概率统计试卷B答案

合集下载

《概率论与数理统计》期末考试试题B卷答案

《概率论与数理统计》期末考试试题B卷答案

华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。

答案错选或未选者,该题不得分。

每小题2分,共10分。

)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。

答案错选或未选者,该题不得分。

每小题2分,共10分。

线性代数与概率统计试卷与答案

线性代数与概率统计试卷与答案

一、单选( 每题参考分值2.5分)1、设随机变量的分布函数为,则()A.B.C.D.正确答案:【B】2、设总体为参数的动态分布,今测得的样本观测值为0.1,0.2,0.3,0.4,则参数的矩估计值为()A.0.2B.0.25C.1D.4正确答案:【B】3、A.B.C.D.正确答案:【B】4、设均为阶方阵,,且恒成立,当()时,A.秩秩B.C.D.且正确答案:【D】5、设是方程组的基础解系,则下列向量组中也可作为的基础解系的是()A.B.C.D.正确答案:【D】6、盒中放有红、白两种球各若干个,从中任取3个,设事件,,则事件()A.B.C.D.正确答案:【A】7、已知方阵相似于对角阵,则常数()A.B.C.D.正确答案:【A】8、掷一枚骰子,设,则下列说法正确的是()A.B.C.D.正确答案:【B】9、设为二维连续随机变量,则和不相关的充分必要条件是()A.和相互独立B.C.D.正确答案:【C】10、袋中有5个球(3新2旧),每次取1个,无放回的抽取2次,则第2次取到新球的概率为()A.B.C.D.正确答案:【A】11、A.B.C.D.正确答案:【D】12、设和是阶矩阵,则下列命题成立的是()A.和等价则和相似B.和相似则和等价C.和等价则和合同D.和相似则和合同正确答案:【B】13、二次型是()A.正定的B.半正定的C.负定的D.不定的正确答案:【A】14、矩阵与的关系是()A.合同但不相似B.合同且相似C.相似但不合同D.不合同也不相似正确答案:【B】15、随机变量X在下面区间上取值,使函数成为它的概率密度的是()A.B.C.D.正确答案:【A】16、A.全不非负B.不全为零C.全不为零D.全大于零正确答案:【C】17、随机变量的概率密度则常数()A.1B.2C.D.正确答案:【B】18、设二维随机变量的概率密度函数为,则()A.B.C.D.正确答案:【B】19、设随机变量的方差,利用切比雪夫不等式估计的值为()A.B.C.D.正确答案:【B】20、A.每一向量不B.每一向量C.存在一个向量D.仅有一个向量正确答案:【C】21、A.B.C.D.正确答案:【C】22、设,则()A.B.C.D.正确答案:【B】23、设随机变量的数学期望,方差,则由切比雪夫不等式有()A.B.C.D.正确答案:【B】24、以下结论中不正确的是()A.若存在可逆矩阵,使,则是正定矩阵B.二次型是正定二次型C.元实二次型正定的充分必要条件是的正惯性指数为D.阶实对称矩阵正定的充分必要条件是的特征值全为正数正确答案:【B】25、设总体服从两点分布:为其样本,则样本均值的期望()A.B.C.D.正确答案:【A】26、设是二阶矩阵的两个特征,那么它的特征方程是()A.B.C.D.正确答案:【D】27、已知,则()A.必有一特征值B.必有一特征值C.必有一特征值D.必有一特征值正确答案:【D】28、设是来自总体的样本,其中已知,但未知,则下面的随机变量中,不是统计量的是()A.B.C.D.正确答案:【D】29、矩阵的秩为,则()A.的任意一个阶子式都不等于零B.的任意一个阶子式都不等于零C.的任意个列向量必线性无关对于任一维列向量,矩阵的秩都为正确答案:【D】30、设向量组;向量组,则()A.相关相关B.无关无关C.无关无关D.无关相关正确答案:【B】31、A.交换2、3两行的变换B.交换1、2两行的变换C.交换2、3两列的变换D.交换1、2两列的变换正确答案:【A】32、设是矩阵,则下列()正确A.若,则中5阶子式均为0B.若中5阶子式均为0,则C.若,则中4阶子式均非0D.若中有非零的4阶子式,则正确答案:【A】33、分别是二维随机变量的分布函数和边缘分布函数,分别是的联合密度和边缘密度,则()A.B.C.和独立时,D.正确答案:【C】34、A.B.C.D.正确答案:【D】35、设随机变量的概率密度为,则()A.B.C.D.正确答案:【B】36、设是阶正定矩阵,则是()A.实对称矩阵B.正定矩阵C.可逆矩阵D.正交矩阵正确答案:【C】37、某学习小组有10名同学,其中7名男生,3名女生,从中任选3人参加社会活动,则3人全为男生的概率为()A.B.C.D.正确答案:【A】38、从0、1、2、…、9十个数字中随机地有放回的接连抽取四个数字,则“8”至少出现一次的概率为()A.0.1B.0.3439C.0.4D.0.6561正确答案:【B】39、A.B.C.正确答案:【D】40、设矩阵其中均为4维列向量,且已知行列式,则行列式()A.25B.40C.41D.50正确答案:【B】41、若都存在,则下面命题中正确答案的是()A.B.C.D.正确答案:【D】42、与矩阵相似的矩阵是()A.B.C.D.正确答案:【B】43、A.B.C.D.正确答案:【B】44、某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该动物已经活了20年,它能活到25年的概率是()A.0.48B.0.6C.0.8D.0.75正确答案:【D】45、设4维向量组中的线性相关,则()A.可由线性表出B.是的线性组合C.线性相关D.线性无关正确答案:【C】46、设为阶方阵,且(为正数),则()A.B.的特征值全部为零C.的特征值全部为零D.存在个线性无关的特征向量正确答案:【C】47、若连续型随机变量的分布函数,则常数的取值为()A.B.C.D.正确答案:【B】48、A.B.C.D.正确答案:【C】49、设,则~()A.B.C.D.正确答案:【B】50、设是未知参数的一个估计量,若,则是的()A.极大似然估计B.矩估计C.有效估计D.有偏估计正确答案:【D】一、单选(共计100分,每题2.5分)1、A.B.C.D.正确答案:【D】2、已知线性无关则()A.必线性无关B.若为奇数,则必有线性无关C.若为偶数,则线性无关D.以上都不对正确答案:【C】3、A.B.C.D.正确答案:【D】4、A.B.C.D.正确答案:【D】5、矩阵()是二次型的矩阵A.B.C.D.正确答案:【C】6、设为二维连续随机变量,则和不相关的充分必要条件是()A.和相互独立B.C.D.正确答案:【C】7、设是参数的两个相互独立的无偏估计量,且若也是的无偏估计量,则下面四个估计量中方差最小的是()A.B.C.D.正确答案:【A】8、设二维随机变量,则()A.B.3C.18D.36正确答案:【B】9、已知是非齐次方程组的两个不同解,是的基础解系,为任意常数,则的通解为()A.B.C.D.正确答案:【B】10、下列矩阵中,不是二次型矩阵的是()A.B.C.D.正确答案:【D】11、若总体为正态分布,方差未知,检验,对抽取样本,则拒绝域仅与()有关A.样本值,显著水平B.样本值,显著水平,样本容量C.样本值,样本容量D.显著水平,样本容量正确答案:【D】12、在假设检验中,设服从正态分布,未知,假设检验问题为,则在显著水平下,的拒绝域为()A.B.C.D.正确答案:【B】13、A.B.C.D.正确答案:【C】14、已知4阶行列式中第1行元依次是-4,0,1,3, 第3行元的余子式依次为-2,5,1,x ,则X=A.0B.3C. -3D.2正确答案:【B】15、设是阶正定矩阵,则是()A.实对称矩阵B.正定矩阵C.可逆矩阵D.正交矩阵正确答案:【C】16、设总体服从泊松分布:,其中为未知参数,为样本,记,则下面几种说法正确答案的是()A.是的无偏估计B.是的矩估计C.是的矩估计D.是的矩估计正确答案:【D】17、下列函数中可以作为某个二维随机变量的分布函数的是()A.B.C.D.正确答案:【D】18、A.B.C.D.正确答案:【A】19、若都存在,则下面命题正确答案的是()与独立时,B.与独立时,C.与独立时,D.正确答案:【C】20、设是从正态总体中抽取的一个样本,记则服从()分布A.B.C.D.正确答案:【C】21、设随机变量,则()A.B.C.D.正确答案:【A】22、已知向量,若可由线性表出那么()A.,B.,C.,D.,正确答案:【A】23、设,则()A.A和B不相容B.A和B相互独立C.或D.正确答案:【A】24、设总体,为样本均值,为样本方差,样本容量为,则以下各式服从标准正态分布的是()A.B.C.D.正确答案:【A】25、为三阶矩阵,为其特征值,当()时,A.B.C.D.正确答案:【C】26、某种商品进行有奖销售,每购买一件有的中奖概率。

概率论与数理统计 B+参考答案

概率论与数理统计 B+参考答案

《概率论与数理统计》试题(B )+参考答案一、填空题:(每题4分,共20分)1、 设,A B 为两事件,()()12,(|)15P A P B P A B ===,求()P AB =2、 已知2(2,),(24)0.3XN P X σ<<=,则(0)P X <=3、 设K 在(2,4)-服从均匀分布,x 的方程22220x Kx K +++=有实根的概率= 4、 若随机变量X 的数学期望2EX =,方差4DX =,则(28)P X -≥≤ 5、若随机变量(1,3),(1,4)XU Y N -,且它们相互独立,则(32)E X Y ++=二、单选题:(在上表对应题号下填入正确选项。

每题3分,共21分)1、在随机事件C B A ,,中,A 和B 两事件至少有一个发生而C 事件不发生的随机事件可表示为( ) A 、C B C AB 、C AB C 、BC A C B A C ABD 、C B A2、设连续型随机变量X 的分布函数为2,0()00x B Ae x F x x -⎧+>=⎨≤⎩,则,A B 的值为( )A 、1,1AB ==- B 、1,1A B ==C 、1,1A B =-=-D 、1,1A B =-= 3、若(0,1)XN ,其密度函数为()f x ,则下列说法错误的是( )A 、()f x 关于y 轴对称B 、()f x 的最大值是C 、()()()P a X b b a <<=Φ-ΦD 、()0f x >4、已知随机变量X 的密度函数为()X f x ,令2Y X =,则Y 的密度函数()Y f y =( )A 、2()y X f x dx ∞⎰ B 、1()22X y f C 、()y X f x dx ∞⎰ D 、1()2X f y5、对任意随机变量X ,若DX 存在,则()E DX 等于( )A 、0B 、XC 、()E XD 、()D X 6、已知随机变量(,)XB n p ,且()E X =3.6,() 1.44D X =,则其参数,n p 的值为( )A 、6,0.6n p == ;B 、6,0.4n p == ;C 、8,0.3n p == ;D 、24,0.1n p == 7、(,)0Cov X Y =是随机变量,X Y 相互独立的( ) A 、充分非必要条件 B 、必要非充分条件C 、充要条件D 、既不充分也不必要三、计算题:(第1小题10分,第2-4每小题13分,第5小题10分,共59分)1、设某人按如下原则决定某日的活动:如该天下雨则以0.2的概率外出购物,以0.8的概率外出探访朋友;如该天不下雨则以0.9的概率外出购物,以0.1的概率外出探访朋友。

天津科技大学10-11概率论与数理统计(概率论)B卷

天津科技大学10-11概率论与数理统计(概率论)B卷

① 任意实数; ② 1; ③ 2; ④ 12.3.若随机变量X 的概率密度为(),()xf x aex -=-∞<<+∞,则=a ( 2 ). ① 12-; ②12; ③1; ④ 32.4.若连续型随机变量X 的分布函数为)(x F ,则以下结论错误的是( 3 ).① ()P a X b <≤=)()(a F b F -; ② ()()()P a X b F b F a <<=-; ③ ()()()P a X b F a F b <<≠-; ④ ()0.P X a ==.5.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量Y X 23-的方差是( 4 )。

① 8; ② 16; ③ 28; ④ 44. 三、某校入学考试的数学成绩近似服从正态分布(65,100)N .若85分以上为“优秀”,问数学成绩为“优秀”的考生大致占总人数的百分之几?(8分)解: 设X 表示考生的数学成绩,则 ~ (65,100)X N 近似,于是858565{85}1{85}1{}1010X P X P X P -->=-≤=-≤ (4分)1(2)10.9772 2.28%≈-Φ=-= (8分)即数学成绩“优秀”的考生大致占总人数的2.28%。

四、某灯泡厂有甲、乙两条流水线,它们所出产的灯泡中,寿命大于2500小时的分别占80%和90%,从它们生产的灯泡中各自随机地抽取一个,求下列事件的概率:(1)两个灯泡寿命均大于2500小时;(2)两灯泡中至少有一个寿命大于2500小时;(3)两个灯泡中至多有一个寿命大于2500小时.(12分)解:用B A ,分别表示从甲、乙两个流水线上的产品中抽取的灯泡寿命大于2500小时,则它们相互独立.(1) 72.09.08.0)()()(=⨯==B P A P AB P , (4分)22,()0,0x e x f x x -⎧>=⎨≤⎩,33,0()0,y e y f y y -⎧>=⎨≤⎩,写出二维随机变量(), X Y 的联合密度函数(), f x y ,并求概率(2,1)P X Y <>. (10分) 解:由随机变量X 与Y 相互独立,得(23)0,0,6,(,)()().0,x y X Y x y e f x y f x f y else -+>>⎧==⎨⎩(5分) 2(23)1(2,1)6x y P X Y dx edy +∞-+<>=⎰⎰(8分) 2234316()()(1)0.0489xyedx edy e e+∞----==-≈⎰⎰(10分)八、 某保险公司多年的资料表明,在索赔户中被盗索赔户占20%,用X 表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出X 的概率函数;(2)利用棣莫佛-拉普拉斯中心极限定理,求索赔户中被盗索赔户不少于10户且不多于26户的概率的近似值。

概率统计b复习题答案

概率统计b复习题答案

概率统计b复习题答案1. 随机变量X服从标准正态分布,求P(X > 1.96)的值。

答案:根据标准正态分布表,P(X > 1.96) = 1 - P(X ≤ 1.96) = 1 - 0.975 = 0.025。

2. 设随机变量X服从二项分布B(n, p),其中n=10,p=0.3,求X的期望值和方差。

答案:期望值E(X) = np = 10 × 0.3 = 3,方差Var(X) = np(1-p) = 10 × 0.3 × 0.7 = 2.1。

3. 已知随机变量X服从泊松分布,其参数λ=5,求P(X ≥ 3)的值。

答案:P(X ≥ 3) = 1 - P(X ≤ 2) = 1 - (e^(-5) × (5^0/0! + 5^1/1! + 5^2/2!)) = 1 - (0.0067 + 0.0337 + 0.0842) = 0.8754。

4. 某工厂生产的零件寿命X服从指数分布,其概率密度函数为f(x) = 0.1e^(-0.1x),求零件寿命超过1000小时的概率。

答案:P(X > 1000) = ∫(1000, +∞) 0.1e^(-0.1x) dx = e^(-0.1 × 1000) = e^(-100)。

5. 已知随机变量X和Y的相关系数为0.8,求X和Y的协方差。

答案:由于相关系数ρ_{XY} = Cov(X, Y) / (σ_X × σ_Y),且已知ρ_{XY} = 0.8,但未给出X和Y的标准差,因此无法直接计算协方差Cov(X, Y)。

6. 设随机变量X服从正态分布N(μ, σ^2),其中μ=100,σ=10,求P(90 < X < 110)的值。

答案:首先将X标准化,得到Z = (X - μ) / σ = (X - 100) / 10。

然后求P(90 < X < 110) = P((90 - 100) / 10 < Z < (110 -100) / 10) = P(-1 < Z < 1)。

青岛理工大学概率统计期末试卷—B(附答案)

青岛理工大学概率统计期末试卷—B(附答案)

学号:姓名:班级:..........................................................密.......................................................封...........................................................线..........................................................专业本科各专业年级2007级班2008~2009学年第 1 学期概率论与数理统计课程期末试卷试卷类型:B 卷青岛理工大学试卷纸共 4 页第 1 页试题要求:1、试题后标注本题得分;2、试卷应附有评卷用标准答案,并有每题每步得分标准;3、试卷必须装订,拆散无效;4、试卷必须..........................................................密.......................................................封..........................................................线....................................................................................................................密.......................................................封..........................................................线....................................................................................................................密.......................................................封..........................................................线..........................................................2008年下学期概率统计试卷(B)参考答案1. 设A, B, C 是三个随机事件. 事件:A 发生, B , C 中至少有一个不发生表示为(空1) .2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y . 则P {Y =2}=(空2) . 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4} =41×(0+21+31+41)=4813. 3. 已知随机变量X 只能取-1,0,1,2四个值, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 则常数c = (空3) . 概率}0|1{≠<X X P =(空4) .解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++=所以3516c =. 所求概率为P {X <1| X 0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 4. 设随机变量X , Y 的数学期望分别是2和-4, 方差分别是1和4, 而相关系数为0.5. 则根据切比雪夫不等式估计{|2|P X Y +≥12}=(空5) .解 {2}2()()22(4)E X Y E X E Y +=+=⨯+-=,{2}4()()22Cov(,)D X Y D X D Y X Y +=+-⨯840.5124=-⨯⨯⨯=. 所以, {|2|P X Y +≥12}≤2411236=. 5. 若1X ,2X ,3X 为来自总体2(,)X N μσ 的样本, 且Y 1231134X X kX =++为μ的无偏估计量, 则常数k =(空6) . 解 要求1231111()3434E X X kX k μμμμ++=++=, 解之, k =512.1.设A, B 为任二事件, 则下列关系正确的是( ).(A) ()()()P A P AB P AB =+. (B)()()()P A B P A P B =+ . (C) ()()()P A B P A P B -=-. (D) ()()()P AB P A P B =.解 由文氏图易知本题应选(D).2. 设事件A 与B 独立, 则下面的结论中错误的是( ).(A) A 与B 独立. (B) A 与B 独立. (C) ()()()P P P B =. (D) A 与B 一定互斥.解 因事件A 与B 独立, 故A B 与,A 与B 及A 与B 也相互独立. 因此本题应选(D).3. 设随机变量X 的概率密度为()f x , 且()()f x f x =-, 又F (x )为随机变量X 的分布函数, 则对任意实数a , 有( ).(A) 0()1d ()∫aF a x f x -=-. (B) 01()d 2()∫aF a x f x -=-. (C) ()()F a F a -=. (D) ()2()1F a F a -=-.解 由分布函数的几何意义及概率密度的性质知答案为(B).4. 设随机变量X 服从标准正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=. 若{}P X x α<=, 则x 等于( ).(A) /2u α . (B) 1/2u α- . (C) (1)/2u α-. (D) α-1u . 解 答案是(C).5. 设连续型随机变量X 的概率密度为f (x ), 则31Y X =+的概率密度为g (y )为( ).(A)111()333f y -. (B) 3(31)f y +. (C) 3()1f y +. (D) 1133()f y -.解 由随机变量函数的分布可得, 本题应选(A). 6. 在下列结论中, 错误的是( ).(A) 若随机变量X 服从参数为n ,p 的二项分布,则().E X np =(C) 若X 服从泊松分布, 则()()D X E X =. (D) 若2~(,),X N μσ 则~(0,1)X N μσ-.解 )1,1(~-U X , 则3112212)()(22==-=a b X D . 选(B). 7. 在下列结论中, ( )不是随机变量X 与Y 不相关的充分必要条件(A) E (XY )=E (X )E (Y ). (B) D (X +Y )=D (X )+D (Y ). (C) Cov(X ,Y )=0. (D) X 与 Y 相互独立.解 X 与 Y 相互独立是随机变量X 与Y 不相关的充分条件,而非必要条件. 选(D). 8. 已知X 1,X 2,…,X n 是来自总体2(,)X N μσ 的样本, 则下列结论中正确的是( ).(A) ().E X n μ= (B) 2().D X σ=(C) 22().E S σ= (D) 以上全不对.解 选(C).9. 设随机变量X 与Y 都服从标准正态分布, 则下列结论中正确的是( ).(A) X +Y 服从标准正态分布. (B) X 2+Y 2服从2χ分布.(C) X 2和Y 2都服从2χ分布. (D)22X Y服从F 分布.解 因为随机变量X 与Y 都服从标准正态分布, 但X 与Y 不一定相互独立,所以(A),(B),(D)都不对, 故选(C).10. 设总体X 的均值μ与方差σ2都存在但未知, 而12,,,n X X X 为来自X 的样本, 则均值μ与方差σ2的矩估计量分别是( ) .(A) X 和S 2. (B) X 和211()nii X nμ=-∑. (C) μ和σ2. (D) X 和211()nii X X n=-∑.解 选(D).三、(10分)在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球取自第二箱的概率. 解 以A 表示“取得的球是白球”,i H 表示“取得的球来自第i 个箱子”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. ...................... 4分 (1) 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. ............ 4分(2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A ==. .................. 2分 四、(10分) 设二维随机变量(X , Y )的概率密度为(,)1,01,02,0,.f x y x y x =<<<<⎧⎨⎩其它 求:(1) (X , Y )的边缘概率密度(),()X Y f x f y ;(2)11{}22P Y X ≤≤;(3) X 与Y 是否独立?并说明理由. 解 (1) 当01x <<时,20()(,)d d 2xX f x f x y y y x +∞-∞===⎰⎰;当x ≤0时或x ≥1时, ()0X f x =.故 2,01,()0,其它.X x x f x <<=⎧⎨⎩ ............................. 2分当0<y <2时,12()(,)d d 12y Y y f y f x y x x +∞-∞===-⎰⎰; 当y ≤0时或y ≥2时, ()0Y f y =.故 1,02,()20,.Y yy f y -<<=⎧⎪⎨⎪⎩其它 ............................... 2分(2) {}{}11311322161122442≤,≤≤≤≤P X Y P Y X P X ===⎧⎫⎨⎬⎩⎭. ............................. 4分 (3) 因为(,)()()X Y f x y f x f y ≠,所以X 与Y 是否独立. …………………………………2分 五、(10分)设随机变量(X , Y )的分布律为若E (XY )=0.8, 求常数a ,b 和协方差Cov(X ,Y ). 解 首先,由∑∑∞=∞==111i j ijp得4.0=+b a . 其次,由0.8()100.420110.2210.22E XY a b b ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=+,得3.0=b . 进而1.0=a . ...................................................... 2分由此可得边缘分布律于是 4.14.026.01)(=⨯+⨯=X E , 5.05.015.00)(=⨯+⨯=Y E .故 Cov(,)()()()0.8 1.40.50.1X Y E XY E X E Y =-=-⨯=. ...................... 4分六、(10分)设某种商品每周的需求量X 是服从区间[10,30]上均匀分布的随机变量,而经销商店进货量为区间[10,30]中的某一整数. 该经销商店每销售一单位该种商品可获利500元; 若供大于求则削价处理, 每处理一单位该种商品亏损100元; 若供不应求, 则可从外部调剂供应, 此时每一单位商品仅获利300元. 为实现该商店所获利润期望值不小于9280元的目标, 试确定该经销商店对该种商品的进货量范围.解 设进货量为a 单位, 则经销商店所获利润为500300()300200,30,500100()600100,10.a a X a X a a X M X a X X a X a +-=+<=--=-⎧⎨⎩≤≤≤ ............ 4分 需求量X 的概率密度为()1,1030,200,.f x x =⎧<<⎪⎨⎪⎩其它 ........................... 2分 由此可得利润的期望值为30301010111()(600100)(300200)202020a a a aE M M dx x a dx x a dx =-++=⎰⎰⎰ .............. 2分 21535052502a a =-++依题意, 有21535052502a a -++≥9280,即21535040302a a -+≤0, 解得623≤a ≤26. 故期望利润不少于9280元的进货量范围为21单位~26单位. ................................................................ 2分七、(10分) 设总体X 服从参数为λ的指数分布, 即X 的概率密度为e ,0,(,)0,0,x x f x x λλλ->=⎧⎨⎩≤ 其中0λ>为未知参数, X 1, X 2, …, X n 为来自总体X 的样本, 试求:(1) 未知参数λ的矩估计量; (2) 极大似然估计量.解 因为E (X )=1λ =X , 所以λ的矩估计量为1ˆXλ=. ................................ 4分 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… ,X n 的一组观测值, 则似然函数11nii inxx nni L eeλλλλ=--=∑==∏, ...................... 2分取对数1ln ln ()ni i L n x λλ==-∑.令1d ln 0,d ni i L n x λλ==-=∑ 得λ的极大似然估计值为1ˆx λ=,λ的极大似然估计量为1ˆX λ=. 4分八、(12分)已知一批零件的长度X (单位:cm)服从正态分布(,1)N μ, 从中随机地抽取16个零件, 得到长度的平均值为40cm.(1) 取显著性水平α=0.05时, 是否可以认为μ=41? (2) 求μ的置信水平为0.95的置信区间;(3) 问题(1)和(2)的条件与结论之间有什么关系? 解 (1) 提出假设 H 0: μ=μ0=41; H 1:μ≠μ0 . ................................... 2分 对于α=1-0.95= 0.05, 选取检验统计量X z =拒绝域为|z |>z 0.025=1.96 ............... 2分代入数据n =16, x =40, σ=1, 得到||x z ===4>1.96. 所以拒绝原假设, 不能认为μ=41 2分(2) 已知x =40, σ =1,α = 0.05, 查表可得0.025 1.96,z z α==所求置信区间为22()(40 1.96,40 1.96),x z x αα+=(39.51,40.49).= ..... 4分(3) 假设检验中的显著性水平α=0.05与置信区间估计的置信水平0.95满足关系0.95=1-α; .. 1分μ的双侧假设检验的接受域与μ的置信水平为0.95的置信区间相同...................... 1分 注意:题目参考数据: t 0.025(24)=2.0639, t 0.025(23)=2.0687, t 0.05(24)=1.7109, t 0.05(23)=1.7139z 0.025=1.96, z 0.05=1.65。

概率统计B卷答案

概率统计B卷答案

14-15学年第2学期概率统计B 卷参考答案及评分标准一、选择题〔每题3分,共计21分〕1~8 BDCD CAA二、填空题〔每题3分,共计21分〕8. 0.5;9. 0.4;10. 0.5;11. 0.42;12. 1/9;13. 8/15;14. 23。

三.计算题〔每题6分,共12分〕21.设A ,B 为随机事件,且P 〔A 〕=0.7,P (A -B )=0.3,求P 〔AB 〕.【解】 P 〔AB 〕=1-P 〔AB 〕…..2分=1-[P (A )-P (A -B )] …..2分=1-[0.7-0.3]=0.6…..2分22.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求:〔1〕 X 的分布律;〔2〕 X 的分布函数;【解】〔1〕X0 1 2 P 2235 1235 135〔2〕 当x <0时,F 〔x 〕=P 〔X ≤x 〕=0当0≤x <1时,F 〔x 〕=P 〔X ≤x 〕=P (X =0)= 2235当1≤x <2时,F 〔x 〕=P 〔X ≤x 〕=P (X =0)+P (X =1)=3435 当x ≥2时,F 〔x 〕=P 〔X ≤x 〕=1故X 的分布函数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩…..4分四.综合题〔每题8分,共16分〕23.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.【解】X 和Y 的联合分布律如表:1 2 3 1 0 131113C 2228⨯⨯= 23111C 3/8222⨯⨯= 0 X Y24.设随机变量X 的分布律为求E 〔X 〕,【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯=…..3分 (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯= …..3分 D 〔X 〕=1…..2分五.综合题〔此题12分〕25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:〔1〕考试及格的学生有多大可能是不努力学习的人?〔2〕考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},那么A ={被调查学生是不努力学习的}.由题意知P 〔A 〕=0.8,P 〔A 〕=0.2,又设B ={被调查学生考试及格}.由题意知P 〔B |A 〕=0.9,P 〔B |A 〕=0.9,…..2分 故由贝叶斯公式知 〔1〕()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+…..2分 0.20.110.027020.80.90.20.137⨯===⨯+⨯…..2分 即考试及格的学生中不努力学习的学生仅占2.702%(2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+…..2分 0.80.140.30770.80.10.20.913⨯===⨯+⨯…..2分 即考试不及格的学生中努力学习的学生占30.77%.…..2分。

201001B概率统计答b

201001B概率统计答b

华东理工大学2009–2010学年第一学期《概率论与数理统计》期末考试试卷B 答案 2010.01开课学院: 理学院, 专业:大面积, 考试形式:闭卷, 所需时间120分钟 考生姓名: 学号: 班级 任课教师题号 一 二 三 四 五 六 七 八 总分 得分 评卷人附表:975.0)96.1(=Φ;0860.2)20(975.0=t ;59.3)11,9(,91.3)9,11(975.0975.0==F F 。

一、(共8分)已知有3个箱子,第一个箱子中有4个黑球,2个白球,第二个箱子中有3个黑球,3个白球,第三个箱子中有5个黑球,1个白球,现随机取一个球。

(1)求取出的为黑球的概率;(2)已知取出的为黑球,求此球来源于第一个箱子的概率。

二.(共8分)某单位设置一台电话总机,共有200个分机。

设每个分机在任一时刻使用外线通话的概率为5%,各个分机使用外线与否是相互独立的,该单位需要多少外线,才能以97.5%的概率保证各个分机通话时有足够的外线可供使用?三.(共9分)设),(ηξ的联合概率分布表为η ξ -1 0 10 181 121x 41 y 41如果已知0),cov(=ηξ,求:(1)y x ,;(2))),(max(ηξE ;(3) ηξ,独立吗?四.填空题:(3分一题,共24分)1)向单位圆122<+y x 内随机地投下3点,则这3点恰有2点落在同一象限内的概率为___。

2)设总体 ξ 的概率分布为ξ-1 0 1 }{k P =ξt0.20.3则D ξ=_________。

3)设~ξ)6,0(U ,η=⎩⎨⎧>≤404,1ξξ ,则η的数学期望E η=______。

4) 设ηξ,为两个随机变量,满足,73}0{}0{,72}0,0{=≥=≥=≥≥ηξηξP P P 则{max(,)0}P ξη<=________。

5)已知随机变量ξ,η满足2,2,1,4,0.5,E E D D ξηξηξηρ=-====-用切比雪夫不等式估计{6}P ξη+≥≤______。

概率统计考试试卷B(答案)

概率统计考试试卷B(答案)

概率统计考试试卷B(答案)系(院):专业:年级及班级:姓名:学号: .密封线1、五个考签中有⼀个难签,甲、⼄、丙三个考⽣依次从中抽出⼀张考签,设他们抽到难签的概率分别为1p ,2p ,3p ,则( B ) (A)321p p p (B)1p =2p =3p (C)321p p p (D)不能排⼤⼩解:抽签概率均为51,与顺序⽆关。

故选(B )2、同时掷3枚均匀硬币,恰有两枚正⾯向上的概率为(D )(A)0.5 (B)0.25 (C)0.125 (D)0.375解:375.0832121223==??? ????? ??C ,故选(D )3 、设(),,021Φ=A A B P 则( B )成⽴(A)()01 B A P (B)()[]()()B A P B A P B A A P 2121+=+ (C)()02≠B A A P (D)()121=B A A P解:条件概率具有⼀般概率性质,当A 1A 2互斥时,和的条件概率等于条件概率之和。

故选(B )课程名称:《概率论与数理统计》试卷类别:考试形式:开卷考试时间:120 分钟适⽤层次:本科适⽤专业:阅卷须知:阅卷⽤红⾊墨⽔笔书写,⼩题得分写在相应⼩题题号前,⽤正分表⽰;⼤题得分登录在对应的分数框内;考试课程应集体阅卷,流⽔作业。

系(院):专业:年级及班级:姓名:学号: .密封线4、10张奖券中含有3张中奖的奖券,每⼈购买⼀张,则前3个的购买者中恰有1⼈中奖的概率为(D )(A)3.07.02321 解:310272313A A C C P ?==402189106733=,故选(D ) 5、每次试验成功的概率为p ,独⽴重复进⾏试验直到第n 次才取得()n r r ≤≤1次成功的概率为(B )。

(A)()rn rn p p C --1 (B)()rn rr n p p C ----111(C)()rn r p p --1 (D) ()rn r r n p pC -----1111解:rn r r n r n r r n qp C q p C p ---+-----=?1111111,故选(B )第n 次6、设随机变量X 的概率密度为)1(12x +π,则2X 的概率密度为(B ) (A))1(12x +π (B))4(22x +π (C))41(12x +π (D))x +π解:令()x g x y ==2 ()y h y x ==21 ()21='y h ()214112+=y y P Y π=()21442?+y π=()242y +π,故选(B )7、如果随机变量X 的可能值充满区间( A B ),⽽在此区间外等于零,则x sin 可能成为⼀随机变量的概率密度。

概率论与数理统计 期末试卷及答案 B

概率论与数理统计 期末试卷及答案 B

第 1 页 共 6 页班级 姓名 准考证号‥‥‥‥‥‥密‥‥‥‥‥‥封 ‥‥‥‥‥ 线 ‥‥‥‥内 ‥‥‥‥‥不 ‥‥‥‥‥准 ‥‥‥‥‥答 ‥‥‥‥‥题 ‥‥‥‥‥‥期末考试试卷参考答案学年学期: 课程名称: 《概率论与数理统计》 适用专业:(满分:100分 时间:120分钟)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相应的位置,错涂、多涂或未涂均无分。

1.设()0.4,()0.3,()0.6==+=P A P B P A B ,则()P A B -=( )A .0.3B .0.2C .0.1D .0.42.已知()0.5,()0.4,()0.6,P A P B P A B ==⋃=则(|)P A B =( )A .0.75B .0.6C .0.45D .0.23.连续型随机变量X 的分布函数)(x F 一定是( )A .连续函数B .周期函数C .奇函数D .偶函数4.设)()(x X P x F ≤=是连续型随机变量X 的分布函数,则下列结论中不正确的是( )A .()F x 是不减函数B .()F x 不是不减函数C .()0,F -∞=()1F +∞=D .)(x F 是右连续的5.若随机变量2(,)XN μσ,()3,()1E X D X ==,则(11)P X -≤≤=( ) A .2(1)1Φ-B .(4)(2)Φ-ΦC .(4)(2)Φ--Φ-D .(2)(4)Φ-Φ6.设随机变量事件X 的分布函数为()F x ,则13XY =-的分布函数为 ( )A .(31)F y +B .(33)F y +C .3()1F y +D .()13F y - 7.设当事件A 和B 同时发生时,事件C 必发生,则下列选项正确的是( ) A .()()P C P AB = B .()()P C P A B =C .()()()1P C P A P B ≤+-D .()()()1P C P A P B ≥+-8.将3个人以相同的概率分配到4个房间的每一间中,恰有3个房间各有一人的概率为( )A .34B .38C .316D .189.事件,,A B C 中任意两个事件相互独立是事件,,A B C 相互独立的 ( )A .充要条件B .必要条件B 卷第 2 页 共 6 页‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 密 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 封 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 线‥‥‥‥‥‥‥‥‥‥‥‥‥C .充分条件D .既不充分也不必要条件10.设~[0,1],21X U Y X =+,则下面各式中正确的是( ) A .~[0,1]Y U B .~[1,3]Y UC .{01}1P Y ≤≤=D .{02}0P Y ≤≤=11.设,A B 是两个事件,且111(),(),()3412P A P B P AB ===,则( ) A .事件A 包含事件B B .事件B 包含事件AC .事件,A B 相互对立D .事件,A B 相互独立12.设总体~(3,6)X N ,126,,,X X X 是来自总体的容量为n 的样本,则()D X =( )A .1B .2C .3D .413.设事件B A ,互不相容,且0)(,0)(>>B P A P ,则有( ) A .)()()(B P A P B A P +=⋃ B .)()()(B P A P AB P =C .B A =D .)()(A P B A P =14.设总体2(,)X N μσ,2,μσ未知,且0σ>,12,,,nX X X是来自总体的容量为n 的样本,则2σ的矩法估计量为( )A .211()1ni i X X n =--∑ B .211()n i i X X n =-∑C .2211()1n i i X X X n =-+-∑D .2211()n i i X X X n =-+∑15.设随机变量X 服从参数为λ的泊松分布,且(1)(2)P X P X ===,则()D X =( )A .1B .2C .3D .4二、判断题(本大题共5小题,每小题2分,共10分)判断正误,正确代码为A ,错误代码为B ,请将正确的答案代码涂在答题卡相应的题号下。

概率统计带答案(B卷)

概率统计带答案(B卷)

概率统计模拟题一、填空1.设X 是一随机变量,其分布函数定义为F(X)= ()()xp X x f t dt -∞≤=⎰。

2.100个产品中有3个次品,任取2个,则没有次品的概率是0.94。

3.A 、B 、C 是三个随机事件,则A 、B 、C 至少有一个发生的事件可表示为C B A ⋃⋃。

4.设随机变量X 服从参数为n ,p 的二项分布,则E(X)= np ;D(X)= np(1-p) 。

5.设X 服从正态分布N(-2,3),则X的分布函数为()226t xdt -+⎰。

6.设A 、B 为独立二事件,且P(AUB)=0.6,P(A)=0.4,则P(B)=31。

二、设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=111000)(2x x ax x x F试求(1)常数a ;(2)P{0.5<X<10};(3)X 的概率密度函数f(x)。

三、X 服从参数为2,p 的二项分布,已知5{1}9P X ≥=,那么成功率为p 的4重贝努利试验中至少有一次成功的概率是多少?()()()()2201011110axx F x f x f x f x ax a ∞∞≤∠⎧'=∴=⎨⎩∴=∴=⎰+-解:(1)其它=()()11230.524201(3)0xdx xx f x ∠∠=≤∠⎧=⎨⎩⎰(2)p x 10=其它四、已知随机变量X 服从二项分布,E(X)=12,D(X)=8,求p 和n 。

12,8213633EX np DX npq q p n ====∴=== 解:五、从一批灯泡中抽取16个灯泡的随机样本,算得样本均值x =1900小时,样本标准差s=490小时,以α=1%的水平,检验整批灯泡的平均使用寿命是否为2000小时? (附:t 0.05(15)=2.131,t 0.01(15)=2.947,t 0.01(16)=2.921,t 0.05(16)=2.120)()()120.0101.:20002....:15 2.9472.9470.010.82 2.9472000n u x x x x x T t t p TT α====⎫⎪>=⎬⎪⎭===<0解:建立待检假设H 选取样本的统计量查表确定临界值即再由样本观察数据得统计量所以接受H ,可以认为灯泡的使用寿命是小时。

山东建筑大学2009-2010-1《概率论与数理统计》试题(B)及答案

山东建筑大学2009-2010-1《概率论与数理统计》试题(B)及答案

1 y e 2 , e 2 y 1, 其它
1 2 2 (e 1), 1 1 , 2y 2 0 ,
1 y e 2 e 2 y 1
3分
y=1/x
D
其它
0
1
e2
x 4分
(2)因 f ( x, y ) f X ( x ) f Y ( y ) ,所以 X , Y 不独立.
2
(C)0.6,
(D)0.7 。
1 x
(B)
1 n Xi n 1 i 1
(C)
1 n 2 X i (D) x n 1 i 1 3X Y
2、设 X ~ N , , Y aX b ,其中 a 、 b 为常数,且 a 0 ,则 Y ~
8、设两独立随机变量 X ~ N (0,1) , Y ~ 2 (9) ,则
1 1 0x dy , f ( x, y )dy 2 0 ,
1 x e 2, 其它.
1 , 2x 0 ,
1 x e2, 其它.
3 分
fY ( y )

e2 1 1 2 dx, 1 1 f ( x, y )dx y dx, 1 2 0 ,

0
y 1
e

x2 2
dx
y 1 y0
所 以 ,
0
1 2 y2 1 e f Y y FY y 2 2 y 1 0
y 1 1 e 2 即 f Y y 2 y 1 y0 0
y 1
y 1 y0
所以接受 H 0 ,即可以认为该动物的体重平均值为 52 。 (2 分) 6、 (10 分)解 似然函数 L( x1 xn ; ) 2 n e

概率论与数理统计B试题及答案

概率论与数理统计B试题及答案

一.单项选择题(每小题3分,共15分)1.设事件A和B的概率为则可能为(D)(A) 0; (B) 1;(C) 0.6; (D) 1/62。

从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为(D)(A) ; (B); (C); (D)都不对3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( A)(A) ; (B) ;(C);(D)都不对4.某一随机变量的分布函数为,(a=0,b=1)则F(0)的值为( C)(A) 0.1; (B) 0。

5; (C) 0.25;(D)都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为(C )(A) 2.5; (B) 3.5; (C) 3。

8;(D)以上都不对二.填空题(每小题3分,共15分)1.设A、B是相互独立的随机事件,P(A)=0.5,P(B)=0。

7, 则= 0。

85 。

2.设随机变量,则n=__5____.3.随机变量ξ的期望为,标准差为,则=___29____.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0。

7和0.8.先由甲射击,若甲未射中再由乙射击。

设两人的射击是相互独立的,则目标被射中的概率为____0.94_____.5.设连续型随机变量ξ的概率分布密度为,a为常数,则P(ξ≥0)=___3/4____.三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率(1) 4个球全在一个盒子里;(2)恰有一个盒子有2个球。

把4个球随机放入5个盒子中共有54=625种等可能结果-—--——---—-———3分(1)A={4个球全在一个盒子里}共有5种等可能结果,故P(A)=5/625=1/125-————-—-——-—---—---————-—-————----—--—————--———-—-————5分(2) 5个盒子中选一个放两个球,再选两个各放一球有种方法-—---—--——--—————---—-—-—----—-—-———-——-——----—----—7分4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果。

第二学期期末考试概率论与数理统计试卷(B)及答案

第二学期期末考试概率论与数理统计试卷(B)及答案

| | | | | | | |装| | | | |订| | | | | |线| | | | | | | | ||防灾科技学院2008~2009学年第二学期期末考试概率论与数理统计试卷(A)使用班级本科各班适用答题时间120分钟一填空题(每题3分,共30分)1、已知事件A,B有概率4.0)(=AP,5.0)(=BP,条件概率3.0)|(=ABP,则=⋃)(BAP0.78 ;2、已知某同学投篮球时的命中概率为)10(<<pp,设X表示他首次投中时累计已投篮的次数,则X的概率分布律为ppkXP k1)1(}{--==,.,2,1=k;3、尽管一再强调考试不要作弊,但每次考试往往总有一些人作弊。

假设某校以往每学期期末考试中作弊同学人数X服从参数为10的泊松分布,则本次期末考试中无同学作弊的概率为10-e;4、随机变量X的分布函数是⎪⎩⎪⎨⎧≥<≤<=.1,1,1,,0,0)(2xxxxxF,则随机变量X的概率密度函数为⎩⎨⎧<<=.,0,1,2)(其他xxxf;5、设随机变量X与Y相互独立且均服从区间),(30上的均匀分布,则)1},(max{≤YXP为____1/9____ ___;6、若)(~),1,0(~2nYNXχ且X与Y相互独立,则~/nYXt(n) ;7、随机变量K在)5,0(内服从均匀分布,则关于x的方程02442=+++KKxx有实根的概率为_____3/5(或0.6)__;8、已知)4,2(~NX,)2,1(~-NY,则~2YX+)12,0(N;9、设随机变量X的概率密度为⎪⎩⎪⎨⎧<≥=.1,0,1,1)(2xxxxf,令⎩⎨⎧≥<=.4,2,4,1XXY,则Y的分布律10、已知一批零件的长度X(单位cm)服从正态分布)1,(μN,今从中随机地抽取16零件,得到长度的平均值为40cm,则μ的置信度为95%的置信区间是(39.51,40.49) (96.1025.0=z)。

第2学期《概率论与数理统计》B卷及答案

第2学期《概率论与数理统计》B卷及答案
(X X )2
ni i 1
n 1 i1 i
证明
:
Y
X X n1
n ~ t(n 1) 。
S n1
N(, 2)
的一个样
第 3 页(共 3 页)
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
一定相互独立。
第 1 页(共 3 页)
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
7.设 X1, X 2 , X n , n 2 为正态总体 N (, 2 ) 的一个样本,当常数 C=-------------时,
n1
Q C ( Xi1 Xi )2 为 2 的无偏估计 i 1 8.设总体 X ~ N (,32 ) 如果希望 的 0.95 的置信区间长度不超过 2,那需要抽取的样本
3.设 X 1 n X , a 为任意常数,,则当 a X 时
n
( X a)2 到达计算题(共 55 分) 1.(11 分)三门高射炮对一架敌机独立地一齐各发射一炮,它们的命中率分别为 10%,
20%,30%,求:(1)敌机至少中一弹的概率;(2)敌机恰好中一弹的概率。

概率论与数理统计(B卷)

概率论与数理统计(B卷)

(3)0.5000 (4)0.954511、设随机变量)50.0,19(~b X ,那么X 最可能取到的数值为【 】。

(1)9.5 (2)10.9 (3)10 (4)912、n X X X ,,,21 是总体X~N(2,σμ)的一个样本,)1/()(212--=∑=n X X S ni i 。

那么统计量2χ= (n-1)2S /2σ~【 】.(1))n (2χ (2))1,0(N (3))1n (2-χ (4))1n (t -13、参数θ的置信区间为【1ˆθ,2ˆθ】,且P {1ˆθ〈θ〈2ˆθ}=0.99,那么置信度为【 】. (1)0。

99 (2)99 (3)0.01 (4)不能确定14、设 X 1, X 2 …,X n 是总体X ~)(λP 的样本,则 X 1, X 2 …,X n 相互独立,且【 】 。

(1)),(~2i σμN X (2)i X ~)(λP(3))(~e i λG X (4)),0(~i λU X15、下列分布中,具备“无后效性”的分布是【 】。

(1)二项分布 (2)均匀分布 (3)指数分布 (4)泊松分布二、多项选择题(从每题后所备的5个选项中,选择至少2个正确的并将代码填题后的括号内,每题1分,本题满分5分)16、如果事件A 、B 相互独立,且P(A )=0。

40,P(B )=0.30,那么【 】。

(1)P(B A -)=0.72 (2)P (A ⋃B )=0。

58 (3)P (A —B )=0.28 (4)P(AB )=0.12 (5)P (A/B )=0。

4017、设随机变量X ~b (20,0.70),那么以下正确的有【 】.(1)EX =14 (2)X 最可能取到14和13 (3)DX = 4.2 (4))0(=X P =2070.0 (5)X 最可能取到15 18、随机变量)144,10(~N X ,那么【 】。

(1)EX =12 (2)144=DX (3)12=DX (4)12=σ (5)2/1)10()10(=<=>X P X P 19、设)25(~,)15(~22χχY X ,且X 与Y 独立,则【 】。

概率论与数理统计(B)试题及答案

概率论与数理统计(B)试题及答案

概率论与数理统计(B)试题及答案陕西科技⼤学2010级试题纸课程概率论与数理统计(B )班级学号姓名1、A B C 表⽰随机事件,,A B C ⾄少有⼀个不发⽣. ()2、若()1P A =,则A 是必然事件. ()3、若2~(2,1),~(2,0.5)X N Y N -,则(0)0.5P X Y >=+. ()4、X 为随机变量,当12x x <时,则有12()()P X x P X x >≤>.. ( )5、设(,)X Y 是⼆维正态随机变量,则随机变量X 与Y 独⽴的充要条件是cov(,)0X Y =. ..( )⼆、填空题(每⼩题3分,共15分) 1、设,A B 为随机事件,()0.6P A =,()0.4P B =,()0.8P A B = ,则()P B A = .2、在区间(0,1)上随机取两个数,x y ,则关于t 的⼀元⼆次⽅程220t xt y -+=有实根的概率为 .3、设随机变量~()X P λ,且3(0)P X e -==,21Y X =-,则()D Y = .4、设随机变量~(0,1),~(2,1)X N Y N ,且X ,Y 相互独⽴,设随机变量21Z X Y =-+,则Z ~ _ .5、设随机变量X~U[1,2],由切⽐雪夫不等式可得32P X ?-≥≤??.三、选择题(每⼩题3分,共15分)1、对事件,A B ,下列命题中正确的是()A 、若,AB 互斥,则,A B 也互斥. B 、若,A B 互斥,且()0,()0P A P B >>,则,A B 独⽴.C 、若,A B 不互斥,则,A B 也不互斥D 、若,A B 相互独⽴,则,A B 也相互独⽴. 2、设随机变量X 服从正态分布2(2,)N σ,则随σ的增⼤,概率(22)P X σ-<是() A 、单调增加 B 、单调减⼩ C 、保持不变 D 、⽆法判断 3、设(,)F x y 为(,)X Y 的分布函数,则以下结论不成⽴的是()A 、0(,)1F x y ≤≤B 、 (,)1F -∞+∞=C 、(,)0F -∞+∞=D 、 (,)0F -∞-∞=4、把10本书任意地放在书架上,则其中指定的3本书放在⼀起的概率为() A 、115B 、112C 、110D 、185、若121000,...X X X 是相互独⽴的随机变量,且(1,)(1,2,,1000)i X B p i = 则下列说法中不正确的是()A 、1000111000i i X p =≈∑ B 、10001()()()i i P a X b b a =<<≈Φ-Φ∑ C 、10001~(1000,)i i X B p =∑ D、10001()i i P a X b =<<≈Φ-Φ∑四、(12分)设(,)X Y 的联合概率分布如下,求:①()()E X E Y 、②()E XY 、(,)COV X Y③Z X Y =+的概率分布.五、(10分)甲、⼄、丙三⼈同时独⽴地向某⽬标射击,命中率分别为0.3、0.2、0.5,⽬标被命中⼀发⽽被击毁的概率为0.2,⽬标被命中两发⽽被击毁的概率为0.6,⽬标被被命中三发则⼀定被击毁,求三⼈在⼀次射击中击毁⽬标的概率.六、(16分)设随机变量X 的概率密度为()2,100,10Ax f x x x ?>?=??≤?,求:①A ; ②(15)P x <; ③求X 的分布函数()F x ; ④设2Y X =,求Y 的概率密度.七、(16分)设⼆维随机变量()Y X ,的概率密度为()22,01,0,0,y e x y f x y -?≤≤>=??其它求:① (2)P Y X ≥; ②关于X 与Y 的边缘概率密度; ③X 与Y 是否独⽴?为什么?④(24)E X Y +.⼋、(6分)设X 与Y 相互独⽴,其分布函数分别为()X F x 、()Y F x .证明:随机变量X 与Y 的最⼤值max(,)U X Y =分布函数为()()X Y F u F u ?.2010级概率论与数理统计(B )试题答案⼀、√; ×; ×; ×; √ ⼆、1/3; 1/3; 12;N(-1,5); 1/6 三、D ; C ; B ; A ;B 四·(,)()()()5/144COV X Y E XY E X E Y =-=-…………………………2分五、解:设A :甲击中;B :⼄击中;C :丙击中 i D :击中i 发,(1,2,3)i =;E :击毁⽬标1()()0.47P D P ABC ABC ABC =++= 2()()0.22P D P ABC ABC ABC =+++=3()()0.03P D P ABC ==………………………………………………5分31()()()0.470.20.220.60.0310.256i i i P E P D P E D ===?+?+?=∑…………………………5分5/12EX =…………………………2分1/12EY =…………………………2分②()0E XY =…………………………2分③……………………………4分六、①2101Adx x +∞=?,则A =10 ……………………………………………4分②1521010(15)1/3P x dx x <==?……………………………………………4分③ 10,()0x F x <=210101010,()()1xxx F x f x dx dx x x -∞≥===-?…………………………4分④20,()0Y y F y <=22101020,()()()2yY y y F y P Y y P X dxx ≥=≤=≤=?20,20()[()]20/,20Y Y y f y F y y y ≤?'==?>? ………………………………… 4分七、①412021(2)24yxe P Y x dx edy -+∞--≥==………………………………… 4分②1,01()(,)0,X x f x f x y dy +∞-∞≤≤?==?其它22,0()(,)0,0y Y e y f y f x y dx y -+∞-∞>==≤??…………………………… 4分③ X 与Y 独⽴. 因为(,)()()X Y f x y f x f y = …………………………… 4分④ 11(24)2424322E X Y EX EY +=+=?+?= ……………………… 4分⼋、证明:()()(max(,))(,)U F u P U u P X Y u P X u Y u =≤=≤=≤≤………… 3分()()()()X Y P X U P Y U F u F u =≤≤= ……………………… 3 分陕西科技⼤学2011级试题纸课程概率论与数理统计(B )班级学号姓名1.设()1P AB =,则事件A 必然发⽣且事件B 必然不发⽣。

概率论与数理统计期末试卷及答案B

概率论与数理统计期末试卷及答案B
1.设P(A)二0.4, P(B)二0.3, P(A B)二0.6,贝卩P(A-B)=()
A.0.3B.0.2C.0.1D.0.4
2.已知P(A) =0.5, P(B) =0.4, P(A- B) =0.6,则P(A| B)=()
A.0.75B.0.6C.0.45D.0.2
3.连续型随机变量X的分布函数F(x)—定是()
得分
评卷人
三、填空题(本大题共5小题,每小题2分, 共10分)
请在每小题的空格中填上正确答案,错填、不填均无分。…
21.设P(A)=0.4, P(B)=0.5,且A, B互不相容,则P(A^ B)=线
22.设随机变量X服从区间[0, 3]上的均匀分布,「
贝y p(1:::x::: 2)=「
2x0兰x兰1
题号
——一



总分
合分人
得分
(满分:100分 时间:120分钟)
C.
6.设随机变量事件X的分布函数为F(x),则丫 =仝-1的分布函数为
3
( )
A.F(3y1)
B.F(3y3)C.3F(y) 1
得分
评卷人
一Байду номын сангаас单项选择题(本大题共
2分,共30分)
15小题,每小题
在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相 应的位置,错涂、多涂或未涂均无分。
A.连续函数B.周期函数C.奇函数D.偶函数
4.设F(x)二P(X ^x)是连续型随机变量X的分布函数,则下列结论中
7.设当事件A和B同时发生时,事件C必发生,则下列选项正确的是
A.P(C)=P(AB)
B. P(C)=P(A B)

概率论与数理统计B+答案

概率论与数理统计B+答案

第 1 页 共 4 页2013 - 2014学年度第一学期试卷 B (闭卷)课程 概率论与数理统计 院系 专业 年级、班级 学号 姓名题号 一 二 三 四 总分 阅卷人 得分一、填空题:(每空3分,共18分)1.设A , B 为随机事件, P (A )=0.6, P (B |A )=0.3, 则P (AB )=__________.2.设随机事件A 与B 互不相容, P (A )=0.6, P (A ∪B )=0.8, 则P (B )=__________. 3.设A , B 互为对立事件, 且P (A )=0.4, 则P (A B )=__________.4.设随机变量X 服从参数为3的泊松分布, 则P {X =2}=__________.5.设随机变量X ~N (0,42), 且P {X >1}=0.4013, Φ (x )为标准正态分布函数, 则Φ(0.25)=__________.6.设X 为随机变量, E (X +3)=5, D (2X )=4, 则E (X 2)=__________二、选择题:(每题3分,共18分)1.设A, B, C, 为随机事件, 则事件“A, B, C 都不发生”可表示为(A )C B A (B )C B A(C )C B A (D )C B A ( ) 2.设随机事件A 与B 相互独立, 且P (A )=51, P (B )=53, 则P (A ∪B )(A )253 (B )2517(C )54 (D )2523( ) 3.设随机变量X ~B (3, 0.4), 则P {X ≥1} (A )0.352 (B )0.432(C )0.784 (D )0.936 ( )4.设随机变量X 的概率密度为,4)2(2e 2π21)(+-=x x f 则E (X ), D (X )分别为(A )2,2- (B )-2, 2(C )2,2(D )2, 2 ( )5.设二维随机变量 (X , Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,10,),(其他y x c y x f 则常数c =(A )41(B )21 (C )2 (D )4 ( )6.设X , Y 为随机变量, D (X )=4, D (Y )=16, Cov (X ,Y )=2, 则XY ρ= (A )321 (B )161 (C )81(D )41( )三、问答题(5小题,共50分)1.(本题10分)在1500个产品中有400个次品,1100个正品,任意取200个。

南大2006级概率论与数理统计试题B答案

南大2006级概率论与数理统计试题B答案

2006级概率论与数理统计试题B 答案一、填空题()()()()1.0.30.40.5|_____A B P A P B P A B P B A B ==-=⋃=设,为随机事件,已知,,,则14(())()()()()()()()()()()()()()()()0.210.84()()()P B A B P AB BB P AB P A AB P A P AB P B A B P A B P A B P A B P A B P A P B P AB P A P A B P A P B P A B ⋃⋃--⋃=====⋃⋃⋃⋃+---===+--1. 解:。

2.51135一道单项选择题同时列出个答案,一个考生可能真正理解而选对答案,也可能乱猜一个。

假设他知道正确答案的概率为,乱猜选对答案的概率为。

如果已知他选对了,则它确实知道正确答案的概率为____5712171335151155()377A B P A P B P A B P B P A B P B P A B P B A P A =+=⨯+⨯===⨯=2. 解:设事件表示考生选对了,事件表示考生知道正确答案。

由全概率公式,得()()()()()再由贝叶斯公式,得()()()。

(), 013., 12______.0, x x X f x A x x A <<⎧⎪=-<<=⎨⎪⎩设连续型随机变量的密度函数,则其它1213. 2.11()()21222f x dx xdx A x dx A A +∞-∞=+-=+-+==⎰⎰⎰解:利用密度函数的归一性,有所以。

()()23,014.0, 20______.3x x X f x Y X X P Y ⎧<<=⎨⎩⎧⎫≤==⎨⎬⎩⎭设随机变量的密度函数,若随机变量表示对的其它三次独立观察中事件出现的次数,则322233-0003333194..27~328()()33271900(1)()27Y B p p p X f x dx x dx P Y P C p p ∞⎛⎫ ⎪⎝⎭=≤======-=⎰⎰解:由题设可知(,),其中参数,于是所求概率()()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题(每格2分,共30分)
1.已知,6.0)(,4.0)(==B P A P (1)当A ,B 互不相容时,
=+)(B A P 1。

(2)当A ,B 独立时,)(B A P =0.16。

(3)当7.0)(=+B A P 时,=)(B A P 0.25。

2.同时抛掷3枚匀称的硬币,则恰有一枚硬币正面向上的概率 为0.375。

3.若随机变量)1.0,100(~B ξ,则()=÷2ξξE D 0.09。

4.设)4,3(~N ξ,则=≤<)52(ξP 0.5328;==)0(ξP 0;
=+-)3(ξE 0;)2(+-ξD =4。

(8413.0)1(=Φ,6915.0)5.0(=Φ,5.0)0(=Φ)
5.设随机变量ξ,η的相关系数为0.4,若4.0-=ξγ,则=-),(ηγCov -0.4;若36)(,25)(==ηξD D ,则=-)(ηξD 37。

6.设随机变量ξ 的期望2=ξE ,方差4
1=ξD ,则由契比雪夫不等式有
≥<-)32(ξP 35/36。

7.θθθ为若21ˆ,ˆ的两个无偏估计量,则12ˆˆE E θθ<成立,称2
1ˆˆθθ比有效。

8.设1X 2X n X 是来自总体X ),(~2σμN 简单随机样本,X 为样本均值,
2
S 为样本方差,则=⎪⎭

⎝⎛-∑=21)(n i i X X E 2(1)n σ- ,~σμ-X (0,1)N 。

二、选择题(每题3分,共15分)
1.设,4
1
)()()(===C P B P A P 0)()(==BC P AB P ,8
1)(=AC P ,则
=++)(C B A P ( C )
(A )41(B )83(C )85(D )8
1
2.)(x f = ⎪⎩⎪
⎨⎧≤≤-其它0
1b x a a b ,是分布的密度函数。

(C )
(A )指数 (B ) 二项 (C ) 均匀 (D ) 泊松
3.已知)1,0(~N ξ,若 12-=ξη ,则~η. ( B )
)(A )1,0(N )(B )4,1(-N )(C )3,1(-N )(D )1,1(-N
4.设..v r X 的分布函数为⎪⎩

⎨⎧=10)(3x x F 1100><≤<x x x ,则数学期望 =EX
( B )
A
⎰+∞04
dx x B ⎰1
03
3dx x C ⎰1
02
3dx x D ⎰10
4
dx x +⎰
+∞
1
xdx
5.设1X 2X n X )2(≥n 是来自总体X ),(~2σμN 简单随机样本,检验2σ时,
需要用统计量 (
D )
)(A U =n X σμ
-)(B U =1--n X σμ
)(C t=n
S X μ-)(D 2
22
)1(σ
χS n -= 金陵科技学院考试卷
200 8 200 9学年第二 学期院(部)级专业
课程概率论与数理统计课程编号 (B 、闭)卷
三、简答题(共55分)
1.车间里有甲、乙、丙三台机床生产同一种产品,已知它们的次品率依次为0.3,0.3,0.1 ,而产品的数量比为:甲:乙:丙=5:3:2, (1)现从产品中任取一件,求它是次品的概率;
(2)现从产品中任取一件发现它是次品,求次品来自机床乙的概率。

(本题10分)
解:设A ={抽取一件是次品},1B ={甲生产的产品},
2B ={乙生产的产品}
,3B ={丙生产的产品}。

…………(2分)
(1)112233()()(|)()(|)()(|)p A p B p A B p B p A B p B p A B =++…………(2分) 0.20.30.30.30.50.1=⨯+⨯+⨯
0.20=…………………(2分)
(2)222()(|)
(|)()
p B p A B p B A p A =
…………………(2分)
0.30.30.2
⨯=
0.45=…………………(2分)
2.已知随机变量ξ的密度函数为⎩⎨⎧+=0
1)(kx x f 02
x <<其它,试求(1)参数k
(2)12+=ξη的密度函数(3)求随机变量ξ分布函数)(x F
(本题12分)
解:(1) 12
0()(1)f x dx kx dx +∞
-∞==+⎰⎰…………………(2分)
22k =+
故12
k =-…………………(2分)
(2)∴1
2
0,11
1(){}()(1)(9),152
16
1,5y y y F y p f x dx y y y y ηη--∞≤⎧
⎪-⎪
=≤==---<<⎨⎪≥⎪⎩
⎰…(2分)
∴'1
(5),15
()()8
0,y y f y F y ηη⎧--<<⎪==⎨⎪⎩
其它…………………(2分) (3)()()x
F y f t dt ξ-∞=⎰…………………(2分)
=2
0,01
,024
1,2x x x x x ≤⎧
⎪⎪-+<<⎨⎪≥⎪⎩
…………………(2分) 3.已知二维随机变量),(ηξ取)0,2(),31,1(),1,1(),0,0(--的概率分别为61,3
1
,121,12
5
,试求: (1)),(ηξ的联合分布律;(2)ξ与η的边际分布律;
(3)ξ与η是否独立 (4)1-=ξ下,η条件分布律(本题12分)
11p p p ξη≠∴与不独立…………………(2分)
…………………(3分)
4.设),1(~θU X ,1X 2X n X 是来自总体X 的样本,试求(1)参数θ的矩 估计θˆ; (2)θˆ是否为θ的无偏估计。

(本题9分)
解:(1)矩估计
12
EX θ
+=
…………………(2分) 由1,2X EX θ+==得ˆ21X θ=-…………………(3分)
(2)
ˆ(21)E E X θ
=- =112[]1n
i i E X n =∑- 121n
i i EX n ==∑- =2112
n n θ
+⋅⋅
- θ=…………………(3分)
故ˆθ是θ的无偏估计 …………………(1分)
5.电工器材厂生产一种云母带,其厚度服从正态分布,且其平均厚度经常保持在为0.13mm ,某日开工后检验9处,算得均值为mm 146.0, 标准差为mm 015.0. (1) 问该日云母带厚度均值与0.13mm 有无显著差异。

(05.0=α) (2)求该日云母带厚度均值的置信区间。

(05.0=α)(本题12分) 附表:t 分布表{}αα=>)()(n t n t P
附表:标准正态分布表}{21)(2
2x X P dt e
x t x
≤==Φ-
∞-⎰π
解:29,0.146,0.015n x s ===
(1) 建立假设0:0.13H μ=…………………(2
分)
选取统计量(1)X T t n S n
μ
-=
-…………………(1分)
对于给定的0.05,α=由附表可得0.025(8) 2.306t =…………………(1分)
计算 3.2t ==
比较0.025(8) 2.306t t >=…………………(1分)
下结论:拒绝0,H 即可以认为云母厚度与0.13mm 有显著差异。

………(1分)
(2)选取统计量(1)X T t n S n
μ
-=
-…………………(2分)
则对于给定的0.05,α=有{}0.025(8)0.95P T t <=…………………(1分)
即0.0250.025(8)(8)0.95P X X μ⎧⎫<<=⎨⎬⎩⎭
………………(1分) 故μ的置信度为0.95的置信区间为(0.1345,0.1575)…………………(2分)。

相关文档
最新文档