最低原理b .泡利原理c .洪特规则及洪特规则特例(3)原子核外电子排布表示式:a .原子结构简图 b .电子排布式 c .轨道表示式 5.原子核外电子运动状态的描述:电子云 6.确定元素性质的方法1.先推断元素在周期表中的位置。

2.一般说,族序数—2=本族非金属元素的种数(1 A 族 除外)。

3.若主族元素族序数为m ,周期数为n ,则: (1)m/n<1时为金属,m/n 值越小,金属性越强:(2)m/n>1时是非金属,m/n 越大,非金属性越强;(3)m/n=1时是两性元素。

随着原子序数递增① 原子结构呈周期性变化② 原子半径呈周期性变化③ 元素主要化合价呈周期性变化④ 元素的金属性与非金属形呈周期性变化⑤ 元素原子的第一电离能呈周期性变化⑥ 元素的电负性呈周期性变化元素周期律 排列原则① 按原子序数递增的顺序从左到右排列 ② 将电子层数相同的元素排成一个横行 ③ 把最外层电子数相同的元素(个别除外),排成一个纵行周期 (7个 横行) ① 短周期(第一、二、三周期)② 长周期(第四、五、六周期)③ 不完全周期(第七周期)性质递变 原子半径主要化合价元 素 周期表族(18 个纵行) ① 主族(第ⅠA 族—第ⅦA 族共七个) ② 副族(第ⅠB 族—第ⅦB 族共七个) ③ 第Ⅷ族(第8—10纵行) ④结构第二章 分子结构与性质复习1.微粒间的相互作用(2)共价键的知识结构2.分子构型与物质性质(1)微粒间的相互作用σ键π键 按成键电子云 的重叠方式极性键 非极性键一般共价键 配位键离子键 共价键 金属键 按成键原子的电子转移方式 化学键 范德华力氢键 分子间作用力本质:原子之间形成共用电子对(或电子云重叠) 特征:具有方向性和饱和性σ键特征 电子云呈轴对称(如s —s σ键、 s —p σ键、p —p σ键)π键 特征电子云分布的界面对通过键轴的一个平面对称(如p —p π键)成键方式共价单键—σ键共价双键—1个σ键、1个π键共价叁键—1个σ键、2个π键 规律 键能:键能越大,共价键越稳定键长:键长越短,共价键越稳定键角:描述分子空间结构的重要参数用于衡量共价键的稳定性 键参数 共 价 键定义:原子形成分子时,能量相近的轨道混合重新组合成一组新轨道sp 杂化 sp 2杂化sp 3杂化 分类 构型解释: 杂化理论sp 杂化:直线型sp 2杂化:平面三角形sp 3杂化:四面体型杂化轨道理论 价电子理论 实验测定 理论推测 构型判断 分 子 构 型共价键的极性 分子空间构型决定因素由非极性键结合而成的分子时非极性分子(O 3除外),由极性键组成的非对称型分子一般是极性分子,由极性键组成的完全对称型分子为非极性分子。

《原子的结构》知识点

《原子的结构》知识点

《原子的结构》必记知识点知识点一原子的结构1.原子是由居于原子中心的__原子核__与__核外电子__构成的。

原子核是由__质子__和__中子__构成的,每个质子带1个单位的__正__电荷,每个电子带1个单位的__负__电荷,中子__不带电__。

2.原子核内质子所带电荷与核外电子所带电荷__数量相等__,__电性相反__,因此原子__不显电性__。

3.原子中,__核电荷数=核内质子数=核外电子数__。

4.__核内质子数__不同,原子的种类不同。

知识点二原子核外电子的排布1.(1)原子是一个__空心__球体,原子核体积很__小__,原子内部大部分空间被__电子__占据。

(2)原子核外电子是__分层__排布的。

原子的核外电子最少的只有一层,最多的有七层,最外层电子数不超过__8__个(只有一层的,电子数不超过__2__个)。

(3)原子核外电子的分层排布可以用__原子结构示意图__来表示。

以钠原子的结构示意图为例,各部分表示的含义分别为:①圆圈表示__原子核__;②圆圈内“+”表示__原子核带正电荷__;③数字“11”表示__核电荷数__;④弧线表示__电子层__;⑤弧线上的数字表示__各电子层上的电子数__。

(原子结构示意图的五个要素)知识点三离子1.带正电的原子或原子团叫做__阳离子__,带负电的原子或原子团叫做__阴离子__。

2.离子也是构成物质的一种微粒,由离子构成的物质,其化学性质由离子保持。

如保持NaCl 化学性质的最小粒子是__Na+__和__Cl-__。

3.离子符号:钠离子__Na+__;镁离子__Mg2+__;氯离子__Cl-__;硫离子__S2-__。

4.离子符号中数字的意义:Na+__每个钠离子带1个单位的正电荷__;Mg2+__每个镁离子带2个单位的正电荷__;Cl-__每个氯离子带1个单位的负电荷__;3Fe2+__3个亚铁离子,每个亚铁离子带2个单位的正电荷__。

难点点拨:原子和离子的区别与联系注意:1.原子得失电子形成离子时只是核外电子发生改变,核内质子数不变。

原子结构知识点

原子结构知识点

原子结构知识点原子是构成物质的最基本单位,了解原子结构的知识是理解化学和物理学的基础。

本文将介绍原子的基本结构以及与之相关的重要概念和理论。

1. 原子的组成原子由带正电荷的质子、不带电荷的中子和带负电荷的电子组成。

质子和中子位于原子核中心的质子核内,电子则在质子核外围的电子云中运动。

2. 元素和原子序数元素是由原子组成的。

每个元素都有一个独特的原子序数,即其原子核中质子的数量。

例如,氢的原子序数为1,氧的原子序数为8。

3. 原子质量原子质量等于其质子和中子的总质量。

通常以原子质量单位(amu)表示,其中氢的质量被定义为1 amu。

相对原子质量是相对于碳-12同位素而言的,碳-12被定义为12 amu。

4. 原子结构模型有许多原子结构模型,其中最著名的是波尔模型。

根据波尔模型,电子绕着原子核以特定能级(轨道)运动。

每个电子能级有固定的能量。

5. 电子排布根据泡利不相容原理,每个电子的量子状态是唯一的。

每个电子在能级中的能量和位置是不同的。

根据能级填充顺序,电子遵循阜那诺定律、洪特规则和保里排斥原理。

6. 原子间互作用物质的性质很大程度上取决于原子间的相互作用。

这些相互作用包括离子键、共价键和金属键。

离子键通过正负电荷之间的相互吸引力来形成,共价键则通过电子对之间的共享来形成。

7. 常见原子结构理论量子力学为理解原子结构和行为提供了理论基础。

包括德布罗意假设、波函数和薛定谔方程等理论。

这些理论描述了电子在原子中的运动轨迹和能级分布。

8. 原子光谱原子的结构和能级导致原子能够吸收和发射特定波长的电磁辐射,形成了原子光谱。

原子光谱可以用来确定元素的存在、深入研究原子结构和进一步理解光和能量的关系。

总结原子结构是一个广泛而深奥的领域,涉及物理、化学和量子力学等多个学科。

了解原子的组成、电子排布和原子间互作用等知识点,可以帮助我们更好地理解化学反应、物质性质以及电子结构的重要性。

通过研究原子结构,我们可以洞察微观世界的奥秘,并将其应用于生活和科学研究中。

高中化学原子结构知识点总结

高中化学原子结构知识点总结

原子结构知识点总结第1课时原子核核素一、原子的构成1. 原子的质量主要集中在原子核上。

2. 质子和中子的相对质量都近似为1,电子的质量可忽略。

3. 带电特点:微粒质子中子电子带电特点一个质子带一个单位的正电荷不带电一个电子带一个单位的负电荷原子序数=核电核数=质子数=核外电子数4. 质量数(A) = 质子数(Z) + 中子数(N)5. 在化学上,我们用符号A Z X来表示一个质量数为A,质子数为Z的具体的X原子。

二、核素1. 元素、核素、同位素、同素异形体的比较元素核素同位素同素异形体定义具有相同核电荷数(质子数)的同一类原子的总称具有一定数目的质子和一定数目的中子的一种原子称为核素。

一种原子即为一种核素同一种元素的不同核素间互称为同位素相同元素组成,不同形态的单质本质质子数(核电荷数)相同的一类原子质子数、中子数都一定的一类原子质子数相同、中子数不同的核素的互称同种元素的不同单质范畴同类原子,存在游离态、化合态两种形式原子原子单质特性只有种类,没有个数化学反应中的最小微粒物理性质不同化学性质相同一种元素组成,独立存在决定质子数质子数、中子数质子数、中子数组成元素、结构举例H、C、N是三种元素11H、21H、31H是三种核素23492U、23592U、23892U O2与O32. 元素、核素、同位素、同素异形体的联系三、原子或离子中微粒间的数量关系1. 原子或离子中核电荷数、质子数、中子数及核外电子数之间的关系(1)质子数+ 中子数= 质量数= 原子的近似相对原子质量(2)原子的核外电子数= 核内质子数= 核电荷数(3)阳离子核外电子数= 核内质子数–电荷数(4)阴离子核外电子数= 核内质子数+ 电荷数(5)除11H外,其它元素的原子中,中子数≥质子数原子AZX原子核质子Z个中子N个=(A-Z)个核外电子Z个原子的质量数原子的相对原子质量元素的相对原子质量区别原子的质量数是该原子内所有质子和中子数的代数和,都是正整数原子的相对原子质量,是指该原子的真实质量与126C质量的121的比值,一般不是正整数元素的相对原子质量是由天然元素的各种同位素的相对原子质量与其在自然界中所占原子个数的百分比的积的加和得来。

高中化学-原子结构知识点汇总

高中化学-原子结构知识点汇总

高中化学-原子结构知识点汇总
1. 原子的组成:
- 原子由质子、中子和电子组成。

- 质子位于原子核中,带有正电荷。

- 中子也位于原子核中,没有电荷。

- 电子绕着原子核运动,带有负电荷。

2. 原子的基本性质:
- 原子的质量数等于质子数加上中子数。

- 原子的电荷数等于质子数减去电子数。

3. 原子的核结构:
- 原子核是原子的中心部分,由质子和中子组成。

- 原子中电子围绕着原子核运动。

4. 原子的电子结构:
- 电子以壳层的方式分布在原子周围。

- 第一壳层最多可容纳2个电子。

- 第二壳层最多可容纳8个电子。

- 第三壳层最多可容纳18个电子。

- 原子的化学性质主要取决于外层电子的数量和分布。

5. 原子的元素周期表:
- 元素周期表是将元素按照原子序数和元素性质分类的表格。

- 元素周期表中的每一行称为一个周期,每一列称为一个族。

- 周期表中的元素按照原子序数递增排列。

6. 原子的同位素:
- 同位素是指具有相同质子数但中子数不同的元素。

- 同位素的质量数不同,但化学性质相似。

以上是高中化学中关于原子结构的一些基本知识点。

希望对你有帮助!。

原子结构与性质知识点总结

原子结构与性质知识点总结

原子结构与性质知识点总结(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章原子结构与性质一.原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。

能级交错:由构造原理可知,电子先进入4s 轨道,后进入3d 轨道,这种现象叫能级交错。

说明:构造原理并不是说4s 能级比3d 能级能量低(实际上4s 能级比3d 能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。

也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。

(2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量说明:构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。

(3)泡利(不相容)原理基态多电子原子中,不可能同时存在4个量子数完全相同的电子。

换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。

(4)洪特规则 当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。

比如,p3的轨道式为或,而不是。

洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。

即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。

前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。

原子的结构知识点

原子的结构知识点

原子的结构知识点原子结构知识点1. 原子定义原子是物质的基本单位,由原子核和围绕核的电子组成。

2. 原子核- 组成:原子核由质子和中子组成,统称为核子。

- 质子:带有正电荷,质量约为1个原子质量单位(u)。

- 中子:不带电,质量与质子相近,也约为1 u。

3. 电子- 带有负电荷,质量极小,约为1/1836 u。

- 电子在原子核外围按照特定的能级和轨道运动。

4. 能级和轨道- 能级:电子所处的能量状态,通常用主量子数n表示,n的值越大,电子与原子核的距离越远,能量越高。

- 轨道:电子在空间中运动的轨迹,由角量子数l和磁量子数m决定。

5. 量子数- 主量子数(n):决定电子的能级,取值为正整数(1, 2,3, ...)。

- 角量子数(l):决定电子轨道的形状,取值范围从0到n-1。

- 磁量子数(m):决定电子轨道在空间中的具体位置,取值范围从-l到+l,包括0。

- 自旋量子数(s):描述电子自旋状态,取值为+1/2或-1/2。

6. 原子的化学性质- 化学性质主要由原子最外层电子(价电子)的数量决定。

- 原子通过共享、转移或重新排列价电子来形成化学键。

7. 原子符号- 原子符号表示元素的化学符号,左上角表示原子序数(质子数),左下角表示原子质量数(质子数+中子数)。

8. 同位素- 同位素是具有相同原子序数(质子数相同)但不同质量数(中子数不同)的原子。

9. 原子的结合能- 结合能是指将原子核中的核子(质子和中子)从原子核中分离出来所需的能量。

- 结合能越大,原子核越稳定。

10. 原子光谱- 原子光谱是由于电子在能级间跃迁时发射或吸收特定频率的光而产生的。

- 每种元素的原子光谱都是独特的,可用于识别和分析元素。

11. 原子的电离- 电离是指原子或分子失去或获得电子的过程。

- 电离能是指移除一个电子所需的最小能量。

12. 原子的放射性- 放射性原子通过放射性衰变过程自发地转变为其他元素的原子。

- 放射性衰变有三种类型:α衰变、β衰变和γ衰变。

第一章 原子结构与元素周期律 知识点

第一章 原子结构与元素周期律 知识点

第一章原子结构元素周期律考点一、原子结构核外电子排布一、原子构成1.构成原子的微粒及其作用原子(A Z XZ 个)——决定元素的种类[(A -Z )个]在质子数确定后决定原子种类同位素Z 个)——最外层电子数决定元素的化学性质2.质量数(1)概念:将原子核中质子数和中子数之和称为质量数,常用A 表示。

(2)质量数为A ,质子数为Z 的X 原子可表示为A Z X 。

如:146C 的质量数为14,质子数为6,中子数为8。

2311Na +的质量数为23,质子数为11,核外电子数为10。

3.微粒之间的关系(1)原子中:质子数(Z )=核电荷数=核外电子数(2)质量数(A )=质子数(Z )+中子数(N )。

(3)阳离子的核外电子数=质子数-阳离子所带的电荷数。

(4)阴离子的核外电子数=质子数+阴离子所带的电荷数。

4.【拓展】微粒符号周围数字的含义二、元素、核素、同位素1.元素、核素、同位素的关系【特别提醒】1.同位素的研究对象是原子;不同核素之间的转化属于核反应,不属于化学反应。

2.同位素的“六同”:同一元素,质子数相同,核电荷数相同,和外电子数相同,在元素周期表中位置相同,化学性质相同。

“三不同”:中子数不同,质量数不同,物理性质不同。

3.氢元素的三种核素11H :用字母H 表示,名称为氕,不含中子;21H :用字母D 表示,名称为氘或重氢,含有1个中子;31H :用字母T 表示,名称为氚或超重氢,含有2个中子。

4.几种重要核素的用途核素23592U 146C 21H 31H用途核燃料考古断代制氢弹三、核外电子排布1.核外电子排布规律2.核外电子排布的表示方法——原子或离子结构示意图(1)原子结构示意图:(2)离子结构示意图:如Cl-:、Na+:。

3.核外电子排布与元素性质的关系(1)金属元素原子的最外层电子数一般小于4,较易失去电子,形成阳离子,表现出还原性,在化合物中显正化合价。

“”(2)非金属元素原子的最外层电子数一般大于或等于4,较易得到电子,活泼非金属原子易形成阴离子,表现出氧化性,在化合物中主要显负化合价。

原子结构与元素周期律知识点

原子结构与元素周期律知识点

原子结构与元素周期律知识点一、原子结构1.原子的组成原子是最基本的化学单位,它由质子、中子和电子组成。

质子带有正电荷,中子不带电荷,电子带有负电荷。

质子和中子集中在原子核中,而电子则围绕原子核运动。

2.元素的定义元素是由具有相同原子序数的原子组成的物质。

原子序数是元素的核外电子数目,也是元素在元素周期表中的位置。

3.原子的大小原子的大小可以通过原子的半径来表示。

原子半径通常用皮克米(pm)来表示,1pm=1×10^-12m。

原子的半径随着元素的原子序数增加而增加。

4.原子的质量原子的质量可以通过原子的相对原子质量来表示。

相对原子质量是以碳-12同位素为标准进行比较的,碳-12同位素的相对原子质量为12、相对原子质量可以通过元素周期表上的数值来获得。

5.原子核原子核是原子的中心部分,其中包含了质子和中子。

原子核的直径约为1×10^-15m,而整个原子的直径约为1×10^-10m,因此原子核只占据原子体积的很小一部分。

6.原子的电子排布原子的电子排布遵循能量最低原理,即通过填充电子能级和轨道来达到最低能量状态。

根据泡利不相容原理,每个轨道最多只能容纳2个电子,且这两个电子的自旋必须相反。

7.原子的电子壳层和能级原子的电子分布在不同的壳层和能级上。

壳层按主量子数来编号,第一个壳层为K壳,第二个壳层为L壳,依次类推。

能级是指在同一个壳层上,不同轨道的电子所具有的能量。

8.原子的价电子价电子是原子中最外层的电子,它决定了原子的化学性质。

元素周期表中的元素按照价电子数目的增加顺序排列。

二、元素周期律1.元素周期表的构成元素周期表是一种将元素按照原子序数和化学性质的周期性排列的表格。

它由原子序数递增的一系列水平行(周期)和垂直列(族)组成。

2.元素周期表的分区元素周期表可以分为s区、p区、d区和f区。

s区包含1个周期,p区包含6个周期,d区包含10个周期,f区包含14个周期。

3.元素周期表的主族和过渡元素元素周期表中的1A-2A和3A-8A族元素称为主族元素,它们的电子配置在外层壳层上有相似的组成。

原子的结构知识点总结

原子的结构知识点总结

一、认识原子核1、原子(为中性)的构成电性角度电荷数关系原子带=质子带=电子带阳离子(原子失去电子达到稳定时)核电荷数>核外电子数阴离子(原子得到电子达到稳定时)核电荷数〈核外电子数质量角度原子的质量主要在质子和中子●数值角度质量数(A)=质子数(Z)+中子数(N)(近似整数值上相加等式成立)❍原子表达式字母分别代表以(氧气)和(水中O带-2价)(O离子带两个负电荷)为例知A(质量数)d(化合价)n(原子个数)Z (质子数) c(带电量)2、 元素定义:具有相同荷电荷数(即核内质子数的)一类原子的总称核素定义:具有一定质子数和中子数的一种原子为一种核素●同位素定义:同一元素的不同核素之间互称为同位素(即质子数相同中子数不同的同一元素的不同原子)3、实际应用1)医学于显影、诊断、治疗、消毒等2)农业上的辐射育种技术,提高农产品的质量和数量3)的放射性被应用于考古时代4)和是制造氢弹的材料二、原子的半径影响原子半径的因素(三个):一是核电荷数(核电荷数越多原子核对核外电子的引力越大(使电子向原核收缩),则原子半径越小;当电子层数相同时,其原子半径随核电荷数的增加而减小;二是最外层电子数,最外层电子数越多半径越大;三是电子层数(电子的分层排布与离核远近空间大小以及电子云之间的相互排斥有关),电子层越多原子半径越大。

当电子层结构相同时,质子数越大,半径越小1。

电子层数越多原子半径就越大(适用于同主族)2。

核内质子多那么原子核质量就大对电子的束缚能力就强原子半径反而越小3。

电子数越多原子半径越大比较同一周期的原子半径大小就看核内质子数比较同一族元素就看电子层数如果两种元素的周期和族都不同那么主要考虑电子层数与最外层电子数一般没有关系。

原子知识点总结

原子知识点总结

原子知识点总结一、原子的构成。

1. 原子的组成粒子。

- 原子是由居于原子中心的原子核和核外电子构成的。

- 原子核由质子和中子构成(氢原子特殊,只有1个质子,没有中子)。

- 质子带正电,中子不带电,电子带负电。

2. 粒子间的数量关系。

- 原子序数 = 核电荷数 = 质子数 = 核外电子数。

- 相对原子质量≈质子数 + 中子数。

- 例如,氧原子的原子序数为8,其质子数为8,核外电子数为8;氧原子的相对原子质量约为16,其中质子数为8,则中子数约为16 - 8 = 8。

3. 原子的电性。

- 由于原子核所带的正电荷数(核电荷数)与核外电子所带的负电荷数相等,所以原子整体不显电性。

二、原子结构示意图。

1. 结构示意图的表示方法。

- 原子结构示意图是表示原子核电荷数和电子层排布的图示形式。

- 小圆圈表示原子核,圆圈内的数字表示质子数(即核电荷数),弧线表示电子层,弧线上的数字表示该层上的电子数。

- 例如,钠原子(Na)的原子结构示意图:,其中圆圈内的11表示钠原子的质子数为11,有3个电子层,第一层有2个电子,第二层有8个电子,第三层有1个电子。

2. 最外层电子数与元素性质的关系。

- 最外层电子数决定元素的化学性质。

- 当最外层电子数为8(氦为2)时,原子达到相对稳定结构,化学性质比较稳定。

- 金属元素原子的最外层电子数一般少于4个,在化学反应中易失去电子形成阳离子。

例如,钠原子最外层有1个电子,在化学反应中易失去1个电子形成带1个正电荷的钠离子(Na⁺)。

- 非金属元素原子的最外层电子数一般多于4个,在化学反应中易得到电子形成阴离子。

例如,氯原子最外层有7个电子,在化学反应中易得到1个电子形成带1个负电荷的氯离子(Cl⁻)。

三、相对原子质量。

1. 定义。

- 以一种碳原子(碳 - 12)质量的1/12为标准,其他原子的质量跟它相比较所得到的比,作为这种原子的相对原子质量(符号为Ar)。

2. 单位。

- 相对原子质量是一个比值,单位为“1”,通常省略不写。

原子结构-高中化学知识点总结大全

原子结构-高中化学知识点总结大全

一、原子结构的基本概念1. 原子:物质的基本单位,由原子核和核外电子组成。

2. 原子核:原子的中心部分,由质子和中子组成,带正电荷。

3. 质子:原子核中的带正电荷的粒子,决定元素的种类。

4. 中子:原子核中的不带电荷的粒子,对原子质量有影响。

5. 电子:原子核外的带负电荷的粒子,绕核运动,决定原子的化学性质。

二、原子核外电子排布1. 电子层:原子核外电子运动的区域,分为K、L、M、N等层。

2. 电子云:描述电子在原子核外空间分布的形象化模型。

3. 能级:电子在原子核外运动时具有的能量状态。

4. 电子排布原则:电子在原子核外按能量最低原则依次填充各个能级。

5. 泡利不相容原理:一个原子轨道上最多只能容纳两个自旋方向相反的电子。

6. 洪特规则:在等价轨道上,电子尽可能单独占据一个轨道,且自旋方向相同。

三、原子结构与元素周期表1. 元素周期表:根据元素的原子序数和化学性质排列的表格。

2. 周期:元素周期表中的横行,表示电子层数相同。

3. 族:元素周期表中的纵行,表示元素的最外层电子数相同。

4. 主族元素:周期表中1A至8A族的元素,最外层电子数等于族序数。

5. 副族元素:周期表中1B至8B族的元素,最外层电子数不等于族序数。

6. 稀有气体:周期表中0族的元素,最外层电子数为8(氦为2),化学性质稳定。

四、化学键与分子结构1. 化学键:相邻原子之间的强烈相互作用,分为离子键、共价键、金属键等。

2. 离子键:正负离子之间的静电作用,形成的化合物为离子化合物。

3. 共价键:原子间通过共享电子对形成的化学键,形成的化合物为共价化合物。

4. 金属键:金属原子间通过自由电子形成的化学键,形成的物质为金属晶体。

5. 分子结构:分子中原子之间的相对位置和化学键的排列。

6. 分子极性:分子中正负电荷中心不重合,产生偶极矩,导致分子具有极性。

五、原子结构与化学反应1. 化学反应:原子、分子或离子之间的相互作用,导致物质组成、结构和性质的变化。

原子的结构知识点总结

原子的结构知识点总结

原子的结构知识点总结1.原子的概念:原子是构成物质的最小粒子,由带正电荷的质子、带负电荷的电子和电中性的中子组成。

原子的直径约为0.1纳米。

2. 原子核:原子核是原子的中心部分,由质子和中子组成。

质子的质量是中子的约2倍,且都是质子质量单位(amu)的单位。

原子核的直径约为10^-5纳米,直径与整个原子的直径比例为1:10,000。

3.电子云:电子云是电子在原子周围的空间分布,描述了电子的可能位置。

根据量子力学理论,电子云存在各种能量级别的轨道,电子不能在轨道之间连续移动,只能跃迁到具有合适能量的轨道上。

4.轨道:轨道是描述电子在原子中可能找到的位置的功能。

主量子数决定能量级别和轨道大小,主量子数n的平方是一个轨道所能容纳电子的最大数目。

每个轨道可以容纳不超过2个电子。

5.能级分布:在原子中,能级依次增加。

第一能级最低,以此类推。

能级间的差异是电子能量的差异。

电子填充能级时尽量填充低能级。

6.电子排布:按构建原子的原子序数排布,如H(氢)有1个电子,He(氦)有2个电子,Li(锂)有3个电子等。

按能级填充原子中的电子。

7.原子核结构:原子核由质子和中子组成,质子带正电荷,中子无电荷。

原子核的质量和电荷都集中在非常小的范围内。

8.原子量和原子序数:原子量是一个原子中质子和中子的总数。

原子序数是一个原子中质子数(也是电子数)的数目。

原子序数决定了元素的化学性质。

9.同位素:同位素是原子序数相同但质量数不同的原子,它们具有相同的化学特性。

10.质子数与电子数:一个元素的原子质子数与电子数相同,因为一个原子是电中性的。

11.电子的能级跃迁:电子可以从一个能级跃迁到另一个能级,吸收或释放能量,导致光的发射或吸收。

这解释了原子光谱和电子能级。

12.元素周期表:元素周期表按照原子序数(即质子数)的增加顺序排列。

元素周期表显示不仅每个元素的质子数,而且还显示了元素的原子量、符号和名称。

13.原子的量子力学模型:量子力学模型通过描述原子内部发生的量子力学过程,提供了对原子结构的更深入的理解。

原子结构-高中化学知识点总结大全

原子结构-高中化学知识点总结大全

一、原子的基本构成原子是化学元素的基本单位,由原子核和核外电子组成。

原子核位于原子的中心,由质子和中子组成。

质子带正电荷,中子不带电荷。

核外电子带负电荷,围绕原子核运动。

二、原子的电子排布电子在原子中的排布遵循能级原理,即电子先占据能量较低的能级,再依次占据能量较高的能级。

每个能级上的电子数不超过该能级的最大容纳电子数,遵循泡利不相容原理和洪特规则。

三、原子的化学性质原子的化学性质主要由最外层电子(价电子)的数目和排布决定。

原子的化学性质包括原子半径、电离能、电子亲和能、电负性等。

这些性质影响着原子的化学活性和化合物的形成。

四、同位素同位素是指具有相同原子序数但质量数不同的原子。

同位素在原子核中质子数相同,但中子数不同。

同位素的存在使得元素的原子质量呈现一定的范围。

五、离子离子是带电的原子或原子团。

离子可以分为阳离子和阴离子。

阳离子带正电荷,阴离子带负电荷。

离子在化学反应中起着重要作用,如酸碱反应、沉淀反应等。

六、化学键化学键是原子之间相互作用的力,使原子结合成分子或离子化合物。

化学键包括离子键、共价键、金属键等。

离子键是由正负离子之间的电荷吸引力形成的,共价键是由原子之间共享电子对形成的,金属键是由金属原子之间的自由电子形成的。

七、分子结构分子是由两个或多个原子通过化学键结合而成的。

分子结构包括分子的形状、键长、键角等。

分子的形状和键角决定了分子的性质和化学反应的能力。

八、化学反应化学反应是原子、分子或离子之间发生的化学变化。

化学反应包括合成反应、分解反应、置换反应、酸碱反应等。

化学反应遵循质量守恒定律和能量守恒定律。

九、化学方程式化学方程式是用化学符号和化学式表示化学反应的式子。

化学方程式遵循质量守恒定律和电荷守恒定律。

化学方程式中的反应物和物的化学式要平衡,反应物和物的系数要满足质量守恒定律。

十、实验技能实验技能是化学学习中不可或缺的一部分。

实验技能包括实验设计、实验操作、实验观察、实验结果分析等。

原子结构与性质知识点总结

原子结构与性质知识点总结

第一章 原子结构与性质一.原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。

能级交错:由构造原理可知,电子先进入4s 轨道,后进入3d 轨道,这种现象叫能级交错。

说明:构造原理并不是说4s 能级比3d 能级能量低(实际上4s 能级比3d 能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。

也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。

(2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量说明:构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。

(3)泡利(不相容)原理基态多电子原子中,不可能同时存在4个量子数完全相同的电子。

换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。

(4)洪特规则当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。

比如,p3的轨道式为或,而不是。

洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全↑↓ ↑↓ ↓ ↓ ↑ ↑ ↑充满时,原子处于较稳定的状态。

即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。

前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn3d104s2、36Kr 4s24p6。

4. 基态原子核外电子排布的表示方法(1)电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、阴极射线电子的发现
1.科学家用真空度很高的真空管做放电实验时,发现真空管阴极发射出的一种射线,叫做阴极射线.
2.阴极射线的特点:
(1)在真空中沿直线传播; (2)碰到物体可使物体发出荧光
3.电子的发现
汤姆孙让阴极射线分别通过电场或磁场,根据偏转情况,证明了它的本质是带负电的粒子流并求出了其比荷.
4.密立根通过著名的“油滴实验”精确地测出了电子电荷.电子电荷量一般取e=1.6×10-19 C,电子质量m e=9.1×10-31 kg.
二、粒子散射实验和原子核结构模型
⑴粒子散射实验:1909年,卢瑟福及助手盖革和马斯
顿完成的.
①装置:如右图。

②现象:a. 绝大多数粒子穿过金箔后,仍沿原来方
向运动,不发生偏转。

b. 有少数粒子发生较大角度的偏转
c.有极少数粒子的偏转角超过了90°,有的几乎达到180°,即被反向弹回。

⑵原子的核式结构模型:
1911年,卢瑟福通过对粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

原子核半径约为10-15m,原子轨道半径约为10-10 m。

三、光谱和光谱分析
1.光谱的定义:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录.
2.特征谱线:各种原子的发射光谱都是线状谱,说明原子只发出几种特定频率的光,不同原子的亮线位置不同,说明不同原子的发光频率不一样,光谱中的亮线称为原子的特征谱线.
3.应用:利用原子的特征谱线,可鉴别物质和确定物质的组成成分,该方法称为光谱分析。

4.光谱分析:一种元素,在高温下发出一些特点波长的光,在低温下,也吸收这些波长的光,所以把明线光波中的亮线和吸收光谱中的暗线都称为该种元素的特征谱线,用来进行光谱分析。

(1)优点:灵敏度高,分析物质的最低量达10-10 g.
(2)应用:a.发现新元素;b.鉴别物体的物质成分.
(3)用于光谱分析的光谱:线状光谱和吸收光谱
5.氢原子光谱的实验规律
(1)氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性.
(2)巴耳末公式
①巴耳末对氢原子光谱的谱线进行研究得到
了下面的公式:
1
λ=R(
1
22-
1
n2)(n=3,4,5,…),
该公式称为巴耳末公式.式中R叫做里德伯常量,实验值为R=1.10×107 m-1.
②巴耳末公式说明氢原子光谱的波长只能取分立值,不能取连续值.巴耳末公式以简洁的形式反映了氢原子的线状光谱,即辐射波长的分立特征.
比较
光谱
概念产生条件光谱形式及应用
线状
光谱
光谱是一条条的
亮线.
稀薄气体发光形成的光

一些不连续的明线组成,不同元素
的明线光谱不同(又叫特征光谱),
可用于光谱分析连续
光谱
光谱是连在一起
的光带.
炽热的固体、液体和高压
气体发光形成的
连续分布,一切波长的光都有
吸收
光谱
光谱中有一条一
条的暗线
炽热的白光通过温度较
白光低的气体后,再色散
形成的
用分光镜观察时,见到连续光谱背
景上出现一些暗线(与特征谱线相
对应),可用于光谱分析
第十八章《原子结构》知识点汇总
四、玻尔的原子模型
1.轨道量子化
(1)原子中的电子在库仑引力的作用下,绕原子核做圆周运动.
(2)电子运行轨道的半径不是任意的,也就是说电子的轨道是量子化的
(3)电子在这些轨道上绕核的转动是稳定的,不产生电磁辐射.
2.定态
(1)当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是量子化的,这些量子化的能量值叫做能级.
(2)原子中这些具有确定能量的稳定状态,称为定态.
(3)基态:原子能量最低的状态称为基态,对应的电子在离核最近的轨道上运动,氢原子基态能量E1=-13.6 eV.
(4)激发态:较高的能量状态称为激发态,对应的电子在离核较远的轨道上运动.
3.频率条件与跃迁
当电子从能量较高的定态轨道(其能量记为E m)跃迁到
能量较低的定态轨道(能量记为E n,m>n)时,会放出能量
为hν的光子,该光子的能量hν=E m-E n,该式称为频率
条件,又称辐射条件.
(1)能级图中的横线表示氢原子可能的能量状态——定态.
(2)横线左端的数字“1,2,3,…”表示量子数,右端的数字“-13.6,-3.4,…”表示氢原子的能级.
(3)相邻横线间的距离,表示相邻的能级差,量子数越大,相邻的能级差越小.
(4)带箭头的竖线表示原子由较高能级向较低能级跃迁,原子跃迁条件为hν=E m-E n. 注:(1)电子轨道半径越大,电子绕核运动的动能越小.
(2)当电子的轨道半径增大时,库仑引力做负功,原子的电势能增大,反之,电势能减小.
(3)电子的轨道半径增大时,说明原子吸收了光子,从能量较低的轨道跃迁到了能量较高的轨道上.即电子轨道半径越大,原子的能量越大.4.解释氢原子光谱的不连续性
原子从高能级向低能级跃迁时放出的光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线.5.解释不同原子具有不同的特征谱线
不同的原子具有不同的结构,能级各不相同,因此辐射(或吸收)的光子频率也不相同.
五、玻尔理论的局限性
1.成功之处
玻尔理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律.
2.局限性
保留了经典粒子的观念,把电子的运动仍然看做经典力学描述下的轨道运动.
3.电子云
原子中的电子没有确定的坐标值,我们只能描述电子在某个位置出现概率的多少,把电子这种概率分布用疏密不同的点表示时,这图象就像云雾一样分布在原子核周围,故称电子云.
六、对玻尔原子模型的理解
1.氢原子的半径公式
r
n
=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,r1=0.53×10-10 m.
2.氢原子的能级公式
氢原子的能级公式:E n=
1
n2
E
1
(n=1,2,3,…),其中E1为基态能量,E1=-13.6 eV.
3.大量处于n激发态的氢原子向基态跃迁时,最多可辐射
2
)1
(
n
n种不同频率的光,一个处于激发态的氢原子向基态跃迁时,最多可辐射(n-1)种频率的光子.。

相关文档
最新文档