离子键的形成(课件PPT)
合集下载
第三节离子键配位键与金属键
【探究实验】-----54页
①向盛有AgNO3溶液的试管里逐滴的加入氨水 ②向盛有CuSO4溶液的试管里逐滴的加入氨水
根据实验分析出现现象的原因
实验已知氢氧化铜与足量氨水反应后溶解是因为 生成了[Cu(NH3)4]2+ ,其结构简式为:
NH3
2+
H3N Cu NH3 NH3
Cu 2+ +2NH3 .H2O Cu(OH)2 + 4NH3 . H2O
离子的极化可能导致阴阳离子的外 层轨道发生重叠,从而使得许多离子键 不同程度地带一些共价性。
二、配位键 NH3 + H+ == NH4+
1、配位键的形成 共用电子由一个原子单方面提供而不是由双方共 同提供
2、形成配位键的条件:①一方是能够提供孤对电 子的原子,②另一方是具有能够接受孤对电子的空 轨道的原子。配位键常用符号A→B。
金属原子脱落来的价电 子形成遍布整个晶体的“ 自由流动的电子”,被所有 原子所共用,从而把所有 的原子维系在一起。
4、金属键及实质:(在金属晶体中,金属阳离 子和自由电子之间的强的相互作用)这是化学 键的又一种类型。
金属键特征:无方向性,无饱和性
自由电子被许多金属离子 所共有,即被整个金属所 共有;无方向性、饱和性。
金属键强弱判断:一般金属阳离子所带电荷多、半径 小,金属键强,熔、沸点高,硬度大。
谢谢!
资料整理
• 仅供参考,用药方面谨遵医嘱
3、离子键的特征:
阅读:P51
由于离子键没有方向性和 饱和性,因此以离子键相结合 的化合物倾向于形成晶体,使 每个离子周围排列尽可能多的 带异性电荷的离子,达到降低 体系能量的目的。
氯化钠的晶体结构
离子键的(精)
如:(1)NaF
(2) MgO
>
NaCl
>
>
NaBr
>
NaI
Na2O
4 、哪些物质属于离子晶体? 强碱、部分金属氧化物、绝大部分盐类。
二、离 子 晶 体的空间结构
1、NaCl 型
2、CsCl 型
ClNa+
1、每个Na+同时吸引 个Cl-,每个Cl-同时吸 6 引 6 个Na+,而Na+数目与Cl-数目之比为 1:1 , 化学式为 NaCl 。
作业:
课本P38 第4、5、6大题
谢 谢 大 家 !
二、用电子式表示离子化合物的形成
离子的电子式 阳离子的表示 阴离子的表示
Na+
Mg2+
[ [
Cl
××
] 2 ]
×× ××
×× ××
O
××
×× ××
化合物的电子式 如MgO电子式
××
如NaCl的电子式
××
Na [ Cl
+
××
××
]
Mg2+
[
O
××
2 ]
××
××
××
小结:离子化合物电子式的书写
Na Cl
:
三、离子晶体的配位数与 r+/r- 的关系
1、 离子晶体稳定存在的条件:
2、配位数: 一种离子周围紧邻的带相反电 荷的离子数目
NaCl 型离子配位数为 6 ,CsCl型离子配位数为
8
。
【讨论】
NaCl和CsCl均为AB型离子晶体,但两者的配 位数却不同,你认为造成这一差异的可能原 因是什么
?
3)r+/r-与配位数
23离子键、配位键与金属键-安徽省太和第一中学高中化学选修三教学课件(共45张PPT)
离子键、配位键与金属键
3、离子键的特征 (1)无方向性
Na+Cl-CNl- aN+ CaN+lNa- +Ca+l- Na+ CNla- +CNal-CNC+ NlalC--+alN-+ CaCN+lla--+CNlaC-+l-Na+
氯化钠晶体的结构
离子键、配位键与金属键
(2)无饱和性
氯化钠晶体的结构
2、配合物
配体有 孤电子对
配位键的存在是配合物与其它物质最本质的区别。
离子键、配位键与金属键
(1)概念:由提供孤电子对的配体与接受孤电子对的中心原子 以配位键结合形成的化合物称为配合物。
离子键、配位键与金属键
内界(配离子)
Cu(NH3)4 2 + SO42-
中 配配 心 位位 原 原体 子子
配 位 数
(3)结构表示式 A→B
其中,A表示能够提供孤对电子的原子,B表示具有能够接受孤对电 子的空轨道的原子。
H
例: [H N H]+
H 练习:写出水合氢离子的电子式和结构式。
(4)配位键是一种特殊的共价键。
离子键、配位键与金属键
(5)配位键与共价键的区别与联系 ①配位键一定是共价键,但共价键不一定是配位键。 ②配位键与共价键只是在形成过程上有所不同:但形成后与其他
离子键、配位键与金属键
由于离子键没有方向性和饱和性,因此以离子键相结合的化合物 倾向于形成晶体,使每个离子周围排列尽可能多的带异性电荷的 离子,达到降低体系能量的目的。
注意:阳离子与阴离子半径比值越大,离子周围所能容纳带异性电 荷离子的数目就越多。
高中化学必修二第一章 第三节化学键 课时1 离子键和共价键(共59张PPT)
•
下列有关离子化合物的说法正确的
是( )
• A.离子化合物一定易溶于水
• B.离子化合物由非金属元素和金属元素共
同组成
• C.熔融状态下能够导电的物质,一定是离
子化合物
• D.离子化合物在晶体状态下有离子存在,
但不导电
【解析】 离子化合物不一定易溶于水,如 AgCl、BaSO4等;离子化合物不一定由非金 属元素和金属元素共同组成,如NH4Cl等铵 盐全部由非金属元素组成;熔融状态能导电 的物质,不一定是离子化合物,如金属单质; 离子化合物由阴、阳离子构成,在晶体状态 下,离子不能自由移动,故不能导电。
• 【答案】 D
• 4.氯化钠是日常生活中人们常用的调味品。 在下列事实中,可以证明NaCl中一定存在离 子键的是( )
• (3)证明某化合物一定存在离子键的方法是看在熔融 状态下能否导电。
• 3.离子化合物
• (1)定义:由离子键构成的化合物叫做离子化 合物。
• (2)构成微粒:阴离子、阳离子。
• (3)主要物理性质:熔、沸点较高,硬度较大。
• (4)导电性:固态时不导电,溶于水或受热熔 化后导电。
• (5)溶解性:大多数离子化合物易溶于水,难 溶于汽油、苯、四氯化碳等有机溶剂。
子化合物 • C.离子化合物一定能导电 • D.只有在活泼金属元素和活泼非金属元素
化合时,才能形成离子键
• 【解析】 正确理解离子键和离子化合物的 内涵和外延才能解答本题。
• A项,离子键是指阴、阳离子间的静电作用, 包括引力和斥力二者的平衡;B项,离子键 形成的只能是离子化合物;C项,离子化合 物在熔融状态或水溶液里才能导电,D项NH 与活泼非金属元素之间也可形成离子键。
离子键和离子晶体
(2)同一周期中电子层结构相同的阳离子的半 径,随离子的电荷数的增加而减小;而阴离子的半 径随离子的电荷数减小而增大。
(3)1 族、2 族、13~17 族的同族电荷数相同 的离子的半径,随离子的电子层数增加而增大。
8
第二节 离子晶体
一、晶格和晶胞 二、离子晶体的特征 三、离子晶体的类型 四、离子晶体的半径比规则
9
固体可分为晶体和非晶体两大类。 晶体与非晶体的主要区别是: (1)晶体一般具有整齐规则的几何外形,而非晶 体(如玻璃、沥青、石蜡等)没有固定的几何外形。 (2)晶体具有固定的熔点,而非晶体没有固定的 熔点。 (3)晶体具有各向异性,其某些物理性质在不同 方向上是不同的(如石墨在与层垂直方向上的电导率 为与层平行方向上的 1/104 ),而非晶体的物理性质在 不同方向上都相同。
2
第一节 离 子 键
一、离子键的形成
二、离子键的特征 三、离子的特征
3
一、离子键的形成
当电负性较小的活泼金属元素的原子与电负性 较大的活泼非金属元素的原子相互接近时,金属原 子失去最外层电子形成带正电荷的阳离子;而非金 属原子得到电子形成带负电荷的阴离子。阳、阴离 子之间除了静电相互吸引外,还存在电子与电子、 原子核与原子核之间的相互排斥作用。当阳、阴离 子接近到一定距离时,吸引作用和排斥作用达到了 平衡,系统的能量降到最低,阳、阴离子之间就形 成了稳定的化学键。这种阳、阴离子间通过静电作 用所形成的化学键称为离子键。
在离子晶体中,阳、阴离子被限制在晶格格 点上振动,不能移动,因此离子晶体不导电。但 是当离子晶体熔融或溶于水时,产生自由移动的 阳、阴离子,从而可以导电。
14
三、离子晶体的类型
在离子晶体中,由于阳、阴离子在空间的排列方 式不同,因此离子晶体的空间结构也就不相同。对于 AB 型离子晶体,常见的有 CsCl 型、NaCl 型和 ZnS 型三种典型晶体结构类型。
(3)1 族、2 族、13~17 族的同族电荷数相同 的离子的半径,随离子的电子层数增加而增大。
8
第二节 离子晶体
一、晶格和晶胞 二、离子晶体的特征 三、离子晶体的类型 四、离子晶体的半径比规则
9
固体可分为晶体和非晶体两大类。 晶体与非晶体的主要区别是: (1)晶体一般具有整齐规则的几何外形,而非晶 体(如玻璃、沥青、石蜡等)没有固定的几何外形。 (2)晶体具有固定的熔点,而非晶体没有固定的 熔点。 (3)晶体具有各向异性,其某些物理性质在不同 方向上是不同的(如石墨在与层垂直方向上的电导率 为与层平行方向上的 1/104 ),而非晶体的物理性质在 不同方向上都相同。
2
第一节 离 子 键
一、离子键的形成
二、离子键的特征 三、离子的特征
3
一、离子键的形成
当电负性较小的活泼金属元素的原子与电负性 较大的活泼非金属元素的原子相互接近时,金属原 子失去最外层电子形成带正电荷的阳离子;而非金 属原子得到电子形成带负电荷的阴离子。阳、阴离 子之间除了静电相互吸引外,还存在电子与电子、 原子核与原子核之间的相互排斥作用。当阳、阴离 子接近到一定距离时,吸引作用和排斥作用达到了 平衡,系统的能量降到最低,阳、阴离子之间就形 成了稳定的化学键。这种阳、阴离子间通过静电作 用所形成的化学键称为离子键。
在离子晶体中,阳、阴离子被限制在晶格格 点上振动,不能移动,因此离子晶体不导电。但 是当离子晶体熔融或溶于水时,产生自由移动的 阳、阴离子,从而可以导电。
14
三、离子晶体的类型
在离子晶体中,由于阳、阴离子在空间的排列方 式不同,因此离子晶体的空间结构也就不相同。对于 AB 型离子晶体,常见的有 CsCl 型、NaCl 型和 ZnS 型三种典型晶体结构类型。
分子结构 离子键
在常温下以固态存在;熔点 和沸点较高;晶体本身不导电, 但在水溶液中或熔融状态时能够 导电;易溶于水,但在有机溶剂 中难溶。
氯化钠晶体图
无机化学
(五)离子的极化
离子在电场中产生诱导偶极的现象称为离子的极化现象。 离子作为带电微粒,自身可以产生电场,使其它离子变 形,离子的这种能力称为极化能力。 阳离子主要表现为极化作用,而阴离子主要表现为变形 性。一般来说,阳离子半径越小,电荷越多,极化能力越强; 阴离子半径越大,电荷越多,越容易被极化。
第二章 分子结构
无机化学
无机化学
❖化学键(chemical bond):分子或晶体中相邻两个 或多个原子间强烈的相互作用。
❖ 成键能量约为几十到几百千焦每摩尔。
离子键
化学键
共价键(配位键) 金属键
第一节 离子键
无机化学
一、离子键
1916 年德国科学家 Kossel(科塞尔)提出离子键理论。
(一) 离子键的形成 (以NaCl为例) Na-e —— Na+ , Cl + e —— Cl-
离子极化会使无机化合物的溶解度、熔点、颜色等物理 性质发生变化。
无机化学
●为什么下列各物质溶解度依次减小、 颜色逐渐加深?
AgF(白色) AgCl(白色) AgBr(淡黄色) AgI(黄色)
离子的电荷分布是球形对称的,每个离子在任何方向 与带相反电荷离子的静电作用都相同,所以离子键没有方 向性。
2.离子键没有饱和性
在离子晶体中,每个离子尽可能多地吸引带相反电荷的 离子,并不受离子本身的电荷数的限制,因此离子键没有饱 和性。
无机化学
(三)影响离子键强度的因素
1. 离子的电荷 离子键的实质是阴、阳离子的静电作用,离子所带
氯化钠晶体图
无机化学
(五)离子的极化
离子在电场中产生诱导偶极的现象称为离子的极化现象。 离子作为带电微粒,自身可以产生电场,使其它离子变 形,离子的这种能力称为极化能力。 阳离子主要表现为极化作用,而阴离子主要表现为变形 性。一般来说,阳离子半径越小,电荷越多,极化能力越强; 阴离子半径越大,电荷越多,越容易被极化。
第二章 分子结构
无机化学
无机化学
❖化学键(chemical bond):分子或晶体中相邻两个 或多个原子间强烈的相互作用。
❖ 成键能量约为几十到几百千焦每摩尔。
离子键
化学键
共价键(配位键) 金属键
第一节 离子键
无机化学
一、离子键
1916 年德国科学家 Kossel(科塞尔)提出离子键理论。
(一) 离子键的形成 (以NaCl为例) Na-e —— Na+ , Cl + e —— Cl-
离子极化会使无机化合物的溶解度、熔点、颜色等物理 性质发生变化。
无机化学
●为什么下列各物质溶解度依次减小、 颜色逐渐加深?
AgF(白色) AgCl(白色) AgBr(淡黄色) AgI(黄色)
离子的电荷分布是球形对称的,每个离子在任何方向 与带相反电荷离子的静电作用都相同,所以离子键没有方 向性。
2.离子键没有饱和性
在离子晶体中,每个离子尽可能多地吸引带相反电荷的 离子,并不受离子本身的电荷数的限制,因此离子键没有饱 和性。
无机化学
(三)影响离子键强度的因素
1. 离子的电荷 离子键的实质是阴、阳离子的静电作用,离子所带
离子键离子晶体 完整版课件
即时应用 1. 下列叙述正确的是( ) A.离子键有饱和性和方向性 B.离子化合物只含有离子键 C.有些离子化合物既含有离子键又含有共 价键 D.离子化合物中一定含有金属元素
解析:选C。一种离子对带异种电荷离子的 吸引作用与其所处的方向无关,所以离子键 无方向性,一种离子可以尽可能多地吸引带 异种电荷的离子,所以离子键无饱和性;离 子化合物中一定含有离子键,可能含有共价 键,如NaOH;离子化合物中不一定含有金 属元素,如NH4Cl。
形成稳定的钠离子(Na+:1s22s22p6);氯原子 的电子排布式为:1s22s22p63s23p5,易得到一 个电子,达到氩原子的电子排布,形成稳定 的氯离子(Cl-:1s22s22p63s23p6);然后钠离子 (阳离子)和氯离子(阴离子)间以离子键相结合 形成氯化钠晶体。
探究导引2 离子键的形成过程中,只表现为 阴、阳离子间的静电吸引作用吗? 提示: 不是。离子键的实质是静电作用, 阴、阳离子之间的静电引力使阴、阳离子相 互吸引,阴离子的核外电子与阳离子的核外 电子之间、
新知初探自学导引
自主学习
一、离子键的形成 1. 概念:___阴__、__阳__离__子____间通过 __静__电__作__用____形成的化学键叫做离子键。 2. 形成:在离子化合物中,阴、阳离子之间 的___静__电__引__力____使阴、阳离子相互吸引,
阴离子的核外电子与阳离子的核外电子之
共价化合物HCl溶于水形成能导电的溶液,所 以C项错误;共价化合物不含离子,以分子形 式存在,在熔融状态下也不会电离出离子, 所以不能导电,而离子化合物可以电离出离 子,所以D项正确。
要点突破讲练互动
要点一 离子Leabharlann 的形成探究导引1 从原子结构的角度说明氯化钠 中离子键的形成过程。 提示:钠原子的电子排布式为: 1s22s22p63s1,易失去最外层的一个电子,达 到氖原子的电子排布,
化学键ppt课件完美版
化学键作用
使离子相结合或原子相互结合形成 分子,构成物质的化学键有离子键、 共价键和金属键。
离子键、共价键和金属键
离子键
由正离子和负离子之间通过静电引力形成,通常在活泼金属和活泼非金属之间形成,例如氯 化钠(NaCl)。
共价键
两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比 较稳定的化学结构,像这样由几个相邻原子通过共用电子并与共用电子之间形成的一种强烈 作用叫做共价键。
材料改性
利用化学键的变化改善材料的性能,如提高材料的强度、硬度、 耐腐蚀性等。
界面科学
研究不同材料界面间的化学键合作用,揭示界面现象对材料性能 的影响。
化学键理论在生命科学中的应用
生物大分子结构
阐述蛋白质、核酸等生物大分子中的化学键合作用,揭示生物大分 子的结构和功能关系。
药物设计
通过模拟药物与靶标间的化学键合作用,设计具有高效、低毒的药 物分子。
氢键对物质性质的影响
氢键的形成条件
氢原子与电负性大、半径小的原子(F、 O、N等)形成共价键后,再与其他分 子中的电负性大、半径小的原子之间 形成的相互作用力。
氢键对物质性质的影响
使物质的熔沸点升高、溶解度增大、粘 度增大等。例如,HF的沸点比HCl高很 多,就是因为HF分子之间存在氢键。
物质性质的综合分析
简单离子晶体
离子晶体的结构特点
由相同或不同的正、负离子按一定比 例排列而成,如NaCl、CsCl等。
高对称性、高稳定性,具有特定的晶 格能。
复杂离子晶体
包含复杂离子或离子集团的晶体,如 硅酸盐、磷酸盐等。
离子键的强度与性质
1 2
离子键的强度 与离子的电荷、半径及电子云密度有关。电荷越 高、半径越小,离子键越强。
使离子相结合或原子相互结合形成 分子,构成物质的化学键有离子键、 共价键和金属键。
离子键、共价键和金属键
离子键
由正离子和负离子之间通过静电引力形成,通常在活泼金属和活泼非金属之间形成,例如氯 化钠(NaCl)。
共价键
两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比 较稳定的化学结构,像这样由几个相邻原子通过共用电子并与共用电子之间形成的一种强烈 作用叫做共价键。
材料改性
利用化学键的变化改善材料的性能,如提高材料的强度、硬度、 耐腐蚀性等。
界面科学
研究不同材料界面间的化学键合作用,揭示界面现象对材料性能 的影响。
化学键理论在生命科学中的应用
生物大分子结构
阐述蛋白质、核酸等生物大分子中的化学键合作用,揭示生物大分 子的结构和功能关系。
药物设计
通过模拟药物与靶标间的化学键合作用,设计具有高效、低毒的药 物分子。
氢键对物质性质的影响
氢键的形成条件
氢原子与电负性大、半径小的原子(F、 O、N等)形成共价键后,再与其他分 子中的电负性大、半径小的原子之间 形成的相互作用力。
氢键对物质性质的影响
使物质的熔沸点升高、溶解度增大、粘 度增大等。例如,HF的沸点比HCl高很 多,就是因为HF分子之间存在氢键。
物质性质的综合分析
简单离子晶体
离子晶体的结构特点
由相同或不同的正、负离子按一定比 例排列而成,如NaCl、CsCl等。
高对称性、高稳定性,具有特定的晶 格能。
复杂离子晶体
包含复杂离子或离子集团的晶体,如 硅酸盐、磷酸盐等。
离子键的强度与性质
1 2
离子键的强度 与离子的电荷、半径及电子云密度有关。电荷越 高、半径越小,离子键越强。
2.1.1离子键与共价键
p27页
(2)一般来说,当电负性差值大于1.7时, 形成的化学键为离子键;当电负性差值小 于1.7时,形成的化学键为共价键。 (3)离子键和共价键之间, 并非严格截然可以 区分的, 可将离子键视为极性共价键的一个极 端, 而另一极端为非极性共价键。
常见分子的构型
N2
H—H 无极性 H—I 弱极性
N
H
[H N H
注意:铵根离子中 的四个氮氢键完全 [H 一样 ( 键长、键能相 + H] 同),右边的表示方 法也可以!
H
N H H]+
课本p26页
7、共价分子、共价化合物、晶体类型
(1) 具有分子的单质 Cl2,O2,N2 共价分子 分子晶体
原子晶体 (2)不具有分子的单质 共 (空间网状) C(金刚石) 硅(Si) 价 键 的 (3) 具有分子的化合物 共价分子 共价化合物 分子晶体 H2O,NH3,CO2 存 在 原子晶体 (4)不具有分子的化合物 共价化合物 (空间网状) SiO2 SiC (5)含共价键、离子键的化合物 NaOH 、K2SO4 、NH4NO3 离子化合物 离子晶体
吸收热量
2 mol 气态氢原子
Cl2 →
Cl +
Cl
— 243kJ
键能是衡量共价键稳定性的参数之一。键能越大, 共价键越稳定。
(2)键长
形成共价键的两个原子之间的核间距叫键长。
例如,H-H,键长为0.074nm;Cl-Cl,键长为 0.199nm
键长是衡量共价键稳定性的另一个重要参数。 键长越短,键能越大,共价键越稳定。 (比较键长、键能,一般在相同的键型之间进行, 如都在单键或双键之间进行比较)
3、共价键的类型
①非极性共价键
离子键离子晶体- 完整版课件
[答案] D
1.碱金属和卤素形成的化合物大多具有的性质是( )
①固态时不导电,熔融状态导电 ②能溶于水,其水
溶液导电 ③低熔点 ④高沸点 ⑤易升华
A.①②③
B.①②④
C.①④⑤
D.②③④
解析:碱金属易形成阳离子,卤素易形成阴离子,阴、
阳离子易形成离子键,构成离子化合物,所以具有离
子化合物的一般性质。
[例3] 下列关于晶格能的叙述中正确的是 A.晶格能仅与形成晶体的离子带电量有关 B.晶格能仅与形成晶体的离子半径有关 C.晶格能指相邻的离子间的静电作用 D.晶格能越大的离子晶体,其熔点越高
()
[解析] 晶格能与离子电荷的乘积成正比,与阴、阳离 子的核间距成反比,晶格能越大,晶体的熔、沸点越高,硬 度越大,A、B错误,D正确。晶格能是指拆开1 mol离子晶体 使之形成气态阴、阳离子所吸收的能量,既有量的限定1 mol, 又有微粒的限定,指阴、阳离子,C叙述错误。
2.成键特征 阴、阳离子__球__形___对称,电荷分布也是__球__形___对称, 它们在空间各个方向上的__静__电__作__用__相同,在各个方向上一 个离子可同时吸引多个带相反电荷的离子,故离子键无_方__向__ 性和__饱__和__性。
1.下列叙述正确的是
()
A.非金属原子间不可能形成离子键,只含有非金属元素
答案:B
[例 2] 如图为 NaCl 晶体的一个晶胞,
下列叙述中不.正确的是
()
A.若晶体中 Na+与 Cl-的最小距离为 a,
则 Na+与 Na+最近的距离为 2a
B.与Na+最近且等距的Cl-连线构成的图形为正四面体
C.与Na+最近且等距的Cl-连线构成的图形为正八面体
1.碱金属和卤素形成的化合物大多具有的性质是( )
①固态时不导电,熔融状态导电 ②能溶于水,其水
溶液导电 ③低熔点 ④高沸点 ⑤易升华
A.①②③
B.①②④
C.①④⑤
D.②③④
解析:碱金属易形成阳离子,卤素易形成阴离子,阴、
阳离子易形成离子键,构成离子化合物,所以具有离
子化合物的一般性质。
[例3] 下列关于晶格能的叙述中正确的是 A.晶格能仅与形成晶体的离子带电量有关 B.晶格能仅与形成晶体的离子半径有关 C.晶格能指相邻的离子间的静电作用 D.晶格能越大的离子晶体,其熔点越高
()
[解析] 晶格能与离子电荷的乘积成正比,与阴、阳离 子的核间距成反比,晶格能越大,晶体的熔、沸点越高,硬 度越大,A、B错误,D正确。晶格能是指拆开1 mol离子晶体 使之形成气态阴、阳离子所吸收的能量,既有量的限定1 mol, 又有微粒的限定,指阴、阳离子,C叙述错误。
2.成键特征 阴、阳离子__球__形___对称,电荷分布也是__球__形___对称, 它们在空间各个方向上的__静__电__作__用__相同,在各个方向上一 个离子可同时吸引多个带相反电荷的离子,故离子键无_方__向__ 性和__饱__和__性。
1.下列叙述正确的是
()
A.非金属原子间不可能形成离子键,只含有非金属元素
答案:B
[例 2] 如图为 NaCl 晶体的一个晶胞,
下列叙述中不.正确的是
()
A.若晶体中 Na+与 Cl-的最小距离为 a,
则 Na+与 Na+最近的距离为 2a
B.与Na+最近且等距的Cl-连线构成的图形为正四面体
C.与Na+最近且等距的Cl-连线构成的图形为正八面体
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Na×
Na+
Na+ Cl-
∶C···l ·
··· [∶Cl ∶] —
Na× +∶·C···l · ···· Na+[∶Cl ∶] —
·
·
6
本课的思维过程
交流互动:用电子排布式、轨道表示式、结构示意图 和电子式分别表示NaF(单号)、KCl(双号)的形成 过程:
NaF: Na:1s22s22p63s1—e—→Na+:1s2 2s2 2p6 F:1s2 2s2 2p5 +e—→F—:1s22s22p6
运用新知识习题:
(一)判断离子键(运用形成离子键的条件)
1.下列各组数值是相应元素的原子序数,其中所表示的 原子形成化合物时,能以离子键结合的是 C
A.1与6 B.2与8 C.9与11 D.8与14
2.已知下列元素的电负性
元素 Mg Al
O
Cl
H
电负性 1.2 1.5 3.5 3.0 2.1
下列化合物中,不含有离子键的是 BD A.CaCl2 B.AlBr3 C.MgO D.HF
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基 13、在寻求真理的长河中,唯有学习,不断地学习,勤奋地学习,有创造性地学习,才能越重山跨峻岭。——华罗庚52、若不给自己设限,则人生中就没有限制你发挥的藩篱。
在氯化钠晶体中,一个钠离子同时吸引 6 个氯离 子,一个氯离子同时吸引 6 个钠离子。
在氯化铯晶体中,一个铯离子同时吸引 8 个氯离 子,一个氯离子同时吸引 8 个铯离子。 可见,离子键没有饱和性;离子晶体中没有单个分子1存3 在。
本课的思维过程
知识: 1. 离子键
(1)定义:
(2)形成条件: (3)相互作用的微粒: (4)影响其强弱的因素和规律: (5) 性质: 离子键既没有方向性,又没有饱和性
离子键的形成
1
激趣·形成动力
您会用原子的轨道表示式表示离子键的形成 吗?
学习本课后即会。
2
本课的思维过程
由如下几种物质的物理性质得到有关组成、结构
方面的结论:
NaCl NaF KCl
熔点(℃): 801
993
770
沸点(℃): 1413 1695 1500
导电性:晶体都不导电,熔融状态或水溶液都能导电。
11、学会学习的人,是非常幸福的人。——米南德 12、你们要学习思考,然后再来写作。——布瓦罗14、许多年轻人在学习音乐时学会了爱。——莱杰
15、学习是劳动,是充满思想的劳动。——乌申斯基 16、我们一定要给自己提出这样的任务:第一,学习,第二是学习,第三还是学习。——列宁 17、学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。——毛泽东
22
4、教学必须从学习者已有的经验开始。——杜威 5、构成我们学习最大障碍的是已知的东西,而不是未知的东西。——贝尔纳 6、学习要注意到细处,不是粗枝大叶的,这样可以逐步学习摸索,找到客观规律。——徐特立 7、学习文学而懒于记诵是不成的,特别是诗。一个高中文科的学生,与其囫囵吞枣或走马观花地读十部诗集,不如仔仔细细地背诵三百首诗。——朱自清 8、一般青年的任务,尤其是共产主义青年团及其他一切组织的任务,可以用一句话来表示,就是要学习。——列宁 9、学习和研究好比爬梯子,要一步一步地往上爬,企图一脚跨上四五步,平地登天,那就必须会摔跤了。——华罗庚 10、儿童的心灵是敏感的,它是为着接受一切好的东西而敞开的。如果教师诱导儿童学习好榜样,鼓励仿效一切好的行为,那末,儿童身上的所有缺点就会没有痛苦和创伤地不觉得难受地逐渐消失。——苏霍姆林斯基
B (三)判断离子化合物
6.X元素原子的核电荷数为11,Y元素原子的质子数
为8,X和Y化合形成化合物Z,下列说法中错误的是C
A.X形成+1价阳离子
B.Z一定与水反应
C.Z一定是M2O型离子化合物 D.Z的熔点较高
Na2O2
20
运用新知识习题:
(三)判断离子化合物
7.下列有关离子化合物的叙述中,正确的是AD A.离子化合物可能含共价键 B.离子化合物一定含共价键 C.离子化合物只含离子键 D.氯化铵属于离子化合物
18
运用新知识习题:
(二)判断离子键的强弱的基础——离子半径大小的比较
3.按微粒半径递增顺序排列的一组离子是 C
A.K+、Ca2+、Al3+、Li+
B.O2-、Na+、K+
C.Mg2+、F-、O2-、S2-
D.Al3+、Mg2+、Li+
电子层结构相同的离子,其半径随核电荷数的增加
而减小。
同主族的离子,其半径随电子层数增加而增大。
离子键
9
本课的思维过程
知识:1. 离子键
(1)定义:阴阳离子间通过静电作用形成的化学键.
(2)形成条件:活泼金属元素与活泼非金属元素 可但事见铝实,属:A于AlClC活l3l在3泼中1金含83属有℃离时元子升素键华,氯吗;属?M于g不C活l含2泼熔非点。金:M属7g1C元4l2℃素中。,?含 因此,必须更准确地表示离子键的形成条件。 已知几种元素的电负性:Mg 1.2;Al 1.5; Cl 3.0 所以,离子键的形成条件为:活泼金属与活泼非金属 元素电负性之差应在什么范围?
10
本课的思维过程
知识: 1. 离子键
(1)定义:阴阳离子间通过静电作用形成的化学键.
(2)形成条件:活泼金属元素与活泼非金属元素 的电负性差:>1.7
(3)相互作用的微粒: 阴、阳离子 运用F吸引力=—q子 阳—离—子×—r2q—阴—离子—(r是阴阳离子的半径之和)
(4)影响其强弱的因素和规律:
1s 2s 2p 3s
1s 2s 2p 3s
Na:
—e—→Na+:
1s 2s 2p 3s 3p
1s 2s 2p 3s 3p
Cl:
+e—→Cl—:
③用结构示意图表示钠原子与氯原子形成氯化钠的过程
Na
+11
281
Na+ +11 2 8
Na+ Cl-
+17 2 8 7
Cl
Cl- +17 2 8 8
5
本课的思维过程 ④用电子式表示钠原子与氯原子形成氯化钠的过程
12
本课的思维过程
课本第35页“交流与讨论”、NaCl等晶体的结构模型 通常情况下,阴、阳离子可以看成是 球 形对称的。
阴、阳离子的电荷分布也是 球 形对称的, 它们在空间各个方向上的静电作用 相同 , 所以在各个方向上都可以与带相反电荷的 离子 发生 静电作用,因此,离子键 没有 方向性。
只要空间能容纳,一个离子可以同时吸引多个带相反 电荷的离子。分别观察NaCl、CsCl晶体模型,填空:
溶解性:都溶于水,难溶于有机溶剂。
结论:(1)NaCl 、NaF、KCl都是由阴阳离子组成的;
(2)以上每种物质中的阴阳离子之间存在强烈的 相互作用——即存在化学键。
提出问题:(1)
(2)
3
本课的思维过程
提出问题:(1)NaCl 、NaF、KCl中的阴、阳离子是 怎样形成的?
(2)阴阳离子之间存在的强烈相互作用实质是什么力? 阴阳离子之间只存在吸引力吗? 阴阳离子之间存在的强烈相互作用属于什么化学键?
14
本课的思维过程
课本第34页“信息提示”
知识: 2. 离子化合物
(1)定义:含有离子键的化合物。
(2)判断离子化合物方法: ①运用离子键的形成条件 ②含阴阳离子的化合物:
如金属离子与含氧酸根离子形成的盐Na2SO4等、铵盐 氯化铵等、氢氧化钠等强碱。
③熔沸点高、熔融和水溶液都能导电的化合物。 (3)会写离子化合物的电子式。
·· ·· [H∶N∶H]+ [∶Cl∶] — ·· ·· H
·· · · (4)Na2O2: Na+[∶O∶O∶] 2—Na+ ··· ·· · (5)LiF: Li+ [∶F∶] — (6)MgO: Mg2+[∶O∶]2—
·· · ·16
本课的思维过程
课本第34页“信息提示”
知识: 2. 离子化合物
1s 2s 2p 3s
1s 2s 2p 3s
Na:
—e—→Na+:
1s 2s 2p
F:
1s 2s 2p
+e—→F—:
解决了“激趣·形成动力”中的问题
Na +11 2 8 1 +
7 +29 F
Na+ +11
2 8 8 2 +9
F-
7
本课的思维过程
·· · NaF: Na× +∶ F
Na+[∶ F ∶] —
①离子半径:其它因素相同时,离子半径越小, 离子键越强。
②离子电荷:
其它因素相同时,在保证为离子键的条件下,