《新编基础物理学答案解析》_第11章

合集下载

《新编基础物理学》_第十章习题解答和分析

《新编基础物理学》_第十章习题解答和分析

题图10-1题10-1解图 d 第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。

分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有ACAB U U =。

解:(1)设B 、C 板上的电荷分别为B q 、C q 。

因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。

导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。

作如图中虚线所示的圆柱形高斯面。

因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =- 2A B q q =-即 ()A B C q q q =-+ ①又因为: ACAB U U =而: 2AC ACdU E =⋅ AB AB U E d =⋅∴ 2AC AB E E =于是:002C B σσεε =⋅ 两边乘以面积S 可得: 002C B S S σσεε =⋅ 即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-2(2) 00222C C A AC C AC AC q d d d U U U U E S σεε =+==⋅=⋅=⋅ 733412210210 2.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯ 10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求: (1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ;(2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。

新编基础物理学上册1-2单元课后答案

新编基础物理学上册1-2单元课后答案

新编物理基础学(上、下册)课后习题详细答案王少杰,顾牡主编第一章1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++r r r r其中a ,b ,ω均为正常数,求质点速度和加速度与时间的关系式。

分析:由速度、加速度的定义,将运动方程()r t r对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。

解:/sin()cos()==-++r r r r rv dr dt a t i a t j bk ωωωω2/cos()sin()a dv dt a t i t j ωωω⎡⎤==-+⎣⎦r r r r1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kx v v e -= 。

其中0v 是发动机关闭时的速度。

分析:要求()v v x =可通过积分变量替换dxdvvdt dv a ==,积分即可求得。

证:2d d d d d d d d v x vv t x x v t v K -==⋅= d Kdx v =-v⎰⎰-=x x K 0d d 10v v v v , Kx -=0ln v v0Kx v v e -=1-3.一质点在xOy 平面内运动,运动函数为22,48x t y t ==-。

(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。

写出质点的运动学方程)(t r ρ表达式。

对运动学方程求一阶导、二阶导得()v t r 和()a t r ,把时间代入可得某时刻质点的位置、速度、加速度。

解:(1)由2,x t =得:,2x t =代入248y t =-可得:28y x =-,即轨道曲线。

新编物理学基础课后习题答案

新编物理学基础课后习题答案

i AB CD
0 I vl 1 1 ( ) 2 a vt a b vt
I
aA b D l
方向为顺时针方向。 (2) 选面积元dS = ldr a b 0 I 0 l I a b Φ a l dr ln 2 r 2 a
r v
B
C
dr
I aA b D l B C
v
解:(1) 任意时刻 t,AB、CD边到导线的距离分别 为 a +v t 和 a +b + v t 0 I 0 I BAB BCD 2 (a vt ) 2 (a b vt )
AB l vBAB (A B)
CD l vBCD (D C)
0 0 0
3-7 如图所示,长直导线AB中的电流 I沿导线向上, 并以 dI/dt=2A/s的变化率均匀增长。导线附近放一个 与之共面的直角三角形线框,其一边与导线平行,位 置及线框尺寸如图(设a =10cm, b=20cm, c = 5.0cm) 所示。求此线框中产生的感应电动势的大小和方向。 A Y 0 I 解: dx 处 的B 2 x I 0.15 0 I Φ s B dS 0.05 y dx b 2 x y 0.15 x y y 2(0.15 x ) O x dx X 0.1 0.2 a B c

k
R rk 2eR (2k 1) 2 rk2 1 12 1 k 50.5 50 (条) 4 R 2 0.5 10 400 2
2
4-15 波长范围在450~650nm之间的复色平行光垂直 照射在每厘米有5000条刻线的光栅上,屏幕放在透镜 的焦平面处,屏上第二级光谱各色光在屏上所占范围 的宽度为35.1cm,求透镜的焦距f 。 1 cm 解: a b (a b)sin k 2 5000 21 2 450 0 sin 1 0.45 26.74 1 a b 2 103

新编基础物理学上册答案

新编基础物理学上册答案

新编基础物理学上册答案【篇一:新编基础物理学上册1-2单元课后答案】class=txt>王少杰,顾牡主编第一章????1-1.质点运动学方程为:r?acos(?t)i?asin(?t)j?btk,其中a,b,?均为正常数,求质点速度和加速度与时间的关系式。

?分析:由速度、加速度的定义,将运动方程r(t)对时间t求一阶导数和二阶导数,可得到速度和加速度的表达式。

?????解:v?dr/dt??a?sin(?t)i?a?cos(?t)j?bk????2a?dv/dt??a???cos(?t)i?sin(?t)j??1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即dv/dt??kv2,式中k为常量.试证明电艇在关闭发动机后又行驶x距离时的速度为v?v0e?kx 。

其中v0是发动机关闭时的速度。

dvdv分析:要求v?v(x)可通过积分变量替换a?,积分即可求得。

?vdtdxdvdvdxdv???v??kv2dtdxdtdxdv??kdxvv1xvv???v0v?0kdx ,lnv0??kx证:v?v0e?kx1-3.一质点在xoy平面内运动,运动函数为x?2t,y?4t2?8。

(1)求质点的轨道方程并画出轨道曲线;(2)求t=1 s和t=2 s 时质点的位置、速度和加速度。

分析:将运动方程x和y的两个分量式消去参数t,便可得到质点的轨道方程。

写出质点的???运动学方程r(t)表达式。

对运动学方程求一阶导、二阶导得v(t)和a(t),把时间代入可得某时刻质点的位置、速度、加速度。

解:(1)由x?2t,得:t?,代入y?4t2?8可得:y?x2?8,即轨道曲线。

画图略???(2)质点的位置可表示为:r?2ti?(4t2?8)j?????由v?dr/dt则速度:v?2i?8tj????由a则加速度:a?8j ?dv/dt????????则:当t=1s时,有r?2i?4j,v?2i?8j,a?8j????????当t=2s时,有r?4i?8j,v?2i?16j,a?8j1-4.一质点的运动学方程为x?t2,y?(t?1)2,x和y均以m为单位,t以s为单位。

《新编护理学基础》第9章至第11章试题和答案

《新编护理学基础》第9章至第11章试题和答案

窗体顶端测试题(第9章)(一)单项选择题1.在传染病区内属于半污染区的是()。

A.办公室B.病区走廊C.值班室D.库房E.盥洗室2.对芽胞无作用的化学消毒剂是()。

A.环氧乙烷B.过氧乙酸C.碘酊D.乙醇E.甲醛3.执行隔离技术不妥的是()。

A.用一次性口罩不超过4hB.刷手时应从指尖开始C.冲洗手时应腕部低于肘部D.隔离衣应每日更换E.取避污纸从页面抓取4.下列不符合无菌技术操作要求的是()。

A.铺好的无菌盘有效时限为8hB.已开启的溶液瓶内溶液可保存24hC.无菌包打开后包内物品使用时限为24hD.无菌包的有效期一般为7天E.一份无菌物品只能供一个病人使用5.医院内一般病室适宜的环境是()。

A.温度18~22℃,湿度50%~60%,噪音强度45~55dBB.温度22~24℃,湿度50%~60%,噪音强度35~45dBC.温度18~22℃,湿度50%~60%,噪音强度35~45dBD.温度22~24℃,湿度40%~50%,噪音强度45~55dBE.温度24~28℃,湿度40%~50%,噪音强度45~55dB6.以下关于热力消毒灭菌法的叙述中,错误的是()。

A.利用热力破坏微生物的蛋白质、核酸,从而导致其死亡B.燃烧灭菌法适用于锐利刀剪的消毒灭菌C.湿热法的优点是传热快,穿透力强,可释放潜热D.煮沸消毒法可用于金属、搪瓷、玻璃、橡胶类物品的消毒E.预真空压力蒸汽灭菌器在5min左右即可灭菌7.下列关于隔离技术的说法中,正确的是()。

A.传染性分泌物二次培养结果均为阴性后可解除隔离B.脱隔离衣前应用清洁液洗手C.艾滋病患者应采用保护性隔离D.对于严密隔离的患者,可以出病室,但必须戴好口罩和帽子E.接触隔离适用于破伤风和气性坏疽8.使用紫外线灯进行消毒,不妥的是()。

A.照射时间应从开灯5~7min后开始计算B.用于物品消毒时,有效距离为25~60cmC.用于空气消毒时,有效照射距离不应超过2mD.当灯管强度低于60w/cm2时应予以更换E.消毒效果最好的相对湿度为40%~60%(二)多项选择题1.传染病区内属清洁区的是()。

新编物理基础学全册(王少杰版)课后习题答案及详解

新编物理基础学全册(王少杰版)课后习题答案及详解

新编物理基础学全册课后习题详细答案王少杰,顾牡主编第一章1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++其中a ,b ,ω均为正常数,求质点速度和加速度与时间的关系式。

分析:由速度、加速度的定义,将运动方程()r t 对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。

解:/sin()cos()==-++v dr dt a t i a t j bk ωωωω2/cos()sin()a dv dt a t i t j ωωω⎡⎤==-+⎣⎦1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kxv v e -= 。

其中0v 是发动机关闭时的速度。

分析:要求()v v x =可通过积分变量替换dxdvv dt dv a ==,积分即可求得。

证:2d d d d d d d d v x vv t x x v t v K -==⋅= d Kdx v =-v⎰⎰-=x x K 0d d 10v v v v , Kx -=0ln v v0Kxv v e -=1-3.一质点在xOy 平面内运动,运动函数为22,48x t y t ==-。

(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。

写出质点的运动学方程)(t r表达式。

对运动学方程求一阶导、二阶导得()v t 和()a t ,把时间代入可得某时刻质点的位置、速度、加速度。

解:(1)由2,x t =得:,2x t =代入248y t =-可得:28y x =-,即轨道曲线。

画图略 (2)质点的位置可表示为:22(48)r ti t j =+- 由/v dr dt =则速度:28v i tj =+ 由/a dv dt =则加速度:8a j =则:当t=1s 时,有24,28,8r i j v i j a j =-=+=当t=2s 时,有48,216,8ri j v i j a j =+=+=1-4.一质点的运动学方程为22(1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。

新编基础物理学第二版习题解答

新编基础物理学第二版习题解答

习题二2-1.两质量分别为m 和M ()M m ≠的物体并排放在光滑的水平桌面上,现有一水平力F 作用在物体m 上,使两物体一起向右运动,如题图2-1所示,求两物体间的相互作用力。

若水平力F 作用在M 上,使两物体一起向左运动,则两物体间相互作用力的大小是否发生变化?解:以m 、M 整体为研究对象,有()F m M a =+…①以m 为研究对象,如解图2-1(a ),有Mm F F ma -=…②由①、②两式,得相互作用力大小若F 作用在M 上,以m 为研究对象,如题图2-1(b )有Mm F ma =…………③由①、③两式,得相互作用力大小MmmFF m M=+发生变化。

2-2.在一条跨过轻滑轮的细绳的两端各系一物体,两物体的质量分别为M 1和M 2,在M 2上再放一质量为m 的小物体,如题图2-2所示,若M 1=M 2=4m ,求m 和M 2之间的相互作用力,若M 1=5m ,M 2=3m ,则m与M 2之间的作用力是否发生变化?解:受力图如解图2-2,分别以M 1、M 2和m 为研究对象,有111T M g M a -=又12T T =,则2M m F =1122M mgM M m++当124M M m ==时 当125,3M m M m ==时2109M m mg F =,发生变化。

2-3.质量为M 的气球以加速度a v匀加速上升,突然一只质量为m 的小鸟飞到气球上,并停留在气球上。

若气球仍能向上加速,求气球的加速度减少了多少?题图2-2题图2-1解图2-1解图2-2解:设f r为空气对气球的浮力,取向上为正。

分别由解图2-3(a )、(b)可得 由此解得2-4.如题图2-4所示,人的质量为60kg ,底板的质量为40kg 。

人若想站在底板上静止不动,则必须以多大的力拉住绳子? 解:设底板和人的质量分别为M ,m ,以向上为正方向,受力图如解图2-4(a )、(b)所示,分别以底板、人为研究对象,则有3'0T F mg +-=F 为人对底板的压力,'F 为底板对人的弹力。

新编基础物理学上册12-13单元课后答案

新编基础物理学上册12-13单元课后答案

第十二章12-1 图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B =μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线? 答:因为顺磁质r μ>1,抗磁质r μ<1,铁磁质r μ>>1, B =r μμ0H 。

所以a 代表 铁磁质 的B ~H 关系曲线.b 代表 顺磁质 的B ~H 关系曲线.c 代表 抗磁质 的B ~H 关系曲线.12-2 螺绕环中心周长10l cm =,环上线圈匝数N =200匝,线圈中通有电流100I mA =。

(1)求管内的磁感应强度0B 和磁场强度0H ;(2)若管内充满相对磁导率r 4200μ=的磁性物质,则管内的B 和H 是多少?(3)磁性物质内由导线中电流产生的0B 和由磁化电流产生的B '各是多少?分析:电流对称分布,可应用安培环路定理求解。

且B H μ= ,0B B B '=+。

解:(1)管内磁场强度3110220010010A m 200A m .1010NI H nI l ----⨯⨯====⨯ 磁感应强度 740004π10200 2.510T.B H μ--==⨯⨯=⨯ (2)管内充满r 4200μ=磁介质后10200A m ,H H -==4r 0r 04200 2.510T=1.05T.B H H B μμμμ-====⨯⨯(3)磁介质内由导线中电流产生的40 2.510T,B -=⨯则40(1.05 2.510)T 1.05T.B B B -'=-=-⨯≈12-3 一铁制的螺绕环,其平均圆周长为30cm ,截面积为1cm 2,在环上均匀绕以300匝导线,当线圈内的电流为0.032A 时,环内的磁通量为6210wb -⨯.试计算(1)环内的磁通量密度;(2)环圆截面中心的磁场强度;(3)磁化面电流;(4)环内材料的磁导率、相对磁导率及磁化率;(5)环芯内的磁化强度.分析:可应用介质中安培环路定理求磁场强度。

新编基础物理学(王少杰版)章末测验及答案汇总.

新编基础物理学(王少杰版)章末测验及答案汇总.

专业班级 学号 姓名机械振动本章知识点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,简谐运动的合成,阻尼振动,受迫振动,共振本章重点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,同方向同频率简谐运动的合成 一、填空题1.一个给定系统做简谐振动时,其振幅和初相位决定于 、 和 ;弹簧振子做简谐振动时,其频率决定于 和 .2.一弹簧振子,弹簧的劲度系数为0.32 N/m ,重物的质量为0.02 kg ,则这个系统的固有角频率为 rad/s ,相应的振动周期为 s .3.在两个相同的弹簧下各悬挂一物体,两物体的质量比为4:1,则两者做简谐运动的周期之比为 . 4.质点做简谐运动的位移和时间关系如图1所示,则其运动方程为 . 5.两个同频率的简谐运动曲线如图2所示,则2x 的相位比1x 的相位落后 .6.两个简谐振动曲线如图3所示,两个简谐振动的频率之比12:νν= ,加速度最大值之比a 1m :a 2m = ,初始速率之比1020:=v v .7.简谐振动的方程为)cos(ϕω+=t A x ,势能最大时位移x= ,此时动能E k = .8.已知一质点做简谐运动曲线如图4所示,由图可确定振子在t= s 时速度为零;在t= s 时弹性势能最小;在(__________)s 时加速度取正的最大值.9.两个同方向同频率的简谐振动,其合振动的振幅为0.20m ,合振动与第一分振动的相位差为60度,已知第一分振动的振幅为0.10m ,则第二分振动的振幅为 m ,第二分振动与第一分振动的相位差为 .10.某谐振子同时参与两个同方向的简谐运动,其运动方程分别为))(3/4cos(10321m t x ππ+⨯=-;))(4cos(10422m t x ϕπ+⨯=-当ϕ= 时合振动的振幅最大,其值max A = ;当ϕ= 时合振动的振幅最小,其值min A = .11.图5中所示为两个简谐振动的振动曲线,若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=11x x xt/s7x/m0.050.10 图1x 1xx 2to图32 1xt/s图4图5x 2x 1 xt图2(____________________)。

《新编基础物理学》第1章习题解答和分析

《新编基础物理学》第1章习题解答和分析

第1章 质点运动学1-1. 一质点沿x 轴运动,坐标与时间的变化关系为x =8t 3-6t (m ),试计算质点 (1) 在最初2s 内的平均速度,2s 末的瞬时速度;(2) 在1s 末到3s 末的平均加速度,3s 末的瞬时加速度. 分析:平均速度和瞬时速度的物理含义不同,分别用x t ∆=∆v 和d d xt=v 求得;平均加速度和瞬时加速度的物理含义也不同,分别用a t∆=∆v和d d a t =v 求得.解:(1) 在最初2s 内的平均速度为31(2)(0)(8262)026(m s )2x x x t t -∆-⨯-⨯-====⋅∆∆v2s 末质点的瞬时速度为212d 24690(m s )d xt t-==-=⋅v (2) 1s 末到3s 末的平均加速度为22(3)(1)(2436)(246)96(m s )2a t t -∆-⨯---====⋅∆∆v v v3s 末的瞬时加速度23d 48144(m s )d a t t-===⋅v1-2.一质点在xOy 平面内运动,运动方程为22(m),48(m)x t y t ==-. (1)求质点的轨道方程并画出轨道曲线;(2)求=1 s =2 s t t 和时质点的位置、速度和加速度.分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程.写出质点的运动学方程)(t r表达式.对运动学方程求一阶导、二阶导得()t v 和()a t ,把时间代入可得某时刻质点的位置、速度、加速度.解:(1) 由2,x t = 得:,2xt =代入248y t =- 可得:28y x =-,即轨道方程. 画图略(2)质点的位置矢量可表示为22(48)r ti t j =+-则速度d 28d ri t j t==+v 加速度d 8d a j t==v当t =1s 时,有1224(m),28(m s ),8m s r i j i j a j --=-=+⋅=⋅v当t =2s 时,有1248(m),216(m s ),8m s r i j i j a j --=+=+⋅=⋅v1-3.一质点的运动学方程为22(1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位. 求: (1)质点的轨迹方程;(2)在2s t =时质点的速度和加速度. 分析: 同1-2.解:(1)由题意可知:x ≥ 0,y ≥ 0,由2x t =,可得t =,代入2(1)y t =- 整理得:1=即轨迹方程(2)质点的运动方程可表示为22(1)r t i t j =+-则d 22(1)d rti t j t ==+-v d 22d a i j t==+v因此, 当2s t =时,有1242(m s ),22(m s )i j a i j --=+⋅=+⋅v1-4.一枚从地面发射的火箭以220m s -⋅的加速度竖直上升后,燃料用完,于是像一个自由质点一样运动. 略去空气阻力并设g 为常量,试求: (1)火箭达到的最大高度;(2)它从离开地面到再回到地面所经过的总时间.分析:分段求解:030s t ≤≤时,220m s a -=⋅,可求出11,x v ;t >30s 时,g a -=.可求出2()t v ,2()x t .当20=v 时,火箭达到的最大高度, 求出t 、x . 再根据0x =,求出总时间.解:(1)以地面为坐标原点,竖直向上为x 轴正方向建立一维坐标系,设火箭在坐标原点时,t =0s ,且=30s.则当0≤ t ≤30s,由d d xx a t=v ,得 3020d d xx t =⎰⎰v v , 解得 20x t =v当130s =v 时11600m s -=⋅v由d d x xt=v , 得 13020d d x t t x =⎰⎰,则19000m x =当火箭未落地, 且t >30s, 又有221309.8d d x tx t -=⎰⎰v v v解得28949.8x t =-v同理由d d x x t=v 得 130(8949.8)d d txx t t x -=⎰⎰解得24.989413410x t t =-+- … ①由20x =v ,得91.2s t =,代入①得max 27.4km x ≈(2)由①式可知,当0x =时,解得1166s t ≈216s<30s t ≈(舍去)1-5.质点沿直线运动,加速度24a t =-,式中a 的单位为2m s -⋅,t 的单位为s ,如果当t =3s时,x =9m ,12m s -=⋅v ,求质点的运动方程.分析 本题属于第二类运动学问题,可通过积分方法求解. 解 由分析可知0200d d (4)d tta t t t ==-⎰⎰⎰vv v 积分得30143t t =+-v v 由030001d d (4)d 3xt tx x t t t t ==+-⎰⎰⎰v v 得24001212x x t t t =+-+v 将t =3s 时,x =9m ,12m s -=⋅v 代入上两式中得101m s -=-⋅v ,x 0=0.75m所以质点的运动方程为2410.752(m)12x t t t =-+-1-6. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度大小平方成正比,即2d /d t k =-v v , 式中k 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度大小为 0kxe-=v v . 其中0v 是发动机关闭时的速度大小.分析:要证明~x v 关系,可通过积分变量替换将时间变量替换掉,即d d d d a t x==v vv ,积分即可证明. 证: 2d d d d d d d d k =⋅==-v v vv v x t x t x分离变量得d d k x =-vv两边积分001d d x k x =-⎰⎰vv v v , 0lnkx =-v v 证得0kxe -=v v1-7.一质点沿半径为R 做圆周运动,运动学方程为2012s t bt =+v ,其中v 0,b 都是大于零的常量.求:(1)t 时刻质点的加速度大小及方向; (2)在何时加速度大小等于;分析:由质点在自然坐标系下的运动学方程()t s s =,求导可求出质点的运动速率d d st=v ,而切向加速度d d t a t=v ,法向加速度2n a ρ=v ,总加速度22n a a a +=τ,当a =时,即可求出t .解:(1)质点的运动速率0d d sbt t==+v v 切向加速度d d t a b t ==v 法向加速度220()n bt a Rρ+==v v 加速度大小a ==方向()211tantan ntbt a a bRθ--+==v(2)当a =时,可得22220()2bt b b R ⎡⎤++=⎢⎥⎣⎦v解出t b=v 1-8. 物体以初速度120m s -⋅被抛出,抛射仰角60°,略去空气阻力,问: (1)物体开始运动后的末,运动方向与水平方向的夹角是多少 末的夹角又是多少 (2)物体抛出后经过多少时间,运动方向才与水平成45°角这时物体的高度是多少 (3)在物体轨迹最高点处的曲率半径有多大 (4)在物体落地点处,轨迹的曲率半径有多大分析:(1)建立坐标系,写出初速度0v ,求出()t v 、θtan ,代入t 求解.(2)由(1)中的θtan 关系,求出时间t ;再根据y 方向的运动特征写出()t y ,代入t 求y . (3)根据物体在轨迹最高点处,0y =v ,且加速度2n a a g ρ===v ,可求出ρ.(4)由对称性,落地点与抛射点的曲率相同 2cos n a g θρ==v ,求出ρ.解:以水平向右为x 轴正向,竖直向上为y 轴正向建立二维坐标系 (1)初速度001020cos6020sin6010103(m s )i j i j -=+=+⋅v ,加速度29.8(m s ),a j -=-⋅则任一时刻10(1039.8)at i t j =+=+-v v ………………①与水平方向夹角有1039.8tan 10tθ-=……………………………②当t =时tan 0.262,1441'θθ==︒当t =时tan 0.718,3541'θθ=-=-︒(2)此时tan 1θ=, 由②得t =物体的高度22111030.759.80.7510.23(m)22yo y t gt =-=⨯-⨯⨯=v (3)在最高处2110m s ,n a g ρ-=⋅==v v得210.2m gρ==v (4)由对称性可知,落地点的曲率与抛射点的曲率相同. 由解图1-8得210cos cos 4.9(m s )20x n a a g gg θθ-=====⋅v v240082(m)4.9n a ρ===v1-9.汽车在半径为400m 的圆弧弯道上减速行驶,设在某一时刻,汽车的速率为110m s -⋅,切向加速度的大小为20.2m s -⋅.求汽车的法向加速度和总加速度的大小和方向. 分析:由某一位置的ρ、v 求出法向加速度n a ,再根据已知切向加速度τa 求出总加速度a 的大小和方向.解:法向加速度的大小222100.25(m s ),400n a ρ-===⋅v 方向指向圆心 总加速度的大小222220.20.250.32(m s )n a a a τ-=+=+=⋅由解图1-9得tan 0.8,3840'na a ταα===︒ 则总加速度与速度夹角9012840'θα=︒+=︒1-10. 质点在重力场中作斜上抛运动,初速度的大小为0v ,与水平方向成α角.求质点到达抛出点的同一高度时的切向加速度、法向加速度以及该时刻质点所在处轨迹的曲率半径(忽略空解图1-8解图1-9气阻力).已知法向加速度与轨迹曲率半径之间的关系为2n a ρ=v .分析:在运动过程中,质点的总加速度 a g =.由于无阻力作用,所以回落到抛出点高度时, 质点的速度大小0=v v ,其方向与水平线夹角也是α.可求出n a ,如解图1-10所示.再根据法向加速度与轨迹曲率半径之间的关系2n a ρ=v ,解出曲率半径.解:切向加速度t sin a g a =法向加速度a g a n cos =因为2n a ρ=v ,所以220cos n a g ρα==v v1-11.在生物物理实验中用来分离不同种类的分子的超级离心机的转速为313.1410rad s -⨯⋅.在这种离心机的转子内,离轴10cm 远的一个大分子的向心加速度是重力加速度的几倍分析 根据定义可得向心加速度的大小2n a r ω=.解 所求倍数2222425244(610)0.1=410609.8rn r g g ωππ⨯⨯==⨯⨯1-12. 一质点在半径为0.10m 的圆周上运动,其角位置变化关系为324(rad)t θ=+.试求:(1) 在t =2s 时,质点的法向加速度和切向加速度大小各为多少; (2) 当切向加速度大小恰等于总加速度大小的一半时,θ值为多少 (3) 在什么时刻,切向加速度和法向加速度恰好大小相等分析 本题为物体作圆周运动的角坐标表示下的第一类运动学问题,求导可得到角速度和角加速度,再由角量与线量的关系求得切向加速度t a 和法向加速度n a .解图1-10解 (1) 角速度和角加速度分别为2d 12d t t θω== d 24d t tωβ==法向加速度22222n 0.1(12) 2.3010(m s )a r t ω-==⨯=⨯⋅切向加速度2t d 2.4 4.8(m s )d a r t tβ-====⋅v (2) 由 t /2a a =,2222t n t 4a a a a =+= 得22t n3a a = 22243(24)(12)r t r t =33t = 332424 3.15(rad)t θ=+=+⨯= (3) 由 n t a a =,即22(12)24r t rt =,解得 0.55s t =1-13.离水面高度为h 的岸上有人用绳索拉船靠岸,人以恒定速率0v 拉绳子,求当船离岸的距离为s 时,船的速度和加速度的大小.分析:收绳子速度和船速是两个不同的概念.小船速度的方向为水平方向,由沿绳的分量与垂直绳的分量合成,沿绳方向的收绳的速率恒为0v .可以由0v 求出船速v 和垂直绳的分量1v .再根据21n a ρ=v 关系,以及n a 与a关系来求解a .解: 如解图1-13,小船速度沿绳的分量20=v v ,船速2sec θ=v v当船离岸的距离为s 时,船速22s h s+=v v 解图1-13船速垂直绳的分量012tan hsθ==v v v 则船的法向加速度2211n 2222cos a a as hs hθρ====++v解得2203h a s =v1-14. A 船以130km h -⋅的速度向东航行,B 船以145km h -⋅的速度向正北航行,求A 船上的人观察到的B 船的速度和航向.分析:关于相对运动,必须明确研究对象和参考系.同时要明确速度是相对哪个参照系而言.画出速度矢量关系图求解. 解:如解图1-14所示11A B 30km h ,45km h i j --=⋅=⋅v vB 船相对于A 船的速度1BA B A 4530(km h )j i -=-=-⋅v v v则速度大小221BA B A 54.1(km h )-=+=⋅v v v方向BAarctan56.3θ==︒v v ,既西偏北56.3︒1-15. 一个人骑车以118km h -⋅的速率自东向西行进时,看见雨滴垂直落下,当他的速率增加至136km h -⋅时,看见雨滴与他前进的方向成120°角下落,求雨滴对地的速度.解图1-14分析:这是一个相对运动的问题,雨对地的速度不变,画出速度矢量图,就可根据几何关系求解.解:如解图1-15所示,r v 为雨对地的速度, 12,p p v v 分别为第一次,第二次人对地的速度,12,rp rp v v 分别为第一次,第二次雨对人的速度,120θ=︒由三角形全等的知识,可知18012060αβ==︒-︒=︒三角形ABC 为正三角形,则2136km h r p -==⋅v v ,方向竖直向下偏西30︒.1-16如题图1-16所示,一汽车在雨中以速率1v 沿直线行驶,下落雨滴的速度方向偏于竖直方向向车后方θ角,速率为2v ,若车后有一长方形物体,问车速为多大时,此物体刚好不会被雨水淋湿分析:相对运动问题,画矢量关系图,由几何关系求解.解:如解图1-16(a ),车中物体与车蓬之间的夹角 arctan l h α=若θ>α,无论车速多大,物体均不会被雨水淋湿若θ<α,如解图1-16(b )则有||||||BC AC AB ==-v 车=sin sin cos tan sin αθθαθ-=-v v v v 雨雨雨雨对车又2=v v 雨则2cos (sin )l h θθ=-v v 车题图1-16 解图1-16 解图1-151-17 人能在静水中以11.10m s -⋅的速度划船前进.今欲横渡一宽为m 10.0013⨯、水流速度10.55m s -⋅的大河.他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向到达正对岸需多少时间分析 船到达对岸所需时间由船相对于岸的速度v 决定,而v 由水流速度u 和船在静水中划行速度'v 确定.画出矢量图由几何关系求解.解 根据解图1-17,有'v =u+v ,解得 0.551sin 1.102u α==='v 030α= 即应沿与正对岸方向向上游偏300方向划行.船到达正对岸所需时间为 31.0510s cos d d t α===⨯'v v 1-18.一升降机以2g 的加速度从静止开始上升,在末时有一小钉从顶板下落,若升降机顶板到底板的距离h=2.0m ,求钉子从顶板落到底板的时间t , 它与参考系的选取有关吗分析:选地面为参考系,分别列出螺钉与底板的运动方程,当螺丝落到地板上时,两物件的位置坐标相同,由此可求解.解:如解图1-18建立坐标系,y 轴的原点取在钉子开始脱落时升降机的底板处,此时,升降机、钉子速度为0v ,钉子脱落后对地的运动方程为21012y h t gt =+-v 升降机底板对地的运动方程为220122y t gt =+⨯v 且钉子落到底板时,有12=y y ,即2012h t gt +-=v 20t gt +v αuv 'v 解图1-17解图1-18解出t0.37s t与参考系的选取无关.。

新编基础物理学》下册习题解答和分析

新编基础物理学》下册习题解答和分析

新编基础物理学》下册习题解答和分析题9-2解图《新编基础物理学》下册习题解答和分析第九章习题解答9-1 两个小球都带正电,总共带有电荷55.010C -⨯,如果当两小球相距2.0m 时,任一球受另一球的斥力为1.0N.试求总电荷在两球上是如何分配的? 分析:运用库仑定律求解。

解:如图所示,设两小球分别带电q 1,q 2则有q 1+q 2=5.0×10-5C ① 由题意,由库仑定律得:912122091014π4q q q q F r ε⨯⨯⨯=== ②由①②联立得:5152 1.210C3.810Cq q --⎧=⨯⎪⎨=⨯⎪⎩ 9-2 两根6.0×10-2m 长的丝线由一点挂下,每根丝线的下端都系着一个质量为0.5×10-3kg 的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与沿垂线成60°角的位置上。

求每一个小球的电量。

分析:对小球进行受力分析,运用库仑定律及小球平衡时所受力的相互关系求解。

解:设两小球带电q 1=q 2=q ,小球受力如图所示220cos304πq F T R ε==︒ ①sin30mg T =︒②联立①②得:2o 024tan30mg R qπε= ③223sin 606103310(m)r l --=︒=⨯⨯=⨯ 其中2R r =代入③式,即: q =1.01×10-7C 9-3 电场中某一点的场强定义为0F E q =,若该点没有试验电荷,那么该点是否存在场强?为什么?答:若该点没有试验电荷,该点的场强不变.因为场强是描述电场性质的物理量,仅与场源电荷的分布及空间位置有关,题9-1解图与试验电荷无关,从库仑定律知道,试验电荷q 0所受力F与q 0成正比,故0F E q =是与q 0无关的。

9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知BC =0.04m ,AC =0.03m ,求C 点电场强度E的大小和方向(cos37°≈0.8, sin37°≈0.6). 分析:运用点电荷场强公式及场强叠加原理求解。

新编物理学基础课后习题答案

新编物理学基础课后习题答案
02
简答题:简述热力学第一定律和第二定律的内容,并指出它们在物理学中的意义。
热力学基础习题答案
简答题
简述分子动理论的基本内容,并说明气体分子平均自由程与哪些因素有关。
答案
分子动理论的基本内容包括分子在永不停息地做无规则运动,分子之间存在着引力和斥力,分子之间存在着空隙。气体分子平均自由程与气体压强、温度和分子的平均碰撞频率有关。
总结词
能够运用动量和角动量的知识解决实际问题。
总结词
理解动量守恒和角动量守恒的条件和意义。
动量与角动量习题答案
动量与角动量习题答案
01
02
03
详细描述
动量是描述物体运动状态的物理量,计算公式为 $p = mv$,其中 $m$ 是物体的质量,$v$ 是物体的速度。
角动量是描述物体旋转运动的物理量,计算公式为 $L = mr^2omega$,其中 $m$ 是物体的质量,$r$ 是物体到旋转轴的距离,$omega$ 是物体的角速度。
法拉第电磁感应定律描述了当磁场发生变化时会在导体中产生感应电动势的现象。楞次定律指出感应电流的方向总是阻碍引起感应电流的磁通量的变化。
磁场
安培环路定律
法拉第电磁感应定律
磁场与电磁感应习题答案
光学部分习题答案
04
在此添加您的文本17字
在此添加您的文本16字
在此添加您的文本16字
在此添加您的文本16字
康普顿散射证明了光的粒子性,并为量子力学的发展奠定了基础。
光的量子性习题答案
量子力学部分习题答案
05
不确定性原理
由海森堡提出,指在量子力学中无法同时精确测量某些物理量,如位置和动量。
测量
在量子力学中,测量是一个重要的概念,它会影响到量子态的塌缩和结果的不确定性。

新编物理学答案

新编物理学答案

新编物理学答案【篇一:新编基础物理学上册7-8单元课后答案】瓶的容积为32l,瓶内充满氧气时的压强为130atm。

若每小时用的氧气在1atm下体积为400l。

设使用过程温度保持不变,当瓶内压强降到10atm时,使用了几个小时? 分析氧气的使用过程中,氧气瓶的容积不变,压强减小。

因此可由气体状态方程得到使用前后的氧气质量。

进而将总的消耗量和每小时的消耗量比较求解。

解已知p1?130atm,p2?10atm,p3?1atm; v1?v2?v?32l,v3?400l。

质量分别为m1,m2,m3,由题意可得:m11 rt ○mm2 pv?2rt ○2mm2mpv?1所以一瓶氧气能用小时数为:n??130?10??32?9.6小时 m1?m2pv?pv2?1?m3pv1.0?400337-2 一氦氖气体激光管,工作时管内温度为 27?c。

压强为2.4mmhg,氦气与氖气得压强比是7:1.求管内氦气和氖气的分数密度.分析先求得氦气和氖气各自得压强,再根据公式p?nkt求解氦气和氖气的分数密度。

解:依题意, n?n氦?n氖, p?p氦?p氖?所以p?氦2.1?1.013?105pa,7602.4?1.013?105pa;p氦:p氖?7:1 7600.3p氖??1.013?105pa,760根据 p?nkt 所以 n氦? n氖?p氦ktp氖kt??1.013?105??1.38?10?23?300?6.76?1022m?39.66?1021m?37-3 氢分子的质量为3.3?10?24克。

如果每秒有1023个氢分子沿着与墙面的法线成45?角的方向以105厘米/秒的速率撞击在面积为2.0cm2的墙面上,如果撞击是完全弹性的,求这些氢分子作用在墙面上的压强.分析压强即作用在单位面积上的平均作用力,而平均作用力由动量定理求得。

解:单位时间内作用在墙面上的平均作用力为:f?2mvcos45?np?f2mvcos45?n??ss2?3.3?10?27?105?10?22?10?41023?2330pa7-4 一个能量为1012ev的宇宙射线粒子,射入一氖气管中,氖管中含有氦气0.10mol,如果宇宙射线粒子的能量全部被氖气分子所吸收而变为热运动能量,问氖气的温度升高了多少? 分析对确定的理想气体,其分子能量是温度的单值函数,因此能量的变化对应着温度的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11-4一束质子发生侧向偏转,造成这个偏转的原因可否是:
(1)电场?
(2)磁场?
(3)若是电场或者是磁场在起作用,如何判断是哪一种场?
答:造成这个偏转的原因可以是电场或磁场。可以改变质子的运动方向,通过质子观察运动轨迹来判断是电场还是磁场在起作用。
11-53个粒子,当它们通过磁场时沿着如题图11-5所示的路径运动,对每个粒子可作出什么判断?
分析:将密绕线圈看成许多载流圆环,利用载流圆环在其轴线上产生的磁场公式 公式,再积分求解总的磁感应强度。
解:只要将题11-12中的均匀密绕平面线圈沿通过中心的轴垂直上提,便与本题条件相一致,故解题思路也相似。
如解图11-12建立坐标,取半径为,宽为d的电流环的密绕线圈,其含有匝数为 ,
通电流为
因为
, 。
解:(1)由洛伦兹力
得电子的运动轨迹为由A点出发刚开始向右转弯半径为r的圆形轨道。
(2)由

(3)
11-23把2.0keV的一个正电子射入磁感应强度B为 的均匀磁场内(题图11-22),其速度矢量 与 成89角,路径成螺旋线,其轴在 的方向.试求这螺旋线运动的周期 、螺距p和半径 。
解:由毕奥-萨伐尔定律
原点O处的电流元 在(a,0,0)点产生的 为:
在(0,a,0)点产生的 为:
在(a,a,0)点产生的 为:
在(a,a,a)点产生的 为
11-7用两根彼此平行的长直导线将半径为R的均匀导体圆环联到电源上,如题图11-7所示,b点为切点,求O点的磁感应强度。
分析:应用毕奥-萨伐尔定律分别求出载流直导线L1和L2以及导体圆环上并联的大圆弧 和小圆弧 在O点产生的磁感应强度,再利用磁感应强度的矢量叠加来求解。
解:先看导体圆环,由于 和 并联,设大圆弧有电流 ,小圆弧有电流 ,必有:
由于圆环材料相同,电阻率相同,截面积S相同,实际电阻与圆环弧的弧长 和 有关,即:
则 在O点产生的 的大小为
而 在O点产生的 的大小为
和 方向相反,大小相等.即

直导线 在O点产生的

直导线 在O点产生的
,方向垂直纸面向外。
则O点总的磁感强度大小为
(2)圆盘的磁偶极矩为
分析:均匀带电圆盘以角速度 旋转时相当于圆电流,利用载流圆环在其圆心处产生的磁场公式求解,再积分求解总的磁感应强度。
解:(1)在圆盘上取一个半径为 、宽为 的细圆环,其所带电量为
圆盘转动后相当于圆电流
若干个圆电流在圆心产生的磁感强度为
(2)细圆环的磁矩为
转动圆盘的总磁矩为
方向沿轴向。
答:根据带电粒子在磁场中所受的洛伦兹力规律,通过观察运动轨迹的不同可以判断三种粒子是否带电和带电种类。
11-6一长直载流导线如题图11-6所示,沿Oy轴正向放置,在原点O处取一电流元 ,求该电流元在(a,0,0),(0,a,0),(a,a,0),(a,a,a)各点处的磁感应强度 。
分析:根据毕奥-萨伐尔定律求解。
分析:应用安培环路定理求解。注意环路中电流的计算,应该是先求出载流导体内电流密度,再求出穿过环路的电流。
证明:载流导体内电流密度为
由对称性可知,取以轴为圆心, 为半径的圆周为积分回路 ,则由安培环路定理

从而有
11-20有一根很长的同轴电缆,由两个同轴圆筒状导体组成,这两个圆筒状导体的尺寸如题图11-19所示。在这两导体中,有大小相等而方向相反的电流 流过。求:
O点总磁感应强度为
方同垂直纸面向外.
11-9.在真空中,有两根互相平行的无限长直导线 和 ,相距0.1m,通有方向相反的电流, =20A, =10A,如题图11-9所示. , 两点与导线在同一平面内.这两点与导线 的距离均为5.0cm.试求 , 两点处的磁感应强度,以及磁感应强度为零的点的位置.
分析:先根据无限长载流直导线的磁感应强度公式,由矢量叠加即可求出空中某场点的合场强。
(1)当 时, , ,得
B=0
(2)当 时,同理可得
(3)当 时,有

(4)当 时,B=0
11-21在半径为 的长直圆柱形导体内部,与轴线平行地挖成一半径为 的长直圆柱形空腔,两轴间距离为 ,且 > ,横截面如题图11-21所示.现在电流 沿导体管流动,电流均匀分布在管的横截面上,而电流方向与管的轴线平行.求:
电流 产生的磁感应强度
合场强
(2)空心部分轴线上 点 的大小:
电流 产生的
电流 产生的
所以
11-22一电子在 的匀强磁场中做圆周运动,圆周半径 ,某时刻电子在A点,速度 向上,如题图11-21所示。
(1)试画出电子运动的轨道;
(2)求电子速度 的大小;
(3)求电子动能 。
分析:应用运动电荷在匀强磁场中所受洛伦兹力公式并结合牛顿第二定律求解。
答:此题涉及知识点:电流强度 ,电流密度概念,电场强度概念,欧姆定律的微分形式 。设铜线材料横截面均匀,银层的材料和厚度也均匀。由于加在两者上的电压相同,两者的长度又相等,故铜线和银层的场强 相同。由于铜线和银层的电导率 不同,根据 知,它们中的电流密度 不相同。电流强度 ,铜线和银层的 不同但相差不太大,而它们的横截面积一般相差较大,所以通过两者的电流强度,一般说来是不相同的。
然后求磁通量。沿轴线方向在剖面取面元 ,考虑到面元上各点 相同,故穿过面元的磁通量 ,通过积分,可得单位长度导线内的磁通量。
(1)导线内部通过单位长度导线剖面的磁通量
(2)导线外部通过单位长度导线剖面的磁通量.
11-19如题图11-19所示的空心柱形导体,柱的内外半径分别为 和 ,导体内载有电流 ,设电流 均匀分布在导体的横截面上。求证导体内部各点( )的磁感应强度B由下式给出: .
(1)圆柱轴线上的磁感应强度的大小;
(2)空心部分轴线上的磁感应强度的大小.
分析用填补法。空间各点磁场可看作半径为 ,电流为 均匀分布在横截面上的圆柱导体和半径为 电流为 均匀分布在横截面上的圆柱导体磁场之和.两电流密度相同。
解:载流导体内电流密度为
(1)圆柱轴线上的磁感应强度的大小
电流 产生的磁感应强度
解:在电流板上距P点x处取宽为 并平行于电流 的无限长窄条,窄条中的电流为
在P点处产生的磁感强度为
方向垂直纸面向里。
整个电流板上各窄条电流在P点处产生的 方向相同,故
方向垂直纸面向里。
11-11在半径 的“无限长”半圆柱形金属薄片中,有电流 自下而上地通过,如题图11-10所示。试求圆柱轴线上一点P处的磁感应强度。
解:建立如解图11-14所示坐标, 轴垂直线圈平面,考虑线圈沿圆弧均匀分布,故在 内含有线圈的匝数为
线圈中通电流 时,中心O点处磁感强度为
因为
对整个半球积分求得O点总磁感强度为
方向沿x轴正向。
11-15一个塑料圆盘,半径为R,带电q均匀分布于表面,圆盘绕通过圆心垂直盘面的轴转动,角速度为 .试证明
(1)在圆盘中心处的磁感应强度为
分析:由于磁场不均匀,将三角形面积分割成许多平行于长直导线的狭条,应用磁通量概念求出穿过狭条面元的磁通量,然后利用积分求出穿过三角形线圈的磁通量。
解:建立如解图11-17所示坐标,取距电流AB为 远处的宽为 且与AB平行的狭条为面积元
则通过等边三角形的磁通量为
11-18一根很长的圆柱形实心铜导线半径为 ,均匀载流为 。试计算:
方向垂直纸面向外
11-8一载有电流 的长导线弯折成如题图11-8所示的形状,CD为1/4圆弧,半径为R,圆心O在AC,EF的延长线上.求O点处磁场的场强。
分析:O点的磁感强度 为各段载流导线在O点产生磁感强度的矢量和。
解:因为O点在AC和EF的延长线上,故AC和EF段对O点的磁场没有贡献。
CD段
DE段
答:稳恒电场与静电场有相同之处,即是它们都不随时间的变化而变化,基本规律相同,并且都是位场。但稳恒电场由分布不随时间变化的电荷产生,电荷本身却在移动。
正因为建立稳恒电场的电荷分布不随时间变化,因此静电场的两条基本定理,即高斯定理和环路定理仍然适用,所以仍可引入电势的概念。
11-3一根铜导线表面涂以银层,当两端加上电压后,在铜线和银层中,电场强度是否相同?电流密度是否相同?电流强度是否相同?为什么?
(1)如题图11-18(a)所示,导线内部通过单位长度导线剖面的磁通量;
(2)如题图11-18(a)所示,导线外部通过单位长度导线剖面的磁通量.
分析解此题需分以下两步走:先由安培环路定理求得导线内、外的磁感应强度分布情况;再根据磁通量的定义式 来求解。
解由磁场的安培环路定理可求得磁感应强度分布情况为
由于各电流窄条产生的磁场方向各不相同,应按坐标轴分解将矢量积分化为标量积分,即
所以
方向向右。
11-12在半径为R及r的两圆周之间,有一总匝数为N的均匀密绕平面线圈(如题图11-12)通有电流 ,求线圈中心(即两圆圆心)处的磁感应强度。
分析:将密绕平面线圈分割成许多同心的圆电流,利用载流圆环在其圆心处产生的磁场 公式求解,然后再积分求解总的磁感应强度。
电源中存在的电场有两种:1、非静电起源的场;2、稳恒场。把这两种电场与静电场比较,静电场由静止电荷所激发,它不随时间的变化而变化。非静电场不由静止电荷产生,它的大小决定于单位正电荷所受的非静电力, 。当然电源种类不同, 的起因也不同。
11-2静电场与恒定电场有什么相同处和不同处?为什么恒定电场中仍可应用电势概念?
(1)内圆筒导体内各点( )的磁感应强度B;
(2)两导体之间( )的B;
(3)外圆筒导体内( )的B;
(4)电缆外( )各点的B。
分析:应用安培环路定理求解。求外圆筒导体内( )的B时,注意环路中电流的计算,应该是先求出外圆导体内电流密度,再结合内圆筒的电流,求出穿过环路的电流。
解:在电缆的横截面,以截面的轴为圆心,将不同的半径 作圆弧并取其为安培积分回路 ,然后,应用安培环路定理求解,可得离轴不同距离处的磁场分布。
相关文档
最新文档