七年级数学压轴题专题

合集下载

七年级上册数学压轴题50道

七年级上册数学压轴题50道

七年级上册数学压轴题50道一、有理数运算相关压轴题1. 已知|a| = 3,b = 8,ab>0,求a b的值。

解析:因为|a| = 3,所以a=±3。

又因为ab>0,b=-8<0,所以a=3。

则a b=-3-(-8)=-3 + 8=5。

2. 计算:1 2+3 4+5 6+·s+99 100解析:1-2=-1,3 4=-1,·s,99-100=-1。

从1到100共100个数,两两一组,共100÷2 = 50组。

所以原式=(-1)×50=-50。

二、整式加减相关压轴题1. 已知A = 3x^2-2x + 1,B=5x^2-3x + 2,求2A 3B。

解析:2A=2(3x^2-2x + 1)=6x^2-4x+23B = 3(5x^2-3x + 2)=15x^2-9x+6则2A-3B=(6x^2-4x + 2)-(15x^2-9x+6)=6x^2-4x + 2-15x^2+9x 6=(6x^2-15x^2)+(9x-4x)+(2 6)=-9x^2+5x-42. 若a、b互为相反数,c、d互为倒数,m的绝对值是2,求(a +b)m^3+5m+2021cd的值。

解析:因为a、b互为相反数,所以a + b=0;因为c、d互为倒数,所以cd = 1;因为m的绝对值是2,所以m=±2。

当m = 2时,(a + b)m^3+5m+2021cd=0×2^3+5×2+2021×1=0 + 10+2021=2031当m=-2时,(a + b)m^3+5m+2021cd=0×(-2)^3+5×(-2)+2021×1=0-10 + 2021=2011三、一元一次方程相关压轴题1. 解方程:(1)/(2)<=ft[x-(1)/(2)(x 1)]=(2)/(3)(x-1)解析:先去小括号:(1)/(2)<=ft[x-(1)/(2)x+(1)/(2)]=(2)/(3)x-(2)/(3)(1)/(2)<=ft[(1)/(2)x+(1)/(2)]=(2)/(3)x-(2)/(3)再去中括号:(1)/(4)x+(1)/(4)=(2)/(3)x-(2)/(3)移项:(1)/(4)x-(2)/(3)x=-(2)/(3)-(1)/(4)通分:(3)/(12)x-(8)/(12)x=-(8)/(12)-(3)/(12)-(5)/(12)x=-(11)/(12)解得x=(11)/(5)2. 某班有学生45人,会下象棋的人数是会下围棋人数的3.5倍,两种棋都会及两种棋都不会的人数都是5人,求只会下围棋的人数。

七年级下数学压轴题

七年级下数学压轴题

七年级下数学压轴题一、相交线与平行线。

题1:如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE = 4:1,求∠AOF的度数。

解析:设∠BOE = x,因为OE平分∠BOD,所以∠BOD = 2∠BOE=2x。

又因为∠AOD + ∠BOD = 180°,且∠AOD:∠BOE = 4:1,所以∠AOD = 4x。

则4x + 2x=180°,6x = 180°,解得x = 30°。

所以∠COE = 180° - ∠BOE = 150°。

因为OF平分∠COE,所以∠COF=(1)/(2)∠COE = 75°。

∠AOC=∠BOD = 60°,所以∠AOF=∠AOC+∠COF = 60°+ 75°=135°。

题2:已知直线l_1∥ l_2,直线l_3和直线l_1、l_2交于点C和D,在C、D之间有一点P。

(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化。

(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?解析:(1)过点P作PE∥ l_1,因为l_1∥ l_2,所以PE∥ l_2。

∠PAC = ∠APE,∠PBD=∠BPE。

所以∠APB = ∠APE+∠BPE = ∠PAC + ∠PBD。

(2)当点P在l_1上方时,过点P作PF∥ l_1,因为l_1∥ l_2,所以PF∥ l_2。

∠PAC = ∠APF,∠PBD + ∠BPF=180°,所以∠PBD = 180°-(∠APB - ∠PAC),即∠PAC=∠APB + ∠PBD。

当点P在l_2下方时,过点P作PG∥ l_2,同理可得∠PBD = ∠APB+∠PAC。

二、实数。

题3:已知a、b满足√(2a + 8)+| b - √(3)|=0,解关于x的方程(a + 2)x + b^2=a - 1。

期中解答题压轴必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版

期中解答题压轴必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版

解答题压轴必刷常考题【压轴题题必考】1.(安溪)如图,将一条数轴在原点O和点B处各折一下,AO∥BC,得到一条“折线数轴”.图中点A表示﹣20,点B表示20,点C表示36.动点M从点A出发,以2个单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点N从点C出发,以1个单位/秒的速度沿着“折线数轴”的负方向运动,从点B运动到点O期间的速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.(1)填空:点A和点C在数轴上相距56个单位长度;(2)当t为何值时,点M与点N相遇?(3)当t为何值时,M、O两点在数轴上相距的长度与N、B两点在数轴上相距的长度相等.【答案】(1)56 (2)t=(3)t的值为4或13或22或34【解答】解:(1)∵点A表示﹣20,点C表示36,∴点A和点C在数轴上相距36﹣(﹣20)=56(个单位长度),故答案为:56;(2)由题意知,N从C到B需16s,M从A到O需10s,∴M、N在OB段相遇,根据题意得:20+(t﹣10)+16+2(t﹣16)=56,解得t=,答:t为时,点M与点N相遇;(3)分四种情况:①当点M在AO上,点N在CB上时,OM=20﹣2t,BN=16﹣t,∴20﹣2t=16﹣t,解得t=4,②当M在OB上,N在CB上时,OM=t﹣10,BN=16﹣t,∴t﹣10=16﹣t,解得t=13,③当M在OB上,N在OB上时,OM=t﹣10,BN=2(t﹣16),∴t﹣10=2(t﹣16),解得t=22,④当M在BC上,N在OA上时,20+2(t﹣30)=20+(t﹣26),解得t=34,综上所述,t的值为4或13或22或34时,M、O两点在数轴上相距的长度与N、B两点在数轴上相距的长度相等.2.(朝阳)将一副三角板中的两块直角三角尺的直角顶点C按如图1方式叠放在一起,其中∠A=60°,∠D=30°,∠E=∠B=45°.(1)若∠1=25°,则∠2的度数为;(2)直接写出∠1与∠3的数量关系:;(3)直接写出∠2与∠ACB的数量关系:;(4)如图2,当∠ACE<180°且点E在直线AC的上方时,将三角尺ACD固定不动,改变三角尺BCE的位置,但始终保持两个三角尺的顶点C重合,这两块三角尺是否存在一组边互相平行?请直接写出∠ACE角度所有可能的值.【答案】(1)65°(2)∠1=∠3;(3)∠2+∠ACB=180°(4)30°或45°或120°或135°或165°.【解答】解:(1)∵∠1=25°,∠ACD=90°,∴∠2=∠ACD﹣∠1=65°,故答案为:65°;(2)∵∠1+∠2=∠ACD=90°,∠2+∠3=∠BCE=90°,∴∠1+∠2=∠2+∠3,∴∠1=∠3,故答案为:∠1=∠3;(3)∵∠ACD=∠BCE=90°,∴∠ACB+∠2=∠1+∠2+∠3+∠2=∠ACD+∠BCE=180°,即∠2+∠ACB=180°,故答案为:∠2+∠ACB=180°;(4)存在,①当BC∥AD时,∵BC∥AD,∴∠BCD=∠D=30°,∴∠ACB=90°+30°=120°,∴∠ACE=∠ACB﹣∠BCE=120°﹣90°=30°;②当BE∥AC时,如图,∵BE∥AC,∴∠ACE=∠E=45°;③当AD∥CE时,如图,∵AD∥CE,∴∠DCE=∠D=30°,∴∠ACE=90°+30°=120°;④当BE∥CD时,如图,∵BE∥CD,∴∠DCE=∠E=45°,∴∠ACE=∠ACD+∠DCE=135°;⑤当BE∥AD时,如图,过点C作CF∥AD,∵BE∥AD,CF∥AD,∴BE∥AD∥CF,∴∠ECF=∠E=45°,∠DCF=∠D=30°,∴∠DCE=30°+45°=75°,∴∠ACE=90°+75°=165°.综上所述:当∠ACE=30°或45°或120°或135°或165°时,有一组边互相平行.故答案为:30°或45°或120°或135°或165°.3.(淇县)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【答案】(1)∠BPD=∠B+∠D(2)∠BPD=∠B﹣∠D.【解答】解:(1)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(2)如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠P,∴∠D=∠B+∠P,即∠BPD=∠D﹣∠B;如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠P,∴∠B=∠D+∠P,即∠BPD=∠B﹣∠D.4.(西乡塘)如图,已知DC∥FP,∠1=∠2,∠DEF=30°,∠AGF=70°,FH平分∠EFG.(1)求证:DC∥AB;(2)求∠PFH的度数.【答案】(1)略(2)∠PFH的度数为20°【解答】解:(1)∵DC∥FP,∴∠C=∠2,又∵∠1=∠2,∴∠C=∠1,∴DC∥AB;(2)∵DC∥FP,DC∥AB,∠DEF=30°,∴∠DEF=∠EFP=30°,AB∥FP,又∵∠AGF=70°,∴∠AGF=∠GFP=70°,∴∠GFE=∠GFP+∠EFP=70°+30°=100°,又∵FH平分∠EFG,∴∠GFH=∠GFE=50°,∴∠PFH=∠GFP﹣∠GFH=70°﹣50°=20°.答:∠PFH的度数为20°.5.(海勃湾)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN 上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ 平分∠EPK,求∠HPQ的度数.【答案】(1)AB∥CD(2)PF∥GH(3)∠HPQ的度数为45°【解答】解:(1)AB∥CD,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°﹣∠PKG=90°﹣2∠HPK.∴∠EPK=180°﹣∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴.∴∠HPQ=∠QPK﹣∠HPK=45°.答:∠HPQ的度数为45°.6.(黔江)(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由;(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=60°,∠ABC=40°,求∠BED的度数;(3)如图3,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=α,∠ABC=β,请你求出∠BED的度数(用含α,β的式子表示).【答案】(1)成立(2)∠BED=50°(3)【解答】解:(1)成立,理由:如图1中,作EF//AB,则有EF//CD,∴∠1=∠BAE,∠2=∠DCE∴∠AEC=∠1+∠2=∠BAE+∠DCE;(2)如图2,过点E作EH//AB,∵AB//CD,∠F AD=60°,∴∠F AD=∠ADC=60°,∵DE平分∠ADC,∠ADC=60°,∴,∵BE平分∠ABC,∠ABC=40°,∴,∵AB//CD,∴AB//CD//EH,∴∠ABE=∠BEH=20°,∠CDE=∠DEH=30°,∴∠BED=∠BEH+∠DEH=50°.(3)如图3,过点E作EG//AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=β,∠ADC=∠F AD=α,∴,,∵AB//CD,∴AB//CD//EG,∴,,∴.7.(拱墅)小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由.(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=50°,∠ABC=40°,求∠BED的度数.【答案】(1)∠AEC=∠BAE+∠DCE.(2)∠BED=45°【解答】解:(1)∠AEC=∠BAE+∠DCE成立,理由:过点E作EF∥AB,如图,∵EF∥AB,∴∠A=∠AEF.∵EF∥AB,AB∥CD,∴FE∥CD.∴∠C=∠CEF.∵∠AEC=∠AEF+∠CEF,∴∠AEC=∠BAE+∠DCE.(2)过点E作EH∥AB,如图,由(1)的结论可得:∠BED=∠ABE+∠EDC,∵BE平分∠ABC,∠ABC=40°,∴∠ABE=∠ABC=20°.∵∠F AD=50°,AB∥CD,∴∠ADC=∠F AD=50°.∵DE平分∠ADC,∴∠EDC=∠ADC=25°.∴∠BED=20°+25°=45°.8.(宜兴)如图①,已知PQ∥MN,且∠BAM=2∠BAN.(1)填空:∠PBA=°;(2)如图(1)所示,射线AM绕点A开始顺时针旋转至AN便立即按原速度回转至AM 位置,射线BP绕点B开始顺时针旋转至BQ便立即按原速度回转至BP位置.若AM转动的速度是每秒2度,BP转动的速度是每秒1度,若射线BP先转动30秒,射线AM才开始转动,在射线BP到达BQ之前,射线AM转动几秒,两射线互相平行?(3)如图(2),若两射线分别绕点A,B顺时针方向同时转动,速度同题(2),在射线AM到达AN之前,若两射线交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.【答案】(1)120(2)AM转动30秒或110秒(3)∠BAC=2∠BCD【解答】解:(1)∵∠BAM=2∠BAN,∠BAM+∠BAN=180°,∴∠BAM=120°.∵PQ∥MN,∴∠PBA=∠BAM=120°.故答案为:120;(2)设射线AM转动t秒,两射线互相平行,当0<t<90时,如图,AM′和BP′为经过t秒后AM,BP旋转的位置,则∠MAM′=2t°,∠PBP′=(t+30)°,∵PQ∥MN,∴∠BM′A=∠MAM′=2t°,∵AM′∥BP′,∴∠AM′B=∠PBP′.∴2t=t+30.解得:t=30;当90<t<150时,如图,AM′和BP′为经过t秒后AM,BP旋转的位置,则∠MAM′=(360﹣2t)°,∠PBP′=(t+30)°,∵PQ∥MN,∴∠BM′A=∠MAM′=2t°,∵AM′∥BP′,∴∠AM′B=∠PBP′.∴360﹣2t=t+30.解得:t=110.综上所述,当射线AM转动30秒或110秒时,两射线互相平行.(3)∠BAC与∠BCD的数量关系不会发生变化,∠BAC=2∠BCD.理由:设射线AM,BP转动时间为m秒,∴∠BAC=(2m﹣120)°,∠ABC=(120﹣t)°,∴∠ACB=180°﹣(2m﹣120)°﹣(120﹣m)°=(180﹣m)°.∵∠ACD=120°,∴∠BCD=120°﹣(180﹣m)°=(m﹣60)°.∵2m﹣120=2(m﹣60),∴∠BAC=2∠BCD.∴∠BAC与∠BCD的数量关系不会发生变化,∠BAC=2∠BCD.9.(仁寿)如图①.已知AM∥CN,点B为平面内一点,AB⊥BC于点B,过点B作BD⊥AM于点D,设∠BCN=α.(1)若α=30°,求∠ABD的度数;(2)如图②,若点E、F在DM上,连接BE、BF、CF,使得BE平分∠ABD、BF平分∠DBC,求∠EBF的度数;(3)如图③,在(2)问的条件下,若CF平分∠BCH,且∠BFC=3∠BCN,求∠EBC 的度数.【答案】(1)30°(2)45°(3)97.5°.【解答】解:(1)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α=30°,∴∠HBC=90°﹣∠BCN=60°.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=30°;(2)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α,∴∠HBC=90°﹣α.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=α.∵BE平分∠ABD,∴∠DBE=∠ABE=α.∵∠HBC=90°﹣α,∴∠DBC=180°﹣∠HBC=90°+α.∵BF平分∠DBC,∴∠DBF=∠CBF=∠DBC=45°+α.∴∠EBF=∠DBF﹣∠DBE=45°+α﹣α=45°;(3)∵∠BCN=α,∴∠HCB=180°﹣∠BCN=180°﹣α.∵CF平分∠BCH,∴∠BCF=∠HCF=∠HCB=90°﹣α.∵AM∥CN,∴∠DFC=∠HCF=90°﹣α.∵∠BFC=3∠BCN,∴∠BFC=3α.∴∠DFB=∠DFC﹣∠BFC=90°﹣α.由(2)知:∠DBF=45°+α.∵BD⊥AM,∴∠D=90°.∴∠DBF+∠DFB=90°.∴45°+α+90°﹣α=90°.解得:α=15°.∴∠FBC=∠DBF=45°+α=52.5°.∴∠EBC=∠FBC+∠EBF=52.5°+45°=97.5°.10.(邵东)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B 两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA =|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=.(2)数轴上表示2和﹣4A和B之间的距离AB=.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=| ,如果AB=2,则x的值为.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为.【答案】(1)AB=|a﹣b|(2)6 (3)0或﹣4 (4)5【解答】解:(1)综上所述,数轴上A、B两点之间的距离AB=|a﹣b|;(2)数轴上表示2和﹣4的两点A和B之间的距离AB=2﹣(﹣4)=2+4=6;(3)数轴上表示x和﹣2的两点A和B之间的距离AB=|x+2|,如果AB=2,则x的值为0或﹣4;(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为5.故答案为:(1)|a﹣b|;(2)6;(3)|x+2|;0或﹣4;(4)511.(广安)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.【答案】(1)76(2)﹣2或4(3)6【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.12.(兴宁)如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是3个单位长度,长方形ABCD的长AD是6个单位长度,长方形EFGH的长EH是10个单位长度,点E在数轴上表示的数是5.且E、D两点之间的距离为14.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒,原点为O.当OM=2ON时,求x的值.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,设长方形ABCD运动的时间为t(t>0)秒,两个长方形重叠部分的面积为S,当S=12时,求此时t的值.【答案】(1)15;﹣15(2)或.(3)t的值为9或13.【解答】解:(1)由题意可得,点H在数轴上表示的数为:5+10=15;点A在数轴上表示的数为:5﹣14﹣6=﹣15.故答案为:15;﹣15.(2)∵点M是线段AD的中点,∴点M表示的数为5﹣14﹣=﹣12,又∵EN=EH,∴点N在数轴上表示的数为:5+(15﹣5)=,由题意可得,x秒时,点M在数轴上表示的数为:﹣12+4x,点N在数轴上表示的数为:﹣3x,∴OM=|4x﹣12|,ON=|3x﹣|,∵OM=2ON,∴|4x﹣12|=2|3x﹣|∴4x﹣12=2(3x﹣)或4x﹣12=﹣2(3x﹣),解得x=或x=.故答案为:或.(3)当CD与EF重合时,所用时间为=7秒,由题意得:AD与EH重合的部分为=4,如图1所示,设长方形ABCD从EF运动到AD与EH重叠部分为4时,所用的时间为t1秒,∴t1==2,∴第一次重叠面积为12时,时间t为2+7=9(秒);当AD与EH重叠部分为4时,如图2所示,设长方形ABCD从EF运动到AD与EH重叠部分为4时,所用的时间为t2秒,∴t2==6,∴第二次重叠面积S=12时,时间t为6+7=13(秒);∴当长方形ABCD与长方形EFGH重叠部分的面积为12时,t的值为9或13.13.(宣化)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示﹣,设点B所表示的数为m.(1)实数m的值是;(2)求|m+1|+|m﹣1|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+d|与互为相反数,求2c﹣3d的平方根.【答案】(1)2﹣(2)2 (3)±4.【解答】解:(1)m=﹣+2=2﹣;(2)∵m=2﹣,则m+1>0,m﹣1<0,∴|m+1|+|m﹣1|=m+1+1﹣m=2;答:|m+1|+|m﹣1|的值为2.(3)∵|2c+d|与互为相反数,∴|2c+d|+=0,∴|2c+d|=0,且=0,解得:c=﹣2,d=4,或c=2,d=﹣4,①当c=﹣2,d=4时,所以2c﹣3d=﹣16,无平方根.②当c=2,d=﹣4时,∴2c﹣3d=16,∴2c﹣3d的平方根为±4,答:2c﹣3d的平方根为±4.14.(锦江)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,当点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,当点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|.回答下列问题:(1)数轴上表示1和6的两点之间的距离是数轴上表示2和﹣3的两点之间的距离是.(2)数轴上若点A表示的数是x,点B表示的数是﹣4,则点A和B之间的距离是,若|AB|=3,那么x为.(3)当x是时,代数式|x+2|+|x﹣1|=7.(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q 同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒个单位长度,求运动几秒后,B、P、Q三点中,有一点恰好是另两点所连线段的中点?(请写出必要的求解过程).【答案】(1)5,5(2)﹣1或﹣7 (3)﹣4或3 (4)运动或或5秒【解答】解:(1)数轴上表示1和6的两点之间的距离是|6﹣1|=5,数轴上表示2和﹣3的两点之间的距离是|2﹣(﹣3)|=5.(2)数轴上若点A表示的数是x,点B表示的数是﹣4,则点A和B之间的距离是|x+4|,若|AB|=3,则|x+4|=3,解得x=﹣1或﹣7.(3)当x>1时,|x+2|+|x﹣1|=x+2+x﹣1=7,2x=6,x=3,当x<﹣2时,|x+2|+|x﹣1|=﹣x﹣2+1﹣x=7,﹣2x=8,x=﹣4,当﹣2≤x≤1时,|x+2|+|x﹣1|=x+2+1﹣x=3≠7,∴当x=﹣4或3时,代数式|x+2|+|x﹣1|=7.(4)设运动t秒后,有一点恰好是另两点所连线段的中点,由题意,得①点B为线段PQ中点时,,解得,②点P为线段BQ中点时,,解得,③点Q为线段BP中点时,,解得t=5.答:运动或或5秒后,B、P、Q三点中,有一点恰好是另两点所连线段的中点.15.(宣化)阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能完全地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答下列问题:(1)求出+2的整数部分和小数部分;(2)已知:10+=x+y,其中x是整数,且0<y<1,请你求出(x﹣y)的相反数.【答案】(1)3,﹣1 (2)﹣14【解答】解:(1)∵1<<2,∴3<+2<4,∴+2的整数部分是1+2=3,+2的小数部分是﹣1;(2)∵2<<3,∴12<10+<13,∴10+的整数部分是12,10+的小数部分是10+﹣12=﹣2,即x=12,y=﹣2,∴x﹣y=12﹣(﹣2)=12﹣+2=14﹣,则x﹣y的相反数是﹣14.16.(靖江)在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a阶派生点”(其中a为常数,且a≠0).例如:点P(1,4)的“2阶派生点”为点Q(2×1+4,1+2×4),即点Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3阶派生点”的坐标为;(2)若点P的“5阶派生点”的坐标为(﹣9,3),求点P的坐标;(3)若点P(c+1,2c﹣1)先向左平移2个单位长度,再向上平移1个单位长度后得到了点P1.点P1的“﹣4阶派生点”P2位于坐标轴上,求点P2的坐标.【答案】(1)(2,14)(2)(﹣2,1);(3)(0,﹣15)或(,0).【解答】解:(1)3×(﹣1)+5=2;﹣1+3×5=14,∴点P的坐标为(﹣1,5),则它的“3级派生点”的坐标为(2,14).故答案为:(2,14);(2)设点P的坐标为(a,b),由题意可知,解得:,∴点P的坐标为(﹣2,1);(3)由题意,P1(c﹣1,2c),∴P1的“﹣4阶派生点“P2为:(﹣4(c﹣1)+2c,c﹣1﹣8c),即(﹣2c+4,﹣7c﹣1),∵P2在坐标轴上,∴﹣2c+4=0或﹣7c﹣1=0,∴c=2或c=﹣,∴P2(0,﹣15)或(,0).17.(黄山)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.【答案】(1)①E、F;②(﹣3,3);(2)1或2【解答】解:(1)①∵点A(﹣3,1)到x、y轴的距离中最大值为3,∴与A点是“等距点”的点是E、F.②当点B坐标中到x、y轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A符合“等距点”的是(﹣3,3).故答案为①E、F;②(﹣3,3);(2)T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,①若|4k﹣3|≤4时,则4=﹣k﹣3或﹣4=﹣k﹣3解得k=﹣7(舍去)或k=1.②若|4k﹣3|>4时,则|4k﹣3|=|﹣k﹣3|解得k=2或k=0(舍去).根据“等距点”的定义知,k=1或k=2符合题意.即k的值是1或2.18.(延长)在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).(1)直接写出点B和点C的坐标B(,)、C(,);(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;(3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使S△APD=S,若存在,请求出t值,若不存在,请说明理由.四边形ABOC【答案】(1)0、6,8、0 (2)AP=8﹣2t(0≤t<4);AP=2t﹣8(4≤t≤7).(3)当t为3秒和5秒时S△APD=S四边形ABOC【解答】解:(1)B(0,6),C(8,0),故答案为:0、6,8、0;(2)当点P在线段BA上时,由A(8,6),B(0,6),C(8,0)可得:AB=8,AC=6∵AP=AB﹣BP,BP=2t,∴AP=8﹣2t(0≤t<4);当点P在线段AC上时,∵AP=点P走过的路程﹣AB=2t﹣8(4≤t≤7).(3)存在两个符合条件的t值,当点P在线段BA上时∵S△APD=AP•AC S四边形ABOC=AB•AC∴(8﹣2t)×6=×8×6,解得:t=3<4,当点P在线段AC上时,∵S△APD=AP•CD CD=8﹣2=6∴(2t﹣8)×6=×8×6,解得:t=5<7,综上所述:当t为3秒和5秒时S△APD=S四边形ABOC,19.(齐齐哈尔)如图①,在平面直角坐标系中,点A、B在x轴上,AB⊥BC,AO=OB=2,BC=3(1)写出点A、B、C的坐标.(2)如图②,过点B作BD∥AC交y轴于点D,求∠CAB+∠BDO的大小.(3)如图③,在图②中,作AE、DE分别平分∠CAB、∠ODB,求∠AED的度数.【答案】(1)A(﹣2,0),B(2,0),C(2,3);(2)90°(3)45°【解答】解:(1)依题意得:A(﹣2,0),B(2,0),C(2,3);(2)∵BD∥AC,∴∠ABD=∠BAC,∴CAB+∠BDO=∠ABD+∠BDO=90°;(3):∵BD∥AC,∴∠ABD=∠BAC,∵AE,DE分别平分∠CAB,∠ODB,∴∠CAE+∠BDE=(∠BAC+∠BDO)=(∠ABD+∠BDO)=×90°=45°,过点E作EF∥AC,则∠CAE=∠AEF,∠BDE=∠DEF,∴∠AED=∠AEF+∠DEF=∠CAE+∠BDE=45°.20.(随县)如图,在平面直角坐标系中,已知点A(0,2),B(4,0),C(4,3)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点坐标.【答案】(1)6(2)P(﹣8,1)【解答】解:(1)∵B(4,0),C(4,3),∴BC=3,∴S△ABC=×3×4=6;(2)∵A(0,2)(4,0),∴OA=2,OB=4,∴S四边形ABOP=S△AOB+S△AOP=×4×2+×2(﹣m)=4﹣m,又∵S四边形ABOP=2S△ABC=12,∴4﹣m=12,解得:m=﹣8,∴P(﹣8,1).。

部编数学七年级上册专题3.5一元一次方程(压轴题综合训练卷)(人教版)(解析版)含答案

部编数学七年级上册专题3.5一元一次方程(压轴题综合训练卷)(人教版)(解析版)含答案

专题3.5 一元一次方程(满分100)学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(本大题共10小题,每小题3分,满分30分)1.下列各式中:①由3x=﹣4系数化为1得x=﹣34;②由5=2﹣x移项得x=5﹣2;③由2x−13=1+x−32去分母得2(2x﹣1)=1+3(x﹣3);④由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1.其中正确的个数有( )A.0个B.1个C.3个D.4个【思路点拨】根据解一元一次方程的去分母、去括号、移项及系数化1的方法依次判断后即可解答.【解题过程】2.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,可列方程()A.x23=x2−9B.x3+2=x−92C.x3−2=x92D.x−23=x2+9【思路点拨】设有x人,根据车的辆数不变,即可得出关于x的一元一次方程,此题得解.【解题过程】3.解方程2x−13=x a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是()A.x=−3B.x=−2C.x=13D.x=−13【思路点拨】先按此方法去分母,再将x=-2代入方程,求得a的值,然后把a的值代入原方程并解方程.【解题过程】4.今年某月的月历上圈出了相邻的三个数a、b、c,并求出了它们的和为39,这三个数在月历中的排布不可能是( )A.B.C.D.【思路点拨】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1根据题意可列方程求解.【解题过程】5.满足方程|x+23|+|x−43|=2的整数x有()个A.0个B.1个C.2个D.3个【思路点拨】【解题过程】6.若m、n是有理数,关于x的方程3m(2x﹣1)﹣n=3(2﹣n)x有至少两个不同的解,则另一个关于x的方程(m+n)x+3=4x+m的解的情况是( )A.有至少两个不同的解B.有无限多个解C.只有一个解D.无解【思路点拨】首先解方程3m(2x﹣1)﹣n=3(2﹣n)x,可得:(6m+3n﹣6)x=3m+n,再根据方程有两个解的条件可得到m,n的值,然后代入方程(m+n)x+3=4x+m中即可知道其解的情况.【解题过程】解:解方程3m(2x﹣1)﹣n=3(2﹣n)x可得:(6m+3n﹣6)x=3m+n∵有至少两个不同的解,∴6m+3n﹣6=3m+n=0,即m=﹣2,n=6,把m=﹣2,n=6代入(m+n)x+3=4x+m中得:4x+3=4x+m,∴方程(m+n)x+3=4x+m无解.故选:D.7.若不论k取什么实数,关于x的方程2kx a3−x−bk6=1(a、b是常数)的根总是x=1,则a+b=( )A.12B.32C.−12D.−32【思路点拨】【解题过程】8.已知关于x的一元一次方程x−3−ax6=x32−1的解是偶数,则符合条件的所有整数a的和为()A.−12B.−14C.−20D.−32【思路点拨】先用含a的式子表示出原方程的解,再根据解为偶数,可求得a的值,则符合条件的所有整数a的和可求.【解题过程】9.若关于x的一元一次方程3x−5m2−x−m3=19的解,比关于x的一元一次方程﹣2(3x﹣4m)=1﹣5(x﹣m)的解大15,则m=( )A.2B.1C.0D.﹣1【思路点拨】【解题过程】10.如图,数轴上的点O 和点A 分别表示0和10,点P 是线段OA 上一动点.点P 沿O →A →O 以每秒2个单位的速度往返运动1次,B 是线段OA 的中点,设点P 运动时间为t 秒(t 不超过10秒).若点P 在运动过程中,当PB =2时,则运动时间t 的值为( )A .32秒或52秒B .32秒或72秒或132秒或152秒C .3秒或7秒或132秒或172秒D .32秒或72秒或132秒或172秒【思路点拨】分0≤t ≤5与5≤t ≤10两种情况进行讨论,根据PB =2列方程,求解即可.【解题过程】二.填空题(本大题共5小题,每小题3分,满分15分)11.关于x的方程mx2m﹣1+(m﹣1)x-2=0如果是一元一次方程,则其解为_____.【思路点拨】利用一元一次方程的定义判断即可.【解题过程】12.若关于x=x−nk6+2,无论k为任何数时,它的解总是x=1,那么m+n=_______.【思路点拨】先将x=1代入原方程得,根据无论k为任何数时(4+n)k=13−2m恒成立,可得k的系数为0,由此即可求出答案.【解题过程】13.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=−1233=43,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.【思路点拨】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【解题过程】14.甲乙两地相距180km,一列慢车以40km/h的速度从甲地匀速驶往乙地,慢车出发30分钟后,一列快车以60km/h的速度从甲地匀速驶往乙地.两车相继到达终点乙地,在整个过程中,两车恰好相距10km的次数是____________次.【思路点拨】利用时间=路程÷速度,可求出快车未出发且两车相距10km的时间,设快车出发x小时时,两车相距10km,分快车未超过慢车时、快车超过慢车10km时及快车到达乙地后三种情况,根据路程=速度×时间结合两车之间相距10km,即可得出关于x的一元一次方程,解之即可得出x的值,进而可得出结论.【解题过程】15.如图,长方形ABCD中,AB=4cm,BC=3cm,点E是CD的中点,动点P从A点出发,以每秒1cm的速度沿A→B→C→E运动,最终到达点E.若点P运动的时间为x秒,那么当x=_____________秒时,ΔAPE的面积等于5cm2.【思路点拨】【解题过程】评卷人得 分三.解答题(本大题共8小题,满分55分)16.解下列方程:(1)119x+27=29x-57;(2)278(x -3)-463(6-2x)-888(7x -21)=0;(3)32[23(x 4-1)-2]-x=2;(4)x-13[x-13(x-9)]=19(x-9).【思路点拨】(1)将方程移项合并同类项,即可求出解;(2)把x-3当作一个整体,先合并后再解方程即可;(3)先去中括号,再解方程即可;(4)把x-9当作一个整体,先合并后再解方程即可.【解题过程】17.解方程,(1)0.1x0.030.2−0.2x−0.030.3+34=0(2)2014−x2013+2016−x2015=2018−x2017+2020−x2019【思路点拨】【解题过程】18.已知关于x的方程(|k|﹣3)x2﹣(k﹣3)x+2m+1=0是一元一次方程.(1)求k的值;(2)若已知方程与方程3x﹣2=4﹣5x+2x的解互为相反数,求m的值.【思路点拨】(1)根据一元一次方程的定义即可得到|k|−3=0k−3≠0,由此求解即可;(2)先求出方程3x−2=4−5x+2x的解为x=1,再根据相反数的定义即可得到方程(|k|−3)x2−(k−3) x+2m+1=0的解为x=−1,由此进行求解即可.【解题过程】解:(1)∵关于x的方程(|k|−3)x2−(k−3)x+2m+1=0是一元一次方程,∴|k|−3=0k−3≠0,∴k=−3;(2)∵3x−2=4−5x+2x,∴3x+5x−2x=4+2即6x=6,解得x=1,∴方程3x−2=4−5x+2x的解为x=1,∵方程(|k|−3)x2−(k−3)x+2m+1=0即6x+2m+1=0的解与方程3x−2=4−5x+2x的解互为相反数,∴方程(|k|−3)x2−(k−3)x+2m+1=0的解为x=−1,19.定义:对于一个有理数x,我们把[x]称作x的对称数.若x≥0,则[x]=x-2:若x<0,则[x]=x+2.例:[1]=1-2=-1,[-2]=-2+2=0],[-1]的值;(1)求[32(2)已知有理数a>0.b<0,且满足[a]=[b],试求代数式(b−a)3−2a+2b的值:(3)解方程:[2x]+[x+1]=1【思路点拨】(1)利用题中新定义计算即可得到结果(2)根据已知条件及新定义计算得到a−b=4,对原式化简整理再整体代入计算即可;(3)分三种情况讨论:x<−1;−1≤x<0;x≥0【解题过程】20.下表是中国移动两种“4G套餐”计费方式(月租费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网超流量部分加收超时费和超流量费)月租费(元)主叫通话(分钟)上网流量(G)接听主叫超时部分(元/分钟)超出流量部分(元/G)方式一382003免费0.1510方式二603005免费0.108(1)若某月小张主叫通话时间为260分钟,上网流量为4G,则他按方式一计费需________元,按方式二计费需_______元;(2)若某月小张按方式二计费需78元,主叫通话时间为320分钟,则小张该月上网流量为多少G?(3)若某月小张上网流量为4G,是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等?若存在,请求出t的值;若不存在,请说明理由.【思路点拨】(1)根据表中数据分别计算两种计费方式,求解即可;(2)由题意可知上网流量超过5G,设小张该月上网流量为xG,根据题意列方程得:60+0.1×(320−300) +8(x−5)=78,解出即可;(3)分三种情况:当0≤t≤200时,38+(4−3)×10=48≠60;当200<t≤300时,可得38+(4−3)×10+0.15×(t−200)=60,当t>300时,可得38+(4−3)×10+0.15×(t−200)=60+0.1×(t−300),解出判断即可.【解题过程】.解:(1)方式一:38+0.15(260﹣200)+10(4﹣3)=38+0.15×60+10×1=38+9+10=57.方式二:∵没有超出套餐∴方式二:60故答案为:57;60.(2)∵60+0.1×(320−300)=62<78,∴该月上网流量超过5G.设小张该月上网流量为xG,根据题意列方程得:60+0.1×(320−300)+8(x−5)=78解得:x=7答:小张该月上网流量为7G.(3)当0≤t≤200时,38+(4−3)×10=48≠60,∴不存在;当200<t≤300时,38+(4−3)×10+0.15×(t−200)=60,解得:t=280;当t>300时,38+(4−3)×10+0.15×(t−200)=60+0.1×(t−300)解得:t=240<300,舍.综上所述,当上网流量为4G,主叫通话时间为280分钟时,两种计费方式相同.21.某超市的平时购物与国庆购物对顾客实行优惠规定如下:平时购物国庆购物实际付款第一档不超过200元的部分不超过200元的部分原价第二档超过200元但不超过800元的部分超过200元但不超过500元的部分九折第三档超过800元的部分超过500元的部分八折例如:某人在平时一次性购物600元,则实际付款为:200+(600-200)×0.9=560(元)(1)若王阿姨在国庆期间一次性购物600元,他实际付款______元.(2)若王阿姨在国庆期间实际付款380元.那么王阿姨一次性购物____元;(3)王阿姨在平时和国庆先后两次购买了相同价格的货物,两次一共付款1314元,求王阿姨这两次每次购买的货物的原价多少元?【思路点拨】(1)根据题意和表格中的数据,可以计算出王阿姨实际付款多少;(2)根据题意,可以先判断购买的货物是否超过,然后列出相应的方程,再求解即可;(3)根据题意,利用分类讨论的方法列出相应的方程,然后求解即可.【解题过程】(1)解:200+(500−200)×0.9+(600−500)×0.8=550;(2)解:设王阿姨一次购物x元,若x=500时,王阿姨实际付款应为:200+(500−200)×0.8=440(元),∵440>380>200,∴200<x<500,∴列方程:200+(x−200)×0.9=380,解得:x=400;∴王阿姨这两次每次购买的货物的原价400元;(3)解:设这两次每次购物的货物原价为x元,①当x≤200时,2x≤400,不符合题意;②当200<x≤500时,可列方程为:200+(x−200)×0.9+(x−200)×0.9=1314,,解得:x=737097370>500,不符合题意;9③当500<x≤800时,可列方程200+(x−200)×0.9+200+(500−200)×0.9+(x−500)×0.8=1314,解得:x=720,500<720<800,符合题意;④当x>800时,可列方程200+(800−200)×0.9+(x−800)×0.8+200+(500−200)×0.9+(x−500)×0.8=1314,解得:x=715,715<800,不符合题意,综上述x=720.答:王阿姨这两次每次购买的货物的原价720元.22.如图,甲、乙两个长方体容器放置在同一水平桌面上,容器甲的底面积为80dm2,高为6dm;容器乙的底面积为40dm2,高为9dm.容器甲中盛满水,容器乙中没有水,容器乙的最下方装有一只处在关闭状态的水龙头.现从容器甲向容器乙匀速注水,每分钟注水20dm3.(1)容器甲中水位的高度每分钟下降__________dm,容器乙中水位的高度每分钟上升__________dm;(2)当容器乙注满水时,求此时容器甲中水位的高度;(3)在容器乙注满水的同时,打开水龙头开始放水,水龙头每分钟放水60dm3.从容器甲开始注水起,经过多长时间,两个容器中水位的高度相差4dm?【思路点拨】(1)根据:每分钟的注水量÷容器的底面积,即可求得两容器中水位每分钟下降和上升的高度;(2)两容器中容积的差便是容器甲中剩余的水,根据体积÷底面积,即可求得此时容器甲中水位的高度;(3)分三种情况考虑:在容器乙未注满水时,容器甲的水位比容器乙的水位高4dm;在容器乙未注满水时,容器乙的水位比容器甲的水位高4dm;在容器乙注满水时,容器乙的水位比容器甲的水位高4dm;根据等量关系:两容器高度差=4,列出方程解决.【解题过程】23.如图,A在数轴上所对应的数为−2.(1)点B与点A相距4个单位长度,则点B所对应的数为______.(2)在(1)的条件下,如图1,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到−6所在的点处时,求A,B两点间距离.(3)如图2,若点B对应的数是10,现有点P从点A出发,以4个单位长度/秒的速度向右运动,同时另一点Q 从点B出发,以1个单位长度/秒的速度向右运动,设运动时间为t秒.在运动过程中,P到B的距离、B到Q的距离以及P到Q的距离中,是否会有某两段距离相等的时候?若有,请求出此时t的值;若没有,请说明理由.图1图2【思路点拨】(1)设B点表示的数为x,根据两点距离公式列出方程解答便可;(2)先求出运动后两点表示的数,再根据距离公式求得结果;(3)根据题意用t的代数式表示PB,BQ,PQ,再分三种情况(PB=BQ,PB=PQ,BQ=PQ)列出方程求解,若存在解,则有相等情况,若无解则不存在相等情况.【解题过程】解:(1)点B在点A左侧时,B为:−2−4=−6点B在点A右侧时,B为:−2+4=2,综上所述,点B对应的数为−6或2.(2)①当B对应的数为−6时,A:−2−(−6)=4个单位,4÷2=2(秒),B:−6+2×2=−2,∴AB=−2−(−6)=4;②当B对应的数为2时,A:−2−(−6)=4个单位,4÷2=2(秒),B:2+2×2=6AB=6−(−6)=12综上所述,A,B两点之间的距离为4或12.(3)在运动过程中,会有两段距离相等的时候,由题可知:P点表示的数为−2+4t,Q点表示的数为10+t∴AP=4tBQ=t,PQ=|10+t+2−4t|=|12−3t|PB=|12−4t|分三种情况:①当PB=BQ时,B为PQ中点或P与Q重合,若B为PQ中点,如图1图1则AB−AP=BQ即12−4t=t24.如图,AB和CD是数轴上的两条线段,线段AB的长度为1个单位长度,线段CD的长度为2个单位长度,B,C之间的距离为6个单位长度且与原点的距离相等.分别以AB,CD为边作正方形ABEF,正方形CDGH.(1)直接写出:B表示的数为______,D表示的数为______;(2)P,Q是数轴上的动点,点P从B出发,以每秒1个单位长度的速度向C运动,点Q从C出发,向B运动,P,Q相遇后均立即以每秒比之前多1个单位长度的速度返回,分别到达B,C点后立即返回,第二次相遇时P,Q两点同时停止运动.已知第一次相遇时,点P到点C的距离比点P到点B的距离多两个单位长度,求P,Q第二次相遇时,点P所表示的数.(3)将AB和CD较近的两个端点之间的距离叫做正方形ABEF和正方形CDGH之间的最小距离,将AB和CD较远的两个端点之间的距离叫做正方形ABEF和正方形CDGH之间的最大距离.例如图中正方形ABEF 和正方形CDGH之间的最小距离即B,C之间的距离,最大距离即A,D之间的距离.若正方形ABEF以每秒1个单位长度的速度向数轴的正方向运动,正方形CDGH以每秒2个单位长度的速度向数轴的负方向运动.设运动时间为t秒,当这两个正方形之间的最大距离是最小距离的两倍时,请直接写出t的值.【思路点拨】(1)求得OB=OC=3,根据数轴上点的位置关系,即可求解;(2)先求得第一次相遇时点P所表示的数,所用时间,Q的速度;再设第二次相遇时,点P所表示的数为y,根据题意列方程求解即可;(3)设运动时间为t秒,则点B、点A、点C、点D所表示的数分别为t-3、、t-4、3-2t、5-2t,再画出图形,利用两点之间的距离公式列出方程,解方程即可求解.【解题过程】综上,t 的值为1秒或73秒或52秒或83秒或4秒.。

七年级上册数学压轴题专题练习(解析版)

七年级上册数学压轴题专题练习(解析版)

七年级上册数学压轴题专题练习(解析版)一、压轴题1.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.2.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 3.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 4.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值(3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)5.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?6.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =7.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|; (应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 . (2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 . (拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5. 解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).8.综合与实践 问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3 (1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程) ②若AB a ,AC b =,则MN =___________;(直接写出结果) (2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON . ③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果) (3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)9.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示);(4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.10.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).11.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.12.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例: 例:将0.7•化为分数形式, 由于0.70.777•=,设0.777x =,①得107.777x =,②②−①得97x =,解得79x =,于是得70.79•=. 同理可得310.393•==,4131.410.4199••=+=+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) (类比应用) (1)4.6•= ;(2)将0.27••化为分数形式,写出推导过程; (迁移提升)(3)0.225••= ,2.018⋅⋅= ;(注0.2250.225225••=,2.018 2.01818⋅⋅=)(拓展发现) (4)若已知50.7142857=,则2.285714= .【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)8;(2)4或10;(3)t 的值为167和329【解析】 【分析】(1)由数轴上点B 在点A 的右侧,故用点B 的坐标减去点A 的坐标即可得到AB 的值; (2)设点C 表示的数为x ,再根据AC=3BC ,列绝对值方程并求解即可;(3)点C 位于A ,B 两点之间,分两种情况来讨论:点C 到达B 之前,即2<t<3时;点C 到达B 之后,即t>3时,然后列方程并解方程再结合进行取舍即可. 【详解】解:(1)∵数轴上两点A ,B 表示的数分别为﹣2,6 ∴AB =6﹣(﹣2)=8 答:AB 的值为8.(2)设点C 表示的数为x ,由题意得 |x ﹣(﹣2)|=3|x ﹣6| ∴|x +2|=3|x ﹣6|∴x +2=3x ﹣18或x +2=18﹣3x ∴x =10或x =4答:点C 表示的数为4或10. (3)∵点C 位于A ,B 两点之间,∴点C表示的数为4,点A运动t秒后所表示的数为﹣2+t,①点C到达B之前,即2<t<3时,点C表示的数为4+2(t﹣2)=2t ∴AC=t+2,BC=6﹣2t∴t+2=3(2t﹣6)解得t=16 7②点C到达B之后,即t>3时,点C表示的数为6﹣2(t﹣3)=12﹣2t ∴AC=|﹣2+t﹣(12﹣2t)|=|3t﹣14|,BC=6﹣(12﹣2t)=2t﹣6∴|3t﹣14|=3(2t﹣6)解得t=329或t=43,其中43<3不符合题意舍去答:t的值为167和329【点睛】本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.2.(1)-1;1;5;(2)2x+12;(3)不变,理由见解析【解析】【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据x的范围,确定x+1,x-3,5-x的符号,然后根据绝对值的意义即可化简;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x)+2(x+5)=x+1-1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0.∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10=2x+12;(3)不变.理由如下:t秒时,点A对应的数为-1-t,点B对应的数为2t+1,点C对应的数为5t+5.∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t )=3t+2, ∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB 值的不随着时间t 的变化而改变. 【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 3.(1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析【解析】 【分析】(1)根据“相伴数对”的定义,将()1,b 代入2323a b a b++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可;(3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. 【详解】解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫- ⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49mn 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭将:491,94a nb n =-+=- 代入2323a b a b++=+左边=49149942336n n n -+--+= 右边=49149942336n n n -++--=+∴左边=右边∴当(),m n 是“相伴数对”时, 91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对” 【点睛】本题考查定义新运算,正确理解定义是解题关键. 4.(1)1.5k ;(2)317,1,3,55h h h h ;(3)5,20-5t 【解析】 【分析】(1)根据速度,求出t=0.5时的路程,即可得到P 、C 间的距离;(2)分由A 去B ,B 返回A 两种情况,各自又分在点C 的左右两侧,分别求值即可; (3)PA 的距离为由A 去B ,B 返回A 两种情况求值. 【详解】(1)由题知: 5/,4, 10v km h AC km AB km ===当0.5t h =时,50.5 2.5s vt kom ==⨯=,即 2.5AP km =425 1.5PC AC AP k ∴=-=-=()2当小明由A 地去B 地过程中: 在AC 之间时, 41355t -==(小时), 在BC 之间时, 4115t +==(小时), 当小明由B 地返回A 地过程中: 在BC 之间时, 1024135t ⨯--==(小时), 在AC 之间时, 102(41)1755t ⨯--==(小时),故满足条件的t 值为:317,1,3,55h h h h (3)当小明从A 运动到B 的过程中,AP=vt= 5, 当小明从B 运动到A 的过程中,AP= 20-vt= 20- 5t. 【点睛】此题考查线段的和差的实际应用,掌握题中运用的行程题的公式,正确理解题意即可正确解题.5.(1)A 、B 位置见解析,A 、B 之间距离为30;(2)2或-6;(3)第20次P 与A 重合;点P 与点B 不重合. 【解析】 【分析】(1)点B 距离原点10个单位长度,且位于原点左侧,得到点B 表示的数,再根据平移的过程得到点A 表示的数,在数轴上表示出A 、B 的位置,根据数轴上两点间的距离公式,求出A 、B 之间的距离即可;(2)设P 点对应的数为x ,当P 点满足PB=2PC 时,得到方程,求解即可;(3)根据第一次点P 表示-1,第二次点P 表示2,点P 表示的数依次为-3,4,-5,6…,找出规律即可得出结论. 【详解】解:(1)∵点B 距离原点10个单位长度,且位于原点左侧, ∴点B 表示的数为-10,∵将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A , ∴点A 表示的数为20, ∴数轴上表示如下:AB 之间的距离为:20-(-10)=30; (2)∵线段OB 上有点C 且6BC =, ∴点C 表示的数为-4, ∵2PB PC =, 设点P 表示的数为x , 则1024x x +=+, 解得:x=2或-6, ∴点P 表示的数为2或-6; (3)由题意可知:点P 第一次移动后表示的数为:-1, 点P 第二次移动后表示的数为:-1+3=2, 点P 第三次移动后表示的数为:-1+3-5=-3, …,∴点P 第n 次移动后表示的数为(-1)n •n , ∵点A 表示20,点B 表示-10, 当n=20时,(-1)n •n=20; 当n=10时,(-1)n •n=10≠-10,∴第20次P 与A 重合;点P 与点B 不重合. 【点睛】本题考查的是数轴,绝对值,数轴上两点之间的距离的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系. 6.(1)3;(2)12或74-;(3)13秒或79秒 【解析】 【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可. 【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1, ∴线段AB 的长度为:-1-(-4)=3; (2)设点D 对应的数为x ,∵DA=3DB , 则314x x +=+,则()314x x +=+或()314x x +=--, 解得:x=12或x=74-, ∴点D 对应的数为12或74-; (3)设t 秒后,OA=3OB , 则有:47312t t t t -+-=-+-, 则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+, 解得:t=13或t=79, ∴13秒或79秒后,OA=3OB . 【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法.7.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)5;(2)t =±2;(3)d (P ,Q )的值为4或8. 【解析】 【分析】(1)根据若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1-x 2|,代入数据即可得出结论; (2)由CD ∥y 轴,可设点D 的坐标为(1,m ),根据CD=2即可得出|0-m|=2,解之即可得出结论;【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d(E,H)=3,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q在x轴上,可设点Q的坐标为(x,0),根据三角形的面积公式结合三角形OPQ的面积为3即可求出x的值,再利用两点之间的折线距离公式即可得出结论.【详解】解:【应用】:(1)AB的长度为|﹣1﹣2|=3.故答案为:3.(2)由CD∥y轴,可设点D的坐标为(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴点D的坐标为(1,2)或(1,﹣2).【拓展】:(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案为:5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴12|x|×3=3,解得:x=±2.当点Q的坐标为(2,0)时,d(P,Q)=|3﹣2|+|3﹣0|=4;当点Q的坐标为(﹣2,0)时,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8综上所述,d(P,Q)的值为4或8.【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.8.(1)①3;②12a;(2)③40 ;④40;(3)12n【解析】【分析】(1)①先求出BC,再根据中点求出AM、BN,即可求出MN的长;②利用①的方法求MN即可;(2)③先求出∠BOC,再利用角平分线的性质求出∠AOM,∠BON,即可求出∠MON;④利用③的方法求出∠MON的度数;(3)先求出∠BOC,利用角平分线的性质分别求出∠AOM,∠BON,再根据角度的关系求出答案即可.【详解】(1)①∵6AB =,2AC =,∴BC=AB-AC=4,∵M 是AC 的中点,N 是BC 的中点. ∴112AM AC ==, 122BN BC ==, ∴MN=AB-AM-BN=6-1-2=3; ②∵AB a ,AC b =,∴BC=AB-AC=a-b ,∵M 是AC 的中点,N 是BC 的中点. ∴12AM b =,1()2BN a b =-, ∴MN=AB-AM-BN=11()22a b a b ---=12a , 故答案为:12a ; (2)③∵80AOB ∠=︒,30AOC ∠=︒,∴∠BOC=∠AOB-∠AOC=50︒,∵OM ,ON 分别平分AOC ∠和BOC ∠,∴∠AOM=15︒,∠BON=25︒,∴∠MON=∠AOB-∠AOM-∠BON=40︒;④∵80AOB ∠=︒,AOC m ∠=︒,∴∠BOC=(80-m)︒,∵OM ,ON 分别平分AOC ∠和BOC ∠,∴∠AOM=12m ,∠BON=(40-12m )︒, ∴∠MON=∠AOB-∠AOM-∠BON=40︒, 故答案为:40;(3)∵AOB n ∠=︒,AOC m ∠=︒,∴∠BOC=∠AOC-∠AOB=(m-n)︒,∵AOC ∠和BOC ∠的角平分线分别是OM ,ON ,∴∠AOM=12m ,∠CON=1()2m n -, ∴∠MON=∠AOC-∠AOM-∠CON=111()222m m m n n ---=, 故答案为:12n . 【点睛】此题考查线段的和差计算,角度的和差计算,线段中点的性质,角平分线的性质,解题中注意规律性解题思想的总结和运用.9.(1)2;(2)1.5;(3)4-5t 或5t-4;(4)47或45或87或85 【解析】【分析】(1)先计算出点P 到达点B 时运动的时间,再计算出点Q 相同时间内运动的路程,进而可得答案;(2)利用路程=速度×时间,分别计算出当t =0.5时点P 、Q 运动的路程,即AP 和CQ 的长,再根据PQ =AQ -AP 计算即可;(3)分点P 、Q 重合前与重合后两种情况,画出图形,根据PQ =AQ -AP (重合前)与PQ =AP -AQ (重合后)列式化简即可;(4)分点P 从点A 向点B 运动和点P 从点B 向点A 运动时两种情况,每种情况再分点P 、Q 在点C 异侧和点C 同侧,用含t 的代数式分别表示出CP 和CQ ,即可列出方程,解方程即可求出结果.【详解】解:(1)[]3(3)61--÷=,1112⨯+=,所以点Q 所表示的数是2;(2)当t =0.5时,AP =6×0.5=3,CQ =1×0.5=0.5,所以PQ=AQ -AP=AC+CQ -AP =4+0.5-3=1.5; (3)在点P 从点A 向点B 运动时,若点P 、Q 重合,则64t t =+,解得:45t =; 当405t ≤≤时,如图1,4645PQ AQ AP t t t =-=+-=-;当415t <≤时,如图2,6454PQ AP AC CQ t t t =--=--=-.故答案为:4-5t 或5t -4;(4)当点P 从点A 向点B 运动时,若P ,Q 两点到点C 的距离相等,则有如下两种情况: ①点P 、Q 在点C 两侧,如图3,根据题意,得:46t t -=,解得:47t =;②点P 、Q 在点C 右侧,此时P 、Q 重合,由(3)题得:45t =; 当点P 从点B 向点A 运动时,若P ,Q 两点到点C 的距离相等,也有如下两种情况: ③点P 、Q 在点C 右侧,此时P 、Q 重合,根据题意,得:()266t t --=,解得:87t =; ④点P 、Q 在点C 两侧,如图4,根据题意,得:()662t t --=,解得:85t =.综上,在整个运动过程中,当P ,Q 两点到点C 的距离相等时,47t =或45或87或85. 【点睛】本题考查了数轴上两点间的距离、线段的和差关系和一元一次方程的解法等知识,正确理解题意、全面分类、灵活运用方程思想和数形结合的思想是解题的关键.10.(1)①5;②OQ 平分∠AOC ,理由详见解析;(2)5秒或65秒时OC 平分∠POQ ;(3)t =703秒. 【解析】【分析】(1)①由∠AOC =30°得到∠BOC =150°,借助角平分线定义求出∠POC 度数,根据角的和差关系求出∠COQ 度数,再算出旋转角∠AOQ 度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ 和∠COQ 度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ =3t ,∠AOC =30°+6t ,根据角平分线定义可知∠COQ =45°,利用∠AOQ 、∠AOC 、∠COQ 角之间的关系构造方程求出时间t ; (3)先证明∠AOQ 与∠POB 互余,从而用t 表示出∠POB =90°﹣3t ,根据角平分线定义再用t 表示∠BOC 度数;同时旋转后∠AOC =30°+6t ,则根据互补关系表示出∠BOC 度数,同理再把∠BOC 度数用新的式子表达出来.先后两个关于∠BOC 的式子相等,构造方程求解.【详解】(1)①∵∠AOC =30°,∴∠BOC =180°﹣30°=150°,∵OP 平分∠BOC ,∴∠COP =12∠BOC =75°, ∴∠COQ =90°﹣75°=15°,∴∠AOQ =∠AOC ﹣∠COQ =30°﹣15°=15°,t =15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 11.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.12.(1)143;(2)311;(3)25111,11155;(4)167【解析】【分析】(1)根据阅读材料的解答过程,循环部只有一位数时,用循环部的数除以9即为分数,进而求出答案.(2)循环部有两位数时,参照阅读材料的解答过程,可先乘以100,再与原数相减,即求得答案.(3)循环部有三位小数时,用循环部的3位数除以999;对于2.018,可先求0.18对应的分数,再除以10得0.018,再加上2得答案.(4)观察0.714285与2.285714,循环部的数字顺序是一样的,先求把0.714285×1000,把小数循环部变成与2.285714相同,再减712把整数部分凑相等,即求出答案.【详解】解:(1)612214 4.6=4+0.6=4+=+=9333故答案为:14 3(2)设x=0.272727…,①∴100x=27.272727…,②②-①得:99x=27解得:x=27 99∴x=3 11∴3 0.27=11(3)22525 0.225==999111∵182 0.18=0.181818=9911∴211 0.0181818==111055∴1111 2.018=2+0.018=2+=5555故答案为:25111,11155(4)5 0.714285=7∴等号两边同时乘以1000得:5000 714.285714=7∴500016 2.285714=714.28571-712=-712=77故答案为:16 7【点睛】本题考查了有理数运算、比较大小,一元一次方程的解法.解题关键是,正确理解题意的解答过程并转化运用到循环部数字不一样的情况计算.。

七年级下册数学几何压轴题

七年级下册数学几何压轴题

七年级下册数学几何压轴题
1. 把一个长方形沿x轴正方向移动m个单位,求移动前后阴影的面积差。

2. 一个小正方体沿着x轴正方向移动,它的一面在x轴上翻转,求翻转前后阴影的面积比值。

3. 一个方形沿着y轴正方向移动,移动到一个圆的周围,求圆和方形的阴影面积比值。

4. 把一个正方形沿对角线方向移动,它最后完全重合的时候恰好覆盖了一个面积为S的等腰三角形,求三角形面积S。

5. 把一个正方形沿着y轴正方向移动,移动m个单位的时候与另外一个正方形刚好重合,求另外一个正方形的边长。

6. 一个矩形沿x轴正方向移动,移动到另外一个矩形的正上方还有b个单位,求两个矩形的阴影面积比值。

7. 把一个半圆形沿y轴正方向移动,移动到正方形的中心时,求正方形面积和半圆形面积的阴影面积比值。

8. 把一个梯形沿y轴正方向移动,移动到一个与梯形相似的大梯形上面靠着底边的位置,求阴影的面积比值。

9. 把一个正三角形沿着x轴正方向移动,相邻两次的位移满足一个等差数列,第一次移动2个单位,第三次移动8个单位,求正三角形的边长。

10. 一个椭圆形沿y轴正方向移动,移动到一个长方形上方恰好横跨长方形的两个端点,求已经移动了多少个单位。

数学七年级上学期期中考试数学压轴题训练

数学七年级上学期期中考试数学压轴题训练

数学七年级上学期期中考试数学压轴题训练题型一、与字母取值无关问题1、已知A=mx﹣2x,B=mx﹣3x+5m,2A﹣B的值与字母m的取值无关,求x的值;2、关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含二次项,则k=()A.4B.C.3D.3、已知A=2a2+3ax﹣2a﹣1,B=﹣a2+ax﹣1.A+2B的取值与a无关,求x的值.4、已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y 项,求n m+mn的值.题型二、数轴中的绝对值化简问题1、已知点A、B在数轴上表示的数分别是a和b:化简|﹣2a|﹣|a﹣b|+3|a+b|=.2、有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|a﹣c|=.3、已知a,b,c满足a+b+c=0且abc<0,其中x=,y=a()+b()+c().求x和y;题型三、找规律问题1、如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,依此规律,则第6个图案中有黑色棋子个;第n块图案中有黑色棋子个.2、如图是一组有规律的图案,它们是由边长相同的正方形和正三角形拼接而成,第(1)个图案中正三角形和正方形个数共有5个,第(2)个图案中正三角形和正方形个数共有9个,第(3)个图案中正三角形和正方形个数共有13个,依此规律,第(100)个图案中正三角形和正方形的个数共有个.3、已知整数a1、a2、a3、a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,以此类推,则a2022的值为()A.﹣2021B.﹣1010C.﹣1011D.﹣10094、若a是不为2的如图所示,在一个电子青蛙游戏程序中,电子青蛙只能在标有五个数字点的圆周上跳动.游戏规则:若电子青蛙,停在奇数点上,则它下次沿顺时针方向跳两个点;若电子青蛙停在偶数点上,则它下次沿逆时针方向跳一个点.现在电子青蛙若从4这点开始跳,则经过2022次后它停的点对应的数为.5、观察等式:2+22=23﹣2,2+22+23=24﹣2,2+22+23+24=25﹣2,…已知按一定规律排列的一组数:2100,2101,2102…2199.若2100=m,用含m的代数式表示这组数的和是.6、一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是.7、有理数,则我们把称为a的“奇特数”.如:4的“奇特数”是,﹣1的“奇特数”是.已知a1=4,a2是a1的“奇特数”,a3是a2的“奇特数”,a4是a3的“奇特数”,…,以此类推,则a2022等于()A.4B.﹣1C.D.8、已知a是一个正整数,记G(x)=a﹣x+|x﹣a|.若G(1)+G(2)+G(3)+…+G(2019)=90,则a的值为()A.8B.9C.10D.119、已知a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2017=.10、观察下列等式:,,.将以上三个等式的两边分别相加得:;(1)计算:=(直接写结果);(2)计算:=(直接写结果);(3)探究并计算:①=;②=.题型四、整体法代数式求值1、数学中,运用整体思想方法在求代数式的值中非常重要.例如:已知:a2+2a =1,则代数式2a2+4a+4=2(a2+2a)+4=2×1+4=6.请你根据以上材料解答以下问题:(1)若x2﹣3x=4,求1+x2﹣3x的值;(2)若x2﹣3x﹣4=0,求1+3x﹣x2的值;(3)当x=1时,代数式px3+qx+1的值是5,求当x=﹣1时,代数式px3+qx+1的值;(4)当x=2020时,代数式ax5+bx3+cx﹣5的值为m,求当x=﹣2020时,求代数式ax5+bx3+cx﹣5的值是多少?2、对于这样的等式:(3x﹣1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.(1)当x=0时,a0=;(2)a1+a2+a3+a4+a5=.3、已知关于x的多项式ax4+bx3+cx2+dx+e3,其中a,b,c,d为互不相等的整数.(1)若abcd=4,求a+b+c+d的值;(2)在(1)的条件下,当x=1时,这个多项式的值为27,求e的值;(3)在(1)、(2)条件下,若x=﹣1时,这个多项式ax4+bx3+cx2+dx+e3的值是14,求a+c的值.题型五、数轴上的动点问题综合题1、结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m ﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a=;(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.2、已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.(1)若AP=BP,则x=;(2)若AP+BP=8,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否会随着t的变化而变化?请说明理由.3、已知a、b为常数,且关于x、y的多项式(﹣20x2+ax﹣y+12)﹣(bx2+12x+6y﹣3)的值与字母x取值无关,其中a、b分别为点A、点B在数轴上表示的数,如图所示.动点E、F分别从A、B同时开始运动,点E以每秒6个单位向左运动,点F以每秒2个单位向右运动,设运动时间为t秒.(1)求a、b的值;(2)请用含t的代数式表示点E在数轴上对应的数为:,点F 在数轴上对应的数为:.(3)当E、F相遇后,点E继续保持向左运动,点F在原地停留4秒后向左运动且速度变为原来的5倍.在整个运动过程中,当E、F之间的距离为2个单位时,求运动时间t的值(不必写过程).4、如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.(1)求a、b、c的值;(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C 点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q 开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.5、如图,在数轴上点A表示数a,点B表示数b,点C表示数c,其中数b是最小的正整数,数a、c满足|a+2|+(c﹣6)2=0.若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.(1)由题意可得:a=,b=,c=.(2)若点A以每秒1个单位长度的速度沿数轴向左运动,点B和点C分别以每秒2个单位长度和3个单位长度的速度沿数轴向右运动,设点A、B、C同时运动,运动时间为t秒.①当t=2时,分别求AC、AB的长度;②在点A、B、C同时运动的过程中,3AC﹣4AB的值是否随着时间t的变化而变化?若变化,说明理由;若不变,求出3AC﹣4AB的值.。

七年级数学有理数压轴题

七年级数学有理数压轴题

七年级数学有理数压轴题一、有理数的概念与分类。

1. 把下列各数填在相应的大括号里:- - 5,(1)/(3),0.62,4,0,-1.1,(7)/(6),-6.4,-7,(22)/(7)- 正整数集合:{4};- 负整数集合:{-5,-7};- 分数集合:{(1)/(3),0.62,(7)/(6), - 1.1,-6.4,(22)/(7)};- 非负数集合:{(1)/(3),0.62,4,0,(7)/(6),(22)/(7)}。

- 解析:正整数是大于0的整数;负整数是小于0的整数;分数包括有限小数和无限循环小数;非负数是正数和0的统称。

2. 下列说法正确的是()- A. 整数就是正整数和负整数。

- B. 分数包括正分数、负分数。

- C. 正有理数和负有理数组成全体有理数。

- D. 一个数不是正数就是负数。

- 答案:B。

- 解析:A选项,整数包括正整数、0和负整数;C选项,有理数包括正有理数、0和负有理数;D选项,一个数还可能是0。

二、有理数的大小比较。

3. 比较大小:-(2)/(3)与-(3)/(4)。

- 答案:-(2)/(3)>-(3)/(4)。

- 解析:先求出两个数的绝对值,|-(2)/(3)|=(2)/(3)=(8)/(12),|-(3)/(4)|=(3)/(4)=(9)/(12),因为(8)/(12)<(9)/(12),根据两个负数比较大小,绝对值大的反而小,所以-(2)/(3)>-(3)/(4)。

4. 有理数a,b在数轴上的位置如图所示,比较a,- a,b,-b的大小。

- (数轴上a在原点左侧,b在原点右侧,且| a|>| b|)- 答案:a < - b < b < - a。

- 解析:因为a是负数,所以-a是正数,b是正数,所以-b是负数,又因为| a|>| b|,所以a离原点的距离比b离原点的距离远,所以a < - b < b < - a。

七年级上册上册数学压轴题专题练习(解析版)

七年级上册上册数学压轴题专题练习(解析版)
(1)如图1,若CF平分∠ACE,则∠AOF=_______;
(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.
①当t=1时,α=_________;
②猜想∠BCE和α的数量关系,并证明;
(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴正半轴向右平移t(0<t<3)个单位,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α,β满足|α-β|=45°,请用t的式子表示α、β并直接写出t的值.
(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.
5.如图,数轴上点 , 表示的有理数分别为 ,3,点 是射线 上的一个动点(不与点 , 重合), 是线段 靠近点 的三等分点, 是线段 靠近点 的三等分点.
(1)若点 表示的有理数是0,那么 的长为________;若点 表示的有理数是6,那么 的长为________;
(2)点 在射线 上运动(不与点 , 重合)的过程中, 的长是否发生改变?若不改变,请写出求 的长的过程;若改变,请说明理由.
6.如图,数轴上 , 两点对应的数分别为 ,-
(1)求线段 长度
(2)若点 在数轴上,且 ,求点 对应的数
(3)若点 的速度为 个单位长度/秒,点 的速度为 个单位长度/秒,点 的速度为 个单位长度/秒,点 , , 同时向右运动,几秒后,
七年级上册上册数学压轴题专题练习(解析版)

七年级上册数学动点问题压轴题

七年级上册数学动点问题压轴题

七年级上册数学动点问题压轴题一、数轴上的动点问题。

1. 已知数轴上A、B两点对应的数分别为 1、3,点P为数轴上一动点,其对应的数为x。

(1)若点P到点A、点B的距离相等,求点P对应的数。

解析:因为点P到点A、点B的距离相等,所以PA = PB。

根据数轴上两点间的距离公式d=| a b|(d为两点间距离,a、b为两点对应的数),则| x-(-1)|=| x 3|,即| x + 1|=| x-3|。

当x≥3时,x + 1=x 3,方程无解。

当-1时,x + 1=-(x 3),x+1=-x + 3,2x=2,解得x = 1。

当x≤-1时,-(x + 1)=-(x 3),方程无解。

所以点P对应的数为1。

(2)数轴上是否存在点P,使PA+PB = 5?若存在,请求出x的值;若不存在,请说明理由。

解析:根据距离公式PA=| x+1|,PB=| x 3|,则| x + 1|+| x-3| = 5。

当x≥3时,x + 1+x 3=5,2x-2 = 5,2x=7,解得x=(7)/(2)。

当-1时,x + 1-(x 3)=5,x + 1-x + 3=5,4 = 5,方程无解。

当x≤-1时,-(x + 1)-(x 3)=5,-x-1-x + 3 = 5,-2x+2 = 5,-2x=3,解得x=-(3)/(2)。

所以存在点P,x=(7)/(2)或x =-(3)/(2)。

2. 点A在数轴上对应的数为 2,点B对应的数为1,点P在数轴上对应的数为x。

(1)若点P到点A、点B的距离之和为5,求x的值。

解析:由题意得| x-(-2)|+| x 1|=5,即| x + 2|+| x-1| = 5。

当x≥1时,x + 2+x 1=5,2x+1 = 5,2x = 4,解得x = 2。

当-2时,x + 2-(x 1)=5,x + 2-x + 1=5,3 = 5,方程无解。

当x≤-2时,-(x + 2)-(x 1)=5,-x-2-x + 1 = 5,-2x-1 = 5,-2x = 6,解得x=-3。

七年级上册数学压轴题试题(Word版 含答案)

七年级上册数学压轴题试题(Word版 含答案)

七年级上册数学压轴题试题(Word版含答案)一、压轴题1.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…[ 问题解决 ]一个边长为ncm(n⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个;两面涂色的:在棱上,共有______个;三面涂色的:在顶点处,共______个。

[ 问题应用 ]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.2.已知M,N两点在数轴上所表示的数分别为m,n,且m,n满足:|m﹣12|+(n+3)2=0(1)则m=,n=;(2)①情境:有一个玩具火车AB如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A移动到点B时,点B所对应的数为m,当点B移动到点A时,点A所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.3.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.4.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由. 5.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?6.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.7.数轴上有两点A ,B , 点C ,D 分别从原点O 与点B 出发,沿BA 方向同时向左运动. (1)如图,若点N 为线段OB 上一点,AB=16,ON=2,当点C ,D 分别运动到AO ,BN 的中点时,求CD 的长;(2)若点C 在线段OA 上运动,点D 在线段OB 上运动,速度分别为每秒1cm, 4cm ,在点C ,D 运动的过程中,满足OD=4AC ,若点M 为直线AB 上一点,且AM-BM=OM ,求AB OM的值.8.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.9.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .10.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).11.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.12.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.[ 问题探究 ] (2)6,24;12,24;8,8;[ 问题解决](n-2)3,(n-2)2,12(n-2),8; [ 问题解决 ] 1000cm 3. 【解析】 【分析】[ 问题探究 ] (2)根据(1)即可填写; [ 问题解决 ] 可根据(1)、(2)的规律填写;[ 问题应用 ] 根据[ 问题解决 ]知两面涂色的为n-12(2),由此得到方程n-12(2)=96, 解得n 的值即可得到边长及面积.【详解】 [ 问题探究 ](2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 6个面,因此一面涂色的共有24个;两面涂色的:在棱上,每个棱上有2个,正方体共有12 条棱,因此两面涂色的共有24个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有8 个顶点,因此三面涂色的共有8 个… [ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有_32n -() _____个小正方体;一面涂色的:在面上,共有__22n -()____个; 两面涂色的:在棱上,共有__122n -()____个; 三面涂色的:在顶点处,共_8____个。

初中数学七年级数轴上的动点问题专题(压轴题练习)

初中数学七年级数轴上的动点问题专题(压轴题练习)

数轴上的动点问题专题【例1】1.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?【练】2.已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=,b=;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向左运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?【练】5.如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为,点P、Q之间的距离是个单位;(2)经过秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.6.已知数轴上点A、B表示的数分别为﹣1、3、P为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.【练】8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?9.已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是,此时点Q表示的有理数是;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过秒,点P,Q到数轴上表示有理数20的点的距离相等.10.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.【练】11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?12.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是;(2)当x=时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么秒钟时点P到点M,点N的距离相等.【练】13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?14.如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?15.已知A、B、C是数轴上从左至右的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.17.如图,数轴上A,B,C,D四点,分别对应的数为a、b、c、d,且满足a、b是|x+5|=1的两个解(a<b),(c﹣6)2与|d﹣10|互为相反数.(1)直接写出a,b,c,d的值;(2)若A,B两点以4个单位长度/秒的速度向右匀速运动,设运动时间为t秒,问t为时,点B运动到点C,D的中点上;(3)在(2)中,A,B继续运动,当B运动到D的右侧时,问是否存在时间t,使B与C 的距离是A与D的距离的2倍?若存在,求时间t;若不存在,请说明理由.18.已知数轴上两点A,B对应的数分别用a和b表示,且a,b满足|a+1|+(b﹣3)2=0,点P为数轴上一动点,其对应的数为x.(1)请直接写出求a和b的值;(2)若点P到点A,点B的距离相等,请直接写出点P对应的数x;(3)数轴上是否存在点P,使点P到点A,点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(4)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?【例6】19.如图,数轴上有两点A,B,点A表示的数为4,点B在点A的左侧,且AB=10,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0).(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示:.(2)设点M是AP的中点,点N是PB的中点.点P在线段AB上运动过程中,线段MN的长度是否发生变化?若变化,请说出理由;若不变,求线段MN的长度.(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,R同时出发,问点P运动多少秒与点R距离为2个单位长度.【练】20.已知数轴上A,B两点所表示的数分别为a,b,且满足ab<0,|a|=2,|b|=7,(1)求线段AB的长度;(2)若a<b,P为射线上的一点(点P不与A、B两点重合),M为P A的中点,N为PB 的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请求出线段MN的长;若改变,请说明理由.21.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A,B之间的距离记作|AB|.(1)设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,求x的值;(2)若点P在A的左侧,M,N分别是P A,PB的中点,当点P在A的左侧移动时,式子|PN|﹣|PM|的值是否发生改变?若不变,请求其值;若发生变化,请说明理由.22.如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t,用含t的代数式表示BC和AB的长,试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达C点时,点Q就停止移动.设点P移动的时间为t秒,问:当t为多少时P、Q两点相距6个单位长度?23.已知:A、B、C为数轴上三个运动的点,速度分别为a个单位/秒、b个单位/秒和c个单位/秒(a、b、c为正整数),且满足|5﹣a|+(b﹣3)2=1﹣c.(1)求A、B、C三点运动的速度;(2)若A、B两点分别从原点出发,向数轴正方向运动,C从表示+20的点出发同时向数轴的负方向运动,几秒后,C点恰好为AB的中点?(3)如图,若一把长16cm的直尺一端始终与C重合(另一端D在C的右边),且M、N 分别为OD、OC的中点,在C点运动过程中,试问:MN的值是否变化?若变化,求出其取值范围;若不变,请求出其值.24.阅读下面的内容并用此结论(或变形式)解答下面题目的三个问题: (1)若点P 为线段MN 的中点,则MP =PN =12MN(2)若点P 为线段MN 上任一点,则:MP =MN ﹣PN如图①,已知数轴上有三点A ,B ,C ,点B 为AC 的中点,C 对应的数为200. ①若BC =300,求点A 对应的数.②在①的条件下,如图②,动点P 、Q 分别从两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10个单位长度每秒,5个单位长度每秒,2个单位长度每秒,点M 为线段PR 的中点,点N 为RQ 的中点,多少秒时恰好满足MR =4RN (不考虑点R 和点Q 相遇之后的情形).③在①的条件下,如图③,若点E 、D 对应的数分别为﹣800,0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10个单位长度每秒,5个单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,32QC ﹣AM 的值是否发生变化?若不变,求其值,若变,请说明理由.25.如图1,已知数轴上两点A 、B 对应的数分别为﹣1、3,点P 为数轴上的一动点,其对应的数为x .(1)P A = ;PB = (用含x 的式子表示)(2)在数轴上是否存在点P ,使P A +PB =5?若存在,请求出x 的值;若不存在,请说明理由.(3)如图2,点P 以1个单位/s 的速度从点D 向右运动,同时点A 以5个单位/s 的速度向左运动,点B 以20个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问:AB -OPMN的值是否发生变化?请说明理由.26.(2014秋•江岸区期中)如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a 、b 满足|a +3|+(b +3a )2=0. (1)求点C 表示的数;(2)点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t ;(3)若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:①P A +PBPC 的值不变;②2BM ﹣BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值.27.如图1,点A 、B 分别在数轴原点O 的左右两侧,且13OA +50=OB ,点B 对应数是90.(1)求A 点对应的数;(2)如图2,动点M 、N 、P 分别从原点O 、A 、B 同时出发,其中M 、N 均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P 向左运动,速度为8个单位长度/秒,设它们运动时间为t 秒,问当t 为何值时,点M 、N 之间的距离等于P 、M 之间的距离; (3)如图3,将(2)中的三动点M 、N 、P 的运动方向改为与原来相反的方向,其余条件不变,设Q 为线段MN 的中点,R 为线段OP 的中点,求22RQ ﹣28RO ﹣5PN 的值.28.如图,在数轴上有A ,B 两点,所表示的数分别为a ,a +4,A 点以每秒32个单位长度的速度向正方向运动,同时B 点以每秒1个单位的速度也向正方向运动,设运动时间为t 秒.(1)运动前线段AB 的长为_____,t 秒后,A 点运动的距离可表示为_____,B 点运动距离可表示为_____; (2)当t 为何值时,A 、B 两点重合,并求出此时A 点所表示的数(用含a 与t 的式子表示); (3)在上述运动的过程中,若P 为线段AB 的中点,O 为数轴的原点,当a =﹣8时,是否存在这样的t 值,使得线段PO =5?若存在,求出符合条件的t 值;若不存在,请说明理由.动点问题补充训练1、(2016江岸区期中)已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足0)10(10242=-++++c b a ;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒. (1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.2、(2016二十五中期中)已知:数轴上A 、B 两点表示的有理数为a 、b ,且(a -1)2+|b +2|=0(1) 求a 、b 的值(2) 点C 在数轴上表示的数是c ,且与A 、B 两点的距离和为9,求值:a (bc +3)-|3(a -31b 2)-b 2|(3) 蚂蚁甲以2个单位长度/秒的速度从点B 出发向其左边30个单位长度处的食物M 爬去,10秒后位于点A 的蚂蚁乙收到它的信号,以3个单位长度/秒的速度也迅速爬向食物.蚂蚁甲到达M 后用了2秒时间背上食物,立即返回,速度降为1个单位长度/秒,与蚂蚁乙在数轴上D 点相遇,求点D 表示的有理数是多少?从出发到此时,蚂蚁甲共用去时间为多少?3、(2016东湖高新区期中)如图,若数轴上的A 、B 两点对应的数分别为a 、b ,且a 、b 满足|a +3|+(b +3a )2=0,请回答下列问题: (1)求a 和b 的值.(2)若数轴上有一点C ,满足点C 到点B 的距离为点C 到点A 的距离的2倍,求点C 在数轴上所对应的数.(3)若数轴上有一点P 从A 点向B 点运动(只在A 、B 两点之间运动),同时,数轴上的点M 是线段AP 的中点,数轴上的点N 是线段BP 的中点,请问:当点P 运动时,点M 、N 之间的距离是否发生变化,若不变化,求出该距离;若变化,说明理由.4、(2016外校期中)已知点A 、点B 在数轴上分别对应有理数a ,b ,其中a ,b 满足:()2112602a b -++=. (1)求a ,b 的值;(2)如图所示,在点A 、点B 之间存在一点C (点C 不与A 、B 重合),现有一个小球从A 出发向左匀速运动,经过一秒到达AC 的中点,又经过三秒之后到达BC 的中点,试求点C 所对应的有理数;OCAB(3)在(2)的条件下,现在我们在C 、A 两个位置各放一块挡板,有两个小球P 和Q 分别从点C 出发,P 以2个单位长度每秒的速度向右运动,Q 以4个单位长度每秒的速度向左运动,其中,小球P 在运动的过程中会碰到挡板,每次碰到挡板后按照原速度反弹(不考虑碰撞中能量的损失),按照此规律运动下去,试问:是否存在一个时间t ,使得PB =2QB ?若存在,求出所有满足条件的时间t ;若不存在,请说明理由.5、(2016武珞路期中)已知点A 、B 在数轴上表示的数分别为a ,b ,且满足()22900a b -+-=.(1) a 的值为_______,b 的值为________;(2) 一只电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度,另一电子狗Q 从点B 出发,向左匀速运动,速度为每秒3个单位长度,且Q 比P 先运动2秒,已知在原点O 处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动,问电子狗P 经过多长时间,有P 、Q 两只电子狗相距70个单位长度?(3) 求()()2222221912716189362114910329b x a x a x x ⎛⎫⎛⎫--+++--++ ⎪ ⎪⎝⎭⎝⎭的最大值.AB6、(2016洪山区期中)已知多项式2234x xy --的常数项是a ,次数是b .(1)直接写出a =________,b =________;并将这两数在数轴上所对应的点A 、B 表示出来;(2)数轴上A 、B 之间的距离定义记作AB,定义AB =a b -,设P 在数轴上对应的数为x ,当PA +PB =13时,直接写出x 的值_______________________;(3)若点A ,点B 同时沿数轴向正方向运动.点A 的速度是点B 的2倍,且3秒后,32OA=OB ,求点B 的速度.点为===秒或秒时,(2010秋•武昌区期末)如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A 在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是4或16;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.)存在关系式,即<,即时,有==时,有=当时,时,有=参考答案与试题解析一.解答题(共27小题)1.(2014秋•滕州市期末)如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数﹣6,点P表示的数8﹣5t(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?2.(2014秋•宝安区校级期末)已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.(2013秋•江北区校级月考)已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=﹣2,b=1;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.(2013秋•泰兴市校级期中)如图A、B两点在数轴上分别表示﹣10和20,动点P从点A 出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?,,为秒或5.(2014秋•滨湖区期中)如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t 秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为﹣4,点P、Q之间的距离是10个单位;(2)经过4或12秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.;,,秒时,6.(2014秋•徐州期末)已知数轴上点A、B表示的数分别为﹣1、3、p为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=1;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.(2014秋•成都期末)如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.;.8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?.9.(2014秋•西城区校级期中)已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是6单位长度/秒,此时点Q表示的有理数是60;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过1秒,点P,Q到数轴上表示有理数20的点的距离相等.×=10.(2013秋•江都市期末)如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.=综上,运动s11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?;答:经过12.(2014秋•商丘期末)已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是﹣1;(2)当x=﹣3.5或1.5时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么或2秒钟时点P到点M,点N的距离相等.或)13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?=分钟时点=分钟时点分钟或分钟时点14.(2014春•万州区校级期中)如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?=分钟时点15.已知A、B、C是数轴上的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?=答:经过16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.=。

人教版七年级数学上册期末动点问题压轴题专题练习-带答案

人教版七年级数学上册期末动点问题压轴题专题练习-带答案

人教版七年级数学上册期末动点问题压轴题专题练习-带答案学校:___________班级:___________姓名:___________考号:___________1.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足︱a+3︱+︱c-5 ︱=0(1)a=,b=,c=.(2)如果点P表示的数为x,当P点到B、C两点的距离之和为8时,x=(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B 和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=.(用含t的代数式表示)(4)3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。

2.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b-3)2=0.(1)则a=,b=;并将这两个数在数轴上所对应的点A,B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离和为11,若点C的数轴上所对应的数为x,求x的值;(3)若点A,点B同时沿数轴向正方向运动,点A运动的速度为2单位/秒,点B运动的速度为1单位/秒,若|AB|=4,求运动时间t的值.3.已知数轴上有A,B两点,分别代表-40,20,两只电子蚂蚁甲、乙分别从A,B两点同时出发,其中甲以1个单位长度/秒的速度向右运动,到达点B处时运动停止.乙以4个单位长度/秒的速度向左运动.(1)A,B两点间的距离为个单位长度;乙到达A点时一共运动了秒.(2)甲、乙在数轴上运动,经过多少秒相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲、乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.4.如图,在数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,且a、c满足|a+2|+(c−6)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得点A与点C重合,则数轴上折痕所表示的数为,点B与数表示的点重合,原点与数表示的点重合;(3)动点P、Q同时从原点出发,点P向负半轴运动,点Q向正半轴运动,点Q的速度是点P 速度的3倍,2秒钟后,点P到达点A.①点P的速度是每秒▲ 个单位长度,点Q的速度是每秒▲ 个单位长度;②经过几秒钟,点P与点Q相距12个单位长度.5.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,可以看到终点表示的数是-2.已知点A,B是数轴上的点,完成下列各题.(1)若点A表示数-2,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B;此时A,B两点间的距离是.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B6.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b−3|=0;(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动:同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒)①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.7.如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为3,BC=2,AB=6.(1)则点A对应的数是、点B对应的数是;(2)动点P、Q分别同时从A、C出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M在线段AP上,且AM=MP,N在线段CQ上,且CN=14CQ,设运动时间为t(t>0).①求点M、N对应的数(用含t的式子表示);②猜想MQ的长度是否与t无关为定值,若为定值请求出该定值,若不为定值请说明理由;③探究t为何值时,OM=2BN.8.数轴上点A表示的有理数为20,点B表示的有理数为﹣10,点P从点A出发以每秒5个单位长度的速度在数轴上往左运动,到达点B后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A停止,设运动时间为t(单位:秒).(1)当t=5时,点P表示的有理数为.(2)在点P往左运动的过程中,点P表示的有理数为(用含t的代数式表示).(3)当点P与原点距离5个单位长度时,t的值为.9.如图,A、B分别为数轴上的两点,A点对应的数为−20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?10.在数轴上,如果A点表示的数记为a,点B表示的数记为b,则A、B两点间的距离可以记作|a-b|或|b-a|,我们把数轴上两点的距离,用两点的大写字母表示,如:点A与点B之间的距离表示为AB.如图,在数轴上,点A,O,B表示的数为-10,0,12.(1)直接写出结果,OA=,AB=.(2)设点P在数轴上对应的数为x.①若点P为线段AB的中点,则x=.②若点P为线段AB上的一个动点,则|x+10|+|x-12|的化简结果是.(3)动点M从A出发,以每秒2个单位的速度沿数轴在A,B之间向右运动,同时动点N从B 出发,以每秒4个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动.设运动时间为t秒,是否存在t值,使得OM=ON?若存在,请直接写出t值;若不存在,请说明理由.11.如图.数轴上A.B两点对应的有理数分别为-10和20.点P从点O出发.以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从点A出发,以每秒2个单位长度的速发沿数轴正方向运动.设运动时间为t秒。

最新七年级上册数学压轴题专题练习(解析版)

最新七年级上册数学压轴题专题练习(解析版)

最新七年级上册数学压轴题专题练习(解析版)最新七年级上册数学压轴题专题练(解析版)一、压轴题1.[问题提出]一个边长为$n$ cm($n\geq 3$)的正方体木块,在它的表面涂上颜色,然后切成边长为1 cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?问题探究]我们先从特殊的情况入手:1)当$n=3$时,如图(1)。

没有涂色的:把这个正方体的表面“剥去”剩下的正方体,有$1\times 1\times 1=1$个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个。

2)当$n=4$时,如图(2)。

没有涂色的:把这个正方体的表面“剥去”剩下的正方体,有$2\times 2\times 2=8$个小正方体;一面涂色的:在面上,每个面上有4个,正方体共有6个面,因此一面涂色的共有24个;两面涂色的:在棱上,每个棱上有2个,正方体共有12条棱,因此两面涂色的共有24个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有8个顶点,因此三面涂色的共有8个。

问题解决]一个边长为$n$ cm($n\geq 3$)的正方体木块,没有涂色的:把这个正方体的表面“剥去”剩下的正方体,有$$(n-2)^3$$个小正方体;一面涂色的:在面上,共有$$6(n-2)^2$$个;两面涂色的:在棱上,共有$$12(n-2)$$个;三面涂色的:在顶点处,共有$$8$$个。

问题应用]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1 cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积。

解:设大正方体的边长为$n$ cm,则根据问题解决部分的公式,$$12(n-2)=96,$$解得$n=8$,因此大正方体的体积为$$8^3=512\text{ cm}^3.$$答案:512 $\text{cm}^3$。

【备考期末】黄冈市初一数学压轴题专题

【备考期末】黄冈市初一数学压轴题专题

【备考期末】黄冈市初一数学压轴题专题一、七年级上册数学压轴题1.如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒.(1)当t=2时,求∠POQ的度数;(2)当∠POQ=40°时,求t的值;(3)在旋转过程中,是否存在t的值,使得∠POQ=12∠AOQ?若存在,求出t的值;若不存在,请说明理由.答案:(1)∠POQ =104°;(2)当∠POQ=40°时,t的值为10或20;(3)存在,t=12或或,使得∠POQ=∠AOQ.【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=解析:(1)∠POQ =104°;(2)当∠POQ=40°时,t的值为10或20;(3)存在,t=12或180 11或1807,使得∠POQ=12∠AOQ.【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30;(1)当t=2时,得到∠AOP=2t=4°,∠BOQ=6t=12°,利用∠POQ =∠AOB-∠AOP-∠BOQ求出结果即可;(2)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可.【详解】解:当OQ,OP第一次相遇时,2t+6t=120,t=15;当OQ刚到达OA时,6t=120,t=20;当OQ,OP第二次相遇时,2t6t=120+2t,t=30;(1)当t=2时,∠AOP=2t=4°,∠BOQ=6t=12°,∴∠POQ =∠AOB-∠AOP-∠BOQ=120°-4°-12°=104°.(2)当0≤t≤15时,2t +40+6t=120, t=10;当15<t≤20时,2t +6t=120+40, t=20;当20<t≤30时,2t=6t-120+40, t=20(舍去);答:当∠POQ=40°时,t的值为10或20.(3)当0≤t≤15时,120-8t=12(120-6t),120-8t=60-3t,t=12;当15<t≤20时,2t–(120-6t)=12(120 -6t),t=18011.当20<t≤30时,2t–(6t -120)=12(6t -120),t=1807.答:存在t=12或18011或1807,使得∠POQ=12∠AOQ.【分析】本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.2.已知数轴上,M表示-10,点N在点M的右边,且距M点40个单位长度,点P,点Q是数轴上的动点.(1)直接写出点N所对应的数;(2)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向左运动,设点P、Q在数轴上的D点相遇,求点D的表示的数;(3)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向右运动,问经过多少秒时,P,Q两点重合?答案:(1)30;(2)15;(3)20秒【分析】(1)根据数轴上两点之间的距离得出结果;(2)利用时间=路程÷速度和算出相遇时间,再计算出点D表示的数;(3)利用时间=路程÷速度差算出相遇时间即解析:(1)30;(2)15;(3)20秒【分析】(1)根据数轴上两点之间的距离得出结果;(2)利用时间=路程÷速度和算出相遇时间,再计算出点D表示的数;(3)利用时间=路程÷速度差算出相遇时间即可.【详解】解:(1)-10+40=30,∴点N表示的数为30;(2)40÷(3+5)=5秒,-10+5×5=15,∴点D表示的数为15;(3)40÷(5-3)=20,∴经过20秒后,P ,Q 两点重合. 【点睛】本题考查了数轴上两点之间的距离,解题的关键是掌握相遇问题和追击问题之间的数量关系.3.已知实数a ,b ,c 在数轴上所对应的点分别为A ,B ,C ,其中b 是最小的正整数,且a ,b ,c 满足()2520c a b -++=.两点之间的距离可用这两点对应的字母表示,如:点A与点B 之间的距离可表示为AB . (1)a = ,b = ,c = ;(2)点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 以每秒2个单位长度的速度向右运动,点C 以每秒5个单位长度的速度向右运动,假设运动时间为t 秒,则AB = ,BC = ;(结果用含t 的代数式表示)这种情况下,BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值;(3)若A ,C 两点的运动和(2)中保持不变,点B 变为以每秒n (0n >)个单位长度的速度向右运动,当3t =时,2AC BC =,求n 的值.答案:(1)-2,1,5;(2)不变,值为1;(3)或 【分析】(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值; (2)用关于解析:(1)-2,1,5;(2)不变,值为1;(3)136或212 【分析】(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值; (2)用关于t 的式子表示BC 和AB 即可求解;(3)分别求出当t=3时,A 、B 、C 表示的数,得到AC 和BC ,根据AC=2BC 列出方长,解之即可. 【详解】解:(1)∵()2520c a b -++=,b 是最小的正整数, ∴c-5=0,a+2b=0,b=1, ∴a=-2,b=1,c=5, 故答案为:-2,1,5;(2)∵点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,∴t 秒后,A 表示的数为-t-2,B 表示的数为2t+1,C 表示的数为5t+5,∴BC=5t+5-(2t+1)=3t+4,AB=2t+1-(-t-2)=3t+3, ∴BC-AB=3t+4-(3t+3)=1,∴BC-AB 的值不会随着时间t 的变化而改变,BC-AB=1; (3)当t=3时,点A 表示-2-3=-5,点B 表示1+3n ,点C 表示5+5×3=20, ∴AC=20-(-5)=25,BC=2013n --=193n -, ∵AC=2BC , 则25=2193n -,则25=2(19-3n ),或25=2(3n-19), 解得:n=136或212. 【点睛】此题考查一元一次方程的实际运用,以及数轴与绝对值,正确理解AB ,BC 的变化情况是关键.4.如图,数轴上有A 、B 、C 、D 四个点,分别对应的数为a 、b 、c 、d ,且满足a ,b 是方程|9|1x +=的两根()a b <,2(16)c -与|20|d -互为相反数, (1)求a 、b 、c 、d 的值;(2)若A 、B 两点以6个单位长度秒的速度向右匀速运动,同时C 、D 两点以2个单位长度/秒向左匀速运动,并设运动时间为t 秒,问t 为多少时,6AC =?(3)在(2)的条件下,A 、B 、C 、D 四个点继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使B 与C 的距离是A 与D 的距离的4倍?若存在,求时间t ;若不存在,请说明理由.答案:(1)a=-10,b=-8,c=16,d=20;(2)t 为或4时,;(3)存在,时间t=或4时,B 与C 的距离是A 与D 的距离的4倍. 【分析】(1)解含绝对值的方程即可求出a 和b ,根据平方和绝对值的解析:(1)a=-10,b=-8,c=16,d=20;(2)t 为2.5或4时,6AC =;(3)存在,时间t=3.6或4时,B 与C 的距离是A 与D 的距离的4倍.(1)解含绝对值的方程即可求出a 和b ,根据平方和绝对值的非负性即可求出c 和d ; (2)用含t 的式子表示出点A 、B 、C 、D 表示的数,然后根据点A 和点C 的位置关系分类讨论,分别列出方程即可求出结论;(3)先根据题意求出t 的取值范围,然后根据点A 和点D 的位置关系分类讨论,分别列出对应的方程即可分别求出结论. 【详解】 解:(1)|9|1x += ∴91x +=± 解得:x=-10或x=-8∵a ,b 是方程|9|1x +=的两根()a b <, ∴a=-10,b=-8∵2(16)c -与|20|d -互为相反数∴22(16)|20|0,(16)0,|20|0c d c d -+-=-≥-≥ ∴160,200c d -=-= 解得:c=16,d=20;(2)由运动时间为t 秒,则点A 表示的数为6t -10,点B 表示的数为6t -8,点C 表示的数为16-2t ,点D 表示的数为20-2t 若点A 在点C 左侧时,根据题意可得(16-2t )-(6t -10)=6 解得:t=2.5; 若点A 在点C 右侧时,根据题意可得(6t -10)-(16-2t )=6 解得:t=4;答:t 为2.5或4时,6AC =; (3)存在,当B 与D 重合时,即6t -8=20-2t 解得:t=3.5∵点B 运动到点D 的右侧 ∴t >3.5,点B 一定在点C 右侧 当点A 与点D 重合时,即6t -10=20-2t 解得:t=3.75①若点A 在点D 左侧或与D 重合时,即3.5<t≤3.75时,AD=(20-2t )-(6t -10)=30-8t ,BC=(6t -8)-(16-2t )=8t -24 根据题意可得8t -24=4(30-8t ) 解得:t=3.6;②若点A 在点D 右侧时,即t >3.75时,AD=(6t -10)-(20-2t )=8t -30,BC=(6t -8)-(16-2t )=8t -24 根据题意可得8t -24=4(8t -30)综上:存在,时间t=3.6或4时,B 与C 的距离是A 与D 的距离的4倍. 【点睛】此题考查的是一元一次方程的应用、数轴与动点问题,掌握数轴上两点之间的距离公式是解题关键.5.已知数轴上三点M ,O ,N 对应的数分别为1-,0,3,点P 为数轴上任意一点,其对应的数为x .(1)如果点P 到点M 、点N 的距离相等,那么x 的值是______.(2)数轴上是否存在点P ,使点P 到点M 、点N 的距离之和是8?若存在,求出x 的值;若不存在,请说明理由.(3)如果点P 以每分钟1个单位长度的速度从点O 向右运动,同时另一点Q 从点N 以每分钟2个单位长度的速度向左运动.设t 分钟时点P 和点Q 到点M 的距离相等,则t 的值为______.(直接写出答案)答案:(1)1 (2)存在,或 (3)或 【分析】(1)根据两点间的距离列方程求解即可; (2)分两种情况求解即可;(3)分点P 和点Q 相遇时和点Q 运动到点M 的左侧时两种情况解析:(1)1 (2)存在,3x =-或5x = (3)1t =或5t = 【分析】(1)根据两点间的距离列方程求解即可; (2)分两种情况求解即可;(3)分点P 和点Q 相遇时和点Q 运动到点M 的左侧时两种情况求解. 【详解】 解:(1)由题意得 3-x=x-(-1), 解得 x=1; (2)存在, ∵MN=3-(-1)=4,∴点P 不可能在M 、N 之间. 当点P 在点M 的左侧时, (-1-x)+(3-x)=8, 解得 x=-3;当点P 在点N 的右侧时,解得 x=5;∴3x =-或5x =;(3)当点P 和点Q 相遇时, t+2t=3, 解得 t=1;当点Q 运动到点M 的左侧时, t+1=2t-4, 解得 t=5;∴1t =或5t =. 【点睛】此题主要考查了数轴的应用以及一元一次方程的应用,分类讨论得出是解题关键. 6.已知,A ,B 在数轴上对应的数分用a ,b 表示,且()220100a b -++=,数轴上动点P 对应的数用x 表示.(1)在数轴上标出A 、B 的位置,并直接写出A 、B 之间的距离; (2)写出x a x b -+-的最小值;(3)已知点C 在点B 的右侧且BC =9,当数轴上有点P 满足PB =2PC 时, ①求P 点对应的数x 的值;②数轴上另一动点Q 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点Q 能移动到与①中的点P 重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动可以重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压轴题专题
1.(1)如图,点E 是AB 上方一点,MF 平分∠AME ,若点G 恰好在MF 的反向延长线上,且NE 平分∠CNG ,2∠E 与∠G 互余,求∠AME 的大小。

A
C
D
(2)如图,在(1)的条件下,若点P 是EM 上一动点,PQ 平分∠MPN ,NH 平分∠PNC ,交AB 于点H ,PJ//NH ,当点P 在线段EM 上运动时,∠JPQ 的度数是否改变?若不变,求出其值;若改变,请说明你的理由。

D
2.如图,已知MA//NB ,CA 平分∠BAE ,CB 平分∠ABN ,点D 是射线AM 上一动点,连DC ,当D 点在射线AM (不包括A 点)上滑动时,∠ADC+∠ACD+∠ABC 的度数是否发生变化?若不变,说明理由,并求出度数。

N
A
D
3.如图,AB//CD ,PA 平分∠BAC ,PC 平分∠ACD ,过点P 作PM 、PE 交CD 于M ,交AB 于E ,则(1)∠1+∠2+∠3+∠4不变;(2)∠3+∠4-∠1-∠2不变,选择正确的并给予证明。

4.如图,在平面直角坐标系中,已知点A (-5,0),B (
5.0),D (2,7), (1)求C 点的坐标;
(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。

设从出发起运动了x 秒。

①请用含x 的代数式分别表示P,Q 两点的坐标; ②当x=2时,y 轴上是否存在一点E ,使得△AQE 的面积与△APQ 的面积相等?若存在,求E 的坐标,若不存在,说明理由?
x
x
5、如图,在平面直角坐标系中,A (a ,0),C (b ,2),且满足(a+b )²+|a-b+4|=0,过C 作CBx 轴于B 。

(1)若过B 作BD//AC 交y 轴于D ,且AE 、DE 分别平分∠CAB ,∠ODB ,如图,求∠AED 的度数。

(2)在y 轴上是否存在点P ,使得
ABC 和ACP 的面积相等,若存在,求出P 点的坐标;若不存在,请说明理由。

6、2
a b m b a-+b+3=0=14.
ABC
A S 如图,已知(
0,),B (0,),C (,)且(4),
o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标
(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。

求证:平分;
(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,
EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQ
ECA
∠∠的大小是否发生变化,若不变,求出其值。

7.如图,A 为x 轴负半轴上一点,B 为x 轴正半轴上一点,C (0,-2),D (-3,-2)。

(1)求△BCD 的面积;
(2)若AC ⊥BC ,作∠CBA 的平分线交CO 于P ,交CA 于Q ,判断∠CPQ 与∠CQP 的大小关系,并说明你的结论。

(3)若∠ADC=∠DAC ,点B 在x 轴正半轴上任意运动,∠ACB 的平分线CE 交DA 的延长线于点E ,在B 点的运动过程中,E
ABC
∠∠的值是否变化?若不变,求出其值;若变化,说明理由。

8.如图,已知点A (-3,2),B (2,0),点C 在x 轴上,将△ABC 沿x 轴折叠,使点A 落在点D 处。

(1)写出D 点的坐标并求AD 的长;
(2)EF 平分∠AED ,若∠ACF-∠AEF=15º,求∠EFB 的度数。

x
x
x
9.(1)在平面直角坐标系中,如图1,将线段AB平移至线段CD,连接AC、BD。

已知A(-3,0)、B(-2,-2),点C在y轴的正半轴上,点D在第一象限内,且=5,求点C、D的坐标;
x
(2)在平面直角坐标系中,如图,已知一定点M(1,0),两个动点E(a,2a+1)、F(b,-2b+3),请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM。

若存在,求以点O、M、E、F为顶点的四边形的面积,若不存在,请说明理由。

相关文档
最新文档