线性代数期末复习提纲

合集下载

线性代数复习提纲

线性代数复习提纲

线性代数复习提纲第一章 行列式1、行列式的定义:总项数、每一项构成、符号确定方法(附带:逆序、逆序数、奇排列)。

2、行列式性质:P9—P11六个性质两个推论,按某一行(列)的降阶展开(附带: 余子式、代数余子式)。

3、行列式计算: 一般方法 --化成三角形、降阶展开。

特殊计算:分块三角形--例10)、范德蒙—例12。

4、克拉默法则公式—P22第二章 矩阵及其运算1、概念:矩阵的型(阶)、相等、线性变换。

特殊矩阵:零矩阵、负矩阵、单位矩阵、纯量矩阵、对角矩阵、对称矩阵、逆矩阵、矩阵的行列式、伴随矩阵、奇异矩阵、分块对角矩阵。

2、运算:加法、数乘、转置、矩阵相乘、求伴随矩阵、解矩阵方程。

3、重要定理公式:⑴矩阵乘法:不满足交换律、两个非零矩阵乘积可能为零矩阵、两个对角矩阵的乘积等于以主对角线对应元素乘积为相应元素的对角矩阵。

⑵转置:T T T T T T T T T T A B AB A A B A B A A A ==+=+=)(,)(,)(,)(λλ,O A A O A T =⇔= ⑶方阵的行列式:B A AB A A BA AB A An T ====,,,λλ,A A A A n 111*==--, ⑷伴随矩阵:E A A A AA ==**,*11*)()(--=A A⑸逆矩阵基本公式:*11 0A AA A A =≠⇔-此时有,可逆方阵 ⑹逆矩阵运算公式:T T A A AB AB A A A A )()()(,1)(,)(111111111---------====λλ ⑺二阶方阵逆矩阵公式:⎪⎪⎭⎫ ⎝⎛---=-a c b d bc ad d c ba 1)(1 ⑻分块对角矩阵的逆等于每一块分别取逆。

特别的,对角矩阵的逆等于主对角线每个元素取倒数。

⑼一元矩阵多项式)(A f 可以象字母多项式)(x f 那样分解为因式的乘积,并且各因式顺序可以交换。

第三章 矩阵的初等变换1、概念:三种初等行变换(列变换)的定义和相应记号、对应的三种初等矩阵。

《线性代数》复习提纲

《线性代数》复习提纲

《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。

第二部分:基本知识一.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A||B|;④|kA|=n k|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

求秩:利用初等变换将矩阵化为阶梯阵得秩。

4.逆矩阵(1)定义:A、B为n阶方阵,若AB=BA=E,称A 可逆,B是A的逆矩阵(满足半边也成立);(2)性质:(AB)1-=(B1-)*(A1-),(A T)1-=(A1-)T;(A B的逆矩阵,你懂的)(注意顺序)(3)可逆的条件:①|A|≠0;②r(A)=n; ③A等价于E;(4)逆的求解伴随矩阵法A1-=(1/|A|)A*;(A* A的伴随矩阵~)②初等变换法(A:E)⇒(施行初等变换)(E:A1-)5.用逆矩阵求解矩阵方程:AX=B,则X=(A1-)B;XB=A,则X=B(A1-);AXB=C,则X=(A1-)C(B1-)二、行列式1.行列式的定义用n2个元素aij组成的记号称为n阶行列式。

线性代数期末复习提纲

 线性代数期末复习提纲

n
n
(A)
a ij Aij 0
(B)
aij Aij 0
i1
j1
n
(C)
aij Aij D
(D)
j1
n
ai1 Ai 2 D
i1
7、设 A, B 均为 n阶可逆矩阵,则下列各式成立的是
( A) ( AB)T BT AT
(B)
(C) AB BA
(D)
(AB) 1 A 1B 1 AB A B
8、设 A 为 3 阶方阵,且行列式 A 1 ,则 2A
【主要内容】 1、向量的内积、长度、夹角等概念及其计算方法。 2、向量的正交关系及正交向量组的含义。 3、施密特正交化方法。 4、方阵的特征值与特征向量的概念及其计算方法。
( 1)特征值求法:解特征方程 A E 0 ;
( 2)特征向量的求法:求方程组 A E X 0 的基础解系。
5、相似矩阵的定义 ( P 1 AP B )、性质 ( A, B 相似
第四部分 线性方程组 【主要内容】
1、齐次线性方程组 Ax 0 只有零解 系数矩阵 A 的秩 未知量个数 n; 2、齐次线性方程组 Ax 0 有非零解 系数矩阵 A 的秩 未知量个数 n. 3、非齐次线性方程组 Ax b 无解 增广矩阵 B ( A, b) 秩 系数矩阵 A 的秩;
4、非齐次线性方程组 Ax b 有解 增广矩阵 B ( A, b) 秩 系数矩阵 A 的秩
即得二次型的标准形 f
1 y1 2
2 y2 2
n yn2
8、正定二次型的定义及其判定方法 常用判定二次型正定的方法: ( 1)定义法 ( 2)特征值全大于零 ( 3)顺序主子式全大于零
【要求】 1 、掌握向量的内积、长度、夹角,正交向量组的性质,会利用施密特正交化方法化线 性无关向量组为正交向量组。 2、掌握方阵特征值、特征向量的概念、求法, 3、了解相似矩阵的概念、掌握化对称矩阵为对角矩阵的方法。 4、掌握二次型的概念、会用正交变换化二次型为标准形。 5、了解二次型的分类,知道正定二次型等概念及其判定方法。

线性代数总复习大纲及复习题

线性代数总复习大纲及复习题

04-05(2) 线性代数总复习大纲及复习题: 一、 概念1、 行列式的 定义2、 向量组相关与无关的定义3、 对称阵与反对称阵4、 可逆矩阵5、 矩阵的伴随矩阵6、 基与向量的坐标7、 矩阵的特征值与特征向量 8、 正定矩阵 9、 矩阵的迹 10、 矩阵的秩 11、 矩阵的合同 12、 二次型与矩阵13、 齐次线性方程组的基础解系 二、 性质与结论1、 与向量组相关与无关相关的等价结论2、 行列式的性质3、 克莱姆规则(齐次线性方程组有非零解的充要条件)4、 矩阵可逆的充要条件及逆矩阵的性质5、 初等变换与初等矩阵的关系6、A A A A A E **==7、 n 维向量空间坐标变换公式 8、 相似矩阵的性质 9、 合同变换10、 矩阵正定的充要条件11、 线性方程组解的性质与结构定理 三、复习题及参考答案1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 12 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=⎽⎽⎽⎽1⎽⎽⎽。

3.已知齐次线性方程组32023020x y x y x y z λ+=⎧⎪-=⎨⎪-+=⎩仅有零解,则λ≠ 04.已知三阶行列式D=123312231,则元素12a =2的代数,余子式12A = -1 ;3.若n 阶矩阵A 、B 、C 满足ABC=E (其中E 为n 阶可逆阵),则BCA=E 。

( 对 )4.行列式002002316.02342345= ( 对 ) 5.对向量1234,,,αααα,如果其中任意两个向量都线性无关,则1234,,,αααα线性无关。

( 错 )6. 如果A 是n 阶矩阵且0A =,则A 的列向量中至少有一个向量是其余各列向量的线性组合。

( 对 )7. 向量组s ααα,,,21 线性无关的充分必要条件是其中任一部分向量组都线性无关。

线性代数复习提纲

线性代数复习提纲

一、逆序数:在一个n级排列中,如果有较大的数排在较小的数前面(<),则称与构成一个逆序,一个n级排列中逆序的总数,称为它的逆序数,记为N(*奇排序:逆序数是奇数;偶排序:逆序数是偶数(一)任意一个排序经过一个对换后奇偶性改变(二)n个数码(n>1)共有n!个排列,其中奇偶排列各占一半二、n阶行列式=(按行顺序取)n级行列式的一般项:(当)为偶数时取正号,奇数取负号)D的一般项:三、转置行列式:将行列式D的行与列互换后得到的行列式,记为或(一)将行列式转置,行列式的值不变,即(二)交换行列式的两行(列),行列式的值变号,即(三)如果行列式中有两行(列)对应的元素相同,此行列式的值为零四、用数k乘行列式的某一行(列),等于以数k乘此行列式,即:(一)如果行列式某行(列)的所有元素有公因子,则公因子可以提到行列式外面(二)如果行列式有两行(列)元素成比例,则行列式的值等于零五、如果将行列式中的某一行(列)的每一个元素都写成两个数的和,则此行列式可以写成两个行列式的和,这两个行列式分别以这两个数为所在行(列)对应位置的元素,其他位置的元素与原行列式相同,即:六、将行列式某一行(列)的所有元素同乘以数k后加于另一行(列)对应位置的元素上,行列式的值不变七、余子式:在n阶行列式D=中去掉元素所在的第i行和第j列后,余下的n-1阶行列式被称为D中元素的余子式,记为,即:代数余子式:(一)n阶行列式D=等于它的任意一行(列)的各元素与其对应代数余子式乘积的和,即:或(二)n阶行列式D=的某一行(列)的元素与另一行(列)对应元素的代数余子式乘积的和等于零,即:或(i≠s;j≠t)八、范德蒙行列式:九、克莱姆法则:线性方程组当其系数行列式D≠0时,有且仅有唯一解其中是将系数行列式中第j列元素对应地换为方程组的常数项后得到的行列式(一)如果齐次线性方程组的系数行列式D≠0,则它仅有零解(二)如果齐次线性方程组的系数行列式D=0,则方程组有非零解十、零矩阵:所有元素均为0的矩阵(行数与列数不都相同的两个零矩阵是不同的零矩阵)非负矩阵:所有元素均为非负数的矩阵十一、以数k乘矩阵A的每一个元素所得到的矩阵,称为数k与矩阵A的积,记作k A,如果A=,那么k A=十二、负矩阵:-A=十三、矩阵运算律:(一)(二)(三)(四)(五)(六)(七)(八)十四、矩阵的乘法:如果矩阵A的列数等于矩阵B的行数,则A与B的乘积C中第i行第j列的元素,等于矩阵A的第i行元素与矩阵B的第j对应元素乘积的和,并且矩阵C的行数等于矩阵A的行数,矩阵C的列数等于矩阵B的列数,即:(一)矩阵乘法一般不满足交换律(二)两个非零矩阵相乘,结果可能是零矩阵(三)矩阵乘法不满足消去律(四)矩阵乘法性质:1、2、3、4、十五、矩阵可交换:如果两矩阵A和B相乘,有AB=BA,则称矩阵A与矩阵B可交换十六、有线性方程组,系数矩阵元未知量矩阵系数矩阵十七、转置矩阵:将m*n矩阵A的行与列互换,得到的m*n矩阵,称为矩阵A的转置矩阵,记为或(一)(二)(三)(四)十八、n阶矩阵/n阶方阵:矩阵的m=n十九、方阵的幂:个(一)(二)(三)当AB可交换时,二十、方阵的行列式:由n阶矩阵(方阵)A的所有元素按原来次序构成的n阶行列式称为方阵A的行列式,记作,或(det A)(一)(二)(三)(四)二十一、特殊矩阵(一)对角矩阵:若AB为同阶对角矩阵,则kA,A+B,AB仍为同阶对角矩阵;(二)数量矩阵:数量矩阵左乘或右乘一个矩阵B,其乘积等于以数a乘矩阵B(三)单位矩阵:(四)三角形矩阵(五)对称矩阵:n阶矩阵满足1、2、数乘对称矩阵及同阶对称矩阵之和仍为对称矩阵3、当且仅当A与B可交换时,AB是对称的二十二、分块矩阵(一),(二)二十三、逆矩阵:对于n阶矩阵A,如果存在n阶矩阵B,使得AB=BA=I,那么矩阵A称为可逆矩阵,简称A可逆,并称B为A的逆矩阵,逆矩阵是唯一的,把唯一的逆矩阵记作(一)n阶矩阵可逆的充分必要条件是A非奇异,且当A可逆时,有(二)证明A可逆或证明B是A的逆矩阵,只要验证AB=I(三)逆矩阵的性质:1、若矩阵A可逆,则也可逆,且2、若矩阵A可逆,数k≠0,则kA也可逆,且3、两个同阶可逆矩阵A,B的乘积是可逆矩阵,且4、若矩阵A可逆,则A的转置矩阵5、若矩阵A可逆,则(四)(五)若AB=C,且A为非奇异,则B= C二十四、非奇异:若n阶矩阵A的行列式,则称A为非奇异的二十五、伴随矩阵:由行列式的元素的代数余子式所构成的矩阵二十六、矩阵的初等变换:(一)1、交换矩阵的两行(列)2、以一个非零的数k乘矩阵的某一行(列)3、把矩阵的某一行(列)的l倍加于另一行(列)上(二)初等矩阵:对单位矩阵I施以一次初等变换得到的矩阵(三)设,对A的行施以一次某种初等变换得到的矩阵,等于用同种的m 阶初等矩阵左乘A,对A的列施以一次某种初等变换得到的矩阵,等于用同种的n阶初等矩阵右乘A(四)任意一个矩阵经过若干次初等变换后均可以化为下面形式的矩阵:矩阵D称为矩阵A的等价标准形(五)如果矩阵A经过有限次初等变换可化为矩阵B,则称矩阵A与矩阵B等价(六)如果A为n阶可逆矩阵,则(七)n阶矩阵A为可逆的充分必要条件是它可以表示为一些初等矩阵的乘积二十七、k阶子式:从A中任取k行k列,位于这些行和列的相交处的元素,保持它们原来的相对位置所构成的k阶行列式二十八、矩阵的秩:如果A中不为零的子式的最高阶数为r,即存在r阶子式不为零,而任何r+1阶子式皆为零,则称r为矩阵A的秩,记作r(A)=r(一)满秩矩阵:r(A)=n(二)矩阵经初等变换后,其秩不变(三)二十九、增广矩阵:系数矩阵A和常数项矩阵构成的矩阵线性方程组有解的充分必要条件是齐次线性方程组有非零解的充分必要条件是→当m<n,齐次线性方程组有非零解三十、向量(一)(二)(三)(四)(五)(六)k((七)(八)三十一、向量组的线性组合线性方程组可以表示为,即常数列向量与系数列向量的线性关系,被称为方程组的向量表示,其中,于是,线性方程组是否有解,就相当于是否成立(一)如果成立,则称向量是向量组的线性组合,或称向量可以由向量组线性表示(二)向量可由向量组线性表示的充分必要条件是:以为列向量的矩阵与以为列向量的矩阵有相同的秩(三)如果组A:中每一向量都可由组B:线性表示,则称向量组A可由向量组B线性表示1、向量组A可由向量组B线性表示,向量组B又可由向量组C线性表示,则向量组A可由向量组C线性表示2、如果向量组A和向量组B可以相互线性表示,则称向量组A和向量组B等价(四)如果线性相关,而线性无关,则向量可由向量组线性表示且表示法唯一三十二、线性相关性:齐次线性方程组可以写成零向量与系数列向量的如下线性关系式:,被称为齐次线性方程组的向量形式。

线性代数期末复习要点

线性代数期末复习要点

注:一般而言, 1o ( AB)k Ak Bk , 正确: ( AB)k (AB)(A B)( AB) ;
k个
2o ( A B)(A B) A2 B2, 正确: ( A B)(A B) A2 AB BA B2 ;
3o ( A B)2 A2 2AB B2 , 正确: ( A B)2 A2 AB BA B2 。
A22
An
2
A2n
Ann
称为
A
的伴随矩阵。
2、n 阶方阵可逆的充要条件:
A
0
A 可逆,且 A1
1 A
A 。
3、逆矩阵的性质: 1o ( A1 )1 A ; 3o ( AT )1 ( A1 )T ;
4、伴随矩阵的性质:
2o ( AB)1 B1 A1 ;
4o
(kA)1
1 k
A1
(k
1、 Ax 0的基础解系:解向量组的一个极大无关组。
2、 Ax 0解的定理:只有当 R( A) r n 时,才存在基础解 系,且 n r 个线性无关的解向量组成的向量组 v1、v2、、vnr 是 Ax 0的基础解系,其线性组合
v c1v1 c2v2 cnrvnr 是 Ax 0的全部解。 3、基础解系的求法:
组有且仅有唯一解,且
xj
Dj D
( j 1,2,, n )
注:齐次线性方程组有非零解 D 0。 (逆否命题:齐次线性方程组仅有零解 D 0。)
第二章 矩阵
一、矩阵的定义:矩形数表。
二、矩阵的运算
1、矩阵的加法、减法:只有同型矩阵才可以进行加减运算。
2、数与矩阵的乘法:数与矩阵的乘法是数与矩阵每一个元 素相乘;而数与行列式的乘积是数与行列式中某一行(列) 的每一个元素相乘。

线性代数复习提纲

线性代数复习提纲

1.1二阶、三阶行列式了解二阶、三阶行列式的概念;熟练掌握其计算方法..1.2排列了解排列、正逆序数、奇偶排列、对换的概念;熟练掌握逆序数的计算方法、3个定理1.3n阶行列式了解n阶行列式的定义和由二阶、三阶行列式展开式的特点导出的一般规律;;掌握用定义计算特殊n阶行列式的方法;熟记三角形行列式的计算结果..1.4行列式的性质熟练掌握行列式的运算性质;并应用它们进行行列式的运算..转置行列式的概念;行列式的5个性质和两个推论1.5行列式按行列展开掌握余子式和代数余子式的概念;熟练掌握行列式按行列展开的方法..三阶行列式按行列展开式;余子式和代数余子式的概念;行列式按行列展开定理;范德蒙行列式1.6克拉默法则掌握线性方程组解的克拉默运算法则;掌握用克拉默法则判断齐次线性方程组仅有零解和有非零解的方法..1.7数域掌握数域的定义..2.1消元法了解线性方程组的消元解法;熟练掌握矩阵的初等变换方法;熟练掌握用矩阵的初等变换法解线性方程组以及判断方程组无解、有解唯一解、无穷多解的方法..2.2n维向量空间了解向量的定义;掌握向量的运算;熟悉线性方程组的向量表达形式..向量的有关概念;向量的运算法则;n维向量空间的概念;线性方程组的向量表达形式2.3向量间的线性关系掌握向量的线性组合概念;熟练掌握一个向量可由其它向量线性表示的方法;熟练掌握向量组线性相关和线性无关的概念、理论和方法..向量的线性组合概念;判断一个向量可由其它向量线性表示的方法;向量组线性相关和线性无关的概念;判断向量组线性相关和线性无关的方法;判断向量组线性相关和线性无关的一些结论;5个定理2.4向量组的秩了解向量组极大无关组的概念;掌握等价向量组的概念和性质;掌握向量组秩的概念与相关结论..2.5矩阵的秩了解矩阵的秩的概念;熟练掌握求向量组极大无关组的方法;熟练掌握求向量组秩和矩阵秩的方法..矩阵的行秩与列秩的概念;矩阵子式的概念;矩阵秩的概念;求向量组极大无关组、向量组秩、矩阵秩的方法;2.6线性方程组解的判定掌握非齐次线性方程组有无解、有唯一解、无穷多解的判定方法;熟练掌握齐次线性方程组有非零解解、只有零解判定方法..非齐次线性方程组有无解判定方法定理1;非齐次线性方程组有唯一解、无穷多解的判定方法定理2;齐次线性方程组有非零解解、只有零解判定方法推论1、22.7线性方程组解的结构熟练掌握基础解系的概念;熟练掌握用基础解系表示方程组解的方法..齐次线性方程组解的两个性质;齐次线性方程组基础解系的概念;特别强调基础解系中含解向量个数与未知量个数和系数矩阵秩间的关系;齐次线性方程组解的基础解系表示法;非齐次线性方程组与齐次线性方程组解间的关系;非齐次线性方程组解的基础解系表示法;3.1-3.2矩阵的概念与运算了解矩阵的概念;熟练掌握矩阵的加法、数与矩阵的乘法、乘法、转置、行列式的运算法则和相应的性质..矩阵的定义以及几种特殊矩阵;矩阵的加法法则和对应的性质;数与矩阵的乘法法则和对应的性质;矩阵的乘法法则和对应的性质;矩阵的转置概念和对应的性质;矩阵行列式概念和对应的性质3.3可逆矩阵理解可逆矩阵的概念;了解伴随矩阵的概念;熟练掌握用伴随矩阵求可逆矩阵的逆矩阵的方法..3.4矩阵的分块了解分块矩阵的概念以及矩阵分块的原则;熟练掌握分块矩阵的运算法则..3.5初等矩阵理解三种初等矩阵的概念;掌握初等矩阵在矩阵乘法运算中的作用;熟练掌握利用初等变换求可逆矩阵的方法..三种初等矩阵的概念和它们在矩阵乘法运算中的作用;任意矩阵经过有限次初等变换化成的标准型;可逆矩阵与初等矩阵间的关系定理;利用初等变换求可逆矩阵的方法3.6常见的特殊矩阵了解对角矩阵、准对角矩阵、三角形矩阵、对称矩阵、反对称矩阵的概念和运算性质..4.1向量空间了解向量空间的概念和性质;了解向量空间基以及向量在基下坐标的概念..4.2向量的内积了解内积的概念;掌握内积的性质;熟练掌握n维向量空间两向量内积的坐标表示法;会求向量长度和向量单位化;了解正交向量组的概念;理解标准正交基的概念;熟练掌握向量组的施密特正交化过程..向量内积的概念和性质;n维向量空间两向量内积的坐标表示法;单位向量的概念和向量单位化;正交向量组的概念;正交基、标准正交基的概念;向量组的施密特正交化过程4.3正交矩阵了解正交矩阵的概念;熟练掌握其性质..5.1矩阵的特征值与特征向量了解矩阵特征值与特征向量的概念;熟练掌握求矩阵特征值与特征向量的方法;熟练掌握特征值与特征向量的性质;了解矩阵迹的概念与性质..矩阵特征值与特征向量的概念;求矩阵特征值与特征向量的方法;矩阵特征值与特征向量的性质;矩阵迹的概念与性质;5.2相似矩阵和矩阵对角化的条件了解相似矩阵的概念;掌握相似矩阵的性质;熟练掌握矩阵对角化的条件和对角化的方法.. 5.3实对称矩阵的对角化了解实对称矩阵特征值与特征向量的性质;熟练掌握实对称矩阵对角化的方法..。

线性代数复习提纲

线性代数复习提纲

第一章 矩阵1 矩阵的概念特殊矩阵:行矩阵、列矩阵、对角矩阵、上三角阵、下三角矩阵、单位矩阵、对称矩阵、反对称矩阵。

2 矩阵的运算:(1)矩阵的线性运算及其运算规律-矩阵的加法(减法)和数乘。

(2)矩阵的乘法:能够进行乘法运算必须具备的条件,运算方法,左乘与右乘的区别。

乘法的运算规律(应用较为普遍的是矩阵乘法满足结合律) (3)矩阵的转置:(AB)T =B T A T(4)矩阵的逆:AB=BA=I →A -1=B 矩阵的逆唯一 运算规律: (A -1) -1= A ;(λA) -1= λ-1A -1;(AB) -1=B -1A -1;(A T ) -1=(A -1) T 矩阵逆的计算方法:待定系数法、初等变换法、伴随矩阵法。

3 分块矩阵及其运算第二章 线性方程组与矩阵初等变换 1 线性方程组与矩阵的一一对应关系2 高斯消元法:线性方程组的三种变换→阶梯形方程组。

3 利用矩阵初等变换解线性方程组:三种初等变换→行阶梯形矩阵→行最简形矩阵4 非齐次线性方程组解的三种情形的讨论⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++++0000000000000000000011,221,2222111,111211r r rn r r rr nr r nr r d d c c c d c c c c d c c c c c(1)无解(2)唯一解(3)无数解 5矩阵等价的概念 6 初等矩阵的概念7 初等矩阵与矩阵初等变换的关系8 逆矩阵定理:设A 是n 阶矩阵,那么下列各命题等价: (1)A 是可逆矩阵;(2)齐次线性方程组Ax =0只有零解; (3)A 可以经过有限次初等行变换化为In ; (4)A 可表示为有限个初等矩阵的乘积。

9 利用矩阵初等变换求矩阵的逆 A 可以经过一系列初等行变换化为I ; I 经过这同一系列初等行变换化为A -1P s …P 2P 1 (A | I n )=(I n |A -1)第三章 行列式1 n 阶行列式的定义(1)全排列及其奇偶性:逆序数的概念,对换,相邻对换。

《线性代数》期末复习提纲

《线性代数》期末复习提纲

《线性代数》期末复习提纲第一部分:基本要求(计算方面)1. 四阶行列式的计算;2. N 阶特殊行列式的计算(如有行和、列和相等);3. 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);4. 求矩阵的秩、逆(两种方法);5. 含参数的线性方程组解的情况的讨论;6. 齐次、非齐次线性方程组的求解(包括唯一、无穷多解);7. 讨论一个向量能否用和向量组线性表示;8. 讨论或证明向量组的相关性;9. 求向量组的极大无关组,并将多余向量用极大无关组线性表示;10.将无关组正交化、单位化;11.求方阵的特征值和特征向量;12.讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;13.通过正交相似变换(正交矩阵)将对称矩阵对角化;14.写出二次型的矩阵,并将二次型标准化,写出变换矩阵;15.判定二次型或对称矩阵的正定性。

第二部分:基本知识一、行列式1.行列式的定义用2n 个元素ij a 组成的记号nn n n n n a a a a a a a a a212222111211称为n 阶行列式。

(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算1. 一阶行列式a a =,二、三阶行列式有对角线法则;2. N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

3. 特特情况(1) 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0;Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例;Ⅳ 奇数阶的反对称行列式。

二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB =BA ,称A 、B 是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A 、B 为同阶方阵,则B A AB ⋅=;3.矩阵的秩(1)定义 非零子式的最大阶数称为矩阵的秩;(2)秩的求法 一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

线性代数复习提纲

线性代数复习提纲

1.什么叫排列的逆序数?什么叫奇排列?什么叫偶排列?2.行列式的定义3.行列式的性质4.行列式按行(列)展开5.计算行列式的思想6.克拉默法则7.对矩阵定义了哪些运算、每种运算都有哪些运算法则?8.什么叫矩阵可逆?可逆矩阵有哪些运算性质?你有哪些方法判别一个矩阵是否可逆?如何求逆矩阵?9.什么叫初等行变换、什么叫初等列变换?什么叫初等矩阵?如何用初等矩阵表示初等变换?10.什么叫矩阵的K 阶子式?什么叫矩阵的秩?矩阵的秩有哪些性质?你有哪些方法可以计算矩阵的秩?为什么可以用初等行变换把矩阵化成行阶梯形来计算矩阵的秩?11.你有哪些方法可以判别一个齐次线性方程组0=Ax 是否有非零解?12.你有哪些方法可以判别一个非齐次线性方程组b Ax =是否有解?有唯一解、有无穷多解?13.什么叫向量组m ααα,,,21 的线性组合?14.什么叫向量β能由向量组m ααα,,,21 线性表示?你有哪些方法判别向量β能否由向量组m ααα,,,21 线性表示?15.什么叫两个向量组等价?你有哪些方法判别两个向量组是否等价?16.什么叫向量组m ααα,,,21 线性相关?你有哪些方法判别向量组m ααα,,,21 是否线性相关?17.什么叫向量组m ααα,,,21 线性无关?你有哪些方法判别向量组m ααα,,,21 是否线性无关?18.什么叫向量组的极大无关组?你有哪些方法判别一个向量组的线性无关部分组是否为该向量组的极大无关组?19.什么叫向量组的秩?如何求一个向量组的秩?如何求向量组的一个极大无关组?如何把不在极大无关组中的向量用极大无关组线性表示?20.齐次线性方程组0=Ax 的解有哪些性质?21.什么叫齐次线性方程组0=Ax 的基础解系?齐次线性方程组0=Ax 的基础解系包含的向量个数与系数矩阵的秩有什么关系?如何求出齐次线性方程组0=Ax 的基础解系及通解?22.非齐次线性方程组b Ax =的解有哪些性质?23.非齐次线性方程组b Ax =的解与其对应的齐次线性方程组0=Ax 的解有什么关系?24.什么叫向量的内积?向量的内积有哪些运算性质?25.什么叫正交向量组?如何把一组线性无关的向量组化为正交向量组?26.什么叫正交矩阵?正交矩阵有哪些性质?27.什么叫矩阵的特征值?什么叫矩阵的特征向量?矩阵的特征值与特征向量有哪些性质?28.如何求矩阵的特征值及特征向量?29.什么叫两个矩阵相似?相似矩阵有哪些性质?30.矩阵与对角矩阵相似的条件是什么(或者说,什么样的矩阵能相似对角化)?如何将一个矩阵相似对角化?31.实对称矩阵有什么重要的性质?如何将一个实对称矩阵对角化?32.什么叫二次型?二次型的矩阵有什么特点?什么叫二次型的秩?33.什么叫二次型的标准形?如何将一个二次型化为标准形(有哪几种方法)?34.什么叫矩阵合同?35.什么叫二次型的规范形?什么叫正惯性指数?什么叫负惯性指数?36.什么叫正定二次型?什么叫正定矩阵?如何判别一个矩阵是否为正定矩阵?着重申明:以下题目仅供复习自测参考,绝无任何暗示意义判断正误:1.逆序数为奇数的排列称为奇排列。

线性代数复习提纲答案

线性代数复习提纲答案

第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。

第二部分:基本知识一.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A||B|;④|kA|=n k|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

求秩:利用初等变换将矩阵化为阶梯阵得秩。

4.逆矩阵(1)定义:A、B为n阶方阵,若AB=BA=E,称A 可逆,B是A的逆矩阵(满足半边也成立);(2)性质:(AB)1-=(B1-)*(A1-),(A T)1-=(A1-)T;(A B的逆矩阵,你懂的)(注意顺序)(3)可逆的条件:①|A|≠0;②r(A)=n; ③A等价于E;(4)逆的求解伴随矩阵法A1-=(1/|A|)A*;(A* A的伴随矩阵~)②初等变换法(A:E)⇒(施行初等变换)(E:A1-)5.用逆矩阵求解矩阵方程:AX=B,则X=(A1-)B;XB=A,则X=B(A1-);AXB=C,则X=(A1-)C(B1-)二、行列式1.行列式的定义用n2个元素aij组成的记号称为n阶行列式。

线性代数复习提纲

线性代数复习提纲

线性代数复习提纲1.什么叫排列的逆序数?什么叫奇排列?什么叫偶排列?2.行列式的定义3.行列式的性质4.行列式按行(列)展开5.计算行列式的思想6.克拉默法则7.对矩阵定义了哪些运算、每种运算都有哪些运算法则?8.什么叫矩阵可逆?可逆矩阵有哪些运算性质?你有哪些方法判别一个矩阵是否可逆?如何求逆矩阵?9.什么叫初等行变换、什么叫初等列变换?什么叫初等矩阵?如何用初等矩阵表示初等变换?10.什么叫矩阵的K 阶子式?什么叫矩阵的秩?矩阵的秩有哪些性质?你有哪些方法可以计算矩阵的秩?为什么可以用初等行变换把矩阵化成行阶梯形来计算矩阵的秩?11.你有哪些方法可以判别一个齐次线性方程组0=Ax 是否有非零解?12.你有哪些方法可以判别一个非齐次线性方程组b Ax =是否有解?有唯一解、有无穷多解?13.什么叫向量组m ααα,,,21 的线性组合?14.什么叫向量β能由向量组m ααα,,,21 线性表示?你有哪些方法判别向量β能否由向量组m ααα,,,21 线性表示?15.什么叫两个向量组等价?你有哪些方法判别两个向量组是否等价?16.什么叫向量组m ααα,,,21 线性相关?你有哪些方法判别向量组m ααα,,,21 是否线性相关?17.什么叫向量组m ααα,,,21 线性无关?你有哪些方法判别向量组m ααα,,,21 是否线性无关?18.什么叫向量组的极大无关组?你有哪些方法判别一个向量组的线性无关部分组是否为该向量组的极大无关组?19.什么叫向量组的秩?如何求一个向量组的秩?如何求向量组的一个极大无关组?如何把不在极大无关组中的向量用极大无关组线性表示?20.齐次线性方程组0=Ax 的解有哪些性质?21.什么叫齐次线性方程组0=Ax 的基础解系?齐次线性方程组0=Ax 的基础解系包含的向量个数与系数矩阵的秩有什么关系?如何求出齐次线性方程组0=Ax 的基础解系及通解?22.非齐次线性方程组b Ax =的解有哪些性质?23.非齐次线性方程组b Ax =的解与其对应的齐次线性方程组0=Ax 的解有什么关系?24.什么叫向量的内积?向量的内积有哪些运算性质?25.什么叫正交向量组?如何把一组线性无关的向量组化为正交向量组?26.什么叫正交矩阵?正交矩阵有哪些性质?27.什么叫矩阵的特征值?什么叫矩阵的特征向量?矩阵的特征值与特征向量有哪些性质?28.如何求矩阵的特征值及特征向量?29.什么叫两个矩阵相似?相似矩阵有哪些性质?30.矩阵与对角矩阵相似的条件是什么(或者说,什么样的矩阵能相似对角化)?如何将一个矩阵相似对角化?31.实对称矩阵有什么重要的性质?如何将一个实对称矩阵对角化?32.什么叫二次型?二次型的矩阵有什么特点?什么叫二次型的秩?33.什么叫二次型的标准形?如何将一个二次型化为标准形(有哪几种方法)?34.什么叫矩阵合同?35.什么叫二次型的规范形?什么叫正惯性指数?什么叫负惯性指数?36.什么叫正定二次型?什么叫正定矩阵?如何判别一个矩阵是否为正定矩阵?着重申明:以下题目仅供复习自测参考,绝无任何暗示意义判断正误:1.逆序数为奇数的排列称为奇排列。

线性代数考试复习提纲、知识点、例题

线性代数考试复习提纲、知识点、例题

线性代数考试复习提纲、知识点、例题一、行列式的计算(重点考四阶行列式)1、利用行列式的性质化成三角行列式行列式的性质可概括为五条性质、四条推论,即七种变形手段(转置、交换、倍乘、提取、拆分、合并、倍加);三个为0【两行(列)相同、成比例、一行(列)全为0】2、行列式按行(列)展开定理降阶行列式等于它的任一行(列)的各元素与其对应的代数xx 乘积之和,即1122...i i i i ni ni D a A a A a A =+++ 1,2,...,i n = 例1、计算行列式二、解矩阵方程矩阵方程的标准形式:若系数矩阵可逆,则切记不能写成或求逆矩阵的方法:1、待定系数法2、伴随矩阵法其中叫做的伴随矩阵,它是的每一行的元素的代数xx 排在相同序数的列上的矩阵。

112111222212.....................n n n n nn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭3、初等变换法例2、解矩阵方程例3、解矩阵方程 ,其中三、解齐次或非齐次线性方程组设,元齐次线性方程组有非零解元齐次线性方程组只有零解。

当时,元齐次线性方程组只有零解。

当时,元齐次线性方程组有非零解。

当时,齐次线性方程组一定有非零解。

定义:设齐次线性方程组的解满足:(1) 线性无关,(2)的每一个解都可以由线性表示。

则叫做的基础解系。

定理1、设,齐次线性方程组,若,则该方程组的基础解系一定存在,且每一个基础解系中所含解向量的个数都等于。

齐次线性方程组的通解设,元非齐次线性方程组有解。

唯一解。

无数解。

无解。

非齐次线性方程组的通解,例4、求齐次线性方程组的通解例5、求非齐次线性方程组的通解。

四、含参数的齐次或非齐次线性方程组的解的讨论例6、当为何值时,齐次线性方程组有非零解,并求解。

例7、已知线性方程组,问当为何值时,它有唯一解,无解,无穷多解,并在有无穷多解时求解。

五、向量组的线性相关性线性相关中至少存在一个向量能由其余向量线性表示。

1线性代数复习提纲

1线性代数复习提纲

《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。

第二部分:基本知识一.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

求秩:利用初等变换将矩阵化为阶梯阵得秩。

4.逆矩阵(1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立);(2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)(3)可逆的条件:①|A|≠0;②r(A)=n; ③A->I;(4)逆的求解伴随矩阵法A^-1=(1/|A|)A*;(A* A的伴随矩阵~)②初等变换法(A:I)->(施行初等变换)(I:A^-1)5.用逆矩阵求解矩阵方程:AX=B,则X=(A^-1)B;XB=A,则X=B(A^-1);AXB=C,则X=(A^-1)C(B^-1)二、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。

线性代数期末复习提纲

线性代数期末复习提纲

★ 线性代数基本内容、方法及要求第一部分 行列式【主要内容】1、行列式的定义、性质、展开定理、及其应用——克莱姆法则2、排列与逆序3、方阵的行列式4、几个重要公式:(1)T A A =; (2)AA 11=-; (3)A k kA n =; (4)1*-=n A A ; (5)B A AB =; (6)B A BA B A ==0**0; (7)⎩⎨⎧≠==∑=j i j i A A a ni ij ij ,,01 ; (8)⎩⎨⎧≠==∑=j i j i A A a n j ij ij ,,01(其中B A ,为n 阶方阵,k 为常数)5、行列式的常见计算方法:(1)利用性质化行列式为上(下)三角形;(2)利用行列式的展开定理降阶;(3)根据行列式的特点借助特殊行列式的值【要求】1、了解行列式的定义,熟记几个特殊行列式的值。

2、掌握排列与逆序的定义,会求一个排列的逆序数。

3、能熟练应用行列式的性质、展开法则准确计算3-5阶行列式的值。

4、会计算简单的n 阶行列式。

5、知道并会用克莱姆法则。

第二部分 矩阵【主要内容】1、矩阵的概念、运算性质、特殊矩阵及其性质。

2、方阵的行列式3、可逆矩阵的定义、性质、求法(公式法、初等变换法、分块对角阵求逆)。

4、n 阶矩阵A 可逆⇔0≠A ⇔A 为非奇异(非退化)的矩阵。

⇔n A R =)(⇔A 为满秩矩阵。

⇔0=AX 只有零解⇔b AX =有唯一解⇔A 的行(列)向量组线性无关 ⇔A 的特征值全不为零。

⇔A 可以经过初等变换化为单位矩阵。

⇔A 可以表示成一系列初等矩阵的乘积。

5、矩阵的初等变换与初等矩阵的定义、性质及其二者之间的关系。

6、矩阵秩的概念及其求法((1)定义法;(2)初等变换法)。

7、矩阵的分块,分块矩阵的运算:加法,数乘,乘法以及分块矩阵求逆。

【要求】1、 了解矩阵的定义,熟悉几类特殊矩阵(单位矩阵,对角矩阵,上、下三角形矩阵,对称矩阵,可逆矩阵,伴随矩阵,正交矩阵)的特殊性质。

线性代数复习提纲

线性代数复习提纲

《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。

第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。

(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。

二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=, =, =, 求: (1)齐次线性方程组的通解;
(2)非齐次线性方程组的通解. 12、求一个正交变换,把下面的二次型化为标准形 四、证明题 1.设,,证明:是对称矩阵。 2. 证明:若向量是方阵的同时属于特征值的特征向量,则有 3.设是阶方阵的不同特征值,分别是的对应于的特征向量,证明:不是
的特征向量. 4.证明:若矩阵相似于,则
(A) ( B)
(C)
(D)
6、设阶行列式=,是中元素的代数余子式,则下列各式中
正确的是
(A)
(B)
(C) (D)
7、设均为阶可逆矩阵,则下列各式成立的是
(A)
(B)
(C)
(D)
8、设为3阶方阵,且行列式,则
(A)-8
(B)-2
(C) 2
(D)8
9、设为阶方阵且满足,则
(A) 或
(B)
(C) 或
(D)
7.设矩阵,则
8.设,则
9.若A是可逆矩阵,则=__________
10.设矩阵,则
11.设

是两个可逆矩阵,则分块矩阵
12.设矩阵的秩,则
13.若向量组线性无关,且,则数
14.向量组,,,中不能由其余向量线性表示的是
15.向量组的秩为____________
16.在线性方程组中,若未知量的个数n=5,,则方程组的一般解中自由
因为 =, =, =,为非齐次方程组的解, 所以为齐次方程组的解 又因为线性无关 所以的通解为: (2)由(1)及非齐次方程组解的结构,不难得知:非齐次方程组的通解 为: (注:此题答案不唯一) 12、 解:已知二次型的矩阵为: 的特征多项式为: 令得特征值: 当时 ,解方程组,得基础解系,单位化得 当时, 解方程组, 得基础解系 当时, 解方程组,得基础解系,单位化得 令矩阵 则为正交矩阵,于是所求正交变换为:,就是此变换把二次型化为标准 形 四、证明题 1. 证明:因为, 所以,从而存在
求矩阵 5、求的秩。 6、求方阵的特征值与特征向量。 7、求向量组,,,,的一个极大无关组。 8、已知向量组, ,,,,求该向量组的秩,并求其一个极大无关组。 9、判断线性方程组,当k为何值是有解? 10、设线性方程组的一般解为,为自由变量,
求的通解。 11、设为3×4矩阵,,若非齐次线性方程组 的三个解分别为:
(A) 0 (B) 1 (C) 2 (D)
25、二元二次型 的矩阵是
(A) (B) (C) (D)
二、填空题
1. 五阶行列式的展开式共有
项.
2.行列式中元素的余子式=__________
3.四阶行列式 的值是
4.矩阵中的元素=__________
5.若A,B为n阶矩阵,则=__________
6.设为3阶方阵,且,则
★★线性代数练习题
一、单项选择题
1、行列式中,元素的代数余子式是
(A) (B ) (C ) (D)
2、二阶行列式的值为
(A) (B) (C) (D)
3、设行列式,则k的取值为( )
(A)2 (B)-2或3
(C)0
(D)-3或2
4、若行列式=1,则=
(A)1
(B)2
(C)0 (D)
5、设a,b,c,d为常数,则下列等式成立的是
未知量的个数为_________
17.设4元线性方程组的系数矩阵的秩为3,且为其两个解,则 的通解为
18.设向量组线性无关,则向量组
(填线性相关,线性无关)。
19.设元线性方程组有解,则当 时,有无穷多解。
20.若3阶方阵的特征值分别为1,-1,2,则的特征值为
21.已知阶矩阵的特征值都不为零,则的特征值为
(D) 中任何一个都不能由其它向量线性表出
17、向量组,,,的秩为
.
(A)
(B) (C) (D)
18、设均为阶可逆矩阵,则分块矩阵的逆矩阵是
.
(A)
(B)
(C)
(D)
19、设,,且,则
(A) (B)
(C) (D)
20、设A可逆,则的解是
(A)
(B)
(C) (D)
21、下列说法正确的是( )。
(A) 任何矩阵经过初等行变换都可化为单位矩阵。
10、 11、 12、
13、 14、 15、3 16、2
17、 (注:此题答案不唯一) 18、线性无关
21、 22、2
23、5
24、 25、 26、 27、
19、小于n 20、
三、计算题 1、解: 2、解:= 3、解:
存在,用右乘方程两边,得 又
所以, 4、解:= 及
存在,且 将已知等式整理得: 所以 施行初等行变换得,
(B) 设方阵A是非奇异性的,A经过初等行变换得到阶梯阵B,则方阵B
为奇异的。
(C) 初等矩阵都是可逆的。
(D) 矩阵经过初等行变换后,其秩会发生改变。
22、设A,B都是可逆矩阵,则AB的逆是
(A) (B) (C) (D)
23、设,则
(A) 3 (B) 2
(C) 1
(D) 0
24、设是阶方阵,若,则的基础解系所含向量的个数为
由最后一个矩阵可知 从而所求向量组的秩为3 ,
又因为非零行非零首元所在的列依次为1,2,5列 所以为其中一个极大无关组(或也对) 9、解:已知方程组的增广矩阵为:
对施行初等行变换得: 所以当,即时,方程组有解。 10、解: 已知方程组对应的齐次线性方程组的一般解为 (为自由变量)
令得:;令得:; 则为齐次方程组的基础解系; 再令,得非齐次方程组的特解: 所以的通解为: 。 11、 解:(1)由已知条件可知,齐次方程组含基础解系个数为 2个向 量,
15、下列说法不正确的是
(A)相似矩阵有相同的特征值。
(B)阶矩阵可对角化的充要条件是它有个不同的特征值。
(C)元齐次线性方程组有非零解的充要条件是。
(D)正交的向量组一定是线性无关的。
16、维向量组线性无关的充要条件是
(A) 存在一组不全为零的数使
(B) 中任意两个向量线性无关
(C) 中存在一个向量可由其它向量线性表出
6、解:矩阵的特征多项式为:
令,解得的特征值为:
当时,求解齐次线性方程组的基础解系,由
得对应的方程组为,从而解得基础解系
于是属于特征值的全部特征向量为,其中k为任意非零常数。
当时,求解齐次线性方程组的基础解系, 由
得对应的方程组为 , 从而解得基础解系 于是属于特征值的全部特征向量为 , 其中数是不同时为零的任意常 数。 7、解:以已知向量组为列向量构成矩阵,并对其进行初等行变换得, 所以,所求向量组的极大无关组为:。 8、解:记矩阵,对其进行初等变换得
线性代数模拟试题答案
一、单项选择题 1、A 2、B 3、B 4、D 514、C 15、B 16、D 17、C 18、C 19、C 20、D 21、C 22、D 23、B 24、C 25、B 二、填空题
1、 5! 2、 3、24 4、1 5、 6、8 7、 8、 9、
22.设向量组,,,线性相关,则
23.若向量与向量正交,则
24.已知三阶矩阵 的特征值为,其对应的特征向量分别是
,则
25.若方阵与相似,则的特征值为___________
26.若矩阵与相似,则
27.若二次型是正定的,则应满足的条件是
三、计算题 1、计算行列式 2、设,,求。 3、已知且,求矩阵X。 4、设,其中
又因为,所以 用左乘等式两边得, 故是对称矩阵。 2. 证明: 若 则由 可知:
又因为 所以,这与为特征向量矛盾 所以
3.证明:假若是矩阵的属于特征值特征向量,即
因为分别是的对应于的特征向量, 所以线性无关,并且
, 所以 ,即 于是 ,这与不同矛盾。 4.证明:因为矩阵相似于, 所以 从而
10、设为阶可逆方阵,则下列各式必成立的是
(A)
(B)
(C)
(D)
11、设矩阵,,则
(A)
(B)
(C)(1,0,6)
(D) 7
13、下列命题正确的是
.
(A)若矩阵满足,则有或
(B)若矩阵满足,则矩阵都可逆。
(C)若是阶矩阵的伴随矩阵,则
(D)若,则
14、设为三阶矩阵, ,, 则=
(A) 4 (B) 1 (C) 16 (D)
相关文档
最新文档