高考数学选择题怎么选

合集下载

高考数学选择题的常见解法

高考数学选择题的常见解法
r z 1 ≥ O, z( 一 )
值、 特殊 数 列 、 殊 函数 、 殊 图形 、 特 特 特殊 角、 殊位 置 特
等.
解: 由 1≥ O
【 3 ( 08 全 国 ) 函数 Y一 - - 与 函数 Y= 例 】 20 , 若 厂z ()
点评 : 直接 法是解 答选择 题 最 常用 的基本 方 法, 低
用是 解 选择 题 的 常 用 方 法.
质、 定理 、 法则 等知识 , 过推理运 算 , 出结 论 , 通 得 再对 照
选择项 , 中选出正确答案 的方法叫直接法 . 从 【 1 (0 8 全 国) 例 】 20 , 函数 一
义域为 ( ) . B { z 1 .z{≥ } D { l4 z 1 . z o ≤ ) z 1 z O 可得 选 项 c ≥ 或 ≥ . .
【 2 (0 8 江 西) 例 】 20 , 函数 —tn + s 一 l n ax i 眦 z t c a
—i 在 间号, 内 图 大 是 ) s 区 ( ) 的 象 致 ( . 眦l
4 代入法 : 各个选 择项 逐 一代 入题 设 进行检 验 , . 将 从 而作 出正确判 断 的方法 叫代入法 , 又称 为验证法 , 即 将 各选择 支分别 作为 条件 , 去验证命 题 , 能使 命题成 立 的选择支就是正 确答案 .
交 点 还 可 以 在 圆 内 , 可 以在 圆 外 . 此 , 圆 与 过 圆直 也 因 从
径 两端点所作的两相交直线 的关 系来看 , 可将勾 股定理
加 以推 广 .
味 求 快 则 会 快 中 出错 .
l ̄z n / +l的图象关 于直 - 一 对称 , 厂 z =( 则 ()
A. 2- eX 2 B. ez C. 州 e D

2024年高考数学复习各题型解答方法总结

2024年高考数学复习各题型解答方法总结

2024年高考数学复习各题型解答方法总结一、选择题解答方法:选择题是高考数学中常见的题型,解答时需要注意以下几点:1. 仔细阅读题目:选择题通常给出了多个选项,要在其中选择正确的答案,所以需要仔细阅读题目,理解题意。

2. 排除法:如果对某个选项确定是错误的,可以直接排除掉,这样可以缩小范围,提高解题效率。

通过排除法,可以找出正确答案。

3. 筛选法:某些选择题的选项中有多个是正确答案,这时可以通过筛选法找出所有正确答案。

首先找出其中一个正确答案,然后再观察其他选项,看是否满足条件,以确定所有正确答案。

4. 推理法:有些选择题需要通过推理来确定答案,需要将题目中给出的条件进行分析,并运用相关知识进行推理,找出正确答案。

二、填空题解答方法:填空题是高考数学中另一种常见的题型,解答时需要注意以下几点:1. 明确题目要求:填空题通常要求填入一个数值,有时也可以是一个表达式。

在填写答案前,要先弄清楚题目要求填什么。

2. 利用已知条件:填空题中常会给出一些已知条件,可以根据这些条件来确定答案。

通过将已知条件代入等式或运用相关关系,可以得到待填空的数值,或者用待填空的变量表达式表示答案。

3. 反推法:有些填空题通过反推法也可以确定答案。

通过比较题目中给出的条件和填空选项的关系,可以反推出待填空的数值或表达式。

4. 多种途径:填空题可以有多种解法,可以多角度思考和尝试。

如果一种方法无法确定答案,可以尝试其他方法,找出最适合的解答途径。

三、解答题解答方法:解答题是高考数学中相对较难的题型,解答时需要注意以下几点:1. 理清思路:解答题一般需要通过一系列的步骤来解决问题,首先要理清思路,明确步骤和方法,避免盲目性解题。

2. 规范书写:解答题需要写清楚解题过程和推理思路,并在重要的步骤和结论处用画线等方式标注出来,以便阅卷人员清晰地看到解题思路。

3. 合理估算:有些解答题中给出的数据量较大,可以通过合理估算或化简计算来简化解答过程,提高解题效率。

高考数学选择题技巧方法

高考数学选择题技巧方法

l 有且仅有一个平面与α垂
直;③异面直线 a、 b 不垂直, 那么过 a 的任一个平面与 b 都不垂直。其中正确命题的个数为(

A.0
B.1
C. 2
D.3
解析 :利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,
例 3、已知 F1、F2 是椭圆
x 2 y2
+
=1 的两焦点,
经点 F2 的的直线交椭圆于点
x 1.
例 12. 1 2i ( C ) i
A. 2 i
解析: 1 2i i
B. 2 i
i 2 2i 2i
i
C. 2 i
D. 2 i
例 13. 等比数列 { an} 中 a1 512 , 公比 q
1
,记 n
2
a1 a 2 L
an (即
数列 { an} 的前 n 项之积),
8 , 9 , 10 , 11 中值为正数的个数是
根据 f(-x)=f(x) 可得 函数为偶函数且在( 0, + 无穷大)上单调递减
) 上单调增 ) 上单调增
例 9.集合 A { x | | x 2 | 2} , B { y | y x2 , 1 x 2} , 则 A I B C
A. R B . { x | x 0} C . {0}
D

A [ 0 , 4] , B [ 4 , 0] , 所以 A I B {0} .
一.选择题部分
(一)高考数学选择题的解题方法
1、直接法 :就是从题设条件出发, 通过正确的运算、推理或判断, 直接得出结论再与选择支对照, 从 而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。
例 1、某人射击一次击中目标的概率为 ()

[全]高考数学选择题六大答题技巧(附例题详解)

[全]高考数学选择题六大答题技巧(附例题详解)

[全]高考数学选择题六大答题技巧(附例题详解)选择题是高考数学试卷的三大题型之一.选择题的分数一般占全卷的40%左右:(1)绝大部分数学选择题属于中低档题,且一般按由易到难的顺序排列,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有较好区分度的基本题型之一。

(2)选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点,且每一题几乎都有两种或两种以上的解法,能有效地检测学生的思维层次及观察、分析、判断和推理能力。

目前高考数学选择题采用的是一元选择题(即有且只有一个正确答案),由选择题的结构特点,决定了解选择题除常规方法外还有一些特殊的方法.解选择题的基本原则是:“小题不能大做”,要充分利用题目中(包括题干和选项)提供的各种信息,排除干扰,利用矛盾,作出正确的判断。

数学选择题的求解,一般有两条思路:一是从题干出发考虑,探求结果。

二是从题干和选择支联合考虑或从选择支出发探求是否满足题干条件。

解答数学选择题的主要方法包括直接法、概念辨析法、数型结合法、特殊值法、排除法、逆向思维法等,这些方法既是数学思维的具体体现,也是解题的有效手段。

一一、直接法直接对照型选择题是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支。

这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解。

思路解析:关于直线与圆锥曲线位置关系的题目,通常是联立方程解方程组.本题即是利用渐近线与抛物线相切,求出渐近线斜率.二、概念辨析法概念辨析是从题设条件出发,通过对数学概念的辨析,进行少量运算或推理,直接选择出正确结论的方法.这类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要考生在平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时要多加小心,准确审题以保证正确选择.一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易误入命题者设置的“陷阱”。

高考数学选择题答题技巧和套路(最新)

高考数学选择题答题技巧和套路(最新)

高考数学选择题答题技巧和套路(最新)高考数学选择题是很多考生感到头疼的题型,因为涉及范围广、题目多样,需要考生有一些技巧和策略进行应对。

本篇文档将分享一些最新的高考数学选择题答题技巧和套路,希望能对大家有所帮助。

一、减少遗漏很多考生在做高考数学选择题时,容易遗漏掉一些题目,进而影响成绩。

下面是一些减少遗漏的技巧:1.认真审题在做选择题时,应该认真审题,看清题目要求,确定所求答案,避免在做题时出现偏差,导致选错答案。

2.注意选项在给出的选项中,有些选项很容易错,需要进行仔细辨别,避免出现选错答案的情况。

另外,有些选项很容易漏选,需要在做题时特别留意。

3.确认答案做题时不能太着急,做完了题目就直接选答案。

应该多核对几遍答案,确保所选答案是正确的。

二、选择题常用技巧1.先排除显然的选项有些选项很显然是不对的,应该先把这些选项排除掉,降低选项的数量。

2.看选项相近程度有时候选项中的两个答案会非常相似,这时候就需要在细节中寻找差异,找到不同之处再做出选择。

3.利用常见套路有些选项出题人会使用一些常见的套路,比如“反过来”、“倒着来”,考生可以熟悉这些套路,从而避免出现错误的选择。

4.利用图形、数据、公式等信息选择题可能提供一些关键信息,如图形、数据、公式等,需要看清这些信息,并学会从这些信息中得出正确答案。

三、套路类题型1.函数类题目函数类题目一般会提供函数的定义或者图像,需要考生熟悉函数的性质,了解函数的基本图像和变形规律,并注意特殊点的位置。

2.数列类题目数列类题目可能涉及到数列的通项公式、项数公式、求和公式等,需要考生能够识别数列的性质,熟悉数列的通项公式和项数公式,并学会运用求和公式。

3.几何类题目几何类题目一般与图形有关,需要考生熟悉几何形状的性质和变形规律,注意直角、相似、全等等关系,同时还需要掌握一些基本的几何公式和定理。

四、总结在做高考数学选择题时,应该认真审题、注意选项、多确认答案,同时熟练掌握一些常用的答题技巧和套路,对于套路类题型要熟悉相应的知识点。

(完整版)高考数学选择题的解题技巧

(完整版)高考数学选择题的解题技巧

高考数学选择题的解题技巧解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答,因此,我们还要研究解答选择题的一些技巧.总的来说,选择题属小题,解题的原则是:小题巧解,小题不能大做.方法一 直接法直接法就是从题干给出的条件出发,进行演绎推理,直接得出结论.这种策略多用于一些定性的问题,是解选择题最常用的策略.这类选择题是由计算题、应用题、证明题、判断题改编而成的,可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则等通过准确的运算、严谨的推理、合理的验证得出正确的结论,然后与选择支对照,从而作出相应的选择.例1 数列{a n }的前n 项和为S n ,已知a 1=13,且对任意正整数m 、n ,都有a m +n =a m ·a n ,若S n <a 恒成立,则实数a 的最小值为( ) A.12 B.23 C.32D .2解析 对任意正整数m 、n ,都有a m +n =a m ·a n ,取m =1,则有a n +1=a n ·a 1⇒a n +1a n =a 1=13,故数列{a n }是以13为首项,以13为公比的等比数列,则S n =13(1-13n )1-13=12(1-13n )<12,由于S n <a 对任意n ∈N *恒成立,故a ≥12,即实数a 的最小值为12,选A .思维升华 直接法是解答选择题最常用的基本方法.直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.用简便的方法巧解选择题,是建立在扎实掌握“三基”的基础上的,否则一味求快则会快中出错.将函数y =sin 2x (x ∈R )的图象分别向左平移m (m >0)个单位、向右平移n (n >0)个单位所得到的图象都与函数y =sin(2x +π3)(x ∈R )的图象重合,则|m -n |的最小值为( ) A.π6 B.5π6 C.π3D.2π3解析 函数y =sin 2x (x ∈R )的图象向左平移m (m >0)个单位可得y =sin 2(x +m )=sin(2x +2m )的图象,向右平移n (n >0)个单位可得y =sin 2(x -n )=sin(2x -2n )的图象.若两图象都与函数y =sin(2x +π3)(x ∈R )的图象重合,则⎩⎨⎧2m =π3+2k 1π,2n =-π3+2k 2π,(k 1,k 2∈Z )即⎩⎨⎧m =π6+k 1π,n =-π6+k 2π.(k 1,k 2∈Z )所以|m -n |=|π3+(k 1-k 2)π|(k 1,k 2∈Z ),当k 1=k 2时,|m -n |min =π3.故选C .方法二 特例法特例检验(也称特例法或特殊值法)是用特殊值(或特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,再对各个选项进行检验,从而做出正确的选择.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.特例检验是解答选择题的最佳方法之一,适用于解答“对某一集合的所有元素、某种关系恒成立”,这样以全称判断形式出现的题目,其原理是“结论若在某种特殊情况下不真,则它在一般情况下也不真”,利用“小题小做”或“小题巧做”的解题策略.例2(1)等差数列{a n }的前m 项和为30,前2m项和为100,则它的前3m 项和为( ) A .130 B .170 C .210 D .260(2)如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P 、Q 满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( ) A .3∶1 B .2∶1 C .4∶1 D.3∶1解析 (1)取m =1,依题意a 1=30,a 1+a 2=100,则a 2=70,又{a n }是等差数列,进而a 3=110,故S 3=210,选C .(2)将P 、Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有1C AA B V -=1A ABC V -=1113ABC A B C V -,故选B .思维升华 特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.已知O 是锐角△ABC 的外接圆圆心,∠A=60°,cos B sin C ·AB →+cos C sin B·AC →=2m ·AO →,则m 的值为( ) A.32 B.2 C .1 D.12答案 A解析 如图,当△ABC 为正三角形时,A =B =C =60°,取D 为BC 的中点, AO →=23AD →,则有13AB →+13AC →=2m ·AO →, ∴13(AB →+AC →)=2m ×23AD →,∴13·2AD →=43mAD →,∴m =32,故选A . 方法三 排除法(筛选法)例3函数y=x sin x在[-π,π]上的图象是()解析容易判断函数y=x sin x为偶函数,可排除D;当0<x<π时,y=x sin x>0,排除B;2当x=π时,y=0,可排除C;故选A.思维升华排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法.函数y=2|x|的定义域为[a,b],值域为[1,16],a变动时,方程b=g(a)表示的图形可以是()解析研究函数y=2|x|,发现它是偶函数,x≥0时,它是增函数,因此x=0时函数取得最小值1,而当x=±4时,函数值为16,故一定有0∈[a,b],而4∈[a,b]或者-4∈[a,b],从而有结论a=-4时,0≤b≤4,b=4时,-4≤a≤0,因此方程b=g(a)的图形只能是B.方法四数形结合法(图解法)在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来,通过对规范图形或示意图形的观察分析,将数的问题(如解方程、解不等式、判断单调性、求取值范围等)与某些图形结合起来,利用图象的直观性,化抽象为直观,化直观为精确,从而使问题得到解决,这种方法称为数形结合法.例4函数f (x )=⎝⎛⎭⎫12|x -1|+2cos πx (-2≤x ≤4)的所有零点之和等于( ) A .2 B .4 C .6 D .8解析 由f (x )=⎝⎛⎭⎫12|x -1|+2cos πx =0, 得⎝⎛⎭⎫12|x -1|=-2cos πx , 令g (x )=⎝⎛⎭⎫12|x -1|(-2≤x ≤4), h (x )=-2cos πx (-2≤x ≤4),又因为g (x )=⎝⎛⎭⎫12|x -1|=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -1, 1≤x ≤4,2x -1, -2≤x <1.在同一坐标系中分别作出函数g(x)=⎝⎛⎭⎫1x-1|(-2≤x≤4)和h(x)=-2cos πx(-2≤x≤4)的图象2|(如图),由图象可知,函数g(x)=⎝⎛⎭⎫1x-1|关于x=1对称,2|又x=1也是函数h(x)=-2cos πx(-2≤x≤4)的对称轴,所以函数g(x)=⎝⎛⎭⎫1x-1|(-2≤x≤4)和h(x)=-2co s πx(-2≤x≤4)的交点也关于x=1对称,且2|两函数共有6个交点,所以所有零点之和为6.答案 C思维升华本题考查函数图象的应用,解题的关键是将零点问题转化为两图象的交点问题,然后画出函数的图象找出零点再来求和.严格地说,图解法并非属于选择题解题思路范畴,但它在解有关选择题时非常简便有效.运用图解法解题一定要对有关函数的图象、方程曲线、几何图形较熟悉.图解法实际上是一种数形结合的解题策略.过点(2,0)引直线l与曲线y=1-x2相交于A、B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于()A.33B.-33C.±33D.- 3答案 B解析由y=1-x2,得x2+y2=1(y≥0),其所表示的图形是以原点O为圆心,1为半径的上半圆(如图所示).由题意及图形,知直线l的斜率必为负值,故排除A,C选项.当其斜率为-3时,直线l的方程为3x+y-6=0,点O到其距离为|-6|3+1=62>1,不符合题意,故排除D选项.选B.方法五估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.例5 若A 为不等式组⎩⎪⎨⎪⎧ x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( ) A.34 B .1 C.74D .2 解析 如图知区域的面积是△OAB 去掉一个小直角三角形.阴影部分面积比1大,比S △OAB =12×2×2=2小,故选C 项. 答案 C思维升华 “估算法”的关键是确定结果所在的大致范围,否则“估算”就没有意义.本题的关键在于所求值应该比△AOB 的面积小且大于其面积的一半.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于( ) A.m -39-m B.m -3|9-m |C.13 D .5 答案 D解析 利用同角正弦、余弦的平方和为1求m 的值,再根据半角公式求tan θ2,但运算较复杂,试根据答案的数值特征分析.由于受条件sin 2θ+cos 2θ=1的制约,m 为一确定的值,进而推知tan θ2也为一确定的值,又π2<θ<π,因而π4<θ2<π2,故tan θ2>1.1.解选择题的基本方法有直接法、排除法、特例法、估算法、验证法和数形结合法.但大部分选择题的解法是直接法,在解选择题时要根据题干和选择支两方面的特点灵活运用上述一种或几种方法“巧解”,在“小题小做”、“小题巧做”上做文章,切忌盲目地采用直接法.2.由于选择题供选答案多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向肯定、否定、筛选、验证,既谨慎选择,又大胆跳跃.3.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解选择题的能力.。

高考数学选择题技巧(精选5篇)

高考数学选择题技巧(精选5篇)

高考数学选择题技巧(精选5篇)高考数学选择题技巧篇11、高考数学时带一个量角器进考场,因为高考解析几何题一定会有求度数的小题,这时考生就可以用量角器测一下,就可以写出最后结论,这是最简单也是最牛的高考数学蒙题技巧。

2、在高考数学计算题中,要首先写一答字!如果选项是4个数,一般是第二大的是正确选项。

单看选项,一般BD稍多,A较少。

还有一点,选了之后就不要改了,除非有90以上的把握。

这个经验堪称是史上最牛的高考数学蒙题技巧。

3、经过历年高考经验总结,高考数学第一题和最后一题一般不会是A!高考数学选择题的答案分布均匀!填空题不会就填0或1!答案有根号的,不选!答案有1的,选!有一个是正X,一个是负X的时候,在这两个中选!题目看起来数字简单,那么答案选复杂的,反之亦然。

上一题选什么,这一题选什么,连续有三个相同的则不适合本条!以上都不实用的时候选B!4、数学选择不会时去除最大值与最小值再二选一,老师告诉我们的!高考题百分之八十是这样的。

高考数学选择题技巧篇2一、利用已知条件和选项所提供的信息,从四个数学选择题选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

二、对于具有一般性的数学问题,在选择题解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

值得注意的是,特殊值法常常也与排除法同时使用.三、将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决数学选择题问题。

四、利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

如下题,根据题意,依次将点代入函数及其反函数即可。

五、将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

高考数学选择题答题技巧排除法的运用

高考数学选择题答题技巧排除法的运用

高考数学选择题答题技巧排除法的运用高考数学选择题答题技巧——排除法的运用选择题作为高考数学考试中的一道重要题型,占据了相当大的比重。

在解题过程中,正确运用答题技巧可以帮助考生快速准确地选择出正确答案。

本文将重点介绍一种常用的答题技巧——排除法,并探讨如何运用排除法来解答高考数学选择题。

一、什么是排除法排除法是一种答题技巧,通过排除选项中明显不正确的答案,从而缩小正确答案的范围,提高选对的概率。

在解答高考数学选择题时,利用排除法可以减少计算量,节省时间,并且降低出错的可能性。

二、运用排除法的步骤1. 仔细阅读题目在解答选择题之前,首先要认真阅读题目。

理解题目的意思对于正确运用排除法至关重要。

仔细阅读题目,了解题目要求,明确所求答案的特点与属性。

2. 逐个选项排除在阅读完题目后,我们可以逐个选项地进行排除。

针对每一个选项,将其与题目要求进行比较,筛选出与题意不符或显然错误的选项。

此时,我们可以利用一些常见的排除规律,如:- 含有绝对化词语的选项,往往不是正确的答案。

如“始终”、“永远”等。

- 与已知条件相冲突的选项,应被排除。

如果题目中已经给出了一些条件,那么与这些条件相矛盾的选项一定是错误的。

- 选项中的逻辑错误或语法错误,应当予以排除。

- 做出合理假设,根据假设来排除选项。

有时候题目的条件不充分,我们可以尝试做一些符合条件但不切实际的假设,并对选项进行排除。

3. 留下合理的答案经过逐个排除选项的步骤后,我们会留下最有可能是正确答案的选项。

此时,仍然需要仔细审题,并进行进一步的思考。

对比剩下的选项,综合考虑题目的条件和要求,选择最合乎题目要求的答案。

三、注意事项1. 注意审题在使用排除法时,考生要特别注意审题。

只有对题目要求的准确理解,才能准确地排除选项。

一旦理解错误,很容易排除掉正确答案,导致答案错误。

2. 灵活运用排除法在实际解题过程中,不同的题目可能会需要不同的排除法技巧,考生要根据题目特点灵活运用排除法。

2023高考_高考数学选择题蒙题技巧

2023高考_高考数学选择题蒙题技巧

2023高考数学选择题蒙题技巧2023高考数学选择题蒙题技巧死亡拯救法:“三短一长就选长,三长一短就选短,两长两短就选B,参差不齐C无敌。

一样长选C,一样短选B。

"这是网上的,如果是图像题。

那就蒙B、C吧,几率大一点!1、答案有根号的,不选2、答案有1的,选3、三个答案是正的时候,在正的中选4、有一个是正X,一个是负X的时候,在这两个中选5、题目看起来数字简单,那么答案选复杂的,反之亦然6、上一题选什么,这一题选什么,连续有三个相同的则不适合本条7、答题答得好,全靠眼睛瞟8、以上都不实用的时候选B9、在计算题中,要首先写一答字:然后在答题,即使只有一个答字10、最后一招杀手锏:如果你在选择题上不想地O分的话,建议所有选择题全选A,我就这样的。

培养“蒙感”:这个所谓“蒙感”,就是这蒙题的感觉。

因为不可能一面卷子上你一道题也不会做(当然也有例外),你也有很大可能有不会做的题。

这时,就要看蒙题的感觉了。

所有考试的人都知道,选择题中选择B、C选项的占绝大多数。

所以遇到不会的题,就往B、C上靠,几率会大一点。

还有,如果你有很多题不会——比如说五道题里你有三道不会,那就要看你平时做题的感觉了。

高考数学快速蒙题技巧1.高考时带一个量角器进考场,因为高考解析几何题一定会有求度数的小题,这时你就可以用量角器测一下,就可以写出最后结论,这是最简单也是最牛的高考数学蒙题技巧。

2.在数学计算题中,要首先写一答字!如果选项是4个数,一般是第二大的是正确选项。

单看选项,一般BD稍多,A较少。

还有一点,选了之后就不要改了,除非你有90以上的把握。

这个经验堪称是史上最牛的'高考数学蒙题技巧。

3.经过历年高考经验总结,高考数学第一题和最后一题一般不会是A!高考数学选择题的答案分布均匀!填空题不会就填0或1!答案有根号的,不选!答案有1的,选!有一个是正X,一个是负X的时候,在这两个中选!题目看起来数字简单,那么答案选复杂的,反之亦然!上一题选什么,这一题选什么,连续有三个相同的则不适合本条!以上都不实用的时候选B!4.数学选择不会时去除最大值与最小值再二选一,老师告诉我们的!高考题百分之八十是这样的。

高考数学选择题十大解题法则

高考数学选择题十大解题法则

高考数学选择题十大解题法则高考数学选择题一直是考生最为头疼的问题之一。

其实,只要掌握了一些解题方法,就可以在考场上游刃有余地处理这些题目。

以下是高考数学选择题十大解题法则,希望对考生们备考有所帮助。

一、审题认真,确保理解清题目要求。

在解题之前,一定要仔细阅读题目,看懂题目的意思和要求,不要匆忙从题目中得出结论。

有时候,题目中的条件可能相对比较复杂,需要我们通读各项条件,理清思路。

二、逐一排除错误选项。

一般来说,高考数学选择题答案选项只有四个,其中必有三个是错误的,一个是正确答案。

考生可以通过排除错误的答案,缩小范围,提高答题效率。

三、找寻规律,依据题目特点处理。

许多高考数学选择题存在一定的规律性,通过发掘它们的规律结构、有效运用规律特性,就能够比较容易地得出答案。

四、借助代数化解,缩短计算时间。

有时候,高考数学选择题很难逐一计算,这时候可以借助代数化解,使用公式计算,从而缩短计算时间,提高答题速度。

五、运用图形分析,直观理解。

很多高考数学选择题与图形有关,考生可以通过画图直观理解问题,从而更好地解答问题。

有时候,在视觉上感受一下,可能会比进行大量计算要更高效。

六、用逆向思维,解决复杂难题。

很多时候,高考数学选择题非常复杂,脑力负担不能直接计算解答。

这时候,可以尝试逆向思维,从答案出发,结合题目条件,寻找能够满足题目要求的解法。

七、根据已知要求,寻找相似问题解法。

有一些高考数学选择题可能与以前做过的题目相似,考生可以通过对比和寻找相同之处,极大地提高解题效率。

在备考期间,做一些类似题目的练习是非常有必要的。

八、关注题干变动,注意细节问题。

有时候,高考数学选择题中出现的区别可能会非常细小,要求考生格外谨慎,一定要仔细审查,不要失之交臂。

九、合理估计数值,选择较接近的答案。

在考试过程中,考生可能无法得到准确的答案。

此时,可以通过合理的数值估测,尽可能选出一个比较接近的答案。

十、巧用三角变形,利用几何常识推荐答案。

数学选择题解题技巧

数学选择题解题技巧

数学选择题解题技巧数学选择题解题技巧1直接法(推演法):定义:直接从题设条件出发,运用有关的概念、定义、公理、定理、性质、公式等,使用正确的解题方法,经过严密的推理和准确的运算,得出正确的结论,然后对照题目中给出的选择项“对号入座”,作出相应的选择,这种方法称之为直接法.是一种基础的、重要的、常用的方法,一般涉及概念、性质的辨析或运算较简单的题目常用直接法.排除法定义:利用选择题的特征:答案唯一,来去伪存真,舍弃不符合题目要求的错误答案。

途径有二种:1)从已知条件出发,通过观察分析或推理运算各选项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论,这种方法称为排除法.2)从选项入手,根据题设的条件与选项的关系,通过分析、推理、计算、判断,对选项进行筛选,逐步缩小范围,得到正确结果.称为反排法.排除法常应用于条件多于一个时,先根据一些已知条件,在选择项中找出与其相矛盾的选项,予以排除,然后再根据另一些已知条件,在余下的选项中,再找出与其矛盾的选项,再予以排除,直到得出正确的选项为止.等价转化法定义:根据题目的条件和要求,将题目等价转化为一个容易解答的方式进行解决。

在解决有关排列组合的的应用问题尤为突出.定义法定义:根据题目中涉及到的知识的定义出发进行解答,因此回归定义是解决问题的一种重要策略.总结:要注意定义的成立条件或约束条件,平时要掌握定义的推导和证明过程.直觉判断法定义:通过平时的练习积累,可根据直觉对题目中的答案进行判断.比如一个长方形面积最小时,长与宽的关系是什么样的?二点间的直线距离最短等.要点:需要平时多积累、多观察、多总结.数学选择题解题技巧2先易后难就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

先熟后生高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧方法一:直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.【典例1】(1)(2021·新高考Ⅱ卷)在复平面内,复数2-i 1-3i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】选A.因为2-i1-3i =(2-i )(1+3i )(1-3i )(1+3i ) =5+5i 10 =12 +12 i ,所以复数2-i 1-3i 对应的点位于第一象限.(2)(2021·烟台二模)已知双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若2F A ·2F B =0,且|2F A |=|2F B |,则C 的离心率为( ) A . 2 B . 3 C . 6 D .7【解析】选B.由F 2A·F 2B =0且|2F A |=|2F B |知:△ABF 2为等腰直角三角形且 ∠AF 2B =π2 、∠BAF 2=π4 ,即|AB|= 2 |2F A |= 2 |2F B |, 因为⎩⎪⎨⎪⎧|F 1A|-|F 2A|=2a ,|F 2B|-|F 1B|=2a ,|AB|=|F 1A|-|F 1B|,所以|AB|=4a ,故|F 2A|=|F 2B|=2 2 a ,则|F 1A|=2( 2 +1)a ,而在△AF 1F 2中,|F 1F 2|2=|F 2A|2+|F 1A|2-2|F 2A||F 1A|cos ∠BAF 2, 所以4c 2=8a 2+4(3+2 2 )a 2-8( 2 +1)a 2,则c 2=3a 2,故e =ca = 3 . 【变式训练】1.(2021·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .1 B .i C .1-i D .1+i【解析】选D.方法一:z =21-i =2(1+i )(1-i )(1+i )=1+i.方法二:设z =a +bi ,则(a +b)+(b -a)i =2,联立⎩⎪⎨⎪⎧a +b =2,b -a =0, 解得a =b =1,所以z =1+i.2.(2021·郑州二模)已知梯形ABCD 中,以AB 中点O 为坐标原点建立如图所示的平面直角坐标系.|AB|=2|CD|,点E 在线段AC 上,且AE→ =23 EC → ,若以A ,B 为焦点的双曲线过C ,D ,E 三点,则该双曲线的离心率为( )A .10B .7C . 6D . 2【解析】选B.设双曲线方程为x 2a 2 -y 2b 2 =1,由题中的条件可知|CD|=c , 且CD 所在直线平行于x 轴, 设C ⎝ ⎛⎭⎪⎫c 2,y 0 ,A(-c ,0),E(x ,y),所以AE → =(x +c ,y),EC →=⎝ ⎛⎭⎪⎫c 2-x ,y 0-y ,c 24a 2 -y 20 b 2 =1,由AE → =23 EC →,可得⎩⎪⎨⎪⎧x =-25c y =25y 0,所以E ⎝ ⎛⎭⎪⎫-25c ,25y 0 ,因为点E 的坐标满足双曲线方程,所以4c 225a 2 -4y 2025b 2 =1, 即4c 225a 2 -425 ⎝ ⎛⎭⎪⎫c 24a 2-1 =1,即3c 225a 2 =2125 ,解得e =7 .方法二:特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特例法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.【典例2】(1)(2021·郑州三模)在矩形ABCD 中,其中AB =3,AD =1,AB 上的点E 满足AE +2BE =0,F 为AD 上任意一点,则EB ·BF =( ) A .1 B .3 C .-1 D .-3 【解析】选D.(直接法)如图,因为AE +2BE =0, 所以EB =13 AB , 设AF =λAD ,则BF =BA +λAD =-AB +λAD ,所以EB ·BF =13 AB ·(-AB +λAD )=-13 |AB |2+13 λAB ·AD =-3+0=-3.(特例法)该题中,“F为AD上任意一点”,且选项均为定值,不妨取点A为F. 因为AE+2BE=0,所以EB=13AB.故EB·BF=13AB·(-AB)=-132 AB=-13×32=-3.(2)(2021·成都三模)在△ABC中,内角A,B,C成等差数列,则sin2A+sin2C-sin A sin C=________.【解析】(方法一:直接法)由内角A,B,C成等差数列,知:2B=A+C,而A+B+C=π,所以B=π3,而由余弦定理知:b2=a2+c2-2ac cos B=a2+c2-ac,结合正弦定理得:sin2B=sin2A+sin2C-sin A sin C=3 4.(方法二:特例法)该题中只有“内角A,B,C成等差数列”的限制条件,故可取特殊的三角形——等边三角形代入求值.不妨取A=B=C=π3,则sin 2A+sin2C-sin A sin C=sin2π3+sin2π3-sinπ3sinπ3=34.(也可以取A=π6,B=π3,C=π2代入求值.)答案:34【变式训练】设四边形ABCD为平行四边形,|AB→|=6,|AD→|=4,若点M,N满足BM→=3MC→,DN→=2NC → ,则AM → ·NM → 等于( ) A .20 B .15 C .9 D .6【解析】选C.若四边形ABCD 为矩形,建系如图,由BM → =3MC → ,DN → =2NC→ ,知M(6,3),N(4,4),所以AM → =(6,3),NM → =(2,-1),所以AM → ·NM → =6×2+3×(-1)=9.方法三:数形结合法对于一些含有几何背景的问题,往往可以借助图形的直观性,迅速作出判断解决相应的问题.如Veen 图、三角函数线、函数图象以及方程的曲线等,都是常用的图形.【典例3】已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C . 2D .22【解析】选C.如图,设OA→ =a ,OB → =b ,则|OA → |=|OB → |=1,OA → ⊥OB → ,设OC → =c ,则a-c =CA → ,b -c =CB → ,(a -c )·(b -c )=0,即CA → ·CB → =0.所以CA → ⊥CB → .点C 在以AB 为直径的圆上,圆的直径长是|AB→ |= 2 ,|c |=|OC → |,|OC → |的最大值是圆的直径,长为 2 .【变式训练】1.设直线l :3x +2y -6=0,P(m ,n)为直线l 上动点,则(m -1)2+n 2的最小值为( ) A .913 B .313 C .31313 D .1313【解析】选A.(m -1)2+n 2表示点P(m ,n)到点A(1,0)距离的平方,该距离的最小值为点A(1,0)到直线l 的距离,即|3-6|13 =313,则(m -1)2+n 2的最小值为913 .2.(2021·河南联考)已知函数f(x)=⎩⎪⎨⎪⎧x ln x -2x (x>0),x 2+1(x≤0), 若f(x)的图象上有且仅有2个不同的点关于直线y =-32 的对称点在直线kx -y -3=0上,则实数k 的取值是________. 【解析】直线kx -y -3=0关于直线y =-32 对称的直线l 的方程为kx +y =0,对应的函数为y =-kx ,其图象与函数y =f(x)的图象有2个交点.对于一次函数y =-kx ,当x =0时,y =0,由f(x)≠0知不符合题意. 当x≠0时,令-kx =f(x),可得-k =f (x )x ,此时, 令g(x)=f (x )x =⎩⎨⎧ln x -2(x>0),x +1x (x<0).当x>0时,g(x)为增函数,g(x)∈R ,当x<0时,g(x)为先增再减函数,g(x)∈(-∞,-2]. 结合图象,直线y =-k 与函数y =g(x)有2个交点, 因此,实数-k =-2,即k =2. 答案:2方法四:排除法排除法也叫筛选法、淘汰法,它是充分利用单选题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而确定正确选项.【典例4】(1)(2021·郑州二模)函数f(x)=sin x ln π-xπ+x在(-π,π)的图象大致为()【解析】选A.根据题意,函数f(x)=sin x ln π-xπ+x,x∈(-π,π),f(-x)=sin (-x)ln π+xπ-x=sin x lnπ-xπ+x=f(x),则f(x)在区间(-π,π)上为偶函数,所以排除B,C,又由f ⎝ ⎛⎭⎪⎫π2 =sin π2 ln π23π2=ln 13 <0,所以排除D.(2)(2021·太原二模)已知函数y =f(x)部分图象的大致形状如图所示,则y =f(x)的解析式最可能是( )A .f(x)=cos x e x -e -xB .f(x)=sin x e x -e -xC .f(x)=cos x e x +e -xD .f(x)=sin x e x +e -x 【解析】选A.由图象可知,f(2)<0,f(-1)<0, 对于B ,f(2)=sin 2e 2-e -2>0,故B 不正确;对于C ,f(-1)=cos (-1)e -1+e=cos 1e -1+e>0,故C 不正确; 对于D ,f(2)=sin 2e 2+e -2 >0,故D 不正确.【变式训练】1.(2021·嘉兴二模)函数f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x 的图象可能是()【解析】选C.由f(-x)=⎝⎛⎭⎪⎫1-x -1+1-x +1 cos (-x) =-⎝ ⎛⎭⎪⎫1x -1+1x +1 cos x =-f(x)知, 函数f(x)为奇函数,故排除B.又f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x =2x x 2-1 cos x , 当x ∈(0,1)时,2xx 2-1 <0,cos x>0⇒f(x)<0.故排除A ,D.2.(2021·石家庄一模)甲、乙、丙三人从红、黄、蓝三种颜色的帽子中各选一顶戴在头上,每人帽子的颜色互不相同,乙比戴蓝帽的人个头高,丙和戴红帽的人身高不同,戴红帽的人比甲个头小,则甲、乙、丙所戴帽子的颜色分别为( ) A .红、黄、蓝 B .黄、红、蓝 C .蓝、红、黄 D .蓝、黄、红【解析】选B.丙和戴红帽的人身高不同,戴红帽的人比甲个头小,故戴红帽的人为乙,即乙比甲的个头小;乙比戴蓝帽的人个头高,故戴蓝帽的人是丙. 综上,甲、乙、丙所戴帽子的颜色分别为黄、红、蓝.方法五:构造法构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等模型转化为熟悉的问题求解.【典例5】(1)(2021·昆明三模)已知函数f(x)=e x -a -ln x x -1有两个不同的零点,则实数a 的取值范围是( )A .(e ,+∞)B .⎝ ⎛⎭⎪⎫e 2,+∞C .⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)【解析】选D.方法一(切线构造):函数f(x)=e x -a -ln xx -1有两个不同的零点, 则e x -a -1=ln xx 有两个解, 令g(x)=e x -a -1,h(x)=ln xx (x>0),则g(x)与h(x)有2个交点,h′(x)=1-ln xx 2 (x>0), 当x>e 时h′(x)<0,h(x)单调递减, 当0<x<e 时h′(x)>0,h(x)单调递增, 由g′(x)=e x -a (x>0)得g(x)单调递增, 图象如下,当g(x)与h(x)相切时,设切点为⎝ ⎛⎭⎪⎫x 0,ln x 0x 0 , h′(x 0)=1-ln x 0x 2=g′(x 0)=0x ae -, 同时ln x 0x 0 =ex 0-a -1,得ln x 0x 0 +1=1-ln x 0x 2,即x0ln x0+x20=1-ln x0,(x0+1)ln x0=-(x0+1)(x0-1),又x0>0,ln x0=1-x0,所以x0=1,此时1=e1-a,所以a=1,当a>1时,可看作g(x)=e x-1-1的图象向右平移,此时g(x)与h(x)必有2个交点,当a<1时,图象向左平移二者必然无交点,综上a>1.方法二(分离参数):由题意,方程e x-a-ln xx-1=0有两个不同的解,即e-a=ln xx+1e x有两个不同的解,所以直线y=e-a与g(x)=ln xx+1e x的图象有两个交点.g′(x)=⎝⎛⎭⎪⎫ln xx+1′×e x-(e x)′×⎝⎛⎭⎪⎫ln xx+1(e x)2=-(x+1)(ln x+x-1)x2e x.记h(x)=ln x+x-1.显然该函数在(0,+∞)上单调递增,且h(1)=0,所以0<x<1时,h(x)<0,即g′(x)>0,函数单调递增;所以x>1时,h(x)>0,即g′(x)<0,函数单调递减.所以g(x)≤g(1)=ln 11+1e1=1e.又x→0时,g(x)→0;x→+∞时,g(x)→0.由直线y=e a与g(x)=ln xx+1e x的图象有两个交点,可得e -a <1e =e -1,即-a<-1,解得a>1.方法三:由题意,方程e x -a -ln x x -1=0有两个不同的解,即e x -a =ln x x +1,也就是1e a (xe x )=x +ln x =ln (xe x ).设t =xe x (x>0),则方程为1e a t =ln t ,所以1e a =ln t t .由题意,该方程有两个不同的解.设p(x)=xe x (x>0),则p′(x)=(x +1)e x (x>0),显然p′(x)>0,所以p(x)单调递增,所以t =p(x)>p(0)=0.记q(t)=ln t t (t>0),则q′(t)=1-ln t t 2 .当0<t<e 时,q′(t)>0,函数单调递增;当t>e 时,q′(t)<0,函数单调递减.所以q(t)≤q(e)=ln e e =1e .又t→0时,q(t)→0;t→+∞时,q(t)→0.由方程1e a =ln t t 有两个不同的解,可得0<1e a <1e ,解得a>1.(2)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P-ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π【解析】选C.将三棱锥P-ABC 放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22 =2 3 .设外接球的半径为R ,依题意可得(2R)2=22+22+(2 3 )2=20,故R 2=5,则球O 的表面积为4πR 2=20π.【变式训练】1.已知2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),则( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b【解析】选D.因为2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),化为:ln a a =ln 22 ,ln b b =ln 33 ,ln c c =ln 55 ,令f(x)=ln x x ,x ∈(0,e),f′(x)=1-ln x x 2 ,可得函数f(x)在(0,e)上单调递增,在(e ,+∞)上单调递减,f(c)-f(a)=ln 55 -ln 22 =2ln 5-5ln 210=ln 253210 <0,且a ,c ∈(0,e), 所以c<a ,同理可得a<b.所以c<a<b.2.(2021·汕头三模)已知定义在R 上的函数f(x)的导函数为f′(x),且满足f′(x)-f(x)>0,f(2 021)=e 2 021,则不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 的解集为( ) A .(e 2 021,+∞)B .(0,e 2 021)C .(e 2 021e ,+∞)D .(0,e 2 021e )【解析】选D.令t =1e ln x ,则x =e et ,所以不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 等价转化为不等式f(t)<e e et =e t ,即f (t )e t <1 构造函数g(t)=f (t )e t ,则g′(t)=f′(t )-f (t )e t, 由题意,g′(t)=f′(t )-f (t )e t>0, 所以g(t)为R 上的增函数,又f(2 021)=e 2 021,所以g(2 021)=f (2 021)e 2 021 =1,所以g(t)=f (t )e t <1=g(2 021),解得t<2 021,即1e ln x<2 021,所以0<x<e 2 021e .方法六:估算法估算法就是不需要计算出准确数值,可根据变量变化的趋势或极值的取值情况估算出大致取值范围,从而解决相应问题的方法.【典例6】(2019·全国Ⅰ卷)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12 (5-12 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12 .若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A.165 cm B.175 cmC.185 cm D.190 cm【解析】选B.头顶至脖子下端的长度为26 cm,可得咽喉至肚脐的长度小于42 cm,肚脐至足底的长度小于110 cm,则该人的身高小于178 cm,又由肚脐至足底的长度大于105 cm,可得头顶至肚脐的长度大于65 cm,则该人的身高大于170 cm,所以该人的身高在170~178 cm之间.【变式训练】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9 3 ,则三棱锥D-ABC体积的最大值为()A.12 3 B.18 3C.24 3 D.54 3【解析】选B.等边三角形ABC的面积为9 3 ,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h应满足h∈(4,8),所以13×9 3 ×4<V三棱锥D-ABC <13×9 3 ×8,即12 3 <V三棱锥D-ABC<24 3 .。

成人高考数学选择题六个答题技巧

成人高考数学选择题六个答题技巧

成人高考数学选择题六个答题技巧成人高考数学选择题通常是由四个选项组成的单选题,需要根据题干和选项选择正确答案。

对于许多准备参加成人高考的学生来说,数学选择题常常是答题难度较大的一项,因此需要掌握一些有效的答题技巧。

本文将介绍六个成人高考数学选择题答题技巧,希望对大家有所帮助。

抓住关键字在阅读数学选择题时,必须仔细阅读题干,抓住关键字,理解题目的意思。

通常数学选择题会给出已知条件和所求结果,中间可能有一些需要推导的过程,在理解题干的基础上,可以先尝试通过列方程或画图来解决问题,再根据选项选择正确答案。

排除错误选项学生在答题时,经常会遇到看不懂或不熟悉的数学选择题,这时可以根据错误答案进行排除。

排除错误选项的方法包括:利用已知条件计算出某个值,判断该值是否与某个选项相等;或者利用一些基本的数学知识推断答案是否合理。

排除错误选项可以缩小答案的范围,提高正确答案的概率。

注意符号有些数学选择题中包含符号,如小数点、分数线、括号等,在答题时需要特别注意这些符号的作用。

一个简单的符号错误可能会导致答案完全错误。

表示不确定当无法确定答案时,学生不妨将不确定的答案标识出来。

例如,在考试时可以在答卷上标注“不确定”或“猜测”等字样,这样在最后的判分时,就有可能得到部分分数。

留意特殊数据在某些数学选择题中,可能会涉及到某些特殊数字或数据,例如,0、1、负数、分数等,这些数字或数据可能需要采用一些特殊的计算方法,或者需要注意一些特殊的性质。

因此,在答题时需要对这些特殊数字或数据特别留意,以避免出现错误。

检查答案在答完数学选择题后,最好再仔细检查一遍,确保答案正确。

检查答案的方法可以根据已知条件重新计算答案,或者将所选答案代入题干进行验证。

检查答案可以避免因疏忽或计算错误而导致失分。

以上六个答题技巧是成人高考数学选择题中常用的方法,掌握这些技巧可以有效提高答题的正确率。

当然,还有一些其他的答题技巧,例如选择逆向思维,借助图形和图表等,大家可以根据自己的学习情况进行选择,希望大家都能在考试中获得好成绩!。

高考数学选择题的十种方法

高考数学选择题的十种方法

高考数学选择题的十种方法高考数学选择题分值大占据高考数学试卷的半壁江山,而且其题目的概括性强,小巧灵活,有一定深度,答好数学选择题,才能拿到好成绩。

下面小编分享的秒杀高考数学选择题的方法,一起来看看吧。

秒杀高考数学选择题的方法一:直选法——简单直观这种方法一般适用于基本不需要“转变”或推理的简单题目.这些题目主要考查考生对物理识记内容的记忆和理解程度,属常识性知识题目.常见考纲中的Ⅰ级要求内容。

二:比较排除法——排除异己这种方法要在读懂题意的基础上,根据题目的要求,先将明显的错误或不合理的备选答案一个一个地排除掉,最后只剩下正确的答案。

如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中可能有一种说法是正确的,当然,也可能两者都错,但绝不可能两者都正确。

三:特殊值法、极值法——投机取巧对较难直接判断选项的正误量,可以让某些物理量巧取满足题设条件的特殊值或极值,带入到各选项中逐个进行检验,凡是用特殊值或极值检验证明是不正确的选项,就一定是错误的,可以排除。

这种方法往往可以省去严密的逻辑推理或繁杂的数学证明。

四:极限思维法——无所不极物理中体现的极限思维常见方法有极端思维法、微元法。

当题目所涉及的物理量随条件单调变化时,可用极限法是把某个物理量推向极端,即极大或极小,极左或极右,并据此做出科学的推理分析,从而给出判断或导出一般结论。

微元法是把物理过程或研究对象分解为众多细小的“微元”,只需对这些“微元”进行必要的数学方法或物理思想处理,便可使问题得于求解。

五:代入法——事半功倍对于一些计算型的选择题,可以将题目选项中给出的答案直接代入进行检验,或在计算程中某阶段代入检验,常可以有效地减少数学运算量。

六:对比归谬法——去伪存真对于一些选项间有相互关联的高考选择题,有时可能会出现如果选项A正确即会有选项B正确或选项C也正确的情况,对于答案应为单选或双选的选择题可用此方法进行排除错误选项。

高考数学选择题的解题技巧归纳

高考数学选择题的解题技巧归纳

高考数学选择题的解题技巧归纳高考数学选择题蒙题技巧数量原则理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。

答案排列:3、3、3、3、3实际状态:每个选项在2——4的范围内。

选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。

即某一个选项为2个,某一个选项为4个三不相同原则即连续三个问题不会连续出现相同答案答案排列不会出现ABCDE的英文字母排列顺序中庸之道即数值优先选择“中间量”选项,选项优先考虑BCD。

在同一道题中优先考虑数值的“中间量”后考虑选项BCD。

(如E选项对应数值为中间量时,优先从数值入手考虑)出现诸如“以上结果都不对”的选项不予考虑由提干给定信息入手,通过选项特征排除错误选项选项基本特征如下:单值与多值(例如提干出现“偶次方、绝对值、对称性”等结果出现多值) 正值与负值(考前冲刺P12/25题根据提干排除负值)有零与无零区间的开与闭(看极端情况能否取等号)正无穷与负无穷(通过极限考虑)整数与小数(分数)质数与合数大于与小于整除与不能整除带符号与不带符号(例如根号、平方号等等)少数服从多数原则即看选项特征,具有同一特征多的选项优先考虑。

复杂表达式化简题一般情况下选项出现1、2、0、-1、-2的情况比较多前后无定位,连续几道题均不会都需猜蒙答案的情况观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。

答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项。

高考数学选择题解题技巧高考数学选择题解题技巧一、排除法所谓排除法,就是经过判断推理,将四个备选答案中的三个迷惑答案一一排除,剩下一个正确答案.排除法也叫筛选法.例1 若a b,且c为实数,则下列各式中正确的是( ).A.ac bcB.acbc2 D.ac2≥bc2解析:由于c为实数,所以c可能大于0、小于0、也可能等于0.当c=0时,显然A、B、C均不成立,故应排除A、B、C.对于D来说,当c 0,c 0,c=0时,ac2≥bc2都成立,故应选D.例2 在Rt△ABC中,∠C=90°,AC=15,BC=8,则sinA+sinB+sinC=( ). A. B. C. D.解析:由∠C=90°可得 sinC=1. 又因为∠A、∠B均为锐角,所以sinA、sinB均为正数,从而 sinA+sinB+sinC 1.而A、B、C三个选项中的值均小于1,于是排除A、B、C ,故选 D.高考数学选择题解题技巧二、特殊值法当某些题目比较抽象,难以对其作出判断时,我们可以在符合题目条件的`范围内,用某些特殊值代替题目中的字母,然后作出判断.我们将这种解题的方法称为特殊值法.例3 若二次方程x2+2px+2q=0有实数根,其中p,q为奇数,那么它的根一定为( ).A.奇数B.偶数C.分数D.无理数解析:此题关于x的方程的系数为字母p、q,虽然知道p、q为奇数,但仍比较抽象,我们可以根据题设条件赋予未知字母特定的值,然后再去解这个一元二次方程,它的根的情况便一目了然了.不妨设p=3,q=1,则原方程变为x2+6x+2=0解得x=± -3,显然这是一个无理数,故应选择D.例4 若a、b、c都不为零,但a+b+c=0,则 + + 的值( ).A.正数B.零C.负数D.不能确定解析:此题若按传统方法进行通分将非常麻烦且不易求解,若采用特殊值法,则能化繁为简.令a=1、b=1、c=-2,代入原式得 + + = + - =0,故选B. 高考数学选择题解题技巧三、代入检验法当某些问题(如方程、函数等)解起来比较麻烦时,可以换一个角度进行分析判断,即把给出的根、给出的点或给出的值代入方程或函数式中进行验证,从而使问题得以简化.这类处理问题的方法被称为代入法,又叫验证法.例5 若最简根式和是同类根式,则a、b的值为( ).A.a=1 b=1B.a=1 b=-1C.a=-1 b=-1D.a=-1 b=1解析:由同类根式的定义可知根指数相同,被开方数也相同,这样便可列出一个二元一次方程组,再解这个二元一次方程组,用求出的解去检验给出的a、b的值,显然比较麻烦,如采用将给出的a、b的值分别代入最简根式中,再作出判断便容易多了.当把a=1、b=1代入根式后分别得出和,显然它们为同类根式,故应选A. 例6 若△ABC的三边长分别为整数,周长为11,且一边长为4,则这个三角形的最大边长为( ).A.7B.6C.5D.4解析:(1)若最大边为7,7+4=11,两边长就等于周长显然不行;(2)若最大边为6,则另一边只能为1,1、4、6无法构成三角形;(3)若最大边为5,且一边长为4.则第三边为2,因此5为最大边,无需再考虑4的情况.故选C.高考数学选择题解题技巧四、估算法估算法是一种粗略的计算方法,实质上是一种快速的近似计算方法,即对题目所给条件或信息作适当的变形与整理,从而对结果确定出一个范围或作出一个估计.例7 已知地球的表面积约等于5.1亿平方千米,其中水面面积约等于陆地面积的倍,则陆地面积约等于( )亿平方千米(精确到0.1).数学高考选择答题技巧一、按部就班的解题方法。

高考数学选择题秒杀技巧

高考数学选择题秒杀技巧

高考数学选择题秒杀技巧
1. 嘿,你知道吗?特殊值法简直就是高考数学选择题的大救星啊!比如这道题“若函数 f(x)满足 f(2)=3,那 f(4)等于多少”,咱就直接找个满足条件的特殊值带进去,说不定一下就出来啦,这多省事儿呀!
2. 哇塞,选项代入排除法可太好用啦!就像找宝藏一样,把不合适的选项一个一个排除掉,最后剩下的不就是正确答案嘛!比如那道求角度的题,一试就知道哪个对啦!
3. 哎呀呀,图形结合法真是绝了呀!碰到几何题,画个图出来,答案有时候就一目了然啦!像那道求阴影面积的,画出来不就清楚多啦!
4. 嘿,数量关系分析法也很牛呀!看看题目里的数量关系,分析分析,答案也许就自己蹦出来咯!比如那道算速度的题,通过关系一分析不就懂啦!
5. 哇哦,反推法有时候能带来大惊喜呢!从答案反推条件,看看合不合理,不就知道选哪个啦!就像那道判断函数奇偶性的题,反推一下嘛!
6. 哈哈,极限思维法也是个厉害角色呀!把数值往极限去想,往往能找到突破点呢!像那道求最大值的题,想想极限情况呀!
7. 哟呵,整体代换法可别小瞧呀!把一个复杂的式子整体代换一下,说不定难题就变简单啦!比如那道含有多项式的题,整体代换一下多轻松呀!
8. 哎呀,类比法也很有趣呀!想想类似的题目怎么做的,这道题也许就有思路啦!就像那道和之前做过的类似的题,类比一下就懂啦!
9. 哇,估算法有时候能快速解决问题呀!大致估算一下范围,就能排除好多选项呢!比如那道计算面积的题,先估算个大概嘛!
10. 嘿,规律总结法可是很重要的哟!多做几道题总结总结规律,以后碰到类似的题就不怕啦!就像那类找数列规律的题,总结好规律就简单啦!
我的观点结论就是:这些高考数学选择题秒杀技巧真的超有用,大家一定要好好掌握呀,能帮你在考场上节省不少时间,提高准确率呢!。

高考数学选择题技巧(教师用)

高考数学选择题技巧(教师用)

高三辅优专题(四) 选择题解法选讲一、数形结合画出图形或者图象能够使问题提供的信息更直观地呈现,从而大大降低思维难度,是解决数学问题的有力策略,这种方法使用得非常之多。

【例题】、(07江苏6)设函数()f x 定义在实数集上,它的图象关于直线1x =对称,且当1x ≥时,()31xf x =-,则有( )。

A 、132()()()323f f f B 、231()()()323f f f C 、213()()()332f f f D .321()()()233f f f 【解析】、当1x ≥时,()31xf x =-,()f x 的 图象关于直线1x =对称,则图象如图所示。

这个图象是个示意图,事实上,就算画出()|1|f x x =-的图象代替它也可以。

由图知,符合要求的选项是B ,【练习1】、若P (2,-1)为圆22(1)25x y -+=的弦AB 的中点,则直线AB 的方程是( )A 、30x y --=B 、230x y +-=C 、10x y +-=D 、250x y --= (提示:画出圆和过点P 的直线,再看四条直线的斜率,即可知选A )【练习2】、(07辽宁)已知变量x 、y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A 、9,65⎡⎤⎢⎥⎣⎦ B 、[)9,6,5⎛⎤-∞+∞ ⎥⎝⎦C 、(][),36,-∞+∞D 、[]3,6(提示:把yx看作可行域内的点与原点所在直线的斜率,不难求得答案,选A 。

)【练习3】、曲线[]12,2)y x =∈-与直线(2)4y k x =-+有两个公共点时,k 的取值范围是( )A 、5(0,)12B 、11(,)43C 、5(,)12+∞(提示:事实上不难看出,曲线方程[]12,2)y x =+∈-的图象为22(1)4(22,13)x y x y +-=-≤≤≤≤,表示以(1,0)为圆心,2为半径的上半圆,如图。

高考数学选择题怎么选(2)

高考数学选择题怎么选(2)

高考数学选择题怎么选陕西 安振平解答高考数学选择题既要求准确破解,又要快速选择,正如《考试说明》中明确指出的,应“多一点想的,少一点算的”,该算不算,巧判关. 因而,在解答时应该突出一个"选"字,尽量减少书写解题过程,在对照选支的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速地选择巧法,以便快速智取. 下面按知识版块加以例说.1. 函数与不等式例1已知()⎪⎪⎩⎪⎪⎨⎧<=>=,(,(,()00)0)02x x x x x f π则()[]{}3-f f f 的值等于( ).A. 0B. πC. 2π D. 9讲解 由()[]{}(){}{}203ππ===-f f f f f f ,可知选C.例2 函数()()02≥++=x c bx x x f 是单调函数的充要条件是( ).A.0≥bB.0≤bC. 0>bD. 0<b讲解 抛物线()c bx x x f ++=2的开口向上,其对称轴为2b x -=,于是有[)⎪⎭⎫⎢⎣⎡∞+-⊇+∞,2,0b是递增区间,从而,02≤-b 即,0≥b 应选A.例3 不等式x x x x 22loglog +<+的解集是( ).A. ()1,0B. ()+∞,1C. ()+∞,0D. ()∞+∞-,讲解 当x 与x 2log异号时,有x x x x 22loglog+<+, 则必有0>x ,从而0log2<x ,解出10<<x ,故应选A. 例4 关于函数()2132sin 2+⎪⎭⎫⎝⎛-=xx x f ,有下面四个结论:(1)()x f 是奇函数;(2)当2003>x 时,()21〉x f 恒成立;(3)()x f 的最大值是23;(4) ()x f 的最小值是21-.其中正确结论的个数是( ). A. 1个 B. 2个 C. 3个 D. 4个讲解 由()x f 是偶函数,可知(1)错;又当π1000=x 时,()2132211000<⎪⎭⎫⎝⎛-=ρx f ,所以错(2);当()23232322<⎪⎭⎫⎝⎛-==ππx f x ,,故(3)错;从而对照选支应选A.2. 三角与复数例5 如果函数y = sin2x + a cos2x 的图象关于x=8π-对称,则a=( ).A.2B.-2C. 1D. -1讲解 因为点(0,0)与点(4π-,0)关于直线x=8π-对称,所以a必满足:sin0 + a cos0=sin (2π-)+ a cos (2π-),解出a=-1,从而可以排除A , B , C.,故应选D.例6 在()π2,0内,使x x sin cos <成立的x 的取值范围是( ).A. ⎪⎭⎫⎝⎛ππ,4 B. ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛4524ππππ,,C. ⎪⎭⎫⎝⎛454ππ, D. ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛23454ππππ,, 讲解 将原不等式转化为.04sin 2>⎪⎭⎫ ⎝⎛-πx 由π20<<x ,知4744πππ<-<-x ,从而ππ<-<40x ,故应选C.事实上,由π=x 显然满足x x sin cos <,从而否定A, B, D, 故应选C.亦可在同一坐标系中,作出函数x y sin =和x y cos =在()π20,上的图象,进行直观求解. 例7 复数()为虚数单位i R m ii m z ,212∈+-=在复平面上对应的点不可能位于( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 讲解 ()()()()[].1245121251i m m i i m z +--=--=由()⎩⎨⎧+->-m 12,04m 无解,可知应选A.亦可取特值进行排除.事实上记复数z 对应的点为P .若取2-=m ,点P 在第二象限;若取0=m ,则点P 在第三象限; 若取5=m ,则点P 在第四象限,故应选A.例8 把曲线012cos =-+y x y 先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( ).A. ()032sin 1=-+-y x yB. ()032sin 1=-+-y x yC. ()012sin 1=+++y x yD. ()012sin 1=+++-y x y 讲解 对012cos =-+y x y 作变换(),,⎪⎭⎫⎝⎛+-→12,y x y x π得 ()(),01122cos 1=-++⎪⎭⎫⎝⎛-+y x y π 即 ()012sin 1=+++y x y . 故应选C.记住一些运动变换的小结论是有效的.本题是函数xy cos 21+=向方程式的变式,较为新颖.3. 数列与排列组合例9 由13111+==+n n n a a a a ,给出的数列{}n a 的第34项是( ).A. 10334 B. 100 C. 1041 D. 41讲解 对已知递推式两边取倒数, 得,nn n a a a 1311+=+即3111=-+nn a a .这说明数列⎭⎬⎫⎩⎨⎧n a 1是以111=a 为首项, 3为公差的等差数列, 从而有,1003311134=+=d a a即 ,100134=a 故应选B.构造等差数列、等比数列是解决数列考题的常用方法, 值得我们重视.例10 一种细胞,每三分钟分裂一次(一个分裂为两个),把一个这种细胞放入一个容器内,恰好一小时充满;如果开始时把两个这种细胞放入该容器内,那么细胞充满容器的时间为( ). A. 57分钟 B. 30分钟 C. 27分钟 D.45分钟讲解 设容器内细胞共分裂n 次,则n202201⋅=⋅,即,19=n 从而共花去时间为57319=⨯分钟,故应选A. 例11 从正方形的6个面中选取3个面,其中有2个面不相邻的选法共有( ). A. 8种 B. 12种 C. 16种 D. 20种讲解 采用补集思想求解. 从6个面中任取3个面的取法共有13C 种方法,其中三个面交于一点共有8种可能,从而满足题意的取法共有13C 128=-种,故应选B.请读者思考:关系式:121314=⋅C C 的含义是什么?4. 立体几何例12 如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的 正方形,EF ∥AB ,EF 与面AC 的距离为2,则该多面体的体积为( ) A.29 B.5 C.6 D.215讲解 本题的图形是非常规的多面体,需要对其进行必要的分割.连EB 、EC ,得四棱锥E ―ABCD 和三棱锥E ―BCF ,这当中,四棱锥E ―ABCD 的体积易求得623331=⨯⨯⨯=-ABCD E V , 又因为一个几何体的体积应大于它的部分体积,所以不必计算三棱锥E ―BCF 的体积,就可排除A , B.,C.,故应选D.“体积变换”是解答立体几何题的常用方法,请予以关注.例13 关于直线l b a ,,以及平面N M ,,下面命题中正确的是( ). A. 若,//,//M b M a 则;//b a B. 若,,//a b M a ⊥ 则;M b ⊥C. 若,,M b M a ⊂⊂ 且,,b l a l ⊥⊥则;M l ⊥D. 若,//,N a M a ⊥则.N M ⊥讲解 对于选支D, 过a 作平面P 交平面N 于直线,a ,则a a //,,而,M a ⊥从而,M a ⊥,又,,N a ⊂ 故,N M ⊥ 应选D.AFD E CB请读者举反例说明命题A, B, C, 均为假命题.5. 解析几何例14 过抛物线y=a x2(a> 0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段FP 与FQ 的长分别是p、q,则qp 11+=( ).A. 2aB. a21 C. 4a D.a4讲解 由题意知,对任意的过抛物线焦点F 的直线,qp11+的值都是a 的表示式,因而取抛物线的通径进行求解,则p=q=a21,所以qp11+=a4,故应选D.例15 点P ()1,0到曲线⎩⎨⎧==ty t x 22,(其中参数R t ∈)上的点的最短距离是( ).A. 0B. 1C. 2D. 2讲解 由两点间的距离公式,得点P ()1,0到曲线上的点Q ()t t 22,的距离为 ()()().11121222222≥+=+=+-=ttt tPQ当0=t 时,,1min=PQ故应选B.将曲线方程转化为x y42=,显然点P ()1,0是抛物线的焦点,由定义可知:抛物线上距离焦点最近的点为抛物线的顶点,故应选B.例16 已知椭圆2222by ax +=1(a >b >0),双曲线2222by ax-=1和抛物线y 2=2px(p >0 )的离心率分别为e 1、e 2、e 3,则( ).A.e 1e 2>e 3B.e 1e 2=e 3C.e 1e 2<e 3D.e 1e 2≥e 3讲解 ,22211⎪⎭⎫ ⎝⎛-=-=a b ab ae,22221⎪⎭⎫ ⎝⎛+=+=a b ab ae ,13=e.111221e a b e e =<⎪⎭⎫⎝⎛-=∴故应选C.例17 平行移动抛物线x3y2-=,使其顶点的横坐标非负,并使其顶点到点)0,41(的距离比到y轴的距离多41,这样得到的所有抛物线所经过的区域是 A . xOy 平面 B .x2y2-≥C . x 2y 2-≤D . x2y 2≥讲解 我们先求出到点⎪⎭⎫⎝⎛041,的距离比到y 轴的距离多41的点的轨迹.设P (x,y )是合条件的点,则414122+=+⎪⎭⎫ ⎝⎛-x y x ,两边平方并整理得(),x x y+=212.x y,0x 2=∴≥再设平移后抛物线的顶点为)a ,a (2,于是平移后抛物线的方程为),a x (3)a y (22--=-按a 整理得yx 3ya 2a222=--+.)y x 3(8)y 2(,R a 22≥---=∆∴∈ ,化简得x 2y 2-≥.故应选B.6. 综合性性问题例18 某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )A.5种B.6种C.7种D.8种 讲解 设购买单片软件x 片, 磁盘y 盒, 由题意得⎪⎩⎪⎨⎧≤+≥≥,5007060,2,3y x y x经检验可知,该不等式组的正整数解为: 当3=x 时,;4,3,2=y当4=x 时,;,3,2=y 当5=x 时,.2=y总共有7组, 故应选C.例19 银行计划将某资金给项目M 和N 投资一年,其中40%的资金给项目M ,60%的资金给项目N ,项目M 能获得10%的年利润,项目N 能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户. 为了使银行年利润不小于给M 、N 总投资的10%而不大于总投资的15%,则给储户回扣率最小值为( ) A .5% B .10% C .15% D .20%讲解 设共有资金为a , 储户回扣率x , 由题意得解出,15.06.035.04.01.01.0a xa a a a ≤-⋅+⋅≤解出 15.01.0≤≤x ,故应选B.例20 某电视台的颁奖礼盒用如下方法做成:先将一个奖品放入一个正方体内,再将正方体放在一个球内,使正方体内接于球;然后再将该球放入一个正方体内,球内切于该正方体,再将正方体放入一个球内,正方体内接于球,……如此下去,正方体与球交替出现. 如果正方体与球共有13个,最大正方体的棱长为162cm . 奖品为羽毛球拍、蓝球、乒乓球拍、手表、项链之一,则奖品只能是(构成礼品盒材料的厚度忽略不计)( ).A . 项链B . 项链或手表C . 项链或手表,或乒乓球拍D . 项链或手表,或乒乓球拍,或蓝球讲解 因正方体的中心与外接球的中心相同,设正方体的棱长为a ,外接球的半径为R ,则有,2234a R =即.32R a =半径为R 的球的外切正方体的棱长R2b =,∴相邻两个正方体的棱长之比为.3322==RR a b因为有7个正方体,设最小正方体的棱长为t ,则,t 27)3(t 1626==得)cm (6t =.故礼品为手表或项链. 故应选B.高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择. 例如:估值选择法、特值检验法、顺推破解法、数形结合法、特征分析法、逆推验证法、提炼公式法等都是常用的解法. 解题时还应特别注意:数学选择题的四个选择支中有且仅有一个是正确的,因而在求解时对照选支就显得非常重要,它是快速选择、正确作答的基本前提.。

高考数学选择题满分技巧

高考数学选择题满分技巧

高考数学选择题满分技巧高考选择题特点:1、选择题分数所占比例高,约占750分的40%以上,即315~330分(数学占40%)。

2、选择题可猜答,有一定几率不会做也能得分。

3、选择题容易丢分也容易得分,单题分值较大,而且存在干扰选项做误导,选择题好坏能决定你与他人的优势或劣势。

4、选择题可快速答题,留下时间做大题,也可浪费你大量时间,叫你来不及做题。

5、掌握选择题答题技巧可做到所有科目选择题既能快速解答,又能获取满分。

一、猜答技巧选择题虽不易猜答但仍有它的答题基本方法,现简单介绍如下:消元法选择题答案是唯一正确的,运用消元法是最普通的。

该法也适用多选题排除错误选项。

分析法将四个选择项全部置于试题中,纵横比较,逐个分析,去误求正,去伪存真,获得理想的答案。

联想法有时对四个选项无从下手,这时可以展开联想,联想课本、练习、阅读材料及其他,从而捕捉自己需要的知识点。

类比法在能力倾向选择题中类比法十分重要,四个选项中有一个选项不属于同一范畴,那么,余下的三项则为选择项。

推测法利用上下文推测词义。

有些试题要从句子中的结构及语法知识推测入手,配合自己平时积累的常识来判断其义,推测出逻辑的条件和结论,以期将正确的选项准确地选出。

二、数学选择题部分方法1)数学选项暗示:①开闭区间的思想就是暗示我们能不能取到这个值,直接代入验证就行。

一般可通过数形结合来判断其具体取值。

②含有+∞及-∞的。

即极限讨论法,一般有给出无穷大的选项,我们可用极限的思想去讨论排除或者待选(案例较多,大家自行找任意题去验证)。

③函数单调性判断。

根据单调性的特征取两个到三个好算的特殊值验证即可得出结论。

④函数奇偶性判断。

根据对称特性,取相应的对称点验证是否成立。

2)根据所学知识点简化我们不必管其中的道理,但是这类题通常比较难,我们在完全没有思路的时候,完全可以利用知识点来简化。

3)定性理解做题法,数形结合但凡考题涉及到函数和坐标系的,直接画图,画完图就是小学生做的了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学选择题怎么选
从2000年开始,选择题是广东高职考试数学试卷中的第一卷,题量已稳定在18道,每道5分,计90分,占总分的60%。

故选择题的得分率及答题速度直接影响着整个考试的成绩及情绪,下面谈谈高考选择题怎么选。

一、 答题要求
从命题的角度来看,一份数学试卷中的选择题都是直接法求解,决不是一份好试卷,由于选择题不仅要担负检测“三基”的牢固程度,还担负着检测学生的思维敏捷灵活、快速的程度,故常要用到特例法、数形结合法等等;从考试角度来看,一位同学解答一份试卷中的选择题都用直接法求解,往往导致“小题大做”,也决不会得到理想的分数,由于在解选择题过程中用时过多,就挤掉了后面考虑难题的时间,就是一种潜在丢分或隐含失分。

因此研究选择题的得分技巧必须做到:简捷快速。

据近年高考选择题命题特点是“多考一点想,少考一点算”,以及选择题的知识特征,则其解法要求是要做到“小题小(巧)做”,避免“小题大(难)做”。

否则就是潜在丢分或隐含失分,下面举例说明。

例1 (2003年高职考试题)中心中坐标原点,焦点在x 轴,且离心率为
2
2、焦距为1的椭圆方程是 A 、14222=+y x B 、1422
2=+y x C 、12422=+y x D 、1242
2=+y x 解法1(小题大做)
由于焦点在x 轴,设椭圆的方程为122
22=+b
y a x (a>b>0),根据题意,得 ⎪⎪⎩
⎪⎪⎨⎧=+==2222212a c b a
c c 解得:a=22,b=21,c=2
1,故选A 。

解法2(小题小做)
把选项中的A 、C 都化为标准式,由于焦点在x 轴知a>b ,排除B 和C ,易知c=2
1,选项D 不满足222a c b =+,排除D ,故选A
解法3(小题巧做)
把选项中的A 、C 都化为标准式,由于焦点在x 轴知a>b ,排除B 和C ,易知c=21,由22=a c 知a=22,而A 中的a=2
2,因为是四选一,故选A 从上面例子可以看出,解题是有技巧可言,不同方法技巧的选择,会影响解题的速度,小题巧(小)解能节省大量时间,能在一二分钟内解决问题,甚至是十几秒,如何才能做到此点,下面例析快速选择技巧。

二、 快速选择技巧
基于选择题的特点,解选择题有两条重要思路;一是肯定一支,二是否定三支。

下面例析如何运用此两条思路,进行选择题的快速选择。

1、 直接法
利用数学的基础知识和概念,从题干出发,像演算常规解答题一样往下推,并把所得的结果与四个选项对比,从而得到正确答案的方法叫做直接选择法。

可以说绝大部分的选择题都可用此法,同时可发现往往会犯“小题大做”之大忌。

一般来说是适用于容易题、概念的辨析题以及选项对题干作用不大等选择题。

例2 (2004年高职考试题)直线 2x + y + 3 = 0 的斜率是
A 、2
B 、-2
C 、21
D 、- 2
1 解 由2x + y + 3 = 0得 y = -2x -3,知k = 2,故选B
例3(2003年高职考题)圆22y x ++ 10x- 6y = 0的圆心坐标为
A 、(0,4)
B 、(5,-3)
C 、(-5,3)
D 、(4,0)
解法1(配方法)把原方程通过配方化为34)3()5(22=-++y x ,知圆心坐标为(-5,
3),故选C 。

其实把原方程通过配方化到2)5(+x 这一步就可以了,知圆心的横坐标为-5,看选项符合条件的只有C 。

解法2(公式法)圆的一般方程:22y x ++ Dx + Ey + F = 0,其圆心坐标为(2,2E D --
)=(-5,3),故选C 。

这里只算出2
D -= -5即可,因圆心的横坐标为-5的只有C 。

从此题可以看出,就是直接选择法也不一定非要把整个题都计算完,也应边算边判断,做出选择,节省时间。

2、 特例法
此法的主要特征是取特例(如特殊值、特殊函数、特殊角、特殊点、特殊数列等等),进行合理科学的判断—否定或肯定,从而达到快速解题目的。

例4(2001年高职考试题)已知正数a 、b 、c 成等比数列,公比大于1,令P = a + 2b
+ 3c,Q = 3a + b + 2c, R = 2a + 3b + c,则必有
A 、P>Q>R
B 、P>R>Q
C 、Q>P>R
D 、R>P>Q
解 取a = 1,b = 2,c = 4符合题目条件,则P = 17,Q = 13,R = 12,知P>Q>R ,故选A
例5(2003年高职考试题)在△ABC 中,若tanAtanB = 1,则 sinC + cosC=
A 、-51
B 、51
C 、-2
1 D 、1 解 取A = B = 45°符合题目条件,则C = 90°所以sinC + cosC = 1,故选D
3、数形结合法
由已知条件作出相应的图形,借助图形的直观性,进行计算或分析推理,确定正确的选择支。

例6(2004年高职考试题)设函数 f(x) = 2
x + bx + c 的
图象关于直线 x=1 对称,则 A 、 f(0)<f(
32)<f(23) B 、f(32)<f(2
3)<f(0) C 、f(23)<f(0<f(32) D 、f(0)<f(23)<f(32) 解 画出f(x) = 2x + bx + c 的图象,它的大致图形应是开
口方向向上,对称轴为直线x=1的抛物线,如图1所示,可以看出f(32)<f(2
3)<f(0),故选B 例7(1998年高职考试题)直线 y = kx + 2与曲线 y =x x 22--(-2≤x ≤0)有两个交点,则实数x 的取值范围

A 、(43,1]
B 、(43,1)
C 、(4
3,+∞) D 、[1,∞) 解 在同一坐标系中,作出函数g(x)= kx + 2和f(x) =x x 22--(-2≤x ≤0)的图象(如图2),由于g(x)的图
象是过(0,2)的一条直线,我们看到,g(x)与半圆相切时,k =
43,g(x)通过(-2,0)时,k = 1,要使它与f(x)的图象(半圆)有两个交点,则
4
3≤<k 1,故选A 。

4、逐一验正法 将各个选择支逐一代入题干进行检验,或对题设可能满足的各种情况逐一讨论验证,从而确定正确的选择支。

例8(1999年高职考试题)已知函数 y = f(x) 的图象与函数 y = 2x + 1的图象关于
直线 x = 2对称,则 f(x) =
A 、9 – 2x
B 、9 + 2x
C 、4x + 2
D 、2 – 4x
解 把y = 2x + 1的图象在平面直角坐标内画出来,把选项A 的图象画出来,恰好符合题目要求,故选A 。

例9(2004年高职考试题)设函数 f(x) = )22(2lg <<--+x x
a x 是奇函数,则 a = A 、4 B 、3 C 、2 D 、1 解 把选项A 、B 、C 的结果分别代入f(x) = )22(2lg
<<--+x x a x 中,容易看出,C 的结果符合题意,故选C 。

5、结论选择法
由于高考命题原则是“源于教材,而略高于教材”,加上选择题是不必说明理由等特点,在数学学习过程中可总结出略高于教材的真命题,但又不是课本中的定理、公式,故我们称它们为规律性结论。

利用它可大大简化解题过程,掌握一定量的规律性结论是很有必要的。

对于规律性同学们可根据自己的实际情况加以总结。

例10(2001年高职考试题)设{a n }是等比数列,如果a 2= 3, a 4= 6,则 a 6=
A 、9
B 、12
C 、16
D 、36
分析 只要利用平时总结出的相关结论:即等比数列中的偶数项组成的新数列仍然是等比数列。

那么,易知12可以,故选B 。

例11(2004年高职考试题)等差数列k a a a ,,,21Λ的和为81,若1812=+-k a a ,则自然数 k =
A 、7
B 、8
C 、9
D 、10
分析 等差数列{a n }中,如果正整数m,n,k,l 满足m + n = k + l ,则有l k n m a a a a +=+。

由条件得,
812)(1=+k a a k ,则812
)(12=+-k a a k ,由此得出 k=9,故选C 例12(2004年高职考试题)等比数列{a n }的前10项和为48,前20项和为60,则这个数列的前30项和为
A 、75
B 、68
C 、63
D 、54
分析 在等比数列{a n }中,前n 项和为n s ,则s n n n n n s s s s 232,,--仍成等比数列。

利用此结论有:)()(20301021020s s s s s -=-,(60-48))60(48302-=s ,得出这个数列的
前30项的和为63,故选C 。

相关文档
最新文档