武汉市江岸区2017-2018学年八年级(上)期中数学试卷和答案
湖北省武汉市部分重点学校2017-2018学年八年级上学期期中考试数学试题(原卷版)
湖北省武汉市部分重点学校2017-2018学年八年级上学期期中考试数学试题一、选择题(每题3分,共30分)1. 下面有4个汽车标致图案,其中不是轴对称图形为()A. B.C. D.2. 下列长度的三条线段首尾相连能组成三角形的是()A. 1,2,3B. 2,3,4C. 3,4,7D. 4,5,103. 五边形的对角线共有()条A. 2B. 4C. 5D. 64. 如图,△ABC≌△DEF,则∠E的度数为()A. 80°B. 40°C. 62°D. 38°5. 如图,图中x的值为()A. 50°B. 60°C. 70°D. 75°6. 如图,CD⊥AB 于D,BE⊥AC 于E,BE 与CD 交于O,OB=OC,则图中全等三角形共有()A. 2 对B. 3 对C. 4 对D. 5 对7. 在△ABC与△DEF中,下列各组条件,不能判定这两个三角形全等的是()A. AB=DE,∠B=∠E,∠C=∠FB. AC=DE,∠B=∠E,∠A=∠FC. AC=DF,BC=DE,∠C=∠DD. AB=EF,∠A=∠E,∠B=∠F8. 已知OD平分∠MON,点A、B、C分别在OM、OD、ON上(点A、B、C都不与点O重合),且AB=BC, 则∠OAB 与∠BCO的数量关系为()A. ∠OAB+∠BCO=180°B. ∠OAB=∠BCOC. ∠OAB+∠BCO=180°或∠OAB=∠BCOD. 无法确定9. 如图,在△ABE中,∠BAE=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是( )A.45°B. 60°C. 50°D. 55°10. 如图,P为∠AOB内一定点,M、N分别射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A. 35° B. 40° C. 45° D. 50°二、填空题:(每题3分,共18分) 11. 三角形的一边是5,另一边是1,第三边如果是整数,则第三边是________. 12. 若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.13. 如图,用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB,能得出∠A′O′B′=∠AOB的依据是_____14. 如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.15. 如图△ABO 的边OB 在x 轴上,∠A=2∠ABO,OC 平分∠AOB,若AC=2,OA=3,则点B 的坐标为_________16. 已知△ABC 中,∠B=30°, AD 为高, ∠CAD=30°, CD=3, 则BC=_________三、解答题(共8题,共72分)17. 已知:△ABC 中,∠B=2∠A,∠C=∠A -20°,求∠A 的度数.18. 如图所示,点B 、F 、C 、E 在同一直线上,AB ⊥BE ,DE ⊥BE ,连接AC 、DF ,且AC=DF ,BF=CE ,求证:AB=DE .19. 如图,△ABC 中,∠A=60°,P 为AB 上一点, Q 为BC 延长线上一点,且PA=CQ ,连PQ 交AC 边于D, PD=DQ,证明:△ABC 为等边三角形.20. 如图,在四边形ABCD 中,∠ABC=150°,∠BCD =30°,点M 在BC 上,AB =BM ,CM =CD ,点N 为AD 的中点,求证:BN⊥CN.21. 如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (2,1),B (-1,3),C (-3,2) (1)作出△ABC 关于x 轴对称的△111A B C ; (2)点1A 的坐标为,点1B 的坐标为 ;(3)点P (a ,a-2)与点Q 关y 轴对称,若PQ=8,则点P 的坐标为 ;22. 如图,△ABC 中,AC =BC ,∠ACB=90°,点D 为BC 的中点,点E 与点C 关于直线AD 对称,CE 与AD 、AB分别交于点F 、G ,连接BE 、BF 、GD求证:(1) △BEF 为等腰直角三角形 ;(2) ∠ADC=∠BDG.23. 如图,△ABC 和△ADE 中,AB=AD,AC=AE, ∠BAC=∠DAE,BC 交 DE 于点O ,∠BAD=a. (1)求证:∠BOD=a.(2)若AO 平分∠DAC, 求证:AC=AD ;(3)若∠C=30°,OE 交AC 于F,且△AOF 为等腰三角形,则a= .24. 已知,如图A在x轴负半轴上,B(0,-4),点E(-6,4)在射线BA上,(1) 求证:点A为BE的中点.(2) 在y轴正半轴上有一点F, 使∠FEA=45°,求点F的坐标BI分别交y轴正半轴、x轴正半轴于P、Q两点, IH⊥ON于H, 记△POQ的周长为C△POQ.求证:C△POQ=2 HI.的内角平分线的交点,AI、新人教部编版初中数学“活力课堂”精编试题。
2017-2018学年度第一学期期中八年级数学试卷及答案
2017-2018学年度第一学期八年级期中考试数学试题参考答案(人教版)1-6 A A B B C D 7-12 C D B A C B 13-14 A B15.(2,4)16.30. 17.SSS 18.140°;719.解:∵∠2是△ADB的一个外角,∴∠2=∠1+∠B,∵∠1=∠B,∴∠2=2∠1,∵∠2=∠C,∴∠C=2∠1,∴∠BAC=180°-3∠1∵∠BAC=63°,∴∠1=39°,∴∠CAD=24°.20.解:(1)点A1(-2,1.5)变换为(5,1.5),A1(-2,1.5)不是不动点;A2(1.5,0)变换为(1.5,0),A2(1.5,0)是不动点;(2)A1(a,-3)变换为(3-a,-3),由不动点,得a=3-a.解得a=1.5.21.解:上面证明过程不正确;错在第一步.正确过程如下:在△BEC中,∵BE=CE∴∠EBC=∠ECB又∵∠ABE=∠ACE∴∠ABC=∠ACB∴AB=AC.在△AEB和△AEC中,AE=AE,BE=CE,AB=AC,∴△AEB≌△AEC(SSS)∴∠BAE=∠CAE.22.解:设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.23.解:如图1所示:从A到B的路径AMNB最短;【思考】如图2所示:从A到B的路径AMENFB最短;【进一步的思考】如图3所示:从A到B的路径AMNGHFEB最短;【拓展】如图3所示:从A到B的路径AMNEFB最短.24.(1)证明:如图1中,在l上截取F A=DB,连接CD、CF.∵△ABC为等腰直角三角形,∠ACB=90°,BD⊥l,∴AC=BC,∠BDA=90°,∴∠CBD+∠CAD=360°-∠BDA-∠ACB=180°,∵∠CAF+∠CAD=180°,∴∠CBD=∠CAF,∴△CBD≌△CAF(SAS),∴CD=CF,∵CE⊥l,∴DE=EF=12DF=12(DA+F A)=12(DA+DB),∴DA+DB=2DE,图2中有结论:DA-DB=2DE,图3中有结论:DB-DA=2DE.25. 解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等边三角形,∴t=12-2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∵CM=y-12,NB=36-2y,∴y-12=36-2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.。
湖北省武昌七校2017-2018学年八年级第一学期期中联考数学试题及答案
2017-2018 第一学八年级数学武昌七校联考期中试题及答案数学试卷考试时间120 分钟试卷满分120 分一、选择题(每小题3 分,共30 分)1 下列长度的三条线段能组成三角形的是()A. 3,4,8B. 5,6,11C. 6,6,6D. 9,9,192. 若三角形三个内角度数之比为1:2:3,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形3. 如图,A、B、C、D 在一条直线上,MB=ND,∠MBA=∠D,添加下列某一条件后不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN4. 一个多边形的内角和是外角和的2 倍,这个多边形的边数是()A.4 B.6 C.8 D.105.若等腰三角形两边长分别为3、8,则其周长为()A.14 B.19 C.14 或19 D.上述答案都不对6.如图,OP 为∠AOB 的角平分线,PC⊥OA 于C,PD⊥OB于D,则下列结论中错误的是()A.∠COP=∠DOP B.PC=PDC.OC=OD D.∠CPD=2∠COD7. 若一个等腰三角形有一个角为100°,那么它的底角的度数为()A.100°B.40°C.100°或40°D.50°8. 若某多边形从一个顶点所作的对角线为4 条,则这个多边形是()A.五边形B.六边形C.七边形D.八边形9. 如图,∠MON=36°,点P 是∠MON 中的一定点,点A、B 分别在射线OM、ON 上移动.当△PAB 的周长最小时,∠APB 的大小为()A.100°B.104°C.108°D.116°10. 如图,AD 为等边ΔABC 的高,E、F 分别为线段AD、AC 上的动点,且AE=CF,当BF+CE 取得最小值时,∠AFB=( )A.112.5°B. 105°C. 90°D. 82.5°二、填空题(每小题3 分,共18 分)11. 点A﹙3,6﹚关于y 轴的对称点的坐标为_____________12. 如图,△ABC 中,∠C=90°,AC=BC,AD 平分∠CAB 交BC 于D,DE⊥AB 于E.若AB=16,则△DEB 的周长为___________13. 如图,已知△ABC 为直角三角形,∠C=90°.若沿图中虚线剪去∠C,则∠1+∠2=________14. 若等腰三角形一腰上的高与另一腰的夹角为50°,则这个等腰三角形的底角为_________15. 如图,平面直角坐标系中,A(1,0)、B(0,2),BA=BC,∠ABC=90°,若存在点P(不与点C 重合),使得以P、A、B 为顶点的三角形与△ABC 全等,则点P 的坐标为___________16. 如图,四边形ABCD 中,∠ACB=60°,BD=BC,∠BAC=76°,∠DAC=28°,则∠ACD=________(有同学发现若作△ABC 关于直线AB 对称的△ABE,则D、A、E 三点共线)三、解答题﹙共72 分﹚17. ﹙本题8 分﹚已知△ABC 中,∠B=∠A+15°,∠C=∠B+15°求△ABC 的各内角度数18.(本题8 分)如图,已知点E、C 在线段BF 上,BE=CF,AB∥DE,∠ACB=∠F,求证:△ABC≌△DEF19. (本题8 分)已知等腰三角形的周长为16,一边长为2,求另两边长。
江岸区2017—2018学年度上学期期中考试八年级数学试题(含答案与解析)
2017-2018学年湖北省武汉市江岸区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3.00分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(3.00分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.3.(3.00分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.4.(3.00分)下列各组条件中,能够判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E【解答】解:如图:A、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;B、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;C、符合直角三角形全等的判定定理HL,即能推出△ABC≌△DEF,故本选项正确;D、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;故选:C.5.(3.00分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:A.6.(3.00分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【解答】解:∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.故选:B.7.(3.00分)如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125° D.135°【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°,故选:B.8.(3.00分)如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C两点,∠B=α,∠C=β,则∠DAE的度数分别为()A.B.C. D.【解答】解:∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β,∵线段AE,AD的中垂线分别交直线DE于B和C两点,∴BA=BE,DA=DC,∴∠BEA=,∠CDA=,∴∠DAE=180°﹣﹣=,故选:A.9.(3.00分)如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A.m﹣a>b﹣n B.m﹣a<b﹣nC.m﹣a=b﹣n D.m﹣a>b﹣n或m﹣a<b﹣n【解答】解:在CM上截取CG=CA,连接DG.∵CD=CD,∠ACD=∠DCG,AC=CG,∴△ACD≌△GCD,∴AD=DG=n,在△BDG中,BD=m,BG=BC+CG=BC+AC=a+b,∴m+n>a+b,∴m﹣a>b﹣n.故选:A.10.(3.00分)如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β﹣α=60°B.β+α=210°C.β﹣2α=30°D.β+2α=240°【解答】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∵∠OQN=180°﹣30°﹣∠ONQ,∠OPM=∠NPQ=30°+∠OQP,∠OQP=∠AQN=30°+∠ONQ,∴α+β=180°﹣30°﹣∠ONQ+30°+30°+∠ONQ=210°.故选:B.二、填空题(每题3分,共18分)11.(3.00分)已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).【解答】解:点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).故答案为:(1,﹣2).12.(3.00分)若正多边形的内角和是外角和的4倍,则正多边形的边数为10.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=4×360°,解得n=10,答:这个多边形的边数为10,故答案为:10.13.(3.00分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD的面积是30.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.14.(3.00分)如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(﹣1,0),点B的坐标为(0,4),则点C的坐标为(﹣,).【解答】解:作CE⊥x轴于E,CF⊥y轴于F,则∠ECF=90°,又∠ACB=90°,∴∠ECA=∠FCB,在△ECA和△FCB中,,∴△ECA≌△FCB,∴CE=CF,AE=BF,设AE=BF=x,则x+1=4﹣x,解得,x=,∴CE=CF=,∴点C的坐标为(﹣,),故答案为:(﹣,).15.(3.00分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为(1,4).【解答】解:根据题意,如下图示:根据图形观察可知,每碰撞6次回到始点.∵17÷6=2…5,∴第17次碰到长方形边上的点的坐标为(1,4),故答案为(1,4).16.(3.00分)如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为a2.(用含a的式子表示)【解答】解:∵BC⊥AC,CH⊥BA,∴BC2=BH•BA,即BH•BA=a2,∵四边形ABDE是正方形,∴BD=BA,∴四边形BDKH的面积=BH•BD=BH•BA=a2,故答案为:a2.三、解答题(共8道小题,共72分)17.(8.00分)在△ABC中,∠B=∠A+10°,∠C=30°,求△ABC各内角的度数.【解答】解:∵在△ABC中,∠B=∠A+10°,∠C=30°,∴∠B+∠A=150°,∴解得:,故∠A=70°,∠B=80°,∠C=30°.18.(8.00分)如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:BD=AC.【解答】证明:∵AC⊥AD,BC⊥BD,∴∠ADC=∠BCA=90°,在Rt△ABD和Rt△BAC中,,∴在Rt △ABD ≌Rt △BAC (HL ),∴BD=AC .19.(8.00分)如图,已知点E ,C 在线段BF 上,且BE=CF ,AB ∥DE ,AC ∥DF ,AC 与DE 相交于点O ,求证:S 四边形ABEO =S 四边形OCFD .【解答】证明:∵BE=CF ,∴BE +CE=CF +CE即BC=EF .∵AB ∥DE ,AC ∥DF ,∴∠B=∠DEF ,∠C=∠DFE ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF ,∴S △ABC 与S DEF ,∴S △ABC ﹣S △ECO =S DEF ﹣S △ECO ,∴S 四边形ABEO =S 四边形OCFD .20.(8.00分)如图,点E 在AB 上,△ABC ≌△DEC ,求证:CE 平分∠BED .【解答】证明:∵△ABC ≌△DEC ,∴∠B=∠DEC ,BC=EC ,∴∠B=∠BEC ,∴∠BEC=∠DEC,∴CE平分∠BED.21.(8.00分)(1)如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.(2)如图2,若△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.【解答】解:(1)如图1,△AB′C即为所求;(2)如图2,直线l即为所求;(3)如图3,四边形EFGH即为所求.22.(10.00分)如图,四边形ABCD为正方形(各边相等,各内角为直角),E 是BC边上一点,F是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.【解答】(1)证明:延长CF至G,使DG=BE,连接AG,如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABE=∠ADF=90°,AB=BC=CD=AD,∴∠ADG=90°,∵△CFE的周长等于正方形ABCD的周长的一半,∴CE+CF+EF=CD+BC,∴DF+BE=EF,∴DF+DG=EF,即GF=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∴∠EAG=90°,在△AEF和△AGF中,,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=×90°=45°;(2)解:∵DF=2,CF=4,CE=3,∴AB=AD=CD=BC=2+4=6,BE=BC﹣CE=3,由(1)得:△AEF的面积=△AGF的面积=△ABE的面积+△ADF的面积=×6×3+×6×2=15.23.(10.00分)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;(2)如图2,连接BF交AC于G点,若=3,求证:E点为BC中点;(3)当E点在射线CB上,连接BF与直线AC交于G点,若=,则=(直接写出结果)【解答】证明:(1)如图1,∵∠FAD+∠CAE=90°,∠FAD+∠F=90°,∴∠CAE=∠F,在△ADF和△ECA中,,∴△ADF≌△ECA(AAS),∴AD=CD,FD=AC,∴CE+CD=AD+CD=AC=FD,即EC+CD=DF;证明:(2)如图2,过F点作FD⊥AC交AC于D点,∵△ADF≌△ECA,∴FD=AC=BC,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴GD=CG,∵=3,∴=2,∴=,∵AD=CE,AC=BC∴=,∴E点为BC中点;(3)过F作FD⊥AG的延长线交于点D,如图3,∵=,BC=AC,CE=CB+BE,∴=,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE,∴=,∴=,∴==,∴=.故答案为:.24.(12.00分)如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON ⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.【解答】解:(1)∵(m﹣2n)2+|n﹣2|=0,又∵(m﹣2n)2≥0,|n﹣2|≥0,∴n=2,m=4,∴点D坐标为(4,2).(2)如图1中,作OE⊥BD于E,OF⊥AC于F.∵OA=OB,OD=OC,∠AOB=∠COD=90°,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴EO=OF(全等三角形对应边上的高相等),∴OK平分∠BKC,∴∠OBD=∠OAC,易证∠AKB=∠BOA=90°,∴∠OKE=45°,∴∠AKO=135°.(3)结论:BM=MN+ON.理由:如图2中,过点B作BH∥y轴交MN的延长线于H.∵OQ=OP,OA=OA,∠AOQ=∠BOP=90°,∴△AOQ≌△BOP,∴∠OBP=∠OAQ,∵∠OBA=∠OAB=45°,∴∠ABP=∠BAP,∵NM⊥AQ,BM⊥ON,∴∠ANM+∠BAQ=90°,∠BNO+∠ABP=90°,∴∠ANM=∠BNO=∠HNB,∵∠HBN=∠OBN=45°,BN=BN,∴△BNH≌△BNO,∴HN=NO,∠H=∠BON,∵∠HBM+∠MBO=90°,∠BON+∠MBO=90°,∴∠HBM=∠BON=∠H,∴MH=MB,∴BM=MN+NH=MN+ON.。
2017-2018学年八年级数学上期中试卷武汉市汉阳区含答案和解释)
2017-2018 学年八年级数学上期中试卷 ( 武汉市汉阳区含答案和解说 )2017-2018学年湖北省武汉市汉阳区八年级(上)期中数学试卷一、选择题(每题 3 分,共 30 分)1 .( 3 分)以下“表情图” 中,属于轴对称图形的是(A . B.c. D.)2 .(3 分)以下四个图形中,线段BE 是△ ABc 的高的是()A. B.c. D.3 .(3 分)以下长度的三条线段能构成三角形的是()A . 1,2, 3B.1,, 3c.3, 4, 8D.4, 5, 64 .( 3 分)必定能确立△ ABc≌△ DEF的条件是()A.∠ A=∠ D, AB=DE,∠ B=∠ EB.∠ A=∠ E, AB=EF,∠ B= ∠Dc. AB=DE, Bc=EF,∠ A=∠DD.∠ A=∠ D,∠ B=∠E,∠ c= ∠F5.(3 分)如图,聪聪书上的三角形被墨迹污染了一部分,他依据所学知识很快就画了一个与书籍上完整同样的三角形,那么聪聪绘图的依照是()A . SSSB. SASc.ASAD.AAS6 .( 3 分)已知等腰三角形的两边长分别为 5 和 6,则这个等腰三角形的周长为()A . 11B. 16c . 17D. 16 或 177.(3 分)如图,在△ ABc 中, AB=Ac,BD均分∠ ABc 交 Ac 于点 D,AE∥ BD交 cB 的延伸线于点E.若∠ E=35°,则∠ BAc 的度数为()A . 40° B. 45°c. 60°D. 70°8.(3 分)如图,在△ ABc 中, AB=Ac,AB的垂直均分线交边 AB于 D 点,交边 Ac 于 E 点,若△ ABc 与△ EBc 的周长分别是 40, 24,则 AB 为()A . 8B. 12c. 16D. 209 .( 3 分)如图,四边形 ABcD 是直角梯形, AB∥cD, AD⊥ AB,点 P 是腰 AD上的一个动点,要使 Pc+PB最小,则点 P 应当知足()A . PB=PcB. PA=PDc.∠ BPc=90° D.∠ APB=∠ DPc10 .( 3 分)在平面直角坐标系中,已知A( 0,2),B( 2,0),若在座标轴上取点c,使△ ABc 为等腰三角形,则知足条件的点 c 的个数是(★精选文档★)A . 6B. 7c. 8D.9二、填空题(每题 3 分,共 18 分)11.(3 分)已知点 P 对于 x 轴的对称点 P1 的坐标是( 2,1),则点 P 的坐标是.12.( 3 分)如图,将三角形纸板的直角极点放在直尺的一边上,∠ 1=20°,∠ 2=40°,则∠ 3 的度数是.13.(3 分)如图,在△ ABc 中, AB=Ac,AE⊥ AB交 Bc 于点E,∠ BAc=120°, AE=3,则 Bc 的长是.14.( 3 分)假如一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数.15.(3 分)在△ ABc 中, AB=2c, Ac=4c,则 Bc 边上的中线 AD的取值范围是.16.( 3 分)请你认真察看图中等边三角形图形的变换规律,写出你发现对于等边三角形内一点到三边距离的数学事实:.三、解答题(共8 道小题,共72 分)17 .( 8 分)一个多边形的内角和是外角和的 2 倍,则这个多边形是几边形?18.(8 分)如图,点 B、E、 c、 F 在同向来线上, BE=cF,AB=DE,Ac=DF.求证: AB∥ DE.19.(8 分)如图,在△ ABc 中,∠ B、∠ c 的均分线 BE,cD 订交于点 F.(1)∠ ABc=40°,∠ A=60°,求∠ BFD的度数;(2)直接写出∠ A 与∠ BFD的数目关系.20 .(8 分)如图,在平面直角坐标系中,A(﹣ 1, 5), B (﹣ 1,0), c(﹣ 4, 3).(1)在图中作出△ ABc 对于直线(直线上各点的横坐标都为﹣ 2)对称的图形△ A1B1c1;(2)线段 Bc 上有一点 P(﹣,),直接写出点 P 对于直线对称的点的坐标;(3)线段 Bc 上有一点( a, b),直接写出点对于直线对称的点的坐标.21.(8 分)如图△ ABc 是等边三角形.(1)请按要求达成图形,分别作∠ ABc,∠ AcB 的均分线,交点为 o;再分别作oB,oc 的垂直均分线分别交Bc 于点 D,E;(2)在( 1)的条件下,判断△ oDE 的形状,并证明你的结论.22.(10 分)如图,在△ ABc 中,∠ AcB=90°,∠ A=30°.(1)教材中有这样的结论:在直角三角形中,假如一个锐角等于 30°,那么它所对的直角边等于斜边的一半.请联合图1,证明该结论;(2)若将图 2 切割成三个全等的三角形,请你画出图形,并简单描绘协助线的作法.23 .(10 分)定义:假如两条线段将一个三角形分红 3 个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.( 1)如图1,在△ ABc 中, AB=Ac,点 D 在 Ac 边上,且AD=BD=Bc,求∠ A 的大小;( 2)在图 1 中过点 c 作一条线段cE,使 BD, cE 是△ ABc 的三均分线;在图 2 中画出顶角为45°的等腰三角形的三分线,并标明每个等腰三角形顶角的度数;(3)在△ABc 中,∠B=30°,AD和DE是△ABc 的三分线,点 D 在 Bc 边上,点 E 在 Ac 边上,且 AD=BD,DE=cE,请5/23写出∠ c 全部可能的值.24.(12 分)( 1)问题解决:如图,在四边形 ABcD中,∠BAD=α,∠ BcD=180°﹣α, BD均分∠ ABc.①如图 1,若α =90°,依据教材中一个重要性质直接可得AD=cD,这个性质是;②在图 2 中,求证 AD=cD;(2)拓展研究:依据(1)的解题经验,请解决以下问题:如图 3,在等腰△ ABc 中,∠ BAc=100°, BD均分∠ ABc,求证 BD+AD=Bc.2017-2018学年湖北省武汉市汉阳区八年级(上)期中数学试卷参照答案与试题分析一、选择题(每题 3 分,共 30 分)1 .( 3 分)以下“表情图” 中,属于轴对称图形的是()A . B.c. D.【解答】解: A 不属于轴对称图形,故错误;B不属于轴对称图形,故错误;c不属于轴对称图形,故错误;D属于轴对称图形,故正确;应选: D.2 .(3 分)以下四个图形中,线段BE 是△ ABc 的高的是()A. B.c. D.【解答】解:线段BE 是△ ABc 的高的图是选项D.应选 D.3 .(3 分)以下长度的三条线段能构成三角形的是()A . 1,2, 3B.1,, 3c.3, 4, 8D.4, 5, 6【解答】解:A、1+2=3,不可以构成三角形,故本选项错误;B、 1+< 3,不可以构成三角形,故本选项错误;c、 3+4< 8,不可以构成三角形,故本选项错误;D、 4+5> 6,能构成三角形,故本选项正确.应选 D.4 .( 3 分)必定能确立△ABc≌△ DEF的条件是()A.∠ A=∠ D, AB=DE,∠ B=∠ EB.∠ A=∠ E, AB=EF,∠ B= ∠Dc. AB=DE, Bc=EF,∠ A=∠DD.∠ A=∠ D,∠ B=∠E,∠ c= ∠F【解答】解:A 、依据 ASA即可推出△ ABc≌△ DEF,故本选项正确;B、依据∠ A=∠ E,∠ B=∠D,AB=DE才能推出△ ABc≌△DEF,故本选项错误;c、依据 AB=DE,Bc=EF,∠ B=∠ E 才能推出△ ABc≌△ DEF,故本选项错误;D 、依据 AAA不可以推出△ ABc≌△ DEF,故本选项错误;应选 A.5.(3 分)如图,聪聪书上的三角形被墨迹污染了一部分,他依据所学知识很快就画了一个与书籍上完整同样的三角形,那么聪聪绘图的依照是()A . SSSB. SASc.ASAD.AAS【解答】解:依据题意,三角形的两角和它们的夹边是完整的,因此能够利用“角边角” 定理作出完整同样的三角形.应选: c.6 .( 3 分)已知等腰三角形的两边长分别为 5 和 6,则这个等腰三角形的周长为()A . 11B. 16c . 17D. 16 或 17【解答】解:① 6 是腰长时,三角形的三边分别为6、6、★精选文档★5,能构成三角形,周长 =6+6+5=17;② 6 是底边时,三角形的三边分别为6、 5、5,能构成三角形,周长 =6+5+5=16.综上所述,三角形的周长为16 或 17.应选 D.7.(3 分)如图,在△ ABc 中, AB=Ac,BD均分∠ ABc 交 Ac 于点 D,AE∥ BD交 cB 的延伸线于点E.若∠ E=35°,则∠ BAc 的度数为()A. 40° B. 45°c. 60°D. 70°【解答】解:∵ AE∥ BD,∴∠ cBD=∠ E=35°,∵ BD均分∠ ABc,∴∠ cBA=70°,∵AB=Ac,∴∠ c=∠ cBA=70°,∴∠ BAc=180°﹣ 70°× 2=40°.应选: A.8.(3 分)如图,在△ ABc 中, AB=Ac,AB的垂直均分线交边 AB于 D 点,交边 Ac 于 E 点,若△ ABc 与△ EBc 的周长分别是 40, 24,则 AB 为()A . 8B. 12c. 16D. 20【解答】解:∵DE是 AB的垂直均分线,∴AE=BE;∵ △ ABc的周长=AB+Ac+Bc,△ EBc的周长=BE+Ec+Bc=AE+Ec+Bc=Ac+Bc,∴△ ABc 的周长﹣△ EBc 的周长 =AB,∴AB=40﹣ 24=16.应选: c.9 .( 3 分)如图,四边形 ABcD 是直角梯形, AB∥cD, AD ⊥ AB,点 P 是腰 AD上的一个动点,要使 Pc+PB最小,则点 P 应当知足()A . PB=PcB. PA=PDc.∠ BPc=90° D.∠ APB=∠ DPc【解答】解:如图,作点 c 对于 AD 的对称点E,连结 BE 交 AD于 P,连结 cP.依据轴对称的性质,得∠ DPc=∠ EPD,依据对顶角相等知∠APB=∠ EPD,因此∠ APB=∠ DPc.应选 D.10 .( 3 分)在平面直角坐标系中,已知A( 0,2),B( 2,0),若在座标轴上取点c,使△ ABc 为等腰三角形,则知足条件的点 c 的个数是()A . 6B. 7c. 8D.9【解答】解:以下图:当 AB=Ac时,切合条件的点有 3 个;当BA=Bc时,切合条件的点有 3 个;当点 c 在 AB的垂直均分线上时,切合条件的点有一个.故切合条件的点 c 共有 7 个.应选: B.二、填空题(每题 3 分,共 18 分)11.(3 分)已知点 P 对于 x 轴的对称点 P1 的坐标是( 2,1),则点 P 的坐标是(2,﹣1).【解答】解:点 P 对于 x 轴的对称点P1 的坐标是( 2,1),则点 P 的坐标是( 2,﹣ 1),故答案为:( 2,﹣ 1).12.( 3 分)如图,将三角形纸板的直角极点放在直尺的一边上,∠ 1=20°,∠ 2=40°,则∠ 3 的度数是20°.【解答】解:由题意得:∠ 4=∠ 2=40°;由三角形外角的性质得:∠ 4=∠ 1+∠ 3,∴∠3=∠ 4﹣∠ 1=40°﹣ 20° =20°,故答案为: 20°.13.(3 分)如图,在△ ABc 中, AB=Ac,AE⊥ AB交 Bc 于点E,∠ BAc=120°, AE=3,则 Bc 的长是9.【解答】解:过点 A 作 AF⊥ Bc 交 Bc 于 F,∵AB=Ac,∠ BAc=120°,∴∠ B=∠ c=30 °, Bc=2BF,在 Rt △ BAE中,AB=AE?cot30 ° =3× =3,在 Rt △ AFB中,BF=AB ?cos30 ° =3× =,∴Bc=2BF=2× =9,故答案为: 9.14.( 3 分)假如一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数15°或 75° .【解答】解:解:( 1)当等腰三角形是锐角三角形时,腰上的高在三角形内部,如图,BD 为等腰三角形ABc 腰 Ac 上的高,而且BD=AB,依据直角三角形中 30°角的对边等于斜边的一半的逆用,可知顶角为 30°,此时底角为 75°;(2)当等腰三角形是钝角三角形时,腰上的高在三角形外面,如图,BD 为等腰三角形ABc 腰 Ac 上的高,而且BD=AB,依据直角三角形中 30°角的对边等于斜边的一半的逆用,可知顶角的邻补角为 30°,此时顶角是 150°,底角为 15°.故答案为: 15°或 75°.15.(3 分)在△ ABc 中, AB=2c, Ac=4c,则 Bc 边上的中线 AD的取值范围是 1c<AD< 3c .【解答】解:延伸AD到 E,使 AD=DE,连结 BE,∵ AD是△ ABc 的中线,∴BD=cD,在△ ADc与△ EDB中,∵,∴△ ADc≌△ EDB,∴EB=Ac,依据三角形的三边关系定理:4c﹣2c< AE<4c+2c ,∴1c<AD< 3c ,故答案为: 1c< AD< 3c.16.( 3 分)请你认真察看图中等边三角形图形的变换规律,写出你发现对于等边三角形内一点到三边距离的数学事实:等边三角形内随意一点到三边的距离之和等于该等边三角形的高.【解答】解:由图可知,等边三角形里随意一点到三边的距离和等于它的高.三、解答题(共8 道小题,共72 分)17 .( 8 分)一个多边形的内角和是外角和的 2 倍,则这个多边形是几边形?【解答】解:设这个多边形的边数为n,∴( n﹣ 2)?180°=2× 360°,解得: n=6.故这个多边形是六边形.18.(8 分)如图,点 B、E、 c、 F 在同向来线上, BE=cF,AB=DE,Ac=DF.求证: AB∥ DE.【解答】证明:∵BE=cF,∴Bc=EF,在△ ABc 和△ DEF中,,∴△ ABc≌△ DEF( SSS),∴∠ B=∠ DEF,∴AB∥DE.19.(8 分)如图,在△ ABc 中,∠ B、∠ c 的均分线 BE,cD 订交于点 F.(1)∠ ABc=40°,∠ A=60°,求∠ BFD的度数;(2)直接写出∠ A 与∠ BFD的数目关系.【解答】解:(1)∵∠ ABc=40°,∠ A=60°,∴∠ AcB=180°﹣ 40°﹣ 60° =80°,∵∠ B、∠ c 的均分线BE, cD 订交于点F,∴∠ BFD=∠ FBc+∠ FcB=∠ABc+∠ AcB=20° +40° =60°.(2)∵∠ B、∠ c 的均分线 BE, cD 订交于点 F,∴∠ BFD=∠ FBc+∠ FcB=∠ ABc+∠ AcB=(∠ ABc+∠ AcB) = (180°﹣∠ A) =90°﹣∠ A.20 .(8 分)如图,在平面直角坐标系中,A(﹣ 1, 5), B (﹣ 1,0), c(﹣ 4, 3).(1)在图中作出△ ABc 对于直线(直线上各点的横坐标都为﹣ 2)对称的图形△ A1B1c1;(2)线段 Bc 上有一点 P(﹣,),直接写出点 P 对于直线对称的点的坐标;(3)线段 Bc 上有一点( a, b),直接写出点对于直线对称的点的坐标.【解答】解:(1)以下图,(2)线段 Bc 上有一点 P(﹣,),点 P 对于直线对称的点的坐标是(﹣,),(3)线段 Bc 上有一点( a, b),点对于直线对称的点的坐标是(﹣ 4﹣ a, b).21.(8 分)如图△ ABc 是等边三角形.(1)请按要求达成图形,分别作∠ ABc,∠ AcB 的均分线,交点为 o;再分别作 oB,oc 的垂直均分线分别交 Bc 于点 D,E;(2)在( 1)的条件下,判断△ oDE 的形状,并证明你的结论.【解答】解:(1)如图,(2)△ oDE为等边三角形.原因以下:∵△ABc 是等边三角形.∴∠ABc=∠AcB=60°,∵ oB 均分∠ ABc, oc 均分∠ AcB,∴∠ oBc=∠ ABc=30°,∠ ocB=∠ AcB=30°,∵ oB,oc 的垂直均分线分别交 Bc 于点 D, E,∴DB=Do, Ec=Eo,2016 崭新精选资料 - 崭新公函范文 -全程指导写作–独家原创17/23★精选文档★∴△ oDE为等边三角形.22.(10 分)如图,在△ ABc 中,∠ AcB=90°,∠ A=30°.(1)教材中有这样的结论:在直角三角形中,假如一个锐角等于 30°,那么它所对的直角边等于斜边的一半.请联合图1,证明该结论;(2)若将图 2 切割成三个全等的三角形,请你画出图形,并简单描绘协助线的作法.【解答】解:( 1)证法一:如答图所示,延伸 Bc 到 D,使cD=Bc,连结 AD,易证 AD=AB,∠ BAD=60°.∴△ ABD为等边三角形,∴AB=BD,∴Bc=cD=AB,即 Bc=AB.证法二:如答图所示,取 AB的中点 D,连结 Dc,有 cD=AB=AD=DB,∴∠ DcA=∠ A=30°,∠ BDc=∠ DcA+∠ A=60°.∴△ DBc为等边三角形,∴Bc=DB=AB,即 Bc=AB.证法三:如答图所示,在 AB上取一点 D,使 BD=Bc,∵∠ B=60°,∴△ BDc为等边三角形,∴∠ DcB=60°,∠ AcD=90°﹣∠ DcB=90°﹣ 60° =30° =∠A.∴Dc=DA,即有 Bc=BD=DA=AB,∴Bc=AB.证法四:以下图,作△ABc 的外接圆⊙D,∠c=90°, AB为⊙ o 的直径,连 Dc 有 DB=Dc,∠ BDc=2∠ A=2× 30°=60°,∴△ DBc为等边三角形,∴Bc=DB=DA=AB,即 Bc=AB.(2)如图 2,作∠ AcB 均分线交 Ac 于点 D,作 DE ⊥AB于点 E,则△ ADE≌△ BDE≌△ BDc由作图知∠ DBc=∠ DBE=∠ A=30 °,∠ AED=∠ BED=∠c=90°,∴AD=BD,∴AE=BE=AB,又∵ Bc=AB,∴AE=BE=Bc,在△ ADE、△ BDE、△ BDc中,∵,∴△ ADE≌△ BDE≌△ BDc.23 .(10 分)定义:假如两条线段将一个三角形分红 3 个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.( 1)如图1,在△ ABc 中, AB=Ac,点 D 在 Ac 边上,且AD=BD=Bc,求∠ A 的大小;( 2)在图 1 中过点 c 作一条线段cE,使 BD, cE 是△ ABc 的三均分线;在图 2 中画出顶角为45°的等腰三角形的三分线,并标明每个等腰三角形顶角的度数;(3)在△ABc 中,∠B=30°,AD和DE是△ABc 的三分线,点 D 在 Bc 边上,点 E 在 Ac 边上,且 AD=BD,DE=cE,请直接写出∠ c 全部可能的值.【解答】解:(1)∵ AB=Ac,∴∠ ABc=∠ c,∵BD=Bc=AD,∴∠ A=∠ ABD,∠ c=∠ BDc,设∠ A=∠ ABD=x,则∠ BDc=2x,∠c=,可得 2x=,解得: x=36°,则∠ A=36°;(2)以下图:(3)以下图:①当 AD=AE时,∵2x+x=30° +30°,∴x=20°;②当AD=DE时,∵ 30°+30° +2x+x=180°,∴x=40°;综上所述,∠ c 为 20°或 40°的角.24.(12 分)( 1)问题解决:如图,在四边形 ABcD中,∠BAD=α,∠ BcD=180°﹣α, BD均分∠ ABc.①如图 1,若α =90°,依据教材中一个重要性质直接可得AD=cD,这个性质是角均分线上的点到角的两边距离相等;②在图 2 中,求证 AD=cD;(2)拓展研究:依据(1)的解题经验,请解决以下问题:如图 3,在等腰△ ABc 中,∠ BAc=100°, BD均分∠ ABc,求证 BD+AD=Bc.【解答】解:( 1)①依据角均分线的性质定理可知AD=cD.因此这个性质是角均分线上的点到角的两边距离相等.故答案为角均分线上的点到角的两边距离相等.②如图 2 中,作 DE⊥BA于 E,DF⊥ Bc 于 F.∵BD均分∠ EBF, DE⊥ BE, DF⊥ BF,∴DE=DF,∵∠ BAD+∠ c=180°,∠ BAD+∠ EAD=180°,∴∠ EAD=∠ c,∵∠ E=∠DFc=90°,∴△ DEA≌△ DFc,∴DA=Dc.( 2)如图 3 中,在 Bc 时截取 Bk=BD,BT=BA,连结Dk.∵AB=Ac,∠ A=100°,∴∠ ABc=∠ c=40°,∵BD均分∠ ABc,∴∠ DBk=∠ABc=20°,∵BD=Bk,∴∠ BkD=∠ BDk=80°,∵∠ BkD=∠ c+∠kDc,22/23★精选文档★∴Dk=ck,∵BD=BD, BA=BT,∠ DBA=∠DBT,∴△ DBA≌△ DBT,∴ AD=DT,∠ A=∠BTD=100°,∴∠ DTk=∠ DkT=80°,∴ DT=Dk=ck,∴ BD+AD=Bk+ck=Bc.。
湖北省武汉市江岸区2017--2018学年度上期八年级数学期末试题(解析版)
2017-2018学年湖北省武汉市江岸区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列各图中,不是轴对称图形的是()A.B.C.D.2.若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<13.下列计算正确的是()A.b3•b3=2b3B.(x+2)(x﹣2)=x2﹣2C.(a+b)2=a2+b2D.(﹣2a)2=4a24.在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是()A.(﹣5,﹣2)B.(﹣2,﹣5)C.(﹣2,5)D.(2,﹣5)5.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为()A.0.34×10﹣6米B.3.4×10﹣6米C.34×10﹣5米D.3.4×10﹣5米6.已知多项式x2+kx+36是一个完全平方式,则k=()A.12B.6C.12或﹣12D.6或﹣67.一个多边形的内角和是900°,则这个多边形的边数是()A.6B.7C.8D.98.如图,甲是一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a、2b的两个圆,则剩下的钢板的面积为()A.abπB.2abπC.3abπD.4abπ9.已知关于x的多项式﹣x2+mx+4的最大值为5,则m的值可能为()A.1B.2C.4D.510.如图,点C为线段AB上一点,且AC=2CB,以AC、CB为边在AB的同侧作等边△ADC和等边△EBC,连接DB、AE交于点F,连接FC,若FC=3,设DF=a、EF =b,则a、b满足()A.a=2b+1B.a=2b+2C.a=2b D.a=2b+3二、填空题(共6小题,每小题3分,共18分)11.分式的值为0,则x的值是.12.分式与的最简公分母为.13.已知2m=5,2n=9,则2m+n=.14.计算:已知:a+b=3,ab=1,则a2+b2=.15.如图,在Rt△ABC中,∠C=30°,将△ABC绕点B旋转θ(0<θ<60°)到△A′BC′,边AC和边A′C′相交于点P,边AC和边BC′相交于Q,当△BPQ为等腰三角形时,则θ=.16.如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE ,以AE 为腰,A 为顶角顶点作等腰Rt △ADE ,连接CD ,当CD 最大时,∠DEC = .三、解答题(共8小题,共72分)17.(8分)分解因式:(1)3mx ﹣6my(2)4xy 2﹣4x 2y ﹣y 3.18.(8分)解方程:(1)﹣1=;(2)+=1. 19.(8分)把一张长方形的纸片ABCD 沿对角线BD 折叠.折叠后,边BC 的对应边BE 交AD 于F ,求证:BF =DF .20.(8分)化简:( +)×.21.(8分)△ABC 在平面直角坐标系中的位置如图所示,先将△ABC 向右平移3个单位,再向下平移1个单位到△A 1B 1C 1,△A 1B 1C 1和△A 2B 2C 2关于x 轴对称(1)画出△A 1B 1C 1和△A 2B 2C 2;(2)在x 轴上确定一点P ,使BP +A 1P 的值最小,直接写出P 的坐标为 ; (3)点Q 在坐标轴上且满足△ACQ 为等腰三角形,则 这样的Q 点有 个.22.(10分)甲、乙两工程队承包一项工程,如果甲工程队单独施工,恰好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成.(1)问原来规定修好这条公路需多少长时间?(2)现要求甲、乙两个工程队都参加这项工程,但由于受到施工场地条件限制,甲、乙两工程队不能同时施工.已知甲工程队每月的施工费用为4万元,乙工程队每月的施工费用为2万元.为了结算方便,要求:甲、乙的施工时间为整数个月,不超过15个月完成.当施工费用最低时,甲、乙各施工了多少个月?23.(10分)等边△ABC中,点H在边BC上,点K在边AC上,且满足AK=HC,连接AH、BK交于点F.(1)如图1,求∠AFB的度数;(2)如图2,连接FC,若∠BFC=90°,点G为边AC上一点,且满足∠GFC=30°,求证:AG⊥BG;(3)如图3,在(2)条件下,在BF上取D使得DF=AF,连接CD交AH于E,若△DEF面积为1,则△AHC的面积为.24.(12分)在平面直角坐标系中,已知A(0,a)、B(b,0),且a、b满足:a2+b2﹣4a+4b+8=0,点D为x正半轴上一动点(1)求A、B两点的坐标;(2)如图,∠ADO的平分线交y轴于点C,点F为线段OD上一动点,过点F作CD 的平行线交y轴于点H,且∠AFH=45°,判断线段AH、FD、AD三者的数量关系,并予以证明;(3)以AO为腰,A为顶角顶点作等腰△ADO,若∠DBA=30°,直接写出∠DAO的度数2017-2018学年湖北省武汉市江岸区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列各图中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<1【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.下列计算正确的是()A.b3•b3=2b3B.(x+2)(x﹣2)=x2﹣2C.(a+b)2=a2+b2D.(﹣2a)2=4a2【分析】根据整式的乘法分别计算各选项即可得出答案.【解答】解:A、b3•b3=b6,此选项错误;B、(x+2)(x﹣2)=x2﹣4,此选项错误;C、(a+b)2=a2+2ab+b2,此选项错误;D、(﹣2a)2=4a2,此选项正确;故选:D.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式的乘法运算法则.4.在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是()A.(﹣5,﹣2)B.(﹣2,﹣5)C.(﹣2,5)D.(2,﹣5)【分析】考查平面直角坐标系点的对称性质.【解答】解:点P(m,n)关于y轴对称点的坐标P′(﹣m,n)∴点P(2,5)关于y轴对称的点的坐标为(﹣2,5)故选:C.【点评】此题考查平面直角坐标系点对称的应用.5.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为()A.0.34×10﹣6米B.3.4×10﹣6米C.34×10﹣5米D.3.4×10﹣5米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为3.4×10﹣6米.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.已知多项式x2+kx+36是一个完全平方式,则k=()A.12B.6C.12或﹣12D.6或﹣6【分析】利用完全平方公式的结构特征判断即可求出k的值.【解答】解:∵多项式x2+kx+36是一个完全平方式,∴k=12或﹣12,故选:C.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.一个多边形的内角和是900°,则这个多边形的边数是()A.6B.7C.8D.9【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:B.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.8.如图,甲是一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a、2b的两个圆,则剩下的钢板的面积为()A.abπB.2abπC.3abπD.4abπ【分析】剩下钢板的面积=直径为2a+2b的大圆面积﹣两个小圆的面积,依此列式计算即可.【解答】解:所剩钢板的面积=π(a+b)2﹣πa2﹣πb2=2πab,故选:B.【点评】此题考查了列代数式,涉及的知识有:圆的面积公式,完全平方公式,熟练掌握公式及法则是解本题的关键.9.已知关于x的多项式﹣x2+mx+4的最大值为5,则m的值可能为()A.1B.2C.4D.5【分析】将多项式配方后解答即可.【解答】解:﹣x2+mx+4=﹣(x﹣)2+()2+4,因为关于x的多项式﹣x2+mx+4的最大值为5,所以()2+4=5,解得:m=±2,所以可能为2.故选:B.【点评】此题考查配方法的运用,关键是将多项式配方后解答.10.如图,点C为线段AB上一点,且AC=2CB,以AC、CB为边在AB的同侧作等边△ADC和等边△EBC,连接DB、AE交于点F,连接FC,若FC=3,设DF=a、EF =b,则a、b满足()A.a=2b+1B.a=2b+2C.a=2b D.a=2b+3【分析】如图作CM⊥AE于M,CN⊥BD于N.在AE上取一点H使得CH=CF.首先证明AF=FD+FC,FB=FE+FC,再根据===2,推出AF=2BF,列出关系式即可解决问题;【解答】解:如图作CM⊥AE于M,CN⊥BD于N.在AE上取一点H使得CH=CF.∵△ACD,△BCE度数等边三角形,∴CA=CB,CE=CB,∠ACD=∠ECB=60°,∴∠ACE=∠DCB,∴△ACE≌△DCB,∴∠CAE=∠CDB,AE=BD,S△ACE =S△DCB,∴•AE•CM=•BD•CN,∴CM=CN,∵CM⊥AE于M,CN⊥BD于N,∴∠CFA=∠CFB,∵∠CAE=∠CDB,可得∠DFA=∠DCA=60°,∴∠DFA=∠CFA=∠CFB=60°,∵CH=CF,∴△CFH是等边三角形,∴∠FCH=∠ACD=60°,CH=CF=FH,∴∠ACH=∠DCF,∵CA=CD,CH=CF,∴△ACH≌△DCF,∴AH=DF,∴AF=AH+FH=DF+FC=a+3,同理可得BF=FE+FC=b+3,∴===2,∴AF=2BF,∴a+3=2(b+3),∴a=2b+3,故选:D.【点评】本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理.三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考,选择题中的压轴题.二、填空题(共6小题,每小题3分,共18分)11.分式的值为0,则x的值是1.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.【点评】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.12.分式与的最简公分母为2xy2.【分析】题目给出的两个分式的分母都是单项式,可根据最简公分母的定义直接确定【解答】解:对于分母2xy与y2,其系数的最小公倍数是2,y与y2指数最高的是y2,x只在一个中含有,所以最简公分母是2xy2故答案为:2xy2【点评】本题考查了确定最简公分母.若分式分母含有多项式,先把分母因式分解,再确定最简公分母.13.已知2m=5,2n=9,则2m+n=45.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:∵2m=5,2n=9,∴2m+n=2m•2n=5×9=45.故答案为:45.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.计算:已知:a+b=3,ab=1,则a2+b2=7.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:7【点评】此题考查了完全平方公式的运用,熟练掌握完全平方公式是解本题的关键.15.如图,在Rt△ABC中,∠C=30°,将△ABC绕点B旋转θ(0<θ<60°)到△A′BC′,边AC和边A′C′相交于点P,边AC和边BC′相交于Q,当△BPQ为等腰三角形时,则θ=20°或40°.【分析】过B作BD⊥AC于D,过B作BE⊥A'C'于E,根据旋转可得△ABC≌△A'BC',则BD=BE,进而得到BP平分∠A'PC,再根据∠C=∠C'=30°,∠BQC=∠PQC',可得∠CBQ=∠C'PQ=θ,即可得出∠BPQ=(180°﹣∠C'PQ)=90°﹣θ,分三种情况讨论,利用三角形内角和等于180°,即可得到关于θ的方程,进而得到结果.【解答】解:如图,过B作BD⊥AC于D,过B作BE⊥A'C'于E,由旋转可得,△ABC≌△A'BC',则BD=BE,∴BP平分∠A'PC,又∵∠C=∠C'=30°,∠BQC=∠PQC',∴∠CBQ=∠C'PQ=θ,∴∠BPQ=(180°﹣∠C'PQ)=90°﹣θ,分三种情况:①如图所示,当PB=PQ时,∠PBQ=∠PQB=∠C+∠QBC=30°+θ,∵∠BPQ+∠PBQ+∠PQB=180°,∴90°﹣θ+2×(30°+θ)=180°,解得θ=20°;②如图所示,当BP=BQ时,∠BPQ=∠BQP,即90°﹣θ=30°+θ,解得θ=40°;③当QP=QB时,∠QPB=∠QBP=90°﹣θ,又∵∠BQP=30°+θ,∴∠BPQ+∠PBQ+∠BQP=2(90°﹣θ)+30°+θ=210°>180°(不合题意),故答案为:20°或40°.【点评】本题主要考查了等腰三角形的性质以及旋转的性质的运用,解决问题的关键是利用全等三角形对应边上高相等,得出BP平分∠A'PC,解题时注意分类思想的运用.16.如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC =67.5°.【分析】如图1中,将线段CA绕点A逆时针旋转90°得到线段AH,连接CH,DC.首先证明△DAH≌△EAC(SAS),推出DH=CE=定值,由CD≤DH+CH,CH是定值,推出当D,C,H共线时,DC定值最大,如图2中,求出∠CDE=22,5°,∠DCE=90°即可解决问题.【解答】解:如图1中,将线段CA绕点A逆时针旋转90°得到线段AH,连接CH,DC.∵∠DAE=∠HAC=90°,∴∠DAH=∠EAC,∵DA=EA,HA=CA,∴△DAH≌△EAC(SAS),∴DH=CE=定值,∵CD≤DH+CH,CH是定值,∴当D,C,H共线时,DC定值最大,如图2中,此时∠AHD=∠ACE=135°,∴∠ECB=45°,∠DCE=∠ACE﹣∠ACH=90°,∵∠ECB=∠CAE+∠CEA,∵CA=CE,∴∠CAE=∠CEA=22.5°,∴∠ADH=∠AEEC=22.5°,∴∠CDE=45°﹣22.5°=22.5°,∴∠DEC=90°﹣22.5°=67.5°.故答案为:67.5°.【点评】本题考查旋转变换,等腰直角三角形的性质,全等三角形的判定和性质,三角形的三边关系等知识,解题的关键是添加常用辅助线构造全等三角形.三、解答题(共8小题,共72分)17.(8分)分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.【分析】(1)直接提取公因式3m,进而分解因式得出答案;(2)首先提取公因式﹣y,再利用完全平方公式分解因式即可.【解答】解:(1)3mx﹣6my=3m(x﹣2y);(2)原式=﹣y(﹣4xy+4x2+y2)=﹣y(y﹣2x)2.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式是解题关键.18.(8分)解方程:(1)﹣1=;(2)+=1.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:10﹣2x﹣6=x2+x﹣6,解得:x=2或x=﹣5,经检验x=2是增根,分式方程的解为x=﹣5.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(8分)把一张长方形的纸片ABCD沿对角线BD折叠.折叠后,边BC的对应边BE交AD于F,求证:BF=DF.【分析】由翻折的性质可知∠EBD=∠CBD,由矩形的性质可知:AD∥BC,从而得到∠ADB=∠DBC,于是∠EBD=∠ADB,故此BF=DF.【解答】证明:由折叠的性质知,CD=ED,BE=BC.∵四边形ABCD是矩形,在△ABF和△EDF中,∵,∴△ABF≌△EDF(AAS),∴BF=DF;【点评】本题主要考查的是翻折的性质、全等三角形的性质和判定、勾股定理的应用,由翻折的性质找出相等的角或边是解题的关键.20.(8分)化简:(+)×.【分析】先计算括号内的加法,再计算乘法即可得.【解答】解:原式====﹣2.【点评】本题主要考查分式的混合运算,分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.21.(8分)△ABC在平面直角坐标系中的位置如图所示,先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称(1)画出△A1B1C1和△A2B2C2;(2)在x轴上确定一点P,使BP+A1P的值最小,直接写出P的坐标为(﹣,0);(3)点Q在坐标轴上且满足△ACQ为等腰三角形,则这样的Q点有7个.【分析】(1)△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称,据此作图即可;(2)依据轴对称的性质,连接BA2,交x轴于点P,此时BP+A1P的值最小,依据直线BA2的解析式,即可得到点P的坐标;(3)在平面直角坐标系中,作线段AC的垂直平分线,与坐标轴有2个交点,分别以A,C为圆心,AC长为半径画弧,与坐标轴的交点有5个,即可得到Q点的数量.【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)如图所示,连接BA2,交x轴于点P,则点P即为所求;由B(﹣3,2),A2(3,﹣3)可得,直线BA2的解析式为y=﹣x﹣,令y=0,则x=﹣,∴P(﹣,0),故答案为:P(﹣,0);(3)根据点Q在坐标轴上且满足△ACQ为等腰三角形,可得这样的Q点有7个.故答案为:7.【点评】本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.22.(10分)甲、乙两工程队承包一项工程,如果甲工程队单独施工,恰好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成.(1)问原来规定修好这条公路需多少长时间?(2)现要求甲、乙两个工程队都参加这项工程,但由于受到施工场地条件限制,甲、乙两工程队不能同时施工.已知甲工程队每月的施工费用为4万元,乙工程队每月的施工费用为2万元.为了结算方便,要求:甲、乙的施工时间为整数个月,不超过15个月完成.当施工费用最低时,甲、乙各施工了多少个月?【分析】(1)设原来规定修好这条公路需x个月,则甲修好这条公路需x个月,乙修好这条公路需(x+6)个月,根据“现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成”列出方程,解方程即可;(2)设甲工作了a个月,乙工作了b个月完成任务,施工费用为w元.根据题意,列出关系式,求出b=18﹣1.5a,6≤a<36,再根据a,b均为整数,得出a,b的取值情况,进而得到相应的施工费用,比较即可.【解答】解:(1)设原来规定修好这条公路需x个月.根据题意,得4(+)+=1,解得:x=12.检验:当x=12时,x(x+6)≠0,经检验,x=12是原方程的解,且满足题意.答:规定修好路的时间为12个月;(2)设甲工作了a个月,乙工作了b个月完成任务,施工费用为w元.根据题意,得,由①可得:b=18﹣1.5a③,代入②中:0<18﹣1.5a+a≤15,∴6≤a<36,又∵a,b均为整数,∴a=6,b=9,W1=4×6+9×2=42(万元),a=8,b=6,W2=8×4+6×2=44(万元),a=10,b=3,W3=10×4+3×2=46(万元).∵W1<W2<W3,∴工费最低时,甲工作了6个月,乙工作9个月.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.23.(10分)等边△ABC中,点H在边BC上,点K在边AC上,且满足AK=HC,连接AH、BK交于点F.(1)如图1,求∠AFB的度数;(2)如图2,连接FC,若∠BFC=90°,点G为边AC上一点,且满足∠GFC=30°,求证:AG⊥BG;(3)如图3,在(2)条件下,在BF上取D使得DF=AF,连接CD交AH于E,若△DEF面积为1,则△AHC的面积为.【分析】(1)先判断出△ABK≌△CAH,即可得出∠HAC=∠ABK,(2)先判断出△AFB≌△AMC,即可判断出△FMN是等边三角形,进而判断出△AGF ≌△CGN,即可得出结论;(3)先判断出△DEF是等边三角形,进而判断出DE=CE=AF,即可得出△CEF的面积为1,△AFC的面积是1,再判断出△CEN是等边三角形,再判断出△CHN∽△BHF,即可得出HE=EN,即可得出结论.【解答】解:(1)∵△ABC是等边三角形,∴∠BAK=∠ACH=60°,AB=AC,在△ABK和△CAH中,,∴△ABK≌△CAH∴∠HAC=∠ABK,∴∠BFH=∠ABK+∠BAH=∠BAK=60°∴∠AFB=120°(2)在BF上取M使AF=FM,连MC延长FG交MC于N易得:△AFB≌△AMC,∴∠AMC=120°又△AFM为等边△,∴∠AMB=∠BMC=60°∵∠BFC=90°,∴∠MFC=90°,∠NFC=30°∴△FMN为等边△,且FN=NC∴NC=FN=FM=AF,∴△AGF≌△CGN∴AG=GC,∴BG⊥AC;(3)如图3,延长BF至M,使FM=DF,∵BF⊥CF,∴CD=CM,由(2)知,△AFM是等边三角形,∴∠AMF=60°,∵∠AMC=∠AFB=120°,∴∠CMD=60°,∴△CDM是等边三角形,∴∠CDM=60°=∠EFD,∴△DEF是等边三角形,∴DE=DF=EF,∴DE=CE=AF,∵△DEF的面积为1,∴△CEF的面积为1,∴△AFC的面积是1,∵∠ABF+∠BAF=∠BFH=60°,∠ABF+∠CBD=60°,∴∠BAF=∠CBD,∵∠AFB=180°﹣∠BFE=120°,∠BDC=180°﹣∠EDF=120°,∴∠AFB=∠BDC,∵AB=BC,∴△ABF≌△BCD,∴BD=AF=DF过点C作CN∥BF交AH的延长线于N,∴∠ECN=∠N=60°,∴△CEN是等边三角形,且△CEN≌△DEF,∴CN=DF=BD=EF=EN,∵CN∥BF,∴△CHN∽△BHF,∴=,∴HF=2HN,∴HE+EF=HE+EN=HE+HE+HN=2HN,∴HN=2HE,∴HE =EN ,∴S △CEH =S △CEN =,∴S △ACH =S △AFC +S △CEF +S △CEH =.【点评】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,相似三角形的判定和性质,同底等高的两三角形面积相等,解本题的关键是判断出△CDM 是等边三角形.24.(12分)在平面直角坐标系中,已知A (0,a )、B (b ,0),且a 、b 满足:a 2+b 2﹣4a +4b +8=0,点D 为x 正半轴上一动点(1)求A 、B 两点的坐标;(2)如图,∠ADO 的平分线交y 轴于点C ,点F 为线段OD 上一动点,过点F 作CD 的平行线交y 轴于点H ,且∠AFH =45°,判断线段AH 、FD 、AD 三者的数量关系,并予以证明;(3)以AO 为腰,A 为顶角顶点作等腰△ADO ,若∠DBA =30°,直接写出∠DAO 的度数 30°或60°或150°.【分析】(1)理由非负数的性质即可解决问题;(2)结论:AH+FD=AD;在AD上取K使AH=AK.只要证明△AHF≌△AKF,FD=DK即可解决问题;(3)分四种情形讨论即可解决问题;【解答】解:(1)∵a2+b2﹣4a+4b+8=0,∴(a﹣2)2+(b+2)2=0,∵(a﹣2)2≥0,(b+2)2≥0,∴a﹣2=0,b+2=0,∴a=2,b=﹣2,∴A(0,2),B(﹣2,0).(2)结论:AH+FD=AD理由:在AD上取K使AH=AK.设∠HFO=α,∴∠OAF=45﹣α,∵HF∥CD,∴∠CDO=∠ADC=α,∴∠FAD=45﹣α,∴△AHF≌△AKF,∴∠AFK=45°,∴∠KFD=90﹣α,∠FKD=90﹣α,∴FD=DK,∴AH+FD=AD.(3)如图2中:①当D1在△ABO内部时,可以证明当BD1=OD1时,AO=AD1,此时∠D1BO=∠D1OB=15°,∠AOD1=∠AD1O=75°,∴∠D1AO=30°.②当D3在BD1的延长线上时,可得∠OAD3=60°,③当D2在AB上方时,同法可得∠OAD3=60°,∠OAD4=150°∴∠DAO=60°或30°或150°.故答案为60°或30°或150°.【点评】本题考查三角形综合题、等腰直角三角形的性质、平行线的性质、角平分线的定义、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
湖北省武汉市江汉区2017-2018学年八年级上学期期中考试数学试卷(有答案)
湖北省武汉市江汉区2017-2018学年八年级上学期期中考试数学试卷(有答案)江汉区2017-2018学年度第一学期八年级数学期中考试试题第Ⅰ卷(本卷满分100分)一、选择题(共10小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是__________。
2.点P(-3,2)关于y轴对称的点的坐标是__________。
3.___所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是__________。
4.如图,B,C,D三点共线,∠B=50°,∠ACD=110°,则∠A的度数为__________。
5.下列所作出的△ABC的高,正确的图形是__________。
6.已知三角形的两边长分别为7和2,则周长可能是__________。
7.在下列条件中,能判定△ABC和△A′B′C′全等的是()__________。
8.如图,有三个村庄分别用点A、点B、点C表示,要修一个集市,使集市到三个村庄的距离相等,则集市的修建位置应选在__________。
9.下列命题:①面积相等的两个三角形全等;②三角形三条高所在的直线交于一点;③等腰三角形两底角的平分线相等;④等腰三角形边上的高、中线和对角的平分线互相重合。
其中真命题有()个__________。
10.如图,OA=OC,OB=OD,OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC。
其中正确的结论是__________。
二、填空题(共6小题,每小题3分,共18分)1.直角三角形斜边长为__________,一条直角边长为6,求另一条直角边长。
2.在△ABC中,∠A=45°,AB=3,AC=4,BC=__________。
3.在矩形ABCD中,AB=6,BC=8,对角线AC的长为__________。
湖北省武汉市江岸区2017-2018学年八年级(上)第二次月考数学试卷(解析版)
2017-2018学年湖北省武汉市江岸区八年级(上)第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.将正方形按虚线对折,折痕两旁的部分重合,这时折痕是正方形的对称轴,这样的对称轴共有()条A.1 B.2 C.3 D.42.三角形三边上的高的交点恰是三角形的一个顶点,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上三种都不是3.下列长度的三条线段中,能组成三角形的是()A.3,4,8 B.5,6,11 C.4,6,7 D.4,4,104.如图,长方形图中有许多三角形.如果要找全等的三角形,一共可以找出几对()A.8 B.7 C.6 D.45.某同学不小心把一块三角形玻璃打碎成三块,现要去玻璃店配制一块完全一样的,最省心的办法是带块()A.①B.②C.③D.①②③6.已知∠AOB=30°,点P在△AOB内部,P1与P关于OB对称,P2与P关于OA 对称,则∠P1OP2的度数是()A.90°B.45°C.30°D.60°7.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则下列结论一定正确的是()A.∠1+∠2=360°﹣2(∠B+∠C)B.∠1+∠2=180°﹣2(∠B+∠C)C.∠1+∠2=180°﹣(∠B+∠C)D.∠1+∠2=360°﹣(∠B+∠C)8.直线EF垂直平分线段AB,点C,点D在EF上,∠CAB=50°,∠DAB=30°,则∠CAD是()A.80°B.20°C.80°或20°D.以上均不对9.一个等腰三角形ABC,顶角为∠A,作∠A的三等分线AD、AE,即∠1=∠2=∠3(如图),若BD=x,DE=y,CE=z,则有()A.x>y>z B.x=z>y C.x=z<y D.x<y=z10.如图,直线1表示铁路,A、B两点表示某工厂两个生产区,若要在铁路旁修建一个货仓C,使货仓C到两个生产区A,B的距离之和最短,则这样的点C 的位置()A.有1处B.有2处C.有4处D.不存在二、填空题(本大题共6小题,每小题3分,共18分)11.点(﹣2,﹣1)关于x轴的对称点的坐标是.12.若两个多边形的边数之比为3:4,两个多边形的内角总和为3060°,则这两个多边形的边数分别是、.13.如图,BP、CP分别是△ABC的外角∠CBD、∠ECB的平分线,小明经过分析后,得出了以下结论:①点P在∠BAC的平分线上;②BP=CP;③点P到AD、AE、BC的距离相等,把你认为正确的结论的序号写在横线上.14.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.(1)①点P(﹣2,1)的“2属派生点”P′的坐标为;②若点P的“k属派生点”P′的坐标为(4,2),请写出一个符合条件的点P的坐标;(2)若点P在x轴的正半轴上,点P的“k属派生点”为点P′,且△OPP′为等腰直角三角形,则k的值为.15.如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…]且每秒运动一个单位长度,那么2015秒时,这个粒子所处位置为.16.在△ABC中,AB=15,AC=20,∠B﹣∠C=90°,则线段BC的长度为.三、解答题(本大题共8小题,共72分)17.(8分)如图,△ABC中,∠1=∠2,∠ABC=∠C,∠4=∠C,求∠4的度数.18.(8分)如图,在△ABC中,∠BAC=90°,AC=2AB,O为AC的中点,AD为高,OG⊥AC,交AD的延长线于G,OB交AD于F,OE⊥OB交BC于E,过点O 作OH⊥BC于H,求证:DF=HE.19.(8分)如图,点A、D、E在直线l上,∠BAC=90°,AB=AC,BD⊥l于D,CE⊥l于E,求证:DE=BD+CE.20.(8分)如图,已知△ABC≌△DEF,AB与DE是对应边,∠ACB与∠F是对应角.(1)求证:∠A=∠D.(2)求证:BE=CF.21.(8分)如图,已知坐标系中点A(2,﹣1),B(7,﹣1),C(3,﹣3).(1)判定△ABC的形状;(2)设△ABC关于x轴的对称图形是△A1B1C1,若把△A1B1C1的各顶点的横坐标都加2.纵坐标不变,则△A1B1C1的位置发生什么变化?若最终位置是△A2B2C2,求C2点的坐标;(3)x轴上有一点P,使PC+PB最小,求PC+PB的最小值.22.(10分)如图,正方形ABCD的边长为6cm.点M为BC上一点(点M不与B,C重合)点N为CD上一点,∠MAN=45°.(1)求证:BM+DN=MN;(2)设BM=x,DN=y,写出y关于x的函数关系式,并指出自变量x的取值范围.23.(10分)如图,等边△ABC的边长为2,点D是射线BC上的一个动点,以AD为边向右作等边△ADE,连结CE,(1)求证:△ABD≌△ACE;(2)若CE=,求△ACD的面积;(3)若△ACE是直角三角形,则BD的长是(直接写出答案).24.(12分)如图,点A(0,a),B(b,0)分别在y轴正半轴、x轴正半轴上,C为AB的中点,a,b满足a2﹣2ab+b2=﹣|b﹣4|.(1)写出A,B两点坐标,并判断△AOB的形状;(2)若一直角三角板直角顶点与C重合,两边分别交OA,OB交于E,F两点,求OE+OF的值.2017-2018学年湖北省武汉市江岸区八年级(上)第二次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)将正方形按虚线对折,折痕两旁的部分重合,这时折痕是正方形的对称轴,这样的对称轴共有()条A.1 B.2 C.3 D.4【分析】轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.【解答】解:正方形的对称轴共有4条.故选D.【点评】正确理解轴对称图形的定义是解决本题的关键,本题是一个基础题.2.(3分)三角形三边上的高的交点恰是三角形的一个顶点,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上三种都不是【分析】锐角三角形三边上的高的交点在三角形的内部,直角三角形三边上的高的交点恰是三角形的一个顶点,钝角三角形三边上的高所在直线的交点在三角形的外部.【解答】解:A、锐角三角形三边上的高的交点在三角形的内部,不是三角形的一个顶点,错误;B、直角三角形三边上的高的交点恰是三角形的一个顶点,正确;C、钝角三角形三边上的高所在直线的交点在三角形的外部,不是三角形的一个顶点,错误;D、以上B正确,错误.故选B.【点评】熟记三角形三边上的高的特点.3.(3分)下列长度的三条线段中,能组成三角形的是()A.3,4,8 B.5,6,11 C.4,6,7 D.4,4,10【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+4=7<8,不能组成三角形;B中,5+6=11,不能组成三角形;C中,4+6=11>7,能组成三角形;D中,4+4<10,不能够组成三角形.故选C.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.4.(3分)如图,长方形图中有许多三角形.如果要找全等的三角形,一共可以找出几对()A.8 B.7 C.6 D.4【分析】图中以O为一个顶点的全等三角形有2对;不以O为顶点的三角形共有4个,他们全等,由这4个三角形可组成6对全等三角形【解答】解:∵ABCD是长方形,利用SAS可判定∴△AOD≌△BOC,△DOC≌△AOB,△ABC≌△BCD,△BCD≌△ADC,△ADB≌△ABC,△BCD≌△ADB,△ABC≌△ADC,△ADC≌△ADB,所以共有8对,故选A,【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,比较简单,属于基础题.5.(3分)某同学不小心把一块三角形玻璃打碎成三块,现要去玻璃店配制一块完全一样的,最省心的办法是带块()A.①B.②C.③D.①②③【分析】此题可以采用排除法进行分析从而确定最后的答案.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选C.【点评】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.6.(3分)已知∠AOB=30°,点P在△AOB内部,P1与P关于OB对称,P2与P 关于OA对称,则∠P1OP2的度数是()A.90°B.45°C.30°D.60°【分析】画出图形,连接OP,根据对称轴是对称点连线的垂直平分线可知:OB 是PP1的垂直平分线,OA是PP2的垂直平分线,由垂直平分线性质得:OP=OP1=OP2,所以根据等腰三角形三线合一得:∠P1OB=∠POB和∠P2OA=∠POA,则所求的∠P1OP2的度数是∠AOB的度数的2倍.【解答】解:如图所示,连接OP,∵P1与P关于OB对称,∴OB是PP1的垂直平分线,∴OP=OP1,∴∠P1OB=∠POB,同理得:∠P2OA=∠POA,∴∠POA+∠POB=∠P2OA+∠P1OB,∴∠P2OP1=2∠AOB=2×30°=60°,故选D.【点评】本题考查了轴对称的性质,熟练掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.而垂直平分线上的点与线段两个端点的距离相等;得到等腰三角形后,要熟知等腰三角形的性质:①等边对等角,②三线合一等;使问题得对解决.7.(3分)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则下列结论一定正确的是()A.∠1+∠2=360°﹣2(∠B+∠C)B.∠1+∠2=180°﹣2(∠B+∠C)C.∠1+∠2=180°﹣(∠B+∠C)D.∠1+∠2=360°﹣(∠B+∠C)【分析】根据四边形的内角和是360°和平角的定义求解.【解答】解:因为∠A+∠A+∠AEA′+∠ADA′=360°又因为∠1+∠AEA′+∠2+∠ADA′=360°,所以∠A+∠A′=∠1+∠2,又因为∠A=∠A′,所以2∠A′=∠1+∠2,即∠1+∠2=360°﹣2(∠B+∠C).故选A.【点评】本题考查三角形的内角和定理,图形在折叠的过程,会出现全等的图形﹣﹣相等的线段、相等的角,是隐含的条件,注意运用.8.(3分)直线EF垂直平分线段AB,点C,点D在EF上,∠CAB=50°,∠DAB=30°,则∠CAD是()A.80°B.20°C.80°或20°D.以上均不对【分析】分两种情况讨论:点C,点D在AB的同侧;点C,点D在AB的异侧,分别根据∠CAB=50°,∠DAB=30°,求得∠CAD的度数.【解答】解:①如图,当点C,点D在AB的同侧时,∠CAD=∠CAB﹣∠DAB=50°﹣30°=20°;②如图,当点C,点D在AB的异侧时,∠CAD=∠CAB+∠DAB=50°+30°=80°;故选(C)【点评】本题主要考查了线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.解题时注意分类思想的运用.9.(3分)一个等腰三角形ABC,顶角为∠A,作∠A的三等分线AD、AE,即∠1=∠2=∠3(如图),若BD=x,DE=y,CE=z,则有()A.x>y>z B.x=z>y C.x=z<y D.x<y=z【分析】首先根据边角边定理,判定△ABD≌△ACE,根据全等三角形的性质定理可知BD=EC,即x=z.再根据三角形的外角性质与等腰三角形的性质,可得AB>AE.进而得到BD>DE 即x>y.问题得解.【解答】解:∵△ABC是等腰三角形∴∠B=∠C又∵∠1=∠2,∠ADE=∠B+∠1,∠AED=∠C+∠3∴∠ADE=∠AED∴AD=AE在△ABD与△ACE中∵AD=AE,∠1=∠3,AB=AC∴△ABD≌△ACE∴BD=EC,即x=z又∵∠AEB=∠C+∠3=∠B+∠3>∠B∴AB>AE又∵∠1=∠2所以BD>DE即x>y,所以x=z>y故选B【点评】本题考查全等三角形的性质与判定、三角形三边关系、等腰三角形的性质.本题解决的关键是对三角形相关知识的综合运用能力.10.(3分)如图,直线1表示铁路,A、B两点表示某工厂两个生产区,若要在铁路旁修建一个货仓C,使货仓C到两个生产区A,B的距离之和最短,则这样的点C的位置()A.有1处B.有2处C.有4处D.不存在【分析】画出点A关于直线EF的对称点A′,连接A′B交EF于点C,连接AC,由对称的性质可知AC=A′C,由两点之间线段最短可知点C即为所求点.【解答】解:如图所示:画出点A关于直线l的对称点A′,连接A′B交EF于点C,连接AC,∵A、A′关于直线EF对称,∴AC=A′C,∴AC+BC=A′B,由两点之间线段最短可知,线段A′B的长即为AC+BC的最小值,故C点即为所求点,故选A.【点评】本题考查的是最短线路问题,熟知对称的性质及两点之间线段最短的知识是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)点(﹣2,﹣1)关于x轴的对称点的坐标是(﹣2,1).【分析】根据关于x轴对称的点的纵坐标互为相反数,横坐标相等,可得答案.【解答】解:由关于x轴对称的点的纵坐标互为相反数,横坐标相等,得(﹣2,﹣1)关于x轴的对称点的坐标是(﹣2,1),故答案为:(﹣2,1).【点评】本题考查了关于x轴对称的点的坐标,利用关于x轴对称的点的纵坐标互为相反数,横坐标相等是解题关键.12.(3分)若两个多边形的边数之比为3:4,两个多边形的内角总和为3060°,则这两个多边形的边数分别是9、12.【分析】设两个多边形的边数分别是3x和4x,利用两个多边形的内角和为3060°,即可列出方程,进而求解.【解答】解:设两个多边形的边数分别是3x、4x,则(3x﹣2)•180+(4x﹣2)•180=3060,解得x=3,3x=9,4x=12.则两个多边形的边数分别是9、12.故答案为:9、12.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形内角与外角和公式.13.(3分)如图,BP、CP分别是△ABC的外角∠CBD、∠ECB的平分线,小明经过分析后,得出了以下结论:①点P在∠BAC的平分线上;②BP=CP;③点P 到AD、AE、BC的距离相等,把你认为正确的结论的序号写在横线上①③.【分析】作PF⊥AD于F,PG⊥BC于G,PH⊥AE于H,根据角平分线的性质定理和判定定理解答即可.【解答】解:作PF⊥AD于F,PG⊥BC于G,PH⊥AE于H,∵BP是∠CBD的平分线,PF⊥AD,PG⊥BC,∴PF=PG,同理,PG=PH,∴PF=PG=PH,∵PF⊥AD,PH⊥AE,PF=PH,∴点P在∠BAC的平分线上,①正确;无法证明BP=CP,②错误;∵PF=PG=PH,∴点P到AD、AE、BC的距离相等,③正确,故答案为:①③.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14.(3分)对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.(1)①点P(﹣2,1)的“2属派生点”P′的坐标为(﹣,﹣3);②若点P的“k属派生点”P′的坐标为(4,2),请写出一个符合条件的点P的坐标(2,1);(2)若点P在x轴的正半轴上,点P的“k属派生点”为点P′,且△OPP′为等腰直角三角形,则k的值为±1.【分析】(1)①只需把a=﹣2,b=1,k=2代入(a+,ka+b)即可求出P′的坐标.②由P′(4,2)可求出k=,从而有a+2b=4.任取一个a就可求出对应的b,从而得到符合条件的点P的一个坐标.(2)设点P坐标为(a,0),从而有P′(a,ka),显然PP′⊥OP,由条件可得OP=PP′,从而求出k.【解答】解:(1)①点P(﹣2,1)的“2属派生点”P′的坐标为(﹣2+,﹣2×2+1),即(﹣,﹣3),故答案为:(﹣,﹣3);②由题意,得:,解得:k=,∴a+2b=4,当b=1时,a=2,此时点P的坐标为(2,1),故答案为:(2,1);(2)∵点P在x轴的正半轴上,∴b=0,a>0.∴点P的坐标为(a,0),点P′的坐标为(a,ka).∴PP′⊥OP.∵△OPP′为等腰直角三角形,∴OP=PP′.∴a=±ka.∵a>0,∴k=±1.故答案为:±1.【点评】此题考查了坐标与图形的性质、等腰直角三角形,弄清题中的新定义及等腰直角三角形的定义是解本题的关键.15.(3分)如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…]且每秒运动一个单位长度,那么2015秒时,这个粒子所处位置为(9,44).【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…A n时所用的间分别为a1,a2,…a n,则a1=2,a2=6,a3=12,a4=20,…,由a n﹣a n=2n,则﹣1a2﹣a1=2×2,a3﹣a2=2×3,a4﹣a3=2×4,…,=2n,a n﹣a n﹣1以上相加得到a n﹣a1的值,进而求得a n来解.【解答】解:由题意,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a n﹣a n﹣1=2n,a2﹣a1=2×2,a3﹣a2=2×3,a4﹣a3=2×4,…,=2n,a n﹣a n﹣1相加得:a n﹣a1=2(2+3+4+…+n)=n2+n﹣2,∴a n=n(n+1).44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动35秒到达点(9,44),即运动了2015秒.所求点应为(9,44).故答案为:(9,44)【点评】本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运=2n是本题的突破口,本题对运动规律得到数列{a n}通项的递推关系式a n﹣a n﹣1动规律的探索可知知:A1,A2,…A n中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键.16.(3分)在△ABC中,AB=15,AC=20,∠B﹣∠C=90°,则线段BC的长度为7.【分析】作AD⊥CB交CB的延长线于D,先证明△ABD∽△CAD,得到AD、CD 的关系,设CD=4x,由勾股定理表示出AC,求出x,再由勾股定理求出BD,即可得出结果.【解答】解:作AD⊥CB交CB的延长线于D,如图所示:∵∠ABC﹣∠ACB=90°,又∠ABC﹣∠BAD=90°,∴∠BAD=∠ACB,又∠D=∠D=90°,∴△ABD∽△CAD,∴===,设CD=4x,则AD=3x,由勾股定理得,AC===5x,∴5x=20,则x=4,∴CD=16,AD=12,由勾股定理得,BD===9,∴BC=BD﹣CD=16﹣9=7,故答案为7.【点评】本题考查了相似三角形的判定和性质、勾股定理等知识;正确作出辅助线、灵活运用勾股定理是解题的关键.三、解答题(本大题共8小题,共72分)17.(8分)如图,△ABC中,∠1=∠2,∠ABC=∠C,∠4=∠C,求∠4的度数.【分析】根据外角的性质得到∠4=2∠1=∠C,等量代换得到∠4=∠ABC,根据三角形的内角和列方程即可得到结论.【解答】解:∵∠1=∠2,∠4=∠1+∠2,∴∠4=2∠1=∠C,∵∠ABC=∠C,∴∠4=∠ABC,∵∠1+∠ABC+∠=180°,∴∠4+∠4+∠4=180°,∴∠4=72°【点评】本题考查了三角形的内角和,三角形外角的性质,熟练掌握各性质定理是解题的关键.18.(8分)如图,在△ABC中,∠BAC=90°,AC=2AB,O为AC的中点,AD为高,OG⊥AC,交AD的延长线于G,OB交AD于F,OE⊥OB交BC于E,过点O 作OH⊥BC于H,求证:DF=HE.【分析】根据已知条件得到AB=AO=OC,推出∠BAC+∠AOG=180°,根据平行线的性质得到∠G=∠BAD,根据垂直的定义得到∠BDA=∠BAC=90°,由余角的性质得到∠C=∠BAD,证得∠C=∠G,求得∠BFA=∠OEC,推出△ABF≌△COE(AAS),根据全等三角形的性质得到BF=OE,推出△BDF≌△OHE,根据全等三角形的性质即可得到结论.【解答】证明:∵AC=2AB.O为AC的中点,∴AB=AO=OC,∵∠BAC=90°,OG⊥AC,∴∠BAC=∠AOG=90°,∴∠BAC+∠AOG=180°,∴AB∥OG,∴∠G=∠BAD,∵AD⊥BC,∴∠BDA=∠BAC=90°,∴∠ABC+∠BAD=90°,∠ABC+∠C=90°,∴∠C=∠BAD,∴∠C=∠G,∵OB⊥OE,∴∠BOE=90°,∵∠BFA=∠BDA+∠OBE=90°+∠OBE,∠OEC=∠BOE+∠OBE=90°+∠OBE,∴∠BFA=∠OEC,在△ABF和△COE中,,∴△ABF≌△COE(AAS),∴BF=OE,∵∠BFA=∠OEC,∴∠BFD=∠OEH,在△BDF与△OEH中,,∴△BDF≌△OHE,∴DF=HE.【点评】本题考查了三角形外角性质,垂直定义,全等三角形的性质和判定,三角形内角和定理,熟练掌握全等三角形的判定定理是解题的关键.19.(8分)如图,点A、D、E在直线l上,∠BAC=90°,AB=AC,BD⊥l于D,CE⊥l于E,求证:DE=BD+CE.【分析】根据已知条件及互余关系可证△ABD≌△CAE,则BD=AE,AD=CE,由DE=AD+AE,得出线段DE=BD+CE.【解答】证明:∵∠BAC=90°,BD⊥DE,CE⊥DE,∴∠DAB+∠DBA=∠DAB+∠EAC,∴∠DBA=∠EAC;在△ABD与△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴DE=BD+CE.【点评】该题主要考查了全等三角形的判定及其性质的应用问题;准确找出命题中隐含的等量关系,是证明全等三角形的关键.20.(8分)如图,已知△ABC≌△DEF,AB与DE是对应边,∠ACB与∠F是对应角.(1)求证:∠A=∠D.(2)求证:BE=CF.【分析】根据全等三角形的对应边相等;全等三角形的对应角相等可得结论.【解答】解:(1)∵△ABC≌△DEF,∴∠A=∠D;(2)∵△ABC≌△DEF,∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.21.(8分)如图,已知坐标系中点A(2,﹣1),B(7,﹣1),C(3,﹣3).(1)判定△ABC的形状;(2)设△ABC关于x轴的对称图形是△A1B1C1,若把△A1B1C1的各顶点的横坐标都加2.纵坐标不变,则△A1B1C1的位置发生什么变化?若最终位置是△A2B2C2,求C2点的坐标;(3)x轴上有一点P,使PC+PB最小,求PC+PB的最小值.【分析】(1)计算出AC2,BC2,AB2,比较数量关系即可;(2)把△A1B1C1的各顶点的横坐标都加2.纵坐标不变,则图形向右移动两个单位;(3)连接CB1,与x轴的交点即为P,利用勾股定理求出CB1的长即可.【解答】解:(1)∵AC2=22+12=5,BC2=42+22=20,AB2=52,∴AC2+BC2=AB2,∴△ABC是直角三角形;(2)如图:C2坐标为(5,2);(3)如图:连接CB1,与x轴的交点即为P.CB1==4.【点评】本题考查了作图﹣﹣轴对称变换和最短路径问题,熟悉轴对称的性质和勾股定理是解题的关键.22.(10分)如图,正方形ABCD的边长为6cm.点M为BC上一点(点M不与B,C重合)点N为CD上一点,∠MAN=45°.(1)求证:BM+DN=MN;(2)设BM=x,DN=y,写出y关于x的函数关系式,并指出自变量x的取值范围.【分析】(1)延长CB到Q使BQ=DN,连接AQ,根据SAS证△DAN≌△BAQ,求出AN=AQ,∠DAN=∠BAQ,求出∠NAM=∠MOQ=45°,根据SAS证△NAM≌△QAM,推出DN+BM=MN,根据三角形的周长得出△CNM的周长等于DC+BC,代入求出即可.(2)根据(1)的结论,根据勾股定理列出x、y的等式,整理变形后即可求得.【解答】解:(1)延长CB到Q,使BQ=DN,连接AQ,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABQ=90°,在△ADN和△ABQ中,,∴△ADN≌△ABQ(SAS),∴∠DAN=∠BAQ,AN=AQ,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠BAM+∠QAB=45°,即∠MAN=∠MAQ,在△MAN和△MAQ中,,∴△MAN≌△MAQ,∴MN=MQ=BM+DN,即BM+DN=MN.(2)设BM=x,DN=y,∵正方形ABCD的边长为6cm.∴CM=6﹣x,CN=6﹣y,∵MN=x+y,根据勾股定理得出(x+y)2=(6﹣x)2+(6﹣y)2,整理得,xy=36﹣6x﹣6y,∴y=(0<x<6).【点评】本题考查了正方形性质,全等三角形的性质和判定的应用,关键是考查学生的推理能力,题目具有一定的代表性,是一道综合性比较强的题目,有一定的难度.23.(10分)如图,等边△ABC的边长为2,点D是射线BC上的一个动点,以AD为边向右作等边△ADE,连结CE,(1)求证:△ABD≌△ACE;(2)若CE=,求△ACD的面积;(3)若△ACE是直角三角形,则BD的长是1或4(直接写出答案).【分析】(1)构建两边及其夹角对应相等的两个三角形全等即可证明.(2)如图2中,作AM⊥BC于M.由(1)可知BD=CE=,求出CD、AM即可解决问题.(3)分两种情形①如图3中,当∠AEC=90°时,②如图4中,当∠CAE=90°时,分别求解即可.【解答】(1)证明:如图1中,∵△ABC,△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE.(2)解:如图2中,作AM⊥BC于M.∵△ABD≌△ACE,∴BD=CE=,,∵AB=BC=2,∴CD=BC﹣BD=,在Rt△ABM中,∵∠AMB=90°,∠BAM=30°,AB=2,∴AM=AB•cos30°=,=•CD•AM=××=.∴S△ACD(3)解:如图3中,当∠AEC=90°时,∵△ABD≌△ACE,∴∠B=∠ACE=60°,∴∠CAE=90°﹣∠ACE=30°,∴EC=BD=AC=1.如图4中,当∠CAE=90°时,∵△ABD≌△ACE,∴∠B=∠ACE=60°,BD=CE,∴∠CEA=90°﹣∠ACE=30°,∴EC=2AC=4,∴BD=CE=4.综上所述,BD=1或4时,△ACE是直角三角形.故答案为1或4.【点评】本题考查全等三角形的判定和性质、等边三角形的性质、直角三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,学会用分类讨论的思想思考问题,属于中考常考题型.24.(12分)如图,点A(0,a),B(b,0)分别在y轴正半轴、x轴正半轴上,C为AB的中点,a,b满足a2﹣2ab+b2=﹣|b﹣4|.(1)写出A,B两点坐标,并判断△AOB的形状;(2)若一直角三角板直角顶点与C重合,两边分别交OA,OB交于E,F两点,求OE+OF的值.【分析】(1)把a2﹣2ab+b2=﹣|b﹣4|化为(a﹣b)2+|b﹣4|=0,得到a=b=4,从而得出A,B两点坐标,也得到OA=OB=4,即可证得结论;(2)作MC⊥y轴于M,作NC⊥x轴于N,C为AB的中点,可得MC=CN,在证得△MCE≌△NCF,于是证出ME=NF,于是有OE+OF=OM﹣ME+ON+NF=OM+ON=2+2=4.【解答】解:(1)∵a2﹣2ab+b2=﹣|b﹣4|,∴(a﹣b)2+|b﹣4|=0,∴a=b=4,∴A,B两点坐标A(0,4),B(4,),∴OA=OB=4,∵AO⊥BO,∴△AOB是等腰直角三角形;(2)作MC⊥y轴于M,作NC⊥x轴于N,如图所示:∵C为AB的中点,则MC=CN==2,四边形OMCN是正方形,∠EMC=∠CNF=90°,∴OM=ON=MC=CN=2,∠MCN=90°,∵∠ECF=90°,∴∠MCE=∠FCN,在△MCE和△NCF中,,∴△MCE≌△NCF,∴ME=NF,∴OE+OF=OM﹣ME+ON+NF=OM+ON=2+2=4.【点评】本题考查了非负数的性质,等腰三角形的判定,坐标与图形性质,全等三角形的判定与性质,正方形的判定与性质;通过作辅助线得出正方形和三角形全等是解决问题的关键.。
2017-2018学年武汉市江岸区八年级上学期期中考试数学试卷及答案
2017—2018学年武汉市江岸区八年级上学期期中考试数学试卷一、选择题(每小题3分,共30分)1、下列几何图形不一定是轴对称图形的是().A.3,4,8 B.5,6,11 C.6,6,6 D.9,9,19A.线段B.角C.三角形D.长方形2、下列长度的三条线段能组成三角形的是().A.1、2、3 B.4、5、10 C.5、6、7 D.5、8、153、在△ABC内确定一点到三边的距离相等,则这一点在△ABC的().A.两个内角的平分线的交点处B.两边高线的交点处C.两边中线的交点处D.两边的垂直平分线的交点处4、若一个多边形的每一个外角都等于45°,则这个多边形的边数是().A.7 B.8 C.9 D.105、平面直角坐标系中点(2,1)-关于y轴对称的点的坐标为().A.(2,1)---B.(2,1)C.(1,2)-D.(1,2)6、一定能确定△ABC≌△DEF的条件是().A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F7、如图,△ABC中,点D是边AB、AC的垂直平分线的交点,已知80A∠=︒则∠BDC的度数为().A.80°B.100°C.150°D.160°8、将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图①);再沿过点E 的直线折叠,使点D 落在BE 上的点D ′处,折痕为EG (如图②);再展平纸片(如图③).则图③中∠α的大小为( ). A .20°B .22.5°C .25.5°D .30°9、图中有三个正方形,最大正方形的边长为6,利用轴对称的相关知识,得到阴影部分的面积为( ). A .16 B .17 C .18 D .2010、如图,在3×3的正方形网格中,与△ABC 关于某条直线对称的格点三角形(顶点格线交点的三角形)共有( )个.A .5B .6C .7D .8二、填空题(每小题3分,共18分) 11、五边形有__________条对角线. 12、如图,x =__________.DABC MNBAC13、图中有__________个三角形.14、如图,△ABC 的角平分线BD 、CE 交于点O ,已知∠EOD =126°,则∠A = 度.15、如图的三角形纸片中,AB =c ,BC =a ,AC =b ,沿过点A 的直线折叠这个三角形,使点C 落在AB 上的点E 处,折痕为AD ,则△BDE 的周长为_________(用含a 、b 、c 的式子表示).16、如图,在△ABC 中,∠ACB =90°,AC =6cm 、BC =8cm ,点I 为三角形的重心(中线的交点),HI ⊥BC 于点H ,则HI = cm .三、解答题(共8题,共72分)17、如图,BC ⊥AC 于点C ,BD ⊥AD 于点D ,且AC =AD ,求证:AB 平分∠CAD .18、如图,在△ABC 中,∠C =∠ABC =2∠A , 点D 为AC 上任意一点,作DE ⊥BC 于点E ,作DF ⊥AB°于点F ,求∠FDE 的度数.19、如图,在△ABC 中,∠BCA =90°.(1)尺规作图:作∠BAC 的角平分线交BC 于点D (保留作图痕迹,不写作法); (2)若∠ABC =30°,则△ACD 与△ABC 的面积之比为 (直接写出结果).20、如图,在网格中建立平面直角坐标系,每一个小正方形的边长为1,△ABC 的位置如图所示.(1)在网格画出△ABC 关于y 轴对称的△A 1B 1C 1,再画出△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则A 2、B 2、BC2的坐标分别为:A2()、B2()、C2();(2)线段CC2与线段AB的关系为:__________.(3)设△ABC中任意一点(,)P m n,则在△A2B2C2中与点P对应的点P2的坐标为().Array21、如图,将△ABC中沿MN折叠,点C恰好落在线段AB上点D处.(1)若∠C=48°,则ADM BDN∠+∠=度;(2)连接DC,作EN平分∠BND交AB于点E,若CD⊥AB,求证:EN⊥AB.C C22、(1)如图1,AD 垂直平分线段BC ,连接AB 、AC ,求证:B C ∠=∠;(2)在△ABC 中,点D 、E 在直线AB 上,且点D 、E 分别是线段AC 、BC 的垂直平分线上的点. ①如图2,若∠ACB =45°,求∠DCE 的度数;②如图3,点E 在AB 的延长线上,假设∠A =α,∠ABC =β,则∠DCE =__________(直接用α、β表示).图1 图2 图3B23、如图,在△ABC 中,AB < BC ,过点A 作线段AD ∥BC ,连接BD ,且满足AD BD BC +=. (1)取AC 的中点E ,连接BE 、DE . ①求证:BE ⊥DE ;②若AB =2、BC =3,直接写出BE 的取值范围:__________.(2)当BD ⊥BC 时,线段BC 上一动点M ,连接DM ,并作线段DN DM ⊥且DN DM =,作N P B C ⊥于点P ,若AD =1,BD =2. ①求线段CP 的长度;②当点M 运动到满足PM PC =时,连接CN ,直接写出△CPN 的面积:__________.24、如图,已知(,0)A a -、(,0)B a ,点P 为第二象限内一动点,但始终保持PA a =,∠P AB 的平分线AE 与线段PB 的垂直平分线CD 交于点D ,作DF ⊥AB 于点F . (1)若P 点坐标为(2,2)-,求点C 的坐标; (2)求点D 的横坐标(用a 表示);(3)当点P 运动到某一位置时,恰好点C 落在y 轴上,直接写出CDCE=__________.2017—2018学年武汉市江岸区八年级上学期期中考试数学试卷答案一、选择题二、填空题 11、5 12、80 13、6 14、72 15、a b c -+ 16、2三、解答题17、易证Rt ABC △≌Rt ABD △(HL ) ∴CAB DAB ∠=∠ ∴AB 平分CAD ∠.18、2A x B C x ∠=∠=∠=设,则 22180x x x ++=︒解得36x =︒ ∴70B ∠=︒∵DF ⊥AB ,DE ⊥AC ∴90BFD BED ∠=∠=︒ ∴108FDE ∠=︒.19、(1)略 (2)1:320、(1)2(1,3)A -,2(3,1)B -,2(1,1)C -; (2)22CC AB CC AB ⊥=,; (3)(,)m n --.21、(1)132︒.(2)由翻折的性质可知CDN DCN ∠=∠ ∵EN 平分∠BND ∴ENB END ∠=∠∵ENB END CDN DCN ∠+∠=∠+∠ ∴CDN END ∠=∠ ∴EN CD ∥ ∵CD AB ⊥ ∴EN AB ⊥.22、(1)∵AD 垂直平分线段 BC ∴90ADB ADC ∠=∠=︒ ∴ABD △≌ACD △(SAS ) ∴B C ∠=∠.(2)①由(1)知 ECB EBC DCA DAC ∠=∠∠=∠, ∵45ACB ∠=︒∴135EBC DAC ∠+∠=︒ ∴135ECB DCA ∠+∠=︒ ∴90DCE ∠=︒;②36022αβ︒--.23、(1)①延长DE 交BC 于F ∵AD BC ∥∴DAE C ∠=∠∵E 为AC 中点∴AE CE =∴△ADE ≌△CFE (ASA ) ∴DE FE AD CF ==,∵AD BD BC +=∴AD BD BF CF +=+,则BD BF = ∴BE 为DF 垂直平分线,即BE DE ⊥.。
湖北省武汉市江岸区2017--2018学年度上期八年级数学期末试题(解析版)
2017-2018学年湖北省武汉市江岸区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列各图中,不是轴对称图形的是()A.B.C.D.2.若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<13.下列计算正确的是()A.b3•b3=2b3B.(x+2)(x﹣2)=x2﹣2C.(a+b)2=a2+b2D.(﹣2a)2=4a24.在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是()A.(﹣5,﹣2)B.(﹣2,﹣5)C.(﹣2,5)D.(2,﹣5)5.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为()A.0.34×10﹣6米B.3.4×10﹣6米C.34×10﹣5米D.3.4×10﹣5米6.已知多项式x2+kx+36是一个完全平方式,则k=()A.12B.6C.12或﹣12D.6或﹣67.一个多边形的内角和是900°,则这个多边形的边数是()A.6B.7C.8D.98.如图,甲是一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a、2b的两个圆,则剩下的钢板的面积为()A.abπB.2abπC.3abπD.4abπ9.已知关于x的多项式﹣x2+mx+4的最大值为5,则m的值可能为()A.1B.2C.4D.510.如图,点C为线段AB上一点,且AC=2CB,以AC、CB为边在AB的同侧作等边△ADC和等边△EBC,连接DB、AE交于点F,连接FC,若FC=3,设DF=a、EF =b,则a、b满足()A.a=2b+1B.a=2b+2C.a=2b D.a=2b+3二、填空题(共6小题,每小题3分,共18分)11.分式的值为0,则x的值是.12.分式与的最简公分母为.13.已知2m=5,2n=9,则2m+n=.14.计算:已知:a+b=3,ab=1,则a2+b2=.15.如图,在Rt△ABC中,∠C=30°,将△ABC绕点B旋转θ(0<θ<60°)到△A′BC′,边AC和边A′C′相交于点P,边AC和边BC′相交于Q,当△BPQ为等腰三角形时,则θ=.16.如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC =.三、解答题(共8小题,共72分)17.(8分)分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.18.(8分)解方程:(1)﹣1=;(2)+=1.19.(8分)把一张长方形的纸片ABCD沿对角线BD折叠.折叠后,边BC的对应边BE交AD于F,求证:BF=DF.20.(8分)化简:(+)×.21.(8分)△ABC在平面直角坐标系中的位置如图所示,先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称(1)画出△A1B1C1和△A2B2C2;(2)在x轴上确定一点P,使BP+A1P的值最小,直接写出P的坐标为;(3)点Q在坐标轴上且满足△ACQ为等腰三角形,则这样的Q点有个.22.(10分)甲、乙两工程队承包一项工程,如果甲工程队单独施工,恰好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成.(1)问原来规定修好这条公路需多少长时间?(2)现要求甲、乙两个工程队都参加这项工程,但由于受到施工场地条件限制,甲、乙两工程队不能同时施工.已知甲工程队每月的施工费用为4万元,乙工程队每月的施工费用为2万元.为了结算方便,要求:甲、乙的施工时间为整数个月,不超过15个月完成.当施工费用最低时,甲、乙各施工了多少个月?23.(10分)等边△ABC中,点H在边BC上,点K在边AC上,且满足AK=HC,连接AH、BK交于点F.(1)如图1,求∠AFB的度数;(2)如图2,连接FC,若∠BFC=90°,点G为边AC上一点,且满足∠GFC=30°,求证:AG⊥BG;(3)如图3,在(2)条件下,在BF上取D使得DF=AF,连接CD交AH于E,若△DEF面积为1,则△AHC的面积为.24.(12分)在平面直角坐标系中,已知A(0,a)、B(b,0),且a、b满足:a2+b2﹣4a+4b+8=0,点D为x正半轴上一动点(1)求A、B两点的坐标;(2)如图,∠ADO的平分线交y轴于点C,点F为线段OD上一动点,过点F作CD 的平行线交y轴于点H,且∠AFH=45°,判断线段AH、FD、AD三者的数量关系,并予以证明;(3)以AO为腰,A为顶角顶点作等腰△ADO,若∠DBA=30°,直接写出∠DAO的度数2017-2018学年湖北省武汉市江岸区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列各图中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<1【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.下列计算正确的是()A.b3•b3=2b3B.(x+2)(x﹣2)=x2﹣2C.(a+b)2=a2+b2D.(﹣2a)2=4a2【分析】根据整式的乘法分别计算各选项即可得出答案.【解答】解:A、b3•b3=b6,此选项错误;B、(x+2)(x﹣2)=x2﹣4,此选项错误;C、(a+b)2=a2+2ab+b2,此选项错误;D、(﹣2a)2=4a2,此选项正确;故选:D.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式的乘法运算法则.4.在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是()A.(﹣5,﹣2)B.(﹣2,﹣5)C.(﹣2,5)D.(2,﹣5)【分析】考查平面直角坐标系点的对称性质.【解答】解:点P(m,n)关于y轴对称点的坐标P′(﹣m,n)∴点P(2,5)关于y轴对称的点的坐标为(﹣2,5)故选:C.【点评】此题考查平面直角坐标系点对称的应用.5.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为()A.0.34×10﹣6米B.3.4×10﹣6米C.34×10﹣5米D.3.4×10﹣5米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为3.4×10﹣6米.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.已知多项式x2+kx+36是一个完全平方式,则k=()A.12B.6C.12或﹣12D.6或﹣6【分析】利用完全平方公式的结构特征判断即可求出k的值.【解答】解:∵多项式x2+kx+36是一个完全平方式,∴k=12或﹣12,故选:C.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.一个多边形的内角和是900°,则这个多边形的边数是()A.6B.7C.8D.9【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:B.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.8.如图,甲是一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a、2b的两个圆,则剩下的钢板的面积为()A.abπB.2abπC.3abπD.4abπ【分析】剩下钢板的面积=直径为2a+2b的大圆面积﹣两个小圆的面积,依此列式计算即可.【解答】解:所剩钢板的面积=π(a+b)2﹣πa2﹣πb2=2πab,故选:B.【点评】此题考查了列代数式,涉及的知识有:圆的面积公式,完全平方公式,熟练掌握公式及法则是解本题的关键.9.已知关于x的多项式﹣x2+mx+4的最大值为5,则m的值可能为()A.1B.2C.4D.5【分析】将多项式配方后解答即可.【解答】解:﹣x2+mx+4=﹣(x﹣)2+()2+4,因为关于x的多项式﹣x2+mx+4的最大值为5,所以()2+4=5,解得:m=±2,所以可能为2.故选:B.【点评】此题考查配方法的运用,关键是将多项式配方后解答.10.如图,点C为线段AB上一点,且AC=2CB,以AC、CB为边在AB的同侧作等边△ADC和等边△EBC,连接DB、AE交于点F,连接FC,若FC=3,设DF=a、EF =b,则a、b满足()A.a=2b+1B.a=2b+2C.a=2b D.a=2b+3【分析】如图作CM⊥AE于M,CN⊥BD于N.在AE上取一点H使得CH=CF.首先证明AF=FD+FC,FB=FE+FC,再根据===2,推出AF=2BF,列出关系式即可解决问题;【解答】解:如图作CM⊥AE于M,CN⊥BD于N.在AE上取一点H使得CH=CF.∵△ACD,△BCE度数等边三角形,∴CA=CB,CE=CB,∠ACD=∠ECB=60°,∴∠ACE=∠DCB,∴△ACE≌△DCB,∴∠CAE=∠CDB,AE=BD,S△ACE =S△DCB,∴•AE•CM=•BD•CN,∴CM=CN,∵CM⊥AE于M,CN⊥BD于N,∴∠CFA=∠CFB,∵∠CAE=∠CDB,可得∠DFA=∠DCA=60°,∴∠DFA=∠CFA=∠CFB=60°,∵CH=CF,∴△CFH是等边三角形,∴∠FCH=∠ACD=60°,CH=CF=FH,∴∠ACH=∠DCF,∵CA=CD,CH=CF,∴△ACH≌△DCF,∴AH=DF,∴AF=AH+FH=DF+FC=a+3,同理可得BF=FE+FC=b+3,∴===2,∴AF=2BF,∴a+3=2(b+3),∴a=2b+3,故选:D.【点评】本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理.三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考,选择题中的压轴题.二、填空题(共6小题,每小题3分,共18分)11.分式的值为0,则x的值是1.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.【点评】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.12.分式与的最简公分母为2xy2.【分析】题目给出的两个分式的分母都是单项式,可根据最简公分母的定义直接确定【解答】解:对于分母2xy与y2,其系数的最小公倍数是2,y与y2指数最高的是y2,x只在一个中含有,所以最简公分母是2xy2故答案为:2xy2【点评】本题考查了确定最简公分母.若分式分母含有多项式,先把分母因式分解,再确定最简公分母.13.已知2m=5,2n=9,则2m+n=45.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:∵2m=5,2n=9,∴2m+n=2m•2n=5×9=45.故答案为:45.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.计算:已知:a+b=3,ab=1,则a2+b2=7.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:7【点评】此题考查了完全平方公式的运用,熟练掌握完全平方公式是解本题的关键.15.如图,在Rt△ABC中,∠C=30°,将△ABC绕点B旋转θ(0<θ<60°)到△A′BC′,边AC和边A′C′相交于点P,边AC和边BC′相交于Q,当△BPQ为等腰三角形时,则θ=20°或40°.【分析】过B作BD⊥AC于D,过B作BE⊥A'C'于E,根据旋转可得△ABC≌△A'BC',则BD=BE,进而得到BP平分∠A'PC,再根据∠C=∠C'=30°,∠BQC=∠PQC',可得∠CBQ=∠C'PQ=θ,即可得出∠BPQ=(180°﹣∠C'PQ)=90°﹣θ,分三种情况讨论,利用三角形内角和等于180°,即可得到关于θ的方程,进而得到结果.【解答】解:如图,过B作BD⊥AC于D,过B作BE⊥A'C'于E,由旋转可得,△ABC≌△A'BC',则BD=BE,∴BP平分∠A'PC,又∵∠C=∠C'=30°,∠BQC=∠PQC',∴∠CBQ=∠C'PQ=θ,∴∠BPQ=(180°﹣∠C'PQ)=90°﹣θ,分三种情况:①如图所示,当PB=PQ时,∠PBQ=∠PQB=∠C+∠QBC=30°+θ,∵∠BPQ+∠PBQ+∠PQB=180°,∴90°﹣θ+2×(30°+θ)=180°,解得θ=20°;②如图所示,当BP=BQ时,∠BPQ=∠BQP,即90°﹣θ=30°+θ,解得θ=40°;③当QP=QB时,∠QPB=∠QBP=90°﹣θ,又∵∠BQP=30°+θ,∴∠BPQ+∠PBQ+∠BQP=2(90°﹣θ)+30°+θ=210°>180°(不合题意),故答案为:20°或40°.【点评】本题主要考查了等腰三角形的性质以及旋转的性质的运用,解决问题的关键是利用全等三角形对应边上高相等,得出BP平分∠A'PC,解题时注意分类思想的运用.16.如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC =67.5°.【分析】如图1中,将线段CA绕点A逆时针旋转90°得到线段AH,连接CH,DC.首先证明△DAH≌△EAC(SAS),推出DH=CE=定值,由CD≤DH+CH,CH是定值,推出当D,C,H共线时,DC定值最大,如图2中,求出∠CDE=22,5°,∠DCE=90°即可解决问题.【解答】解:如图1中,将线段CA绕点A逆时针旋转90°得到线段AH,连接CH,DC.∵∠DAE=∠HAC=90°,∴∠DAH=∠EAC,∵DA=EA,HA=CA,∴△DAH≌△EAC(SAS),∴DH=CE=定值,∵CD≤DH+CH,CH是定值,∴当D,C,H共线时,DC定值最大,如图2中,此时∠AHD=∠ACE=135°,∴∠ECB=45°,∠DCE=∠ACE﹣∠ACH=90°,∵∠ECB=∠CAE+∠CEA,∵CA=CE,∴∠CAE=∠CEA=22.5°,∴∠ADH=∠AEEC=22.5°,∴∠CDE=45°﹣22.5°=22.5°,∴∠DEC=90°﹣22.5°=67.5°.故答案为:67.5°.【点评】本题考查旋转变换,等腰直角三角形的性质,全等三角形的判定和性质,三角形的三边关系等知识,解题的关键是添加常用辅助线构造全等三角形.三、解答题(共8小题,共72分)17.(8分)分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.【分析】(1)直接提取公因式3m,进而分解因式得出答案;(2)首先提取公因式﹣y,再利用完全平方公式分解因式即可.【解答】解:(1)3mx﹣6my=3m(x﹣2y);(2)原式=﹣y(﹣4xy+4x2+y2)=﹣y(y﹣2x)2.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式是解题关键.18.(8分)解方程:(1)﹣1=;(2)+=1.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:10﹣2x﹣6=x2+x﹣6,解得:x=2或x=﹣5,经检验x=2是增根,分式方程的解为x=﹣5.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(8分)把一张长方形的纸片ABCD沿对角线BD折叠.折叠后,边BC的对应边BE交AD于F,求证:BF=DF.【分析】由翻折的性质可知∠EBD=∠CBD,由矩形的性质可知:AD∥BC,从而得到∠ADB=∠DBC,于是∠EBD=∠ADB,故此BF=DF.【解答】证明:由折叠的性质知,CD=ED,BE=BC.∵四边形ABCD是矩形,在△ABF和△EDF中,∵,∴△ABF≌△EDF(AAS),∴BF=DF;【点评】本题主要考查的是翻折的性质、全等三角形的性质和判定、勾股定理的应用,由翻折的性质找出相等的角或边是解题的关键.20.(8分)化简:(+)×.【分析】先计算括号内的加法,再计算乘法即可得.【解答】解:原式====﹣2.【点评】本题主要考查分式的混合运算,分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.21.(8分)△ABC在平面直角坐标系中的位置如图所示,先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称(1)画出△A1B1C1和△A2B2C2;(2)在x轴上确定一点P,使BP+A1P的值最小,直接写出P的坐标为(﹣,0);(3)点Q在坐标轴上且满足△ACQ为等腰三角形,则这样的Q点有7个.【分析】(1)△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称,据此作图即可;(2)依据轴对称的性质,连接BA2,交x轴于点P,此时BP+A1P的值最小,依据直线BA2的解析式,即可得到点P的坐标;(3)在平面直角坐标系中,作线段AC的垂直平分线,与坐标轴有2个交点,分别以A,C为圆心,AC长为半径画弧,与坐标轴的交点有5个,即可得到Q点的数量.【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)如图所示,连接BA2,交x轴于点P,则点P即为所求;由B(﹣3,2),A2(3,﹣3)可得,直线BA2的解析式为y=﹣x﹣,令y=0,则x=﹣,∴P(﹣,0),故答案为:P(﹣,0);(3)根据点Q在坐标轴上且满足△ACQ为等腰三角形,可得这样的Q点有7个.故答案为:7.【点评】本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.22.(10分)甲、乙两工程队承包一项工程,如果甲工程队单独施工,恰好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成.(1)问原来规定修好这条公路需多少长时间?(2)现要求甲、乙两个工程队都参加这项工程,但由于受到施工场地条件限制,甲、乙两工程队不能同时施工.已知甲工程队每月的施工费用为4万元,乙工程队每月的施工费用为2万元.为了结算方便,要求:甲、乙的施工时间为整数个月,不超过15个月完成.当施工费用最低时,甲、乙各施工了多少个月?【分析】(1)设原来规定修好这条公路需x个月,则甲修好这条公路需x个月,乙修好这条公路需(x+6)个月,根据“现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成”列出方程,解方程即可;(2)设甲工作了a个月,乙工作了b个月完成任务,施工费用为w元.根据题意,列出关系式,求出b=18﹣1.5a,6≤a<36,再根据a,b均为整数,得出a,b的取值情况,进而得到相应的施工费用,比较即可.【解答】解:(1)设原来规定修好这条公路需x个月.根据题意,得4(+)+=1,解得:x=12.检验:当x=12时,x(x+6)≠0,经检验,x=12是原方程的解,且满足题意.答:规定修好路的时间为12个月;(2)设甲工作了a个月,乙工作了b个月完成任务,施工费用为w元.根据题意,得,由①可得:b=18﹣1.5a③,代入②中:0<18﹣1.5a+a≤15,∴6≤a<36,又∵a,b均为整数,∴a=6,b=9,W1=4×6+9×2=42(万元),a=8,b=6,W2=8×4+6×2=44(万元),a=10,b=3,W3=10×4+3×2=46(万元).∵W1<W2<W3,∴工费最低时,甲工作了6个月,乙工作9个月.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.23.(10分)等边△ABC中,点H在边BC上,点K在边AC上,且满足AK=HC,连接AH、BK交于点F.(1)如图1,求∠AFB的度数;(2)如图2,连接FC,若∠BFC=90°,点G为边AC上一点,且满足∠GFC=30°,求证:AG⊥BG;(3)如图3,在(2)条件下,在BF上取D使得DF=AF,连接CD交AH于E,若△DEF面积为1,则△AHC的面积为.【分析】(1)先判断出△ABK≌△CAH,即可得出∠HAC=∠ABK,(2)先判断出△AFB≌△AMC,即可判断出△FMN是等边三角形,进而判断出△AGF ≌△CGN,即可得出结论;(3)先判断出△DEF是等边三角形,进而判断出DE=CE=AF,即可得出△CEF的面积为1,△AFC的面积是1,再判断出△CEN是等边三角形,再判断出△CHN∽△BHF,即可得出HE=EN,即可得出结论.【解答】解:(1)∵△ABC是等边三角形,∴∠BAK=∠ACH=60°,AB=AC,在△ABK和△CAH中,,∴△ABK≌△CAH∴∠HAC=∠ABK,∴∠BFH=∠ABK+∠BAH=∠BAK=60°∴∠AFB=120°(2)在BF上取M使AF=FM,连MC延长FG交MC于N易得:△AFB≌△AMC,∴∠AMC=120°又△AFM为等边△,∴∠AMB=∠BMC=60°∵∠BFC=90°,∴∠MFC=90°,∠NFC=30°∴△FMN为等边△,且FN=NC∴NC=FN=FM=AF,∴△AGF≌△CGN∴AG=GC,∴BG⊥AC;(3)如图3,延长BF至M,使FM=DF,∵BF⊥CF,∴CD=CM,由(2)知,△AFM是等边三角形,∴∠AMF=60°,∵∠AMC=∠AFB=120°,∴∠CMD=60°,∴△CDM是等边三角形,∴∠CDM=60°=∠EFD,∴△DEF是等边三角形,∴DE=DF=EF,∴DE=CE=AF,∵△DEF的面积为1,∴△CEF的面积为1,∴△AFC的面积是1,∵∠ABF+∠BAF=∠BFH=60°,∠ABF+∠CBD=60°,∴∠BAF=∠CBD,∵∠AFB=180°﹣∠BFE=120°,∠BDC=180°﹣∠EDF=120°,∴∠AFB=∠BDC,∵AB=BC,∴△ABF≌△BCD,∴BD=AF=DF过点C作CN∥BF交AH的延长线于N,∴∠ECN=∠N=60°,∴△CEN是等边三角形,且△CEN≌△DEF,∴CN=DF=BD=EF=EN,∵CN∥BF,∴△CHN∽△BHF,∴=,∴HF=2HN,∴HE+EF=HE+EN=HE+HE+HN=2HN,∴HN=2HE,∴HE =EN ,∴S △CEH =S △CEN =,∴S △ACH =S △AFC +S △CEF +S △CEH =.【点评】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,相似三角形的判定和性质,同底等高的两三角形面积相等,解本题的关键是判断出△CDM 是等边三角形.24.(12分)在平面直角坐标系中,已知A (0,a )、B (b ,0),且a 、b 满足:a 2+b 2﹣4a +4b +8=0,点D 为x 正半轴上一动点(1)求A 、B 两点的坐标;(2)如图,∠ADO 的平分线交y 轴于点C ,点F 为线段OD 上一动点,过点F 作CD 的平行线交y 轴于点H ,且∠AFH =45°,判断线段AH 、FD 、AD 三者的数量关系,并予以证明;(3)以AO 为腰,A 为顶角顶点作等腰△ADO ,若∠DBA =30°,直接写出∠DAO 的度数 30°或60°或150°.【分析】(1)理由非负数的性质即可解决问题;(2)结论:AH+FD=AD;在AD上取K使AH=AK.只要证明△AHF≌△AKF,FD=DK即可解决问题;(3)分四种情形讨论即可解决问题;【解答】解:(1)∵a2+b2﹣4a+4b+8=0,∴(a﹣2)2+(b+2)2=0,∵(a﹣2)2≥0,(b+2)2≥0,∴a﹣2=0,b+2=0,∴a=2,b=﹣2,∴A(0,2),B(﹣2,0).(2)结论:AH+FD=AD理由:在AD上取K使AH=AK.设∠HFO=α,∴∠OAF=45﹣α,∵HF∥CD,∴∠CDO=∠ADC=α,∴∠FAD=45﹣α,∴△AHF≌△AKF,∴∠AFK=45°,∴∠KFD=90﹣α,∠FKD=90﹣α,∴FD=DK,∴AH+FD=AD.(3)如图2中:①当D1在△ABO内部时,可以证明当BD1=OD1时,AO=AD1,此时∠D1BO=∠D1OB=15°,∠AOD1=∠AD1O=75°,∴∠D1AO=30°.②当D3在BD1的延长线上时,可得∠OAD3=60°,③当D2在AB上方时,同法可得∠OAD3=60°,∠OAD4=150°∴∠DAO=60°或30°或150°.故答案为60°或30°或150°.【点评】本题考查三角形综合题、等腰直角三角形的性质、平行线的性质、角平分线的定义、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
湖北省武汉市江夏区2017-2018学年八年级上学期数学期中考试试卷及参考答案
一、单选题
1. 以下列各组线段为边,能组成三角形的是( ) A . 1cm,2cm,3cm B . 2cm,5cm,8cm C . 3cm,4cm,5cm D . 4cm,5cm,10cm 2. 下面四个手机应用软件图标中是轴对称图形的是 ( ).
A . 2cm B . 4cm C . 6cm或2cm D . 6cm 二、填空题
11. 三角形内角和定理:________. 12. 如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是________.
13. 已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n=________. 14. 如图所示,在平面坐标系中B(3,1),AB=OB,∠ABO=90°,则点A的坐标是________.
(1) 画出△ABC关于y轴的对称图形△A1B1C1; (2) 请计算△ABC的面积; (3) 直接写出△ABC关于x轴对称的三角形△A2B2C2的各点坐标. 22. 如图所示,已知△ABC中,D为BC上一点,E为△ABC外部一点,DE交AC于一点O,AC=AE,AD=AB,∠BAC =∠DAE.
(1) 求证:△ABC≌△ADE; (2) 若∠BAD=20°,求∠CDE的度数. 23. 如图
A . A点 B . B点 C . C点 D . D点 5. 如图,将两根钢条AA′,BB′ 的中点O钉在一起,使AA′,BB′ 能绕点O自由转动,就做成一个测量工具,测A′B′ 的长 即等于内槽宽AB,那么判定△OAB ≌△OA′B′的理由是( ).
A . 边角边 B . 角边角 C . 边边边 D . 斜边直角边 6. 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
江岸区2018~2019学年度第一学期期中考试八年级数学试题
江岸区2018~2019学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分)1.下列国产汽车车标不是轴对称图形的是()A .中华B .长城C .东风D .奇瑞2.以下长度的三条线段,不能组成三角形的是()A .3、8、2B .2、5、4C .6、3、5D .9、15、73.一个五边形的外角和为()A .180°B .360°C .540°D .720°4.如图,要在三条交错的公路区域附近修建一个物流公司仓库,使仓库到三条公路的距离相等,则可以选择的地址有()处A .1B .2C .3D .45.如图,两个三角形全等,则∠α等于()A .72°B .60°C .58°D .50°6.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A .50°B .80°C .50°或80°D .40°或65°7.下列给出的各组条件中,不能使△ABC ≌△DEF 的是()A .AB =DE ,BC =EF ,AC =DF B .AB =DE ,∠B =∠E ,BC =EF C .∠B =∠E ,BC =EF ,∠C =∠FD .AB =DE ,AC =DF ,∠B =∠E8.如图,在△ABC 的边BC 上取一点D 使CD =CA ,作BE ⊥AD 于E ,作AF ⊥BC 交BE 于点F ,则∠F 与∠C 的关系是()A .∠F =∠CB .∠F +∠C =90°C .2∠F +∠C =180°D .∠F +2∠C =180°9.如图,点P 是∠AOB 的角平分线OC 上一点,PN ⊥OB 于点N ,点M 是线段ON 上一点.已知OM =3,ON =4,点D 为OA 上一点.若满足PD =PM ,则OD 的长度为()A .3B .4C .5D .3或510.如图,△ABC 中,∠ACB =90°,BC =a ,AC =b 、AB =c ,DE 垂直平分AC ,点F 为DE 的延长线上一点,满足∠F =21∠B ,则ECF ABC S S ∆∆=()A .1B .c b a a ++4C .ca a+4D .ba 2二、填空题(本大题共6个小题,每小题3分,共18分)11.点P (1,2)关于y 轴的对称点P 1的坐标是___________12.六边形的内角和为___________度13.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.点D是AC上一点,沿过BD折叠,使点C落在AB上的点E处,则△AED的周长为___________cm14.等腰三角形有一个角等于30度,则底边上的高和一腰上的高所在直线相交形成的锐角等于___________度15.如图,正五边形ABCDE,连接AC、AD、BE,则图中的等腰三角形共有___________个16.如图,直线a⊥直线b于点H,点A、点B是直线b上的点,作BC⊥直线b且BC=AB=2cm,作CD⊥直线a于点D,在射线DB上取一点E,使∠AEB=135°,AE的延长线交直线a于点F.若BH=3cm,则FH=___________cm三、解答题(共8题,共72分)17.(本题8分)如图,AC⊥AB,DB⊥AB,AD=BC,求证:AC=BD18.(本题8分)等腰三角形的一个角比另一个角大30°,求等腰三角形的顶角的度数19.(本题8分)如图,△ABC,∠ABC与∠ACB相邻的外角的平分线相交于点E(1)已知∠A=60°,∠ABC=40°,求∠E的度数(2)直接写出∠A与∠E的数量关系20.(本题8分)如图所示,△ABC在平面直角坐标系中(每个小正方形的边长为1个单位长度)(1)直接写出点B的坐标(2)画出△ABC关于y轴对称的△AB1C1(3)将△ABC向右平移8个单位,画出平移后的△A2B2C2,指出△AB1C1与△A2B2C2位置关系21.(本题8分)△ABC中,∠BAC=3∠ABC,AD、AE是∠BAC的三等分线(1)如图,EG平分∠AEB分别交AD、AB于F、G,求证:AG=AF(2)如图,AD是△ABC的高,判断∠DAH与∠C的数量关系,并说明理由22.(本题10分)如图,将△ABC沿BD翻折,使点C落在AB上的点E处(1)连接CE,求证:BD垂直平分CE(2)作AF平分∠BAC交BD于点F,连接CF、EF,求证:∠CFE=∠ACB+∠ABC23.(本题10分)已知,在△ABC中,AC=BC,分别过A、B点作互相平行的直线AM、BN,过点C的直线分别交直线AM、BN于点D、E(1)AM⊥AB①若DE⊥AM,直接写出CD、CE的数量关系②如图1,DE与AM不垂直,判断上述结论是否还成立,并说明理由AD(2)如图2,90°<∠ABN<120°,∠ABC=∠DEB=60°,EC=nDC,求BE24.(本题12分)在平面直角坐标系中,A(4,0),点B在第二象限的角平分线上,AB、OB的垂直平分线交于点E(1)求证:AE⊥BE(2)设BE交y轴于点F,若B(-2,2),求点F的坐标(3)作EH⊥EO交y轴于点H,若∠BAO=30°,求△HEO的面积。
湖北省武汉市江岸区2017_2018年八年级上学期数学期中精彩试题(卷)(无问题详解)
江岸区2017-2018上学期八年级上学期期中考试数学试卷考试时间∶120分钟 试卷总分∶120分分数一、选择题(共10小题,每小题3分,满分30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .2.如图,过△ABC 的顶点A ,作BC 边上的高,以下作确的是( )A .B .C .D . 3.已知三角形两边长分别为3和8,则该三角形第三边的长可能是( ) A .5 B .10 C .11 D .12 4.下列各组条件中,能够判定△ABC ≌△DEF 的是( )A .∠A =∠D ,∠B =∠E ,∠C =∠F B .AB =DE ,BC =EF ,∠A =∠DC .∠B =∠E =90°,BC =EF ,AC =DFD .∠A =∠D ,AB =DF ,∠B =∠E5.如图,小明做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE。
则说明这两个三角形全等的依据是( )A . SASB . ASAC . AASD . SSS5题图 6题图 7题图 8题图 6. 如图,△ABC 与△A′B′C′关于直线l 对称,且∠A=105°,∠C′=30°,则∠B=( ) A .025 B .045C .030D .0207.如图,△ABC 中,050A ∠=,BD 、CE 是ABC ∠、ACB ∠的平分线,则BOC ∠的度数为( )A .0105 B .0115 C .0125 D .0135 8. 如图,在△ADE 中,线段AE 、AD 的中垂线分别交直线DE 于B 和C 两点, B α∠=、C β∠=,则DAE ∠的度数为( )A . 2αβ+B . 2βα- C . ()01802αβ-+ D . ()01802βα--9.如图,△ABC 中,CE 平分BCA ∠的外角,D 为CE 上一点,若BC a =,AC b =,DB m =,AD n =,则m a -与b n -的大小关系是( )A .m a b n ->-B .m a b n -<-(R)PQDCB A OEDCB AC .m a b n -=-D .m a b n ->-或m a b n -<-10.如图,∠AOB=30°,M ,N 分别是边OA ,OB 上的定点,P 、Q 分别是边OB ,OA 上的动点,记OPM α∠=,OQN β∠=,当MP PQ QN ++最小时,则关于α,β的数量关系正确的是( ) A .060-= B .0210+=C .0D 0题号 1 2 3 4 5 6 7 8 9 10 答案9题图10题图 13题图二、填空题(每题3分,共18分)11.已知点P 关于x 轴的对称点1P 的坐标是(1,2),则点P 的坐标是 .12.若正多边形的角和是外角和的4倍,则正多边形的边数为__________13.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是14.如图,在平面直角坐标系中,ABC ∆是以C 为直角顶点的直角三角形,且AC BC =,点A 的坐标为()1,0-,点B 的坐标为()0,4,则点C 的坐标为__________15.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到长方形OABC 的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为 .15题图16题图 16.如图,△ABC 中︒=∠90ACB ,记BC a =,分别以直角三角形的三边向外作正方形ABDE ,正方形ACFG ,正方形BCMN 。
2017-2018学年武汉市江岸区八年级上学期期末考试数学试卷及答案
22、(1)设规定修好路的时间为 x 天 ∴
4 x 1 x x6
解得:x=12 检验:当 x=12 时,x(x+12)≠0 ∴原分式方程的解为 x=12,且 x=12 满足题意
答:规定修好路的时间为 12 天 (2)甲工作了 a 月,乙工作了 6 月(a≤15,b≤15)
a b 1① ∴ 12 18 a b ≤ 15②
第 15 题图
第 16 题图
三、解答题(共 8 题,共 72 分) 17、分解因式:(1) 3mx—6my (2) 4xy2—4x2y—y3;
18、解方程:
x 3 1 x 1 x 1 x 2
19、把一张长方形的纸片 ABCD 沿对角线 BD 折叠。折叠后,边 BC 的对应边 BE 交 AD 于 F,求证:BF=DF
-
B. 3.4×10 6 米
-
C. 34×10 5 米
-
D. 3.4×10 5 米
-
6、已知多项式 x2+kx+36 是一个完全平方式,则 k=( A.12 B.6
) D.6 或—6
C.12 或—12 )边形
7、一个多边形点内角和为 900°,在这个多边形是( A.6 B.7 C. 8
D.9
8、如图,甲是一块直径为 2a+2b 的圆形钢板,从中挖去直径分别为 2a、2b 的两个圆,则剩下的钢板的面 积为( A. ab ) B. 2ab
23、(1)易得:△ABK≌△CAH ∴∠HAC=∠ABK ∴∠AFB=120° (2)在 BF 上取 M 使 AF=FM,连 MC 延长 FG 交 MC 于 N 易得:△AFB≌△AMC ∴∠AMC=120° 又△AFM 为等边△ ∴∠AMB=∠BMC=60° ∵∠BFC=90° ∴∠MFC=90°,∠NFC=30° ∴△FMN 为等边△,且 FN=NC ∴NC=FN=FM=AF ∴△AGF≌△CGN ∴AG=GC ∴BG⊥AC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**2017-2018学年湖北省武汉市江岸区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.(3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.124.(3分)下列各组条件中,能够判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E5.(3分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE 就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS6.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°7.(3分)如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125° D.135°8.(3分)如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C两点,∠B=α,∠C=β,则∠DAE的度数分别为()A.B.C.D.9.(3分)如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A.m﹣a>b﹣n B.m﹣a<b﹣nC.m﹣a=b﹣n D.m﹣a>b﹣n或m﹣a<b﹣n10.(3分)如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β﹣α=60°B.β+α=210°C.β﹣2α=30°D.β+2α=240°二、填空题(每题3分,共18分)11.(3分)已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是.12.(3分)若正多边形的内角和是外角和的4倍,则正多边形的边数为.13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD的面积是.14.(3分)如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(﹣1,0),点B的坐标为(0,4),则点C的坐标为.15.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为.16.(3分)如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为.(用含a的式子表示)三、解答题(共8道小题,共72分)17.(8分)在△ABC中,∠B=∠A+10°,∠C=30°,求△ABC各内角的度数.18.(8分)如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:BD=AC.19.(8分)如图,已知点E,C在线段BF上,且BE=CF,AB∥DE,AC∥DF,AC与DE相交于=S四边形OCFD.点O,求证:S四边形ABEO20.(8分)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.21.(8分)(1)如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.(2)如图2,若△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.22.(10分)如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC边上一点,F 是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.23.(10分)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;(2)如图2,连接BF交AC于G点,若=3,求证:E点为BC中点;(3)当E点在射线CB上,连接BF与直线AC交于G点,若=,则=(直接写出结果)24.(12分)如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D 分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.2017-2018学年湖北省武汉市江岸区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.3.(3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.4.(3分)下列各组条件中,能够判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E【解答】解:如图:A、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;B、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;C、符合直角三角形全等的判定定理HL,即能推出△ABC≌△DEF,故本选项正确;D、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;故选:C.5.(3分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE 就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:A.6.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【解答】解:∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.故选:B.7.(3分)如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125° D.135°【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°,故选:B.8.(3分)如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C两点,∠B=α,∠C=β,则∠DAE的度数分别为()A.B.C.D.【解答】解:∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β,∵线段AE,AD的中垂线分别交直线DE于B和C两点,∴BA=BE,DA=DC,∴∠BEA=,∠CDA=,∴∠DAE=180°﹣﹣=,故选:A.9.(3分)如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A.m﹣a>b﹣n B.m﹣a<b﹣nC.m﹣a=b﹣n D.m﹣a>b﹣n或m﹣a<b﹣n【解答】解:在CM上截取CG=CA,连接DG.∵CD=CD,∠ACD=∠DCG,AC=CG,∴△ACD≌△GCD,∴AD=DG=n,在△BDG中,BD=m,BG=BC+CG=BC+AC=a+b,∴m+n>a+b,∴m﹣a>b﹣n.故选:A.10.(3分)如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β﹣α=60°B.β+α=210°C.β﹣2α=30°D.β+2α=240°【解答】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∵∠OQN=180°﹣30°﹣∠ONQ,∠OPM=∠NPQ=30°+∠OQP,∠OQP=∠AQN=30°+∠ONQ,∴α+β=180°﹣30°﹣∠ONQ+30°+30°+∠ONQ=210°.故选:B.二、填空题(每题3分,共18分)11.(3分)已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).【解答】解:点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).故答案为:(1,﹣2).12.(3分)若正多边形的内角和是外角和的4倍,则正多边形的边数为10.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=4×360°,解得n=10,答:这个多边形的边数为10,故答案为:10.13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD的面积是30.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△A BC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.14.(3分)如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(﹣1,0),点B的坐标为(0,4),则点C的坐标为(﹣,).【解答】解:作CE⊥x轴于E,CF⊥y轴于F,则∠ECF=90°,又∠ACB=90°,∴∠ECA=∠FCB,在△ECA和△FCB中,,∴△ECA≌△FCB,∴CE=CF,AE=BF,设AE=BF=x,则x+1=4﹣x,解得,x=,∴CE=CF=,∴点C的坐标为(﹣,),故答案为:(﹣,).15.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为(1,4).【解答】解:根据题意,如下图示:根据图形观察可知,每碰撞6次回到始点.∵17÷6=2…5,∴第17次碰到长方形边上的点的坐标为(1,4),故答案为(1,4).16.(3分)如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为a2.(用含a的式子表示)【解答】解:∵BC⊥AC,CH⊥BA,∴BC2=BH•BA,即BH•BA=a2,∵四边形ABDE是正方形,∴BD=BA,∴四边形BDKH的面积=BH•BD=BH•BA=a2,故答案为:a2.三、解答题(共8道小题,共72分)17.(8分)在△ABC中,∠B=∠A+10°,∠C=30°,求△ABC各内角的度数.【解答】解:∵在△ABC中,∠B=∠A+10°,∠C=30°,∴∠B+∠A=150°,∴解得:,故∠A=70°,∠B=80°,∠C=30°.18.(8分)如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:BD=AC.【解答】证明:∵AC⊥AD,BC⊥BD,∴∠ADC=∠BCA=90°,在Rt△ABD和Rt△BAC中,,∴在Rt△ABD≌Rt△BAC(HL),∴BD=AC .19.(8分)如图,已知点E ,C 在线段BF 上,且BE=CF ,AB ∥DE ,AC ∥DF ,AC 与DE 相交于点O ,求证:S 四边形ABEO =S 四边形OCFD .【解答】证明:∵BE=CF , ∴BE +CE=CF +CE 即BC=EF .∵AB ∥DE ,AC ∥DF , ∴∠B=∠DEF ,∠C=∠DFE , 在△ABC 和△DEF 中,,∴△ABC ≌△DEF , ∴S △ABC 与S DEF ,∴S △ABC ﹣S △ECO =S DEF ﹣S △ECO , ∴S 四边形ABEO =S 四边形OCFD .20.(8分)如图,点E 在AB 上,△ABC ≌△DEC ,求证:CE 平分∠BED .【解答】证明:∵△ABC ≌△DEC , ∴∠B=∠DEC ,BC=EC , ∴∠B=∠BEC , ∴∠BEC=∠DEC , ∴CE 平分∠BED .21.(8分)(1)如图1,已知△ABC ,请画出△ABC 关于直线AC 对称的三角形.(2)如图2,若△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.【解答】解:(1)如图1,△AB′C即为所求;(2)如图2,直线l即为所求;(3)如图3,四边形EFGH即为所求.22.(10分)如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC边上一点,F 是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.【解答】(1)证明:延长CF至G,使DG=BE,连接AG,如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABE=∠ADF=90°,AB=BC=CD=AD,∴∠ADG=90°,∵△CFE的周长等于正方形ABCD的周长的一半,∴CE+CF+EF=CD+BC,∴DF+BE=EF,∴DF+DG=EF,即GF=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∴∠EAG=90°,在△AEF和△AGF中,,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=×90°=45°;(2)解:∵DF=2,CF=4,CE=3,∴AB=AD=CD=BC=2+4=6,BE=BC﹣CE=3,由(1)得:△AEF的面积=△AGF的面积=△ABE的面积+△ADF的面积=×6×3+×6×2=15.23.(10分)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;(2)如图2,连接BF交AC于G点,若=3,求证:E点为BC中点;(3)当E点在射线CB上,连接BF与直线AC交于G点,若=,则=(直接写出结果)【解答】证明:(1)如图1,∵∠FAD+∠CAE=90°,∠FAD+∠F=90°,∴∠CAE=∠F,在△ADF和△ECA中,,∴△ADF≌△ECA(AAS),∴AD=CD,FD=AC,∴CE+CD=AD+CD=AC=FD,即EC+CD=DF;证明:(2)如图2,过F点作FD⊥AC交AC于D点,∵△ADF≌△ECA,∴FD=AC=BC,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴GD=CG,∵=3,∴=2,∴=,∵AD=CE,AC=BC∴=,∴E点为BC中点;(3)过F作FD⊥AG的延长线交于点D,如图3,∵=,BC=AC,CE=CB+BE,∴=,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE,∴=,∴=,∴==,∴=.故答案为:.24.(12分)如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D 分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.【解答】解:(1)∵(m﹣2n)2+|n﹣2|=0,又∵(m﹣2n)2≥0,|n﹣2|≥0,∴n=2,m=4,∴点D坐标为(4,2).(2)如图1中,作OE⊥BD于E,OF⊥AC于F.∵OA=OB,OD=OC,∠AOB=∠COD=90°,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴EO=OF(全等三角形对应边上的高相等),∴OK平分∠BKC,∴∠OBD=∠OAC,易证∠AKB=∠BOA=90°,∴∠OKE=45°,∴∠AKO=135°.(3)结论:BM=MN+ON.理由:如图2中,过点B作BH∥y轴交MN的延长线于H.∵OQ=OP,OA=OA,∠AOQ=∠BOP=90°,∴△AOQ≌△BOP,∴∠OBP=∠OAQ,∵∠OBA=∠OAB=45°,∴∠ABP=∠BAP,∵NM⊥AQ,BM⊥ON,∴∠ANM+∠BAQ=90°,∠BNO+∠ABP=90°,∴∠ANM=∠BNO=∠HNB,∵∠HBN=∠OBN=45°,BN=BN,∴△BNH≌△BNO,∴HN=NO,∠H=∠BON,∵∠HBM+∠MBO=90°,∠BON+∠MBO=90°,∴∠HBM=∠BON=∠H,∴MH=MB,∴BM=MN+NH=MN+ON.**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删除**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容。