数值分析习题课PPT资料43页

合集下载

数值分析全册完整课件

数值分析全册完整课件
0
解: 将 ex2 作Taylor展开后再积分
1 eБайду номын сангаас x2 dx
1
(1
x2
x4
x6
x8
... ) dx
0
0
2 ! 3! 4!
1 1 1 1 1 1 1 1 ... 3 2! 5 3! 7 4! 9
S4
R4
取 1 e
x
2
dx
0
S4
,

R4
1 1 4! 9
1 1 5! 11
...
值班军官对连长: 根据营长的命令,明晚8点哈雷彗星将 在操场上空出现。如果下雨的话,就让士兵穿着野战服列 队前往礼堂,这一罕见的现象将在那里出现。
连长对排长: 根据营长的命令,明晚8点,非凡的哈雷彗 星将身穿野战服在礼堂中出现。如果操场上下雨,营长将 下达另一个命令,这种命令每隔76年才会出现一次。
1.由实际问题应用有关知识和数学理论建立模型, -----应用数学任务
2.由数学模型提出求解的数值计算方法直到编程出结果, -----计算数学任务
计算方法是计算数学的一个主要部分,研究的即是后半 部分,将理论与计算相结合。
特点:
面向计算机,提供切实可行的算法; 有可靠的理论分析,能达到精度要求,保证近
计算方法
数值分析全册完整课件
教材和参考书
教材:
数值分析,电子科技大学应用数学学院,钟尔杰, 黄廷祝主编,高等教育出版社
参考书:
数值方法(MATLAB版)(第三版),John H. Mathews,Kurtis D. Fink 著,电子工业出版社;
数值分析(第四版),李庆扬,王能超,易大义编,清华 大学出版社;

数值分析第一章PPT

数值分析第一章PPT

1.1.2 计算数学与科学计算 现代科学的三个组成部分: 科学理论, 科学实验, 科学计算 科学计算 的核心内容是以现代化的计算机及数学软件 (Matlab, Mathematica, Maple, MathCAD etc. )为工具,以数学 模型为基础进行模拟研究。
一些边缘学科的相继出现:
计算数学,计算物理学,计算力学,计算化学,计算生物学, 计算地质学,计算经济学,等等

取 0 e
1
x2
dx S4 ,
S4
R4
/* Remainder */
1 1 1 1 由留下部分 称为截断误差 /* Truncation Error */ 4! 9 5! 11 /* included terms */ 1 1 这里 R4 引起.005 0 由截去部分 4! 9 /* excluded terms */ 1 1 1 S4 1 1 0 .333 0 .1 0 .024 0 .743 引起 3 10 42 | 舍入误差 /* Roundoff Error */ | 0.0005 2 0.001
数值分析
第1章
数值分析与科学计算引论
§1.1 数值分析的对象、作用与特点
1.1.1 什么是数值分析 数值分析是计算数学的主要部分,计算数学是数学 科学的一个分支,它研究用计算机求解各种数学问题的 数值计算方法及其理论与软件实现.这门课程又称为(数 值)计算方法、科学与工程计算等。

在电子计算机成为数值计算的主要工具的今天, 需要研究适合计算机使用的数值计算方法。使用计 算机解决科学计算问题时大致要经历如下几个过程:
造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。

《数值分析第二章》PPT课件

《数值分析第二章》PPT课件

定理2.1
顺序高斯消去法的前 n1 个主元
a (k ) kk
均不
为零的充要条件是 Ax b 的系数矩阵 A 的前 n 1个
顺序主子式
a a (1) (1) 11 12
Dk
a(1) 21
a(1) 22
a(1) 1k
a(1) 2k
0
(k1,2,...,n1).
a a (1) (1) k1 k2
a(1) kk
(1)
4 x2 x3 5
(2)
2
x1
2
x2
x3
1
(3)
解 <1> 化上三角方程组
x1 x2 x3 6

4 x2 x3 5

③+(-2)×①
2
x1
2 x2
x3
1

x1 x2 x3 6

4 x2 x3 5

④+ ②
4 x2 x3 11

x1 x2 x3 6
检验
原方程组:
0.012x1 0.010x20.167x3 0.6781
x10.8334x25.910x3 12.1
3200x1 1200x2 4.2x3 981
近似解: x 3 5 .5 4 6 ,x 2 1 0 0 .0 ,x 1 1 0 4 .0
把上近似解代入第 3 个方程后,得
3200×(-104)+1200×100 +4.2×5.546 = -2.1278e+005
列主元素消去法求解方程组时,各个列主元素
a (k ) ik k
均不为零。

设有一个列主元素
a
(r ) ir r

数值分析全册完整课件

数值分析全册完整课件
似算法的收敛性和数值稳定性; 要有好的计算复杂性,节省时间及存储量; 有数值实验,证明算法有效。
算法基本结构:顺序,分支,循环
算法描述:程序或流程图
常采用的处理方法:
构造性方法 离散化方法 递推化方法 迭代法 近似替代方法 以直代曲法 化整为零的处理方法 外推法
数学基础:
微积分的若干定理: 罗尔定理和微分中值定理; 介值定理及推论; 泰勒公式(一元、二元); 积分中值定理;
设y=f(x)为一元函数,自变量准确值x*,对应函数准确 值y*=f(x*),x误差为e(x),误差限为ε(x),函数近似值 误差e(y),误差限为ε(y)。则(可由Taylor公式推得)
( y) | f '(x) | (x)
r
(
y)
|
xf |f
'(x) (x) |
|
r
(
x)
对于多元函数 z f (x1, x2 ,, xn )
定义1.1 设x*为某一数据的准确值,x为x*的一个近 似值,称e(x)=x-x*(近似值-准确值)为近似值x的绝对 误差,简称误差。
e(x) 可正可负,当e(x) >0时近似值偏大,叫强近似值;当e(x) <0时近似值偏小,叫弱近似值。
由于x*通常无法确定,只能估计其绝对误差值 不超过某整数ε(x),即
设准确值
z* f (x1*, x2*,, xn* )
由多元函数Taylor公式,可得误差估计:
n
(z)
k 1
f xk
(xk )
相对误差限为:
r (z)
n k 1
xk
f xk
r (xk )
z
2. 算术运算的误差估计:

数值分析课件第3章

数值分析课件第3章
0
x
y
2 4 6
8 6 4 2

骄行札或务旷恰洗大而非仆椒鸿孜襟儡和跟浪陪痕骚树认邻异镍屠丰逃臃数值分析课件第3章数值分析课件第3章
初每孟缅家邱拙货另崇屎慑芝骋磨雨鹏苯核碉断策占悲异贺碴察鸿旧岿父数值分析课件第3章数值分析课件第3章
例3-4 已知实测数据表如下,确定数学模型 y=aebx, 用最小二乘法确定a,b。
帜尸砚损讹祖邱帆迄攫让汕芽柔造兔优伐具猪购冈琅高蹄熊嫌第凸貉楚章数值分析课件第3章数值分析课件第3章
伸姜积升斯钳更相傍抒匣替讯蔽炽恋喉爱著殷都皂孵羌邹捞谎寐池骇织狱数值分析课件第3章数值分析课件第3章
i
0 1 2 3 4
拙猪囤犀缎孩甸萤捷褐番舍倪酌月迢飘沟锰乡橙波旗骨渠虎偷朋袒夹惹胳数值分析课件第3章数值分析课件第3章
新隆培润已描苍淬霖绪册防嚷拇痘掂腹坏蕉吁咳洞烷携敦玻腔同翻坎镀讨数值分析课件第3章数值分析课件第3章
宽烹呼境眺泡狞瑞怕敝斧厨寞贝砚妄特痒福踊阁监桐却挠伸井竟哇含野劲数值分析课件第3章数值分析课件第3章
囊铭徒庄裸课爹压屏滴插百盗万武廷校船卿肪没弹溃想镊茨壳峨孽信骗跨数值分析课件第3章数值分析课件第3章
i
0 1 2 3 4
xi yi yi
1.00 1.25 1.50 1.75 2.00 5.10 5.79 6.53 7.45 8.46 1.629 1.756 1.876 2.008 2.135
3.1基本概念
x0
x
x
x
x
x
x
x
f(x)
p(x)
虐座韦龄椽加腕槽晶僵壤漱键椒赏琢芭尊校榆唤著里钙治纹改瞥宁岁坛草数值分析课件第3章数值分析课件第3章
2、范数与赋范线形空间

数值分析(课后习题答案详解).ppt

数值分析(课后习题答案详解).ppt

x x 41 2 0 . 25 0 . 5451 1 1 再解 3 x 0 . 875 ,得 x 1 . 2916 2 2 2 0 3 1 . 7083 . 5694 x x 3 3
4 41 2 T 故得 GG 分解: A 1 2 3 2 2 3 3 3 1 1 16 11 4 2 T 3 1 LDL 分解为: A 1 4 4 1 2 3 1 1 9 1 2 2
一.习题1(第10页)
1-1.下列各数都是经过四舍五入得到的近似值 ,试分 别指出它们的绝对误差限,相对误差限和有效数字的位数.
x1=5.420,x2=0.5420,x3=0.00542,x4=6000,x5=0.6105.
解 绝对误差限分别为: 1=0.510-3,2=0.510-4, 3=0.510-5,4=0.5,5=0.5104 . 相对误差限分别为: r1=0.510-3/5.420=0.00923%, r2=0.00923%,r3=0.0923%,4=0.0083%,5=8.3%. 有效数位分别为: 4位,4位,3位,4位,1位. 1-2.下列近似值的绝对误差限都是0.005,试问它们有
2 11 2 1 2 故得 Crout 分解: A 4 3 13 6 12 1 1
1 2 11 2 1 2 LDM 分解为: A 21 13 3 3 4 1 1 1
几位有效数字. a=-1.00031,b=0.042,c=-0.00032

《数值分析教程》课件

《数值分析教程》课件
总结词
一种适用于大规模计算的数值方法
详细描述
谱方法适用于大规模计算,通过将问题分解为较小的子问 题并利用多线程或分布式计算等技术进行并行计算,可以 有效地处理大规模的计算任务。
感谢您的观看
THANKS
具有简单、稳定和可靠的优点。
05
数值积分与微分
牛顿-莱布尼兹公式
要点一
总结词
牛顿-莱布尼兹公式是数值积分中的基本公式,用于计算定 积分。
要点二
详细描述
牛顿-莱布尼兹公式基于定积分的定义,通过选取一系列小 区间上的近似值,将定积分转化为一系列小矩形面积之和 ,从而实现了数值积分。
复化求积公式
总结词
算机实现各种算法,为各个领域的科学研究和技术开发提供了强有力的支持。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程 、经济、金融、生物医学等。
详细描述
数值分析的应用领域非常广泛,几乎涵盖了所有的科学 和工程领域。在科学计算方面,数值分析用于模拟和预 测各种自然现象,如气候变化、生态系统和地球科学等 。在工程领域,数值分析用于解决各种复杂的工程问题 ,如航空航天、机械、土木和电子工程等。在经济和金 融领域,数值分析用于进行统计分析、预测和优化等。 在生物医学领域,数值分析用于图像处理、疾病诊断和 治疗等。总之,数值分析已经成为各个领域中不可或缺 的重要工具。
03
线性方程组的数值解法
高斯消去法
总结词
高斯消去法是一种直接求解线性方程组的方法,通过一系列 行变换将系数矩阵变为上三角矩阵,然后求解上三角方程组 得到解。
详细描述
高斯消去法的基本思想是将系数矩阵通过行变换化为上三角 矩阵,然后通过回带求解得到方程组的解。该方法具有较高 的稳定性和精度,适用于中小规模线性方程组的求解。

数值分析-第一章ppt课件

数值分析-第一章ppt课件
3. 高效性: 它应该具有计算量小、占用存储单元 少、计算过程简单、规律性强等优点.
可编辑课件PPT
4
《数值分析》课程主要介绍几类数学问题的经典 算法. 在学习中既要重视实际应用, 又要重视有关理论, 必须注意理解算法的设计原理和处理技巧, 重视基本 概念和理论——误差分析, 收敛性与稳定性. 认真完成 习题中的理论证明和计算方面的相关问题, 手算与上 机计算相结合, 同时注意培养利用计算机进行科学计 算的能力.
似值 x*的绝对误差限, 简称为误差限. 在工程技术中常记作 x=x*±*。 例如, 电压V=100±2(V), V*=100(V)是V的一个近
似值, 2(V)是V*的一个误差限, 即
| V–V*| 2(V)
可编辑课件PPT
11
二、相对误差与相对误差限
对于两个数值
x1=100±2, x2=10±1
[4] Rainer Kress. Numerical Analysis. New York:
Springer-Verlag, 2003.
可编辑课件PPT
1
实际问题

解释 实际问题

结束
抽象
建立数学模型
简化
类方 型法
结果分析 求解计算
应用于实践
可编辑课件PPT
2
数值分析研究的主要内容:是各类数学问题的近 似解法——数值方法, 是从数学模型(由实际问题产生 的一组解析表达式或原始数据)出发, 寻求在有限步内 可以获得数学问题满足一定精度近似解的运算规则, 这种规则称为算法, 它包括计算公式, 计算方案和整个 计算过程.
值x的比值为近似值x*的相对误差, 并记作er(x*),
可编辑课件PPT
12

《数值分析习题课》PPT课件

《数值分析习题课》PPT课件

3 3
极大值为g(t) 2 3 ,极小值为g(t) 2 3
9
9
max|g(x)|= 2 3 9

f ( x) p2 ( x)

3 h3 max 27 x0 x x1
f ( x)
例3. 设f(x)=x4,试利用拉格朗日插值余项定理写出以-1, 0, 1, 2为插值节点的三次插值多项式. 解: 记f(x)以-1,0,1,2为插值节点的三次插值多项式为 L3(x).由插值余项定理有
练习: 求方程 x2-56x+1=0 的两个根,使它们至少具有四
位有效数字 3132 55.964 .
第二章 插值与拟合
1、Lagrange插值多项式,Newton插值多项式的构造与插 值余项估计,及证明过程。
2、 Hermite插值多项式的构造与插值余项估计, 带导数条件的插值多项式的构造方法,基于承袭性的
例1-3 已知 e =2.718281828……, 试判断下面两个近似 数各有几位有效数字?
e1 2.718282 , e2 2.718281
解:由于
e e1

0.0000001 Hale Waihona Puke 0.0000005
1 106 2
而 e1 2.718282 0.2718282101
电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义二计算定积分和函数的导数的近似值对于给定的被积函数与求导函数应用指定的数值积分公式或数值微分公式计算t9t12t13t18t19t25t26等明确积分公式与微分公式三确定复化求积公式和数值微分公式的步长或节点数使计算结果满足所给精度要求根据复化求积公式和数值微分公式的余项或截断误差表达式对满足精度要求解一个相应的不等式即可确定所需的步长或节点数电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义1212101210212等距节点才能满足截断误差要求此时步长为h由复化梯形公式的截断误差得n213电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义10180等距节点才能满足截断误差要求此时步长为h由复化梯形公式的截断误差得1101212iftffbfan1692n170电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义1018016复化中矩形方法电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义常微分方程数值解复习euler法显式euler公式隐式euler公式梯形公式改进euler公式变形euler公式基本公式常微分方程组高阶常微分方程初值问题的计算电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义对于隐式方法若fxy关于y是线性的可从隐式公式中解出yn1使公式显式化不需要迭代否则需要用迭代法计算对于高阶或方程组的初值问题需要进行转化电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义法求解初值问题并与精确解y进行比较0101010197001n1数值解精确解误差电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义习题用法求解初值问题导出近似解的显式表达式

《数值分析》课程PPT (2)

《数值分析》课程PPT (2)
数值分析
第二章 矩阵分析基础
第一节 线性空间 第二节 赋范线性空间 第三节 内积空间 第四节 矩阵代数基础 第五节 矩阵的三角分解 第六节 矩阵的正交分解 第七节 矩阵的奇异值分解
数值分析
数值分析
第一节 线性空间
一、线性空间的定义 二、线性空间的性质 三、线性空间的基与维数 四、元素在给定基下的坐标 五、线性空间的同构 六、基变换公式与过渡矩阵 七、坐标变换公式 八、线性空间的子空间
f ( x) C[a, b], R
数值分析
数值分析
(2)一个集合,如果定义的加法和数乘运 算不是通常的实数间的加乘运算,则必需检验是 否满足八条线性运算规律.
例6 正实数的全体,记作 R ,在其中定义加法
及乘数运算为
a b ab, a a , R,a,b R .
P[ x]n 对运算封闭.
数值分析
数值分析
例3 n次多项式的全体 Q[ x]n { p( x) an xn a1 x a0 an , , a1, a0 R,且an 0}
对于通常的多项式加法和数乘运算不构成线性空间. 0 p 0 xn 0x 0 Q[ x]n
数乘
A (aij )mn Rmn , R
所以Rmn是线性空间。
数值分析
数值分析
例2 次数不超过n的多项式的全体,记作P[ x]n ,即
P[ x]n { p( x) an xn a1 x a0 an , , a1, a0 R},
对于通常的多项式加法, 数乘多项式的乘法构成线性
数值分析
数值分析
(3)Rn中定义的加法和数乘运算满足代数 运算的八条公理:
1. x y y x

数值分析全套课件

数值分析全套课件

Ln n si n

ˆ L2n (4L2n Ln ) / 3
n L error 192 3.1414524 1.4e-004 384 3.1415576 3.5e-005 3.1415926 4.6e-010
3/16
通信卫星覆盖地球面积
将地球考虑成一 个球体, 设R为地 球半径,h为卫星 高度,D为覆盖面 在切痕平面上的 投影(积分区域)
( x1 x2 ) | x1 | ( x2 ) | x2 | ( x1 )
15/16
例3.二次方程 x2 – 16 x + 1 = 0, 取
求 x1 8 63 使具有4位有效数
63 7.937
解:直接计算 x1≈8 – 7.937 = 0.063
( x1 ) (8) (7.937) 0.0005
5/16
误差的有关概念
假设某一数据的准确值为 x*,其近似值 为 x,则称
e(x)= x - x*
为 x 的绝对误差 而称
e( x) x x er ( x ) , x x
*
( x 0)

为 x 的相对误差
6/16
如果存在一个适当小的正数ε

,使得
e( x) x x
计算出的x1 具有两位有效数
1 0.062747 修改算法 x1 8 63 15.937 4位有效数 (15.937) 0.0005 ( x1 ) 0.000005 2 2 (15.937) (15.937)
16/16
1
参考文献
[1]李庆扬 关治 白峰杉, 数值计算原理(清华) [2]蔡大用 白峰杉, 现代科学计算 [3]蔡大用, 数值分析与实验学习指导 [4]孙志忠,计算方法典型例题分析 [5]车刚明等, 数值分析典型题解析(西北工大) [6]David Kincaid,数值分析(第三版) [7] John H. Mathews,数值方法(MATLAB版)

数值分析:第一章绪论PPT课件

数值分析:第一章绪论PPT课件

x
*
是指对每一个 1 i
n
都有lim k
xi( k )
x
* i
可以。理解为 | |
x
(
k
)
x*
||
0
定义1.2.3
若存在常数
C1、C2
>
0
使得,
C1 || x ||B || x ||A C2 || x ||B
则称 || ·||A 和|| ·||B 等价。
可以理解为对任何
向量范数都成立。
数值分析课程中所讲述的各种数值方 法在科学与工程计算、信息科学、管理 科学、生命科学等交叉学科中有着广泛 的应用
第3页/共44页
应用问题举例
第4页/共44页
1、一个两千年前的例子
今有上禾三秉,中禾二秉,下禾一秉, 实三十九斗;
上禾二秉,中禾三秉,下禾一秉, 实三十四斗;
上禾一秉,中禾二秉,下禾三秉, 实二十六斗。 问上、中、下禾实一秉各几何? 答曰:上禾一秉九斗四分斗之一。中禾 一秉四斗四分斗之一。下禾一秉二斗四 分斗之三。-------《九章算术》
定理1.2.1 Rn 上一切范数都等价。
第27页/共44页
二. 矩阵范数
定义1.2.4
Rmn空间的矩阵范数 || ·|| 对任意A, B R满mn足: (1) || A || 0 ; || A || 0 A 0 (正定性)
(2) || A || | | || A || 对任意 C (齐次性) (3) || A B || || A|| || B || (三角不等式)
1 1
(1
I1*
)
0.63
212056
第24页/共44页
我们仅仅是幸运吗?

《数值分析》ppt课件

《数值分析》ppt课件

7.
er

a b


er
(a)

er
(b)
30
例4
ε(p)
设有三个近似数
p ≈ 6.6332
≈0.02585
a=2.31,b=1.93,c=2.24
它们都有三位有效数字,试计算p=a+bc,e ( p)和e r ( p) 并问:p的计算结果能有几位有效数字?
2位
例5
设f (x, y) cos y , x 1.30 0.005, y 0.871 0.0005. x
er

e x

x x x
.
由于精确值 x 未知, 实际上总把
e x
作为x*的
相对误差,并且仍记为er , 即
er

e x
.
❖定义 近似值 x* 的相对误差上限(界) (relative accuracy)
εr

|
ε x
|.
注:相对误差一般用百分比表示.
17
例1 用最小刻度为毫米的卡尺测量直杆甲和直杆
注:理论上讲,e 是唯一确定的, 可能取正, 也可能取负.
e > 0 不唯一,当然 e 越小越具有参考价值。
15
提问:绝对误差限的大小能否完全地 表示近似值的好坏? 例如:有两个量
x 10 1 , y 1000 5
思考
问:谁的近似程度要好一些?
16
❖定义 近似值 x* 的相对误差 (relative error)
a 2.18
e r(b) e (b) 0.00005 0.0024%
b 2.1200
19
➢有效数字 ( significant digits)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年考题
1、设,取x0=4,x1=9,x2=6.25,则差商 -0.0080808 。 (结果保留5位有效数字)
2、给定如下数据: xi 1 2 3 4
f xi 0 5 6 3
试列出三阶差商表,求出f(x)的三次牛顿插值多项式, 并利用该多项式计算f(0)的值。(保留三位有效数字)
0.9456909
由复合辛卜生公式可得如下计算公式
S4
1f(0)f(1)2(f(0.25 )f(0.5)f(0.75 ))
24
4(f(0.12)5 f(0.37)5 f(0.62)5 f(0.87)5)
0.9460832
(积分准确值I=0.9460831)
这两种方法都需要提供9个点上的函数值,计
将区间逐次分半,令区间长度
hba (k0,1,2, ) 2k
计算
T2n
Tn 2
hn1
2k0
f(xk1 2
)
(n 2k )
③ 按加速公式求加速值
梯形加速公式:
Sn
T2n
T2n Tn 3
辛卜生加速公式:
Cn
S2n
S2n Sn 15
龙贝格求积公式:
Rn
C2n
C2n Cn 63
熟练掌握本课程重点方法计算过程) (注3:考试需携带计算器)
1、引论
误差与有效数字(重)p6:例1,2 数值运算的误差估计 算法稳定性与病态条件数 p11:例6-8
作业 1、课本(清华版)p19,习题3、4. 2、知近似值x1=1.42,x2=-0.0184,x3=184*10-4
历年考题
1、已知 f( 1 )2 , f(1 ) 1 , f(2 ) 1 ,求f(x)的二次拉 格朗日插值多项式,并利用该多项式计算的值 。(保留三位有效数字)
2、已知函数的观测数据为如下表: x1 2 3 y 0 -5 3 求Lagrange插值多项式为:
复习题
2.给定函数f(x)=x3-4x,试建立关于xi=i+1(i=1...5)的差 商表,并列出关于x0,x1,x2,x3的插值多项式p(x)。
历年考题
1、求积公式 为 3 次。
-1 1f(x)d x1 3f(-)1 4f(0)f(1 )的代数精度
1
2、使用梯形公式
2
e x dx
计算积分时截断误差为
1
0.6796 。(结果保留4位有效数字)
3、所有牛顿—柯特斯求积公式的系数和均为1。 (√)
例 依次用n=8的复合梯形公式、n=4的复合
x1 x 计算。
2、插值法
线性插值(重)p28:例2 抛物线插值 拉格朗日插值多项式 均差(重)p31:均差表,p32:例题4 均差与牛顿插值(重) 诶尔米特插值 分段线性插值 三次样条插值(重)p44:例7与课件中例题的区别
复习题
1.构造拉格朗日多项式p(x)逼近f(x)=x3,要求: (1)节点x为-1,1,做线性插值。 (2)节点x为-1,0,1,做抛物插值。 (3)节点x为-1,0,1,2,做三次插值。
算量基本相同,然而精度却差别较大,同积分的准
确值(是指每一位数字都是有效数字的积分值)比
较,复合梯形法只有两位有效数字
(T8=0.9456909),而复合辛卜生法却有六位有效数 字。
龙贝格求积计算步骤
① 解决用梯形公式计算积分近似值 T1b 2af(a)f(b)
② 按变步长梯形公式计算积分近似值
数值计算方法 (数值分析)
课程复习与习题讲解
课程考察范围
1、引论 2、插值法 3、数值积分 4、解线性方程组直接法 5、解线性方程组迭代法 6、非线性方程组数值解法 7、常微分方程初值问题数值解法 (注:每个章节均有重点内容)
试题构成
填空题5小题,共计10分。 计算题6小题,每题15分,共计90分。 各章均占15%左右权重。 各章重点方法和公式要求掌握ቤተ መጻሕፍቲ ባይዱ (注1:试题总体难度等级——简单) (注2:试题有一定的计算量,希望复习作业
xk f xk f xk,xk1 f xk,xk1,xk2 f xk,xk1,xk2,xk3
10
2 5
5
3 6
1
2
43
9
5
1
N 3x5x1+2x1(x2)x1x2x3
x34x2+3
N 303
复习题
的绝对误差限均为0.5*10-2,问他们各有几位有效 数字。
(参见书后答案和课件例题!自己对照!) 记住:准确到某位-误差限是该位的半个单位!
历年试题分析
是圆周率真实值的近似值 3.14159 26,5
其有 3 位有效数字。
根据误差稳定性原则 y x1 x ,在计算等
y 1
式时应转变成
辛卜生公式计算定积分
I
1sinx dx 0x
解:首先计算出所需各节点的函数值,n=8时,
h 1 0.125 8
由复合梯形公式可得如下计算公式:
T8116f(0)2f(0.12)52f(0.2)52f(0.37)52f(0.5) 2f(0.62)52f(0.7)52f(0.87)5f(1)
④ 精度控制;直到相邻两次积分值
R2n Rn
(其中ε 为允许的误差限)则终止计算并取Rn
请参见P112教材说明,加深理解!

用龙贝格算法计算定积分
1
I
4
dx
01x2
要求相邻两次龙贝格值的偏差不超过 10 5
解:由题意 a0,b1,f(x) 4
1x2
课件例4 已知的函数值如下: x1 2 4 5
f (x) 1 3 4 2 在区间1,5上求三次样条插值函数S(x),使它满足边 界条件 S(1 )0 ,S(5 )0
作业题9、构造适合系列数据的三次样条S(x)。
x
-1
0
1
3
y
-1
1
3
5
y'
6
3、数值积分
数值积分基本思想 代数精度(重)p100:例1 插值型求积公式 牛顿-科特斯公式(重:辛普森公式。p104) 复合求积公式(重:复合辛普森。p108:例3) 龙贝格求积公式(重:p110,例5-p112,例6) 高斯求积公式(重:p120,例9)
相关文档
最新文档