第三章参数估计

合集下载

三章参数估计ParametricEstimation

三章参数估计ParametricEstimation

会有多项分布,
p( x1,..., xm | p1,..., pm )
n!
m
m
p
xi i
xi ! i1
i 1
m
m
l ( p1,..., pm ) log( n!) log xi! xi log pi
i 1
i 1
m
pi 1
i 1
m
m
m
l( p1,...,pm,) log(n!) logxi! xi logpi ( pi 1)
1.点估计的基本概念(Point Estimator)
点估计: 就是由样本x1,x2,…xn确定一个统计量
gx1,x2,,xn
用它估计总体的未知参数,称为总体参数的估 计量。当具体的样本抽出后,可求得出样本统 计量的值。用它作为总体参数的估计值,称作 总体参数的点估计值。
2.两种基本的点估计方法
• (1)总体的方差越大,需要的样本量越大。 • (2)样本量n和置信区间长度的平方成反比。 • (3)置信度越高,样本量越大。
样本量的确定
需要考虑问题:
➢ (1)要求什么样的精度?即我们想构造多宽的区间? ➢ (2)对于构造的置信区间来说,想要多大的置信度?即我
k
阶中心矩。
矩法估计: V ^ k Ak, U ^ k Bk
这 是k包 个含 未 知 1, 参 , k 数 的 联 立 方
A1 11 ,2 , ,k
A2
21 ,2 , ,k
Ak k 1 ,2 , ,k
从中解出方,记 程为 组 ˆ1, 的 ,ˆ解 k,即
ˆˆ21
ˆ1 ˆ2
X1 ,X2 X1 ,X2
置信区间的含义
样本分布 /2

第三章 参数估计

第三章   参数估计

第三章参数估计重点:1.总体参数与统计量2.样本均值与样本比例及其标准误差难点:1.区间估计2.样本量确实定知识点一:总体分布与总体参数统计分析数据的方法包括:描绘统计和推断统计〔第一章〕推断统计是研究如何利用样本数据来推断总体特征的统计学方法,包括参数估计和假设检验两大类。

总体分布是总体中所有观测值所形成的分布。

总体参数是对总体特征的某个概括性的度量。

通常有总体平均数〔μ〕总体方差〔σ2〕总体比例〔π〕知识点二:统计量和抽样分布总体参数是未知的,但可以利用样本信息来推断。

统计量是根据样本数据计算的用于推断总体的某些量,是对样本特征的某个概括性度量。

统计量是样本的函数,如样本均值〔〕、样本方差〔 s2〕、样本比例〔p〕等。

构成统计量的函数中不能包括未知因素。

由于样本是从总体中随机抽取的,样本具有随机性,由样本数据计算出的统计量也就是随机的。

统计量的取值是根据样本而变化的,不同的样本可以计算出不同的统计量值。

[例题·单项选择题]以下为总体参数的是( )a.样本均值b.样本方差c.样本比例d.总体均值答案:d解析:总体参数是对总体特征的某个概括性的度量。

通常有总体平均数、总体方差、总体比例题·判断题:统计量是样本的函数。

答案:正确解析:统计量是样本的函数,如样本均值〔〕、样本方差〔〕、样本比例〔p〕等。

构成统计量的函数中不能包括未知因素。

[例题·判断题]在抽样推断中,作为推断对象的总体和作为观察对象的样本都是确定的、唯一的。

答案:错误解析:作为推断对象的总体是唯一的,但作为观察对象的样本不是唯一的,不同的样本可以计算出不同的统计量值。

〔一〕样本均值的抽样分布设总体共有n个元素,从中随机抽取一个容量为n的样本,在重置抽样时,共有n n种抽法,即可以组成n n不同的样本,在不重复抽样时,共有个可能的样本。

每一个样本都可以计算出一个均值,这些所有可能的抽样均值形成的分布就是样本均值的分布。

计量经济学 第三章:违背假设问题及参数估计方法

计量经济学 第三章:违背假设问题及参数估计方法

2.D-W检验 D-W检验适合于一阶自相关检验,构造统计量
d
2 e e t t 1 t 2 n
et
t 1
n
2
n et et 1 2(1 ˆ) 则:d 21 t 2n 2 et t 1 0d 4
e 0 1 f ( X ) 2 f ( K )
四、存在异方差模型的估计方法(Eviews权重法) 1.解释变量的某种(函数)形式作为权数
Eviews6.0权数为: 1 f ( x)
1 f ( x) 标准差的倒数 2 方差的倒数 1 f ( x) Eviews7.2权数: 标准差 f ( x) 2 f 方差 ( x)
采用时间序列数据的模型往往存在序列相关
三、序列相关检验
检验方法主要有: 图示法 D-W检验 LM检验 例3-3(表3-3),进出口对于国内生产总值的影响 1.图示法 ①估计原模型,得到残差; ②构造残差与残差滞后期之间的散点图; ③若存在线性关系,则存在序列相关。 另外,也可以构造残差与时间序列t的散点图,通过 分析随时间序列的规律性判断是否存在序列相关。
2.加权最小二乘法的权数为: 1 ei ◇消除异方差的经验做法: 指数模型能够有效地减弱异方差现象; 多个解释变量优先考虑用残差序列作为权数。
例3-1(表3-1),能源消费问题 ◇原模型为: ECt 0 1GDPt t ◇原模型参数估计结果为: ˆ 87307.06 0.6 t
t t t 1 2 t 2 s t s
s 0

E ( t ) s E ( t s ) 0
s 0
2 2s Var ( t ) Var ( t s ) 2 1 s 0 2 s Cov( t , t s ) 1 2

3 第三章 参数估计与非参数估计

3 第三章 参数估计与非参数估计
• Bayes决策需要已知两种知识:
– 各类的先验概率P(ωi)
– 各类的条件概率密度函数p(x|ωi)

P(i | x)
p(x | i ) P(i ) p(x | j ) P( j )
j
知识的来源:对问题的一般性认识或一些训练数据 基于样本两步Bayes分类器设计
利用样本集估计p(ωi)和p(x|ωi)
θ N
argmax ln p( x k | θ)
θ k 1
16
• 最大似然估计计算方法
使似然函数梯度为0
θ H (θ) |ˆ θ ln p( xk | θ) |ˆ 0
ML
N
k 1
ML
θ 1
...
s
T
17
一.类概率密度最大似然估计
7
§3-1 参数估计与监督学习(续2)
下图表示对一幅道路图像按路面与非路面分类可用两种不同做法,其中左图 是在图像中路面区与非路面中各找一个窗口,将其中每个象素分别作为这两 类的训练样本集,用这两个样本集在特征空间的分布参数进行设计。 而无监督学习方法则不同,它不预先选择样本类别的样本集,而是将整幅图 的像素都作为待分类样本集,通过它们在特征空间中表现出来的聚类现象, 把不同类别划分开。 图中有监督学习,样本集分布呈现交迭情况,而无监督学习方法由于没有类 别样本指导,无法确定它们的交迭情况,只能按分布的聚类情况进行划分。
N 1 估计值: 1 Xk N k 1
1 N 2 Xk N k 1

Xk

T
结论:①μ的估计即为学习样本的算术平均
②估计的协方差矩阵是矩阵

统计学参数估计

统计学参数估计

统计学参数估计参数估计是统计学中的一个重要概念,它是指在推断统计问题中,通过样本数据对总体参数进行估计的过程。

这一过程是通过样本数据来推断总体参数的未知值,从而进行总体的描述和推断。

在统计学中,参数是指总体的其中一种特征的度量,比如总体均值、总体方差等。

而样本则是从总体中获取的一部分观测值。

参数估计的目标就是基于样本数据来估计总体参数,并给出估计的精确程度,即估计的可信区间或置信区间。

常见的参数估计方法包括点估计和区间估计。

点估计是一种通过单个数值来估计总体参数的方法。

点估计的核心是选择合适的统计量作为估计量,并使用样本数据计算出该统计量的具体值。

常见的点估计方法包括最大似然估计和矩估计。

最大似然估计是一种寻找参数值,使得样本数据出现的概率最大的方法。

矩估计则是通过样本矩的函数来估计总体矩的方法。

然而,点估计只能提供一个参数的具体值,无法提供该估计值的精确程度。

为了解决这个问题,区间估计被引入。

区间估计是指通过一个区间来估计总体参数的方法。

该区间被称为置信区间或可信区间。

置信区间是在一定置信水平下,总体参数的真值落在该区间内的概率。

置信区间的计算通常涉及到抽样分布、标准误差和分位数等概念。

在实际应用中,参数估计经常用于统计推断、统计检验和决策等环节。

例如,在医学研究中,研究人员可以通过对患者进行抽样调查来估计其中一种药物的有效性和不良反应的发生率。

在市场调研中,市场研究人员可以通过抽取部分样本来估计一些产品的市场份额或宣传效果。

参数估计的准确性和可靠性是统计分析的关键问题。

估计量的方差和偏倚是影响估计准确性的主要因素,通常被称为估计量的精确度和偏倚性。

经典的参数估计要求估计量是无偏且有效的,即估计量的期望值等于真值,并且方差最小。

总之,参数估计是统计学中的一个重要概念,它通过样本数据对总体参数进行估计,并给出估计值的精确程度。

参数估计在统计推断、统计检验和决策等领域具有广泛的应用。

估计量的准确性和可靠性是参数估计的关键问题,通常通过方差和偏倚的分析来评价估计量的性质。

应用数理统计——参数估计

应用数理统计——参数估计

这就是矩法估计的理论依据。
三、正态总体参数的区间估计 前面讨论了未知参数的点估计问题,它是用估计
量 θ 的值作为未知参数θ的估计。然而不管θ 是一 个怎样优良的估计量,它也只是一定程度的精确, 至于如何反映精确度,参数的点估计并没有回答。 由于θ 是一随机变量,需说明用θ 去估计θ的精度, 也就是要说明在一定概率意义下, 与θ的误差有 θ 多大。即确定具有特定概率意义的区间,使它以 相当大的概率包含未知参数的真值,以表明总体 参数真值所处的范围。
α
α
α
2
− uα
σ
n } = 1−α ) = 1−α
2
2
2

2
σ
n
< µ < X + uα 2 < µ < x − uα 2
于是P{x − uα 2
σ
n
σ
n
例6:见教材82页例1。
(2)总体方差σ 2未知时,正态总体均值µ的区间估计
X −µ 因为若X服从N ( µ , σ ),则T = 服从t (n − 1) S n
2 2
小结:学习了
1、点估计法——矩法 2、评价估计量优劣的标准——无偏性、有效性 和一致性 3、正态总体的区间估计——均数和方差的区间估计 作业:教材98页第4题。 教材99页第10、13题。 教材100页第17、18题。
3、正态总体方差σ 的区间估计
2
因为若X服从N ( µ , σ 2 ),则χ 2 = 由附表4知P{χ12−α 2 < (n − 1) S 2
(n − 1) S 2
σ2
服从χ 2 (n − 1)
σ2
2 < χα 2 } = 1 − α

SPSS第三章参数估计

SPSS第三章参数估计

利利利利
t 21.192
Mean df Sig. (2-tailed) Difference 32 .000 8.86364
结论: 结论
1:33家平均受益量为 8.8636万元 万元, 表1:33家平均受益量为 8.8636万元,标准 差为2.4027万元. 2.4027万元 差为2.4027万元.
新电池 ):18.2\10.4\12.6\18.0\11.7\15.0\24.0\17.6\ (日):18.2\10.4\12.6\18.0\11.7\15.0\24.0\17.6\23 .6\24.8\19.3\20.5\19.8\17.1\ .6\24.8\19.3\20.5\19.8\17.1\16.3 旧电池 ):12.1\17.5\8.6\13.9\7.8\15.1\17.9\10.6\ (日):12.1\17.5\8.6\13.9\7.8\15.1\17.9\10.6\13.8 14.2\15.3\ \14.2\15.3\11.6
挂牌上课态度反映得分(X) 挂牌上课态度反映得分( 10—20 10 20 20—30 20 30 30—40 30 40 40—50 40 50 50—60 50 60 60—70 60 70 合计 人数(f ) 人数( 2 6 10 12 20 10 60
案例1 案例1
(1分表示"很不同意" (1分表示"很不同意",7分表示"很同 分表示 分表示" 10项态度分累加后得一总态度分 项态度分累加后得一总态度分, 意",将10项态度分累加后得一总态度分,这种 量叫7级李克累加量表): 量叫7级李克累加量表): 试计算: 试计算: 学生态度得分的平均值和标准差; (1)学生态度得分的平均值和标准差; 构造学生态度得分平均值的98%置信区间. 98%置信区间 (2)构造学生态度得分平均值的98%置信区间.

有限数据统计处理(总体参数估计)第三章

有限数据统计处理(总体参数估计)第三章

(1)、总体标准差σ已知条件下,对总体
平均数的区间估计
使用t分布的条件:当样本容量n<30,且总体标准差σ未
知时,用样本标准差S代替总体标准差σ。样本标准差S
计算公式:
x x t sx
s sx n
s
(x - x)
n 1
2
例1:从大学一年级学生中随机抽取12名学
B
A
中位数的抽样分布

X
充分性:作为估计参数用的统计量已经提取了
样本中所有可利用的信息(随着样本容量的增大,估计
量越来越接近被估计的总体参数 )。
P(X )
较大的样本容量
B A
较小的样本容量

X
二、区间估计
问题:

对有限次测量
x
的某个范围 内包含 的概率 有多大?
(......x......)
置信区间
样本统计量 (点估计)
置信下限
置信上限
置信区间
无限多次测定中才有总体平均值和总体标准偏差,而实
际测定为有限次测定,与未知,只能用有限次测定的平
均值及标准偏差S来估计。用S代替引起的误差可用校正
系数t来补偿。
置信区间和置信概率
总体平均值将包括在
区间内,即包括在X平均值附近的某区间内。
因此称在
的区间为置信区间。
置信区间:在一定置信度下,以测定结果x 为中心的,包括 总体平均值在内的可靠性范围。
把测定值在置信区间内出现的概率称为置信概率 (P),也称为置信度。
置信水平:
1.
总体未知参数落在区间内的概率
2.

表示为P= (1-)%
为显著性水平,是总体参数未在区间内的概率

第3章 线性模型参数的最小二乘估计法

第3章 线性模型参数的最小二乘估计法
| 为由概P率i =论σ可i 1知2π,e各−δi2测(2量σi2 )数dδ据i 同(时i =出1,现2,"在,相n)应区域
的概率为
∏ P =
n i =1
Pi
=
1
σ1σ 2 "σ n
n

∑ − δi2 e i=1
(2σi2 )dδ1dδ 2 "dδ n
1. 最小二乘原理
| 测量值 l1,l2 ,",ln 已经出现,有理由认为这n个测 量值出现于相应区间的概率P为最大。要使P最
ti /0 C
10
20
30
40
50
60
li / mm 2000.36 2000.72 2000.8 2001.07 2001.48 2000.60
| 1)列出误差方程
vi = li − ( y0 + ay0ti )
| 令 y0 = c, ay0 = d为两个待估参量,则误差方程为
vi = li − (c + tid )
x2 ,",
xt
)
⎪⎪ ⎬

vn = ln − fn (x1, x2 ,", xt )⎪⎭
残差方程式
1. 最小二乘原理
| 若 l1,l2 ,",ln 不存在系统误差,相互独立并服从正 态分布,标准差分别为σ1,σ 2 ,",σ n,则l1, l2 ,", ln出
现在相应真值附近 dδ1, dδ2,", dδn 区域内的概率
大,应有
δ12
+
δ
2 2
+"
+
δ
2 n
= 最小
σ12 σ 22

第三章多元线性回归模型的参数估计

第三章多元线性回归模型的参数估计

第三章多元线性回归模型的参数估计多元线性回归模型的参数估计是指通过给定的数据样本,使用其中一种方法来计算出回归模型的参数值。

在多元线性回归模型中,我们有多个自变量与一个因变量之间的关系,因此需要估计出每个自变量的系数。

参数估计是回归模型的核心内容之一,它能够通过对样本数据的分析和处理,得到模型中的参数值,从而建立起模型与实际数据之间的映射关系。

常用的多元线性回归模型的参数估计方法有最小二乘法和最大似然估计法。

最小二乘法是一种最常用的参数估计方法。

它的基本思想是通过最小化因变量的观测值与模型预测值之间的平方误差,来确定模型参数的最佳估计值。

最小二乘法的优点是数学上简单且易于计算,但对于异常值的敏感性较强。

最大似然估计法是另一种常用的参数估计方法。

它的基本思想是找到最能使观测数据发生的概率最大的模型参数,从而得到最优的参数估计值。

最大似然估计法具有较好的统计性质,但它的计算复杂度较高,需要对似然函数进行极大化求解。

在实际应用中,我们需要根据实际情况选择合适的参数估计方法。

通常情况下,最小二乘法是首选的方法,因为它具有简单和直观的优点,适用于大多数情况。

但当样本数据存在异常值或者数据分布不符合正态分布假设时,最大似然估计法可能是更好的选择。

无论是最小二乘法还是最大似然估计法,其核心问题都是通过最优化方法找到使得模型和观测数据之间的误差最小的参数值。

这一过程需要使用数学工具和计算方法进行求解,可以使用迭代算法,如牛顿法或梯度下降法,来逐步逼近最优解。

参数估计的结果可以告诉我们每个自变量对因变量的贡献程度。

因此,一个良好的参数估计能够帮助我们更好地理解数据,预测因变量,以及识别自变量之间是否存在相互影响。

总而言之,多元线性回归模型的参数估计是通过最小化模型与观测数据之间的误差,找到最佳的模型参数值的过程。

合理选择参数估计方法,并进行有效的数学计算,能够为我们提供有关数据和模型之间的重要信息,并为进一步的分析和应用提供基础。

参数估计理论与应用(第三章 )

参数估计理论与应用(第三章 )

那么它仍然有可能是一个好的估计。
考虑实随机过程{xk}的相关函数的两种估计量:
Rˆ1( )
1
N
N
xk xk ,
k 1
Rˆ2 ( )
1 N
N k 1
xk
xk
假定数据{xk}是独立观测的,容易验证
E[
Rˆ1
(
)]
E[
N
1
N
xk xk ]
k 1
1
N
N
E[ xk xk ]
k 1
Fisher 信息 Fisher 信息用J(θ)表示,定义为
J ( )
E{[
ln
p(x
| ]2}
E[
2
2
ln
p(x
| )]
(3.1.1)
2020/4/9
第三章 参数估计理论与应用
当考虑 N 个观测样本 X={ x1,…,xN }, 此时,联合条件分 布密度函数可表示为
p(x | ) p(x1, , xN | )
0
lim P{|
N
1 N
N
xi2 x 2 (E[ x2 ] E2[x]) | }
i 1
lim
N
P{|
ˆ
2 N
2
|
}
0,
0
2020/4/9
第三章 参数估计理论与应用
于是
lim
N
P{ | ˆ1
1
|
}
3
lim
N
P{|ˆ N
|
}
0
lim
N
P{ | ˆ2
2
|
}
2
3

第三章 概率密度函数的参数估计

第三章 概率密度函数的参数估计

均值的后验概率
均值的后验概率仍满足正态分布,其中:
1 n n = ∑ xi n i =1
2 nσ 0 σ2 n = 2 + 2 0 2 n 2 nσ 0 + σ nσ 0 + σ
σ σ σ = nσ + σ 2
2 n 2 0 2 0 2
均值分布的变化
类条件概率密度的计算
p ( x D) = ∫ p ( x ) p ( D) d
模型在时刻t处于状态wj的概率完全由t-1时刻 的状态wi决定,而且与时刻t无关,即:
P w(t ) W
(
T
) = P ( w ( t ) w ( t 1))
P w ( t ) = ω j w ( t 1) = ωi = aij
(
)
Markov模型的初始状态概率 模型的初始状态概率
模型初始于状态wi的概率用 π i 表示。 完整的一阶Markov模型可以用参数 θ = ( π, A ) 表示,其中:
3.0 引言
贝叶斯分类器中最主要的问题是类条件概 率密度函数的估计。 问题可以表示为:已有c个类别的训练样 本集合D1,D2,…,Dc,求取每个类别的 类条件概率密度 p ( x ωi ) 。
概率密度函数的估计方法
参数估计方法:预先假设每一个类别的概 率密度函数的形式已知,而具体的参数未 知;
最大似然估计(MLE, Maximum Likelihood Estimation); 贝叶斯估计(Bayesian Estimation)。
p ( x θ ) = ∑ ai pi ( x θi ),
i =1 M
∑a
i =1
M
i
=1
最常用的是高斯混合模型(GMM,Gauss Mixture Model):

第三章 参数估计

第三章   参数估计

第三章 参数估计重点:1.总体参数与统计量2.样本均值与样本比例及其标准误差难点:1.区间估计2.样本量的确定知识点一:总体分布与总体参数统计分析数据的方法包括:描述统计和推断统计(第一章)推断统计是研究如何利用样本数据来推 断总体特征的统计学方法,包括参数估计和假设检验两大类。

总体分布是总体中所有观测值所形成的分布。

总体参数是对总体特征的某个概括性的度量。

通常有总体平均数( μ)总体方差(σ2 )总体比例( π)知识点二:统计量和抽样分布总体参数是未知的,但可以利用样本信息来推断。

统计量是根据样本数据计算的用于推断总体的某些量,是对样本特征的某个概括性度量。

统计量是样本的函数,如样本均值()、样本方差( s2)、样本比例(p)等。

构成统计量的函数中不能包括未知因素。

由于样本是从总体中随机抽取的,样本具有随机性,由样本数据计算出的统计量也就是随机的。

统计量的取值是依据样本而变化的,不同的样本可以计算出不同的统计量值。

[例题·单选题]以下为总体参数的是( )a.样本均值b.样本方差c.样本比例d.总体均值答案:d解析:总体参数是对总体特征的某个概括性的度量。

通常有总体平均数、总体方差、总体比例题·判断题:统计量是样本的函数。

答案:正确解析:统计量是样本的函数,如样本均值()、样本方差()、样本比例(p)等。

构成统计量的函数中不能包括未知因素。

[例题·判断题]在抽样推断中,作为推断对象的总体和作为观察对象的样本都是确定的、唯一的。

答案:错误解析:作为推断对象的总体是唯一的,但作为观察对象的样本不是唯一的,不同的样本可以计算出不同的统计量值。

(一)样本均值的抽样分布设总体共有n个元素,从中随机抽取一个容量为n的样本,在重置抽样时,共有n n种抽法,即可以组成n n不同的样本,在不重复抽样时,共有个可能的样本。

每一个样本都可以计算出一个均值,这些所有可能的抽样均值形成的分布就是样本均值的分布。

福建农林大学生物统计学习题二

福建农林大学生物统计学习题二

《生物统计学》习题二第三章 参数估计1.由某人工幼龄林中,随机抽取500株林木组成样本,得其胸径资料如下表(单位:127,118,121,113,145,125,87,94,118,111,102,72,113,76,101,134,107,118,114,128,118,114,117,120,128,94,124,87,88,105,115,134,89,141,114,119,150,107,126,95,137,108,129,136,98,121,91,111,134,123,138,104,107,121,94,126,108,114,103,129,103,127,93,86,113,97,122,86,94,118,109,84,117,112,125,94,79,93,112,94,102,108,158,89,127,115,112,94,118,114,88,111,111,104,101,129,144,128,131,142。

将样本资料分组整理,列出频率分布表,绘出样本频率分布图。

3.设总体ξ服从泊松(Poisson )分布,其概率分布为),2,1,0(0,!);(x x e x p x现从总体ξ中抽取样本,,,,21n x x x 试求参数的最大似然估计量。

4.由某幼龄林中,用重复抽样方式随机抽取100株组成样本,观察样本各单元的胸径重复抽样方式随机抽取20株,求得平均苗高m x 3.2 。

若所给的置信概率为95%,试求苗高的均值μ的置信区间,误差限和精度。

6.对杨树进行插条育苗试验,经过一定阶段生长后,用重复抽样方式抽取20株,得到苗高的资料为(单位:cm ):185,320,310,256,202,250,207,152,280,323,306,160,262,240,248,133,262,276,298,240,试以95%的可靠性对杨树苗木的平均高进行估计(苗高服从正态分布)。

计量经济学多元线性回归模型及参数估计

计量经济学多元线性回归模型及参数估计

-973 1314090 1822500 947508
-929 975870 1102500 863784
-445 334050 562500 198381
-412 185580 202500 170074
-159 23910 22500 25408
28 4140 22500
762
402 180720 202500 161283
2.多元线性回归模型的基本假定(矩阵形式)
V
ar
Cov( N
)
E
N
E(N
)N
E(
N
)
E(
NN
)
1
E
n2 1
2
12
n
E
2 1
n1
12 22
n2
1n
2n
n2
2
0
0
0
2
0
2
I
0
0
2
2.多元线性回归模型的基本假定(矩阵形式)
E(X
N )
E
1 X 11
ei 0 X i1ei 0 X i2ei 0
X ik ei 0
(*) (*)或(**)是多 元线性回归模型正
(**) 规方程组的另一种 写法。
离差形式的样本回归方程
由于
Yˆi ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik
[Yi (ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik )] 0
????eemm??所以有???eem??mnnee???ee?????????????????????????????????????????????nnnnnnnnmmmmmmmmme??????????????2121222211121121????????????????????????????????????????nnnnnnnnnnmmmmmmmmme?????????????????21221122221121221111因为xxxxim?????1为对称等幂矩阵即mm??mmmm???2????????nnnnnnnnnnmmmmmmmmme?????????????????????????????22112222211211221111??nnnnnmmmememem??????????22112222222111?????1212122??????????????kntrtrtrmtr????????xxxxixxxxi其中符号tr表示矩阵的迹其定义为矩阵主对角线元素的和

参数估计的一般步骤

参数估计的一般步骤

参数估计的一般步骤
参数估计是通过从总体中抽取一个样本,利用样本数据对总体未知参数进行估计的过程。

参数估计的一般步骤如下:
1. 确定总体参数:首先需要明确要估计的总体参数,例如总体均值、总体比例、总体方差等。

2. 选择样本:从总体中抽取一个合适的样本。

样本的选择应该具有代表性,能够反映总体的特征。

3. 收集样本数据:对选择的样本进行观测或测量,收集样本数据。

4. 选择估计方法:根据所收集的样本数据和要估计的总体参数,选择合适的估计方法。

常见的估计方法包括点估计和区间估计。

5. 计算估计量:使用所选择的估计方法,根据样本数据计算出估计量。

估计量是用于估计总体参数的统计量。

6. 评估估计量的性质:评估所计算出的估计量的性质,如无偏性、有效性、一致性等。

这些性质可以帮助判断估计量的优劣。

7. 计算置信区间或置信水平:如果进行的是区间估计,根据估计量和置信水平,计算出总体参数的置信区间。

8. 解释估计结果:根据估计量或置信区间,对总体参数进行推断和解释。

同时,需要考虑估计结果的统计显著性和实际意义。

9. 分析误差和不确定性:考虑样本大小、抽样方法等因素对估计结果的影响,分析可能存在的误差和不确定性。

10. 结论和应用:根据参数估计的结果,得出结论并将其应用于实际问题中,例如进行决策、预测或进一步的研究。

需要注意的是,参数估计的具体步骤和方法会根据不同的统计问题和数据类型而有所差异。

在进行参数估计时,应根据实际情况选择合适的方法,并结合统计学原理和专业知识进行分析和解释。

第三章 一元模型的参数估计PPT课件

第三章 一元模型的参数估计PPT课件
注:实际这些假设与所采用的估计方法紧密 相关。
4
一、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要 求样本回归函数尽可能好地拟合这组值.
离差
要求样本函数仅可能好的拟合这组数值,我们可以考虑 使观测值Yi与样本回归值之差(残差ei)尽可能的小, 使之尽可能的接近PRF,即:
第三章 一元回归模型的参数估计
一、参数的普通最小二乘估计(OLS) 二、最小二乘估计量的数值性质 三、一元线性回归模型的基本假设 四、最小二乘估计量的统计性质 五、参数估计量的概率分布及随机干
扰项方差的估计 六、最小二乘估计(OLS)的精度或标准误
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
2、 ∑ei2=f(^0 , ^1 ),即残差平方和是估计量^0 , ^1
的某个函数。 3、用OLS原理或方法选出来的^0 , ^1 ,将使得对
于给定的样本或数据残差平方和尽可能的小。 7
方程组(*)称为正规方程组(normal equations)。
8

x i2(X i X )2X i2 1 n X i2
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
单方程计量经济学模型分为两大类: 线性模型和非线性模型
•线性模型中,变量之间的关系呈线性关系 •非线性模型中,变量之间的关系呈非线性关系
一元线性回归模型:只有一个解释变量
Y i 01X ii
i=1,2,…,n
Y为被解释变量,X为解释变量,0与1为待估 参数, 为随机干扰项
6
普通最小二乘法(Ordinary least squares, OLS)给出的判断标准是:二者之差的

中级统计师考试-3统计方法知识考试重点归纳(私藏)

中级统计师考试-3统计方法知识考试重点归纳(私藏)

2014中级统计师考试-统计方法知识考试重点归纳第一章统计和数据●统计是用来处理数据的,是关于数据的一门学问。

1、统计学:是用以收集数据、分析数据和由数据得出结论的一组概念、原则和方法。

2、统计分析数据的方法分为:(1)描述统计(2)推断统计3、描述统计:是研究数据搜集、处理和描述的统计学方法。

4、推断统计:是研究如何利用样本数据来推断总体特征的统计学方法。

5、推断统计包括:(1)参数估计(2)假设检验6、定性变量的特点:只反映现象的属性特点,不能说明具体量的大小和差异。

●定性变量包括分类变量和顺序变量。

●只反映现象分类特征的变量称分类变量。

分类变量没有数值特征,所以不能对其数据进行数学运算。

●如果类别具有一定的顺序,这样的变量称为顺序变量。

顺序变量不仅能用来区分客观现象的不同类别,而且还可以表明现象之间的大小、高低、优劣关系。

7、定量变量的特点:可以用数值表示其观察结果,而且这些数值具有明确的数值含义,不仅能分类而且能测量出来具体大小和差异。

●数值型数据(定量数据)作为统计研究的主要资料,其特征在于它们都是以数值的形式出现的,有些数值型数据只可以计算数据之间的绝对差,而有些数值型数据不仅可以计算数据之间的绝对差,还可以计算数据之间的相对差。

其计量精度远远高于定性数据。

在统计学研究中,数值型数据有着最广泛的用途。

8、数据按获取的方法不同分为:(1)观测数据(2)实验数据9、观测数据:是对客观现象进行实地观测所取得的数据,在数据取得的过程中一般没有人为的控制和条件约束。

10、实验数据:一般是在科学实验环境下取得的数据。

11、统计数据资料的来源:(1)通过直接的调查或实验获得的原始数据,这是统计数据的直接来源;(2)别人调查的间接数据,并将这些数据进行加工和汇总后公布的数据,这是数据的间接来源。

12、数据的直接来源:(1)统计调查(2)实验法●通过统计调查得到的数据,一般称为观测数据。

●运用实验法时,实验组和对照组的产生应当是随机的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.1 求点估计量的方法
设总X体的分布函 F(数 x,)或概率函 P(x数 ,)的 数学表达式为已中知 x为,随其机变 X的 量观测 值, 为总体的未知参 的数 取, 值范围, 记为 即,称 为参数空间。
定义1:设X1, X2, , Xn是总体 X的样本,为总体的未知参数
构造统计T量(X1, X2, , Xn),对于样本观(测x1,值x2, , xn),若将统计量的观T测 (x1,值x2, , xn)作为未知 参数的值,则T称(x1, x2, , xn)为的估计值,而统 量T(X1, X2, , Xn)称为的估计量。
第三章 参数估计
统计推断:根据样本推断总体分布或分布的数字特征。
参数估计:总体的分布函数或概率函数的数学表达式 为已知,但它的某些参数(总体的数字特 征也作为参数)却未知,我们对未知参数 或未知参数的函数进行估计。
主要内容: 点估计量的方法
矩估计法 极大似然法 顺序统计量法 估计量的评选标准
无偏性 有效性 相合性 一致最小方差无偏估计 区间估计
解 。律
P {X x } p x (1 p )1 x , x 0 ,1 ;
故似然函数为
n
n
n
xi
n xi
L (p) pxi(1p)1xi pi1 (1p) i1 ,
i1
n
n
而 ln L (p ) ( x i)ln p (n x i)ln 1 p ().
解得 aˆ: A2
3(A2A12)X
3n ni1(Xi
X)2
bˆA1
3(A2A12)X
3n ni1(Xi
X)2
n 1i n1Xi2X2n 1i n1(XiX)2
返回主目录
二、极大似然估计
原理: 当试验中得到一个结果时,哪个 值使得这 个结果的出现具有最大概率就应该取哪个值 作为 的估计值。
f (x)
x 1
0
0 x1 其他
其中0未知, X1, , Xn是一个样.本
求: 的矩估计量。
解1 : E X0 1xx1d x

1n
1A1ni1Xi X
1
解得
ˆ
1
X X
2
为的矩估计.量 返回主目录
例 2:设总 X~U 体 [a,b]a ,,b未知 X1, ; ,Xn
是一个 求:样 a, b的本 矩估计; 量。
n
L ()L (x 1, ,x n ;) p (x i;), i 1
20 求似然函L数 ()的最大值点 :

dL() 0. d
或 ddlnL()0.
解之 的 得极大似ˆ然 ˆ(估 x1,计 ,xn)值 .
返回主目录
若母体的分布中 个包 参含 数 1,多,l, 则 样 本 的似 然 函 数 为 :
n
i
存在。
样本的k阶原点矩为
Ak
1 n
n i1
Xik
(k1,,l.)
原理: 经验分布函数一致收敛于总体分布函数,样本 的k阶原点矩一致收敛于总体的k阶原点矩。
矩估计法(矩法): 用样本各阶原点矩的函数来估计
总体各阶原点矩同一函数的方法,相应的估计 量称为矩估计量。
QQ (E,X E2 X ,,ElX ) Q ˆQ (A 1,A 2,,A l)
则 ˆ 1 ˆ 1 ( A 1 , ,A l) T 1 ( X 1 , ,X n )
ˆl ˆl( A 1 , ,A l) T l( X 1 , ,X n )
分别1为 , ,l的矩估.计量
ˆk T k (x 1 , ,x n )k , 1 ,2 , ,l,
分别1为 , ,l的矩估.计值
例1: 设总体X的概率密度为
一、矩法估计
设 总X体为 连 续 型 随 机 变概量率,密其度 为
f(x;1,,l ), 总 体X为 离 散 型 随 机 变分量布,列其为
P{X x} p(x;1,,l ),
设总体X的k阶原点矩
k EXk
(k 1,2, ,l)
xk
f
( x;1 ,
, l
)dx
或 xik p(xi;1, ,l )
设 总X体 的 分 布 函F数 (x;为 1,,l)或 概 率 函 数 为P(x;1,,l), 有 l个 不 同 的 未 知要 参由 数 , 样 本 建l个立不 带 任 何 未统 知计 参量 数 的
T i(X 1 , ,X n ) i 1 ,2 , ,l
把它们分别作 l个为 未这 知参数的估计量
ˆi T i(X 1 , ,X n ) i 1 ,2 , ,l
n
L ( ˆ1,, ˆl)supp(xi;1,,l), i1
则称 ˆk k(X1,,Xn)为k的极大似然估
若参 1,数 ,l的已知实函待 数估 (函 简数 称 uu(1,,l)
则u 称 ˆu(ˆ1,,ˆl)为 u(1,,l)的 极 大 似 然
极大似然估计 法的具体做法如下: 10 写出似然函:数
L ( 1, ,l) p(xi; 1, ,l), i 1
即 可 L 0 ,i令 1 , ,l.或 ln L 0 ,i 1 , ,l.
i
i
解l个方程组 1,求 ,得 l的极大似然估计
返回主目录
例 3:设 X~B(1,p);X1,,Xn是 来 X的 自一 个 样 试求参数p的极大似然估计量。
矩 估 计 法的 具 体 做 法 如 下 :
1 0 求出 X 的 k 阶 总 原 k 体 E 点 k( X k 1 ,2 矩 , ,l)
设 1 : 1 ( 1 , , l),
l l( 1 , , l),
20 解上面方程组得:
11( 1,,l)
l l(1,,l)
30 以 Ak分别代替上 ( k k式 1,中 2,,的 l),
概率最大的事件最可能发生
极大似然估计法:
设 p(x;1,,l)为总 X的 体概率函数 (1, ,,其 l) 是未知参数, 是 l维 参的 数 X1,, 空 ,Xn为 间 X的样 称样本的联合概率函数
n
L(1,,l) p(xi;1,,l) i1
为 1,,l的似然 ˆ函 1,, ˆ数 l使; 得若 下式
解: 2 1 E E X 2 aX D 2b, (E X ) 2 X ( b 1 a ) 2 2 ( a 4 b ) 2
令a 2bA1n 1i n1Xi X (b 1a)22(a 4b)2A 2n 1i n1Xi2
返回主目录
例 2(续)
即 a b 2 A 1 , b a 1(A 2 2 A 1 2 )
相关文档
最新文档