晶体位错观察
晶体缺陷-位错的基本类型与特征
混合位错
总结词
混合位错是一种同时具有刃型和螺旋型 特征的晶体缺陷,其特征是晶体中某处 的原子既发生了平移又发生了螺旋式的 位移。
VS
详细描述
混合位错是刃型位错和螺旋位错的组合体 ,其原子位移同时包含了平移和螺旋式的 位移。混合位错通常出现在晶体的复杂区 域,如晶界、相界等。由于混合位错同时 具有刃型和螺旋型位错的特征,其对晶体 的性能影响也较为复杂,需要进行深入研 究。
滑移与攀移
在切应力作用下,位错能够沿滑移面整列移动,称为滑移; 而垂直于滑移面方向的移动称为攀移。这两种运动方式是 位错在塑性变形中的重要表现。
应变梯度与几何必须位错
当材料的局部区域发生不均匀变形时,会产生应变梯度, 进而促使位错的形成和运动,以协调这种不均匀变形。
位错与材料疲劳断裂
01
疲劳裂纹的萌生与扩展
强化机制
加工硬化
在塑性变形过程中,位错的运动和交 互作用导致材料逐渐变硬,即加工硬 化。这是金属材料常用的强化手段。
通过引入位错,可以增加材料的内应 力,从而提高其屈服强度。这种强化 机制称为位错强化。
位错与材料塑性变形
塑性变形机制
位错在受力时能够运动,从而改变材料的形状。这种运动 机制是金属等材料发生塑性变形的内在原因。
在循环载荷作用下,位错容易在材料的应力集中区域(如晶界、相界或
表面)聚集,形成位错塞积群,进而导致疲劳裂纹的萌生。裂纹的扩展
通常沿特定晶体学平面进行。
02
影响疲劳性能的因素
位错的运动和交互作用对疲劳裂纹的萌生和扩展具有重要影响,进而影
响材料的疲劳性能。例如,材料的抗疲劳性能可以通过引入阻碍位错运
动的合金元素来改善。
晶体缺陷的分类
第4章实际晶体结构中的位错ppt课件
量的观点来看,晶体中出现层错的几率与层错能 有关,层错能越高,则出现层错的几率越小。如 在层错能很低的奥氏体不锈钢中,常可看到大量 的层错,而在层错能高的铝中,就看不到层错。
4.4.2 不全位错(Partial Dislocation)
若堆垛层错不是发生在晶体的整个原子 面上而只是部分区域存在,那么,在层错与 完整晶体的交界处就存在柏氏矢量不等于点 阵矢量的不全位错。在面心立方晶体中有两 种重要的不全位错:肖克莱(Shockley)不 全位错和弗兰克(Frank)不全位错。
如果把单位晶胞(Unit Cell)中通过坐标原点O的(111)面 上的原子,也作如上投影,那么可以看到,该面上原 子中心投影位置与C层原子中心投影位置是相同的。 由于晶体点阵的对称性和周期性,面心立方晶体(111) 密排面上的原子在该面上的投影位置是按A、B、C三 个原子面的原子投影位置进行周期变化的。可以记为: ABCABCA…,这就是面心立方晶体密排面的正常堆 垛顺序。如果用记号△表示原子面以AB、BC、CA… 顺序堆垛,▽表示相反的顺序,如BA、AC、CB…, 那么面心立方晶体密排面的正常堆垛又可以表示为: △△△△△,如图4.1(d)所示。
位错反应能否进行,取决于下列两个条件:
A 几何条件
根据柏氏矢量的守恒性,反应后诸位错的柏氏矢量之
和应等于反应前诸位错的柏氏矢量之和,即
B 能量条件
bi bk
(4-1)
从能量角度要求,位错反应必须是一个伴随着能量降
低的过程。由于位错的能量正比于其柏氏矢量的平方,所
以,反应后各位错的能量之和应小于反应前各位错的能量
根据其柏氏矢量与位错线的夹角关系,它既可以是纯 刃型的,也可以是纯螺型的,见图4.5。
实验五- 结晶过程的观察84
序号: 1200134000101组别: 5深圳大学实验报告课程名称:材料科学基础实验实验项目名称:晶体位错观察学院:材料学院专业:材料科学与工程指导教师:钱海霞报告人:叶淳懿学号:2016200084 班级:实验时间:2018.12.05实验报告提交时间:教务部制实验目的1.观察透明盐类的结晶过程及其晶体组织特征。
为理解、掌握金属的结晶理论建立感性认识。
2.观察具有枝晶组织的金相照片及其有枝晶特征的铸件或铸锭表面,建立金属晶体以树枝状形态成长的直观概念。
实验原理晶体物质由液态凝固为固态的过程称结晶。
结晶过程亦为原子呈规则排列的过程,包括形核和核长大两个基本过程。
由于液态金属的结晶过程难以直接观察,而盐类亦是晶体物质,其溶液的结晶过程和金属很相似,区别仅在于盐类是在室温下依靠溶剂蒸发使溶液过饱和而结晶,金属则主要依靠过冷,故完全可通过观察透明盐类溶液的结晶过程来了解金属的结晶过程。
图5-1 结晶过程三个阶段形成的三个区域a) 最外层的等轴细晶粒区(100×) b)次层粗大柱状晶区(100×) c)中心杂乱的树枝状晶区(100×)在玻璃片上滴一滴接近饱和的氯化铵(NH4Cl)或硝酸铅[Pb(NO3)2]水溶液,随着水分蒸发,溶液逐渐变浓而达到饱和,继而开始结晶。
我们可观察到其结晶大致可分为三个阶段:第一阶段开始于液滴边缘,因该处最薄,蒸发最快,易于形核,故产生大量晶核而先形成一圈细小的等轴晶(如图5-la 所示),接着形成较粗大的柱状晶(如图5-1b所示)。
因液滴的饱和程序是由外向里,故位向利于生长的等轴晶得以继续长大,形成伸向中心的柱状晶。
第三阶段是在液滴中心形成杂乱的树枝状晶,且枝晶间有许多空隙(如图5-1c 所示)。
这是因液滴已越来越薄,蒸发较快,晶核亦易形成,然而由于已无充足的溶液补充,结晶出的晶体填不满枝晶间的空隙,从而能观察到明显的枝晶。
实际金属结晶时,一般均按树枝状方式长大(如图5-2 所示)。
实验一 位错蚀坑的观察
实验一位错蚀坑的观察(Observation of Etchpits of Dislocation)实验学时:2 实验类型:综合前修课程名称:《材料科学导论》适用专业:材料科学与工程一、实验目的⒈通过使用金相显微镜观察晶体中的位错蚀坑,观看录象“Living Metal”,进一步加深对位错的了解。
⒉学会计算位错密度的方法。
⒊计算某一小角度晶界(亚晶界)的角度。
二、概述目前已有多种实验技术用于观察晶体中的位错,常用的有以下两种:浸蚀技术、透射电镜。
⒈位错蚀坑的浸蚀原理利用浸蚀技术显示晶体表面的位错,其原理是:由于位错附近的点阵畸变,原子处于较高的能量状态,再加上杂质原子在位错处的聚集,这里的腐蚀速率比基体更快一些,因此在适当的侵蚀条件下,会在位错的表面露头处,产生较深的腐蚀坑,借助金相显微镜可以观察晶体中位错的多少及其分布。
位错的蚀坑与一般夹杂物的蚀坑或者由于试样磨制不当产生的麻点有不同的形态,夹杂物的蚀坑或麻点呈不规则形态,而位错的蚀坑具有规则的外形,如三角形、正方形等规则的几何外形,且常呈有规律的分布,如很多位错在同一滑移面排列起来或者以其他形式分布;此外,在台阶、夹杂物等缺陷处形成的是平底蚀坑,也很容易地区别于位错露头处的尖底蚀坑。
为了证明蚀坑与位错的一致对应关系,可将晶体制成薄片,若在两个相对的表面上形成几乎一致的蚀坑,便说明蚀坑即位错。
位错蚀坑的形状与晶体表面的晶面有关。
譬如,对于立方晶系的晶体,观察面为{111}晶面时,位错蚀坑呈正三角形漏斗状;在{110}晶面上的位错蚀坑呈矩形漏斗状;在{100}晶面上的位错蚀坑则是正方形漏斗状。
因此,按位错蚀坑在晶面上的几何形状,可以反推出观察面是何晶面,并且按蚀坑在晶体表面上的几何形状对称程度,还可判断位错线与观察面(晶面)之间的夹角,通常是10~90°;自然,若位错线平行于观察面便无位错蚀坑了。
(1-1)PbMoO4 (001)面位错蚀坑(1-2)PbMoO4垂直于(001)面的位错蚀坑(1-3)单晶硅(111)晶面上的位错蚀坑(1-4)ZnWO4晶体(010)晶面上的位错蚀坑位错蚀坑的侧面形貌与位错类型有关。
实际晶体结构中的位错
表4.1 典型晶体结构中单位位错的柏氏矢量
4.3 位错反应(Dislocation Reaction)
位错反应就是位错的合并(Merging)与分 解(Dissociation),即晶体中不同柏氏矢量的 位错线合并为一条位错线或一条位错线分解成 两条或多条柏氏矢量不同的位错线。 位错使晶体点阵发生畸变,柏氏矢量是反 映位错周围点阵畸变总和的参数。因此,位错 的合并实际上是晶体中同一区域两个或多个畸 变的叠加,位错的分解是晶体内某一区域具有 一个较集中的畸变,松弛为两个或多个畸变。
4.4.2 不全位错(Partial Dislocation)
若堆垛层错不是发生在晶体的整个原子 面上而只是部分区域存在,那么,在层错与 完整晶体的交界处就存在柏氏矢量不等于点 阵矢量的不全位错。在面心立方晶体中有两 种重要的不全位错:肖克莱(Shockley)不 全位错和弗兰克(Frank)不全位错。 图4.4为肖克莱不全位错的刃型结构。
4.2 实际晶体中位错的柏氏矢量
实际晶体结构中,位错的柏氏矢量不能是任 意的,它要符合晶体的结构条件和能量条件。晶 体的结构条件是指柏氏矢量必须连接一个原子平 衡位置到另一平衡位置。从能量条件看,由于位 错能量正比于b2,b越小越稳定,即单位位错是 最稳定的位错。 柏氏矢量b的大小和方向用b=C[uvw]表示, 其中:C为常数,[uvw]为柏氏矢量的方向,柏氏 矢量的大小为: C u 2 v 2 w2 。表4.1给出典型晶 体结构中,单位位错的柏氏矢量及其大小和方向。
下半图是把上半图中A层
与C层在(111)面上作投 影。分层使用了不同的符 号,□代表A层,原子呈 密排,▲代表紧接A层之 下的C层,也是密排的。 让A层的右半部滑移至B层 原子的位置,其上部的各 层也跟着移动,但滑移只 限于一部分原子,即右半 部原子。于是右半部的滑 移面上发生了层错,左半 部则没有移动,所以也没 有层错,在两者的交界处 发生了原子的严重错排, 图中滑移后的原子位置用 虚线连接。
位错的名词解释
位错的名词解释位错,是指晶体中原子排列发生偏移或者交换,形成错位的现象。
它是晶体结构中常见的缺陷之一,对材料的机械性能和导电性能等起到重要影响。
细致观察位错的性质及其影响,对于材料科学和工程领域具有重要意义。
一、位错的形成和分类1. 形成位错的原因位错的形成通常是由晶体生长过程中的应力、温度变化以及机械变形等因素所引起。
例如,在晶体生长过程中,由于生长速度的不均匀或晶体材料的不完美,就会出现位错。
同样地,在材料的机械变形过程中,如弯曲、拉伸或压缩等,也会导致晶体中位错的产生。
2. 位错的分类根据原子重新排列的方式和排列结构的不同,位错可以分为线性位错、平面位错和体位错。
线性位错是指位错线与晶体的某一晶面交线的直线排列,具有一维特征。
最常见的线性位错有位错线、螺旋位错和阶梯位错等。
平面位错是指位错线与晶体的某一晶面交线上有无限个交点,呈现出平面性的特点。
常见的平面位错有位错环、晶界以及孪晶等。
体位错是指位错线在晶体内没有终点,具有三维特征。
体位错通常有位错蠕变和位错多晶等。
二、位错的性质与作用1. 位错的性质位错对晶体的特性和行为有着重要影响。
它能够改变晶体的原子排列方式,导致晶体局部微结构的变化。
位错可以促进晶体的固溶体形成以及离子扩散等过程。
此外,位错还会影响晶体的力学性能,如硬度、韧性和弹性等。
因此,位错常常被用来研究晶体的性质和行为。
2. 位错的作用位错在材料科学和工程领域具有广泛的应用价值。
首先,位错可以增加晶体的强度和韧性,提高材料的抗变形能力。
这在制备金属材料和合金中起到重要作用。
此外,位错也可以影响材料的导电性能,例如半导体中的位错可以改变电子迁移的路径和速率,从而影响整个电子器件的性能。
除此之外,位错还可以用于晶体的生长和材料的表面改性等过程。
三、位错的观察和表征方法1. 传统观察方法传统的位错观察方法包括透射电镜、扫描电镜和X射线衍射等技术。
透射电镜可以通过对物质的薄片进行观察,获得高分辨率的位错图像。
位错蚀坑观察
侵蚀剂:
A液,HCl 0.5ml,H2O2 15ml,H2O 100ml (12s) B液,HCl 1ml,FeCl3· 6H2O 10g,H2O 100ml (8s) C液,4%硝酸酒精 (10s) 侵蚀程序如下:抛光后的试样先在A液中侵蚀约8-15秒,目的是为了出现蚀 坑的核心。这时试样表面形成一层黄色薄膜和黄色斑点,在显微镜下可看到 每个黄色斑点就是一个蚀坑核心。再将试样放入B液中侵蚀10秒钟以内,待 晶粒隐约出现,然后放入C液中10秒;最后洗净吹干,这样就出现了精确几 何形状的蚀坑。 如果试样表面是(001)、(110)、(111),侵蚀所得侵蚀坑的典型形状如图2所 示。如果试样表面不正好是(110),而是(h k 0),则侵蚀坑中间那条线不在正 中,而偏离到一边去,如图3(a)中所示。同样试样表面如不正好是(111)面, 而是一般的(h k l)面,则三角形的侵蚀坑的三个角不等,如图3(b)所示。
显微镜选择适当的侵蚀剂和在一定侵蚀条件下把晶体表面侵蚀掉一层由于位错附近的点阵畸变以及杂质原子聚集等原因使其侵蚀速率与周围基体不同一般是位错露头处侵蚀速率快故形成蚀坑
位错蚀坑观察
一、实验目的
了解利用侵蚀坑观察位错的方法。
二、实验材料及设备
• 纯铁 • 显微镜
三、实验原理
选择适当的侵蚀剂和在一定侵蚀条件下,把晶体表面侵蚀掉一层,由
并排于同一滑移面上,其金相组态是许多蚀坑横向排列,底边在同一直
线上,如图7所示。
图6 小角度晶界
图7 位错塞积
如果位错从蚀坑处移开后又进行侵蚀,则原来的蚀坑将扩
大,但深度不再增加,变成平底的;同时在位错新位置上将
出现新的尖底蚀坑,由此可研究位错的运动,如图8所示。
图8 位错运动
晶体缺陷点缺陷和位错
《材料科学与工程基础》
本章主要内容
3.1 点缺陷 3.2 位错 3.3 表面及界面
第3章 晶体缺陷
❖引 言
1、晶体缺陷(Defects in crystals)
定义:实际晶体都是非完整晶体,晶体中原子排 列的不完整性称为晶体缺陷。
2、缺陷产生的原因
(1)晶体生长过程中受到外界环境中各种复杂因 素的不同程度的影响;
作业
Cu晶体的空位形成能1.44x10-19J/atom,A=1, 玻尔兹曼常数k=1.38x10-23J/k。已知Cu的摩尔
质量为MCu=63.54g/mol, 计算: 1)在500℃以下,每立方米Cu中的空位数? 2) 500℃下的平衡空位浓度?
18
❖ 解:首先确定1m3体积内Cu原子的总数(已 知Cu的摩尔质量为MCu=63.54g/mol, 500℃ 下Cu的密度ρCu=8.96 ×106 g/m3
Ag
3980
0.372 25000 9.3×10-5 1.5×10-5
Cu
6480
0.490 40700 7.6×10-5 1.2×10-5
α-Fe
11000
2.75
68950 2.5×10-4 1.5×10-5
Mg
2630
0.393 16400 1.5×10-4 2.4×10-5
问题:计算结果和实验值相差甚远
3)位错线可以是任何形状的曲线。 4)点阵发生畸变,产生压缩和膨胀,形成应力场,
随着远离中心而减弱。
7.2 位错的基本知识
考虑一下,还 可以采用什么 方式构造出一 个刃型位错?
2、螺型位错
(1)螺型位错的形成
螺型位错的 原子组态:
实验位错蚀坑的观察
本实验采用铬酸法。按以下配比配制CrO3 标准液:
(1)标准液:HF(42%)=2:1(慢蚀速); (2)标准液:HF(42%)=3:2(中蚀速); (3)标准液:HF(42%)=1:1(快蚀速); (4)标准液:HF(42%)=1:2(快蚀速)
硅晶体在浸蚀过程中与浸蚀剂发生一种连续 不断的氧化—还原反应,
2、观察:样品在干燥后即可在金相显微镜下 观察。各个样品依次观察,画下蚀坑特征及 其分布图象;根据各样品观察面上具有不同 形状(如三角形、正方形、矩形等)特征的 位错蚀坑,判别观察面的面指数。
五、思考题
1、如何根据蚀坑的特征确定位错的性质及蚀 坑所在面的指数?
2、位错密度的计算有何使用价值?本实验采 用的计算方法有何局限性?
(1-1)PbMoO4 (001)面位错蚀坑
(1-2)PbMoO4垂直于 (001)面的位错蚀坑
ZnWO4晶体(010)晶面上的位错蚀坑
单晶硅(111)晶面上的位错蚀坑
位错密度的计算
位错是晶体中的线缺陷。单位体积晶体中所含位错线的总 长度称位错密度。若将位借线视为彼此平行的直线,它们从 晶体的一面均延至另一面,则位错密度便等于穿过单位截面 积的位错线头数。
(111)
a=b=g=60°
bg a
60°<a<90° b=g
bag
60°>a b=g
bg a
ab
a<b
a
b a=b
(100)
图1-2 立方晶体中位错蚀坑形状与晶体表面晶向的关系
用蚀坑观察位错有一定的局限性,它只能观察在表 面露头的位错,而晶体内部位错却无法显示;此外 浸蚀法只适合于位错密度很低的晶体(错密度小于 106cm-2的晶体),如果位错密度较高,蚀坑互相 重迭,就难以把它们彼此分开,所以此法一般只用 于高纯度金属或者化合物晶体的位错观察。
2.3 硅晶体中位错的检测
V(111) V(100) V位错 V(111) V位错 V(100)
4、(100)面抛光和腐蚀时容易被氧化,不好观察并出 现腐蚀坑假象,抛光和腐蚀时注意不要暴露在空气中。
2.3.2 关于位错坑形态的分析
一、硅单晶(111)面位错坑的形态 1、硅单晶非择优腐蚀情况下(111)晶面位错腐蚀坑为圆 形的凹坑。如图所示
D
D/
B/ B
A
D C A B
D(D/)
A
D/
C B(B/)
B/
(1 10)晶面构成的位错
(110)晶面腐蚀坑
2.3.3 位错密度的测定
1、位错的体密度:单位体积中位错线的长度,用 Nv表示: L
NV V
2、位错的面密度:穿过单位截面积的位错线数,用 ND表示:
N ND S
V V
2、 硅单晶在择优腐蚀中(111)晶面位错腐蚀坑呈三角锥体, 由硅单晶的各向异性引起的。 分析:从硅单晶中取一个正四面体,每个面都为{111}晶面, 如图所示。
{111}面构成正四面体
对于切割的(111)面上的位错,由于使用了择优性的腐蚀 液, {111}的键密度最小,因此在{111}晶面族上腐蚀速度很 慢,而在其他晶面上的腐蚀速度很快,位错坑的坑壁都是 {111}晶面,所以腐蚀坑都是三角锥体。如图所示:
V V
{111}面腐蚀位错腐蚀坑的形成
(111)晶面腐蚀坑
但实际的位错坑不是正三角形。主要有两个原因: (1)位错线与(111)不垂直。如图所示:
<211>方向的螺型位错线
(2)观察面与(111)晶面有一定的偏离度。
实际晶体中的位错
FCC中全位错滑移时原子的滑动路径 B层原子的滑动分两步:B→C→B
FCC晶体的全位错的柏氏矢量应为b=a/2<110>, 简写成b=1/2<110>。全位错的滑移面是{111},刃型位 错的攀移面(垂直于滑移面和滑移方向的平面)是 {110}。
如图中FCC晶体的滑 移面为(111)晶面,柏氏 矢量方向为[110]晶向, b=1/2[110];半原子面 (攀移面)为(110)晶面, 其堆垛次序为ababab…
3
6
6
3
1 [0 1 1] 1 CA
6
3
1 [101] 1 DA
6
3
希-希向量就是 FCC中压杆位错的 柏氏矢量。
1 [1 01] 1 CB
6
3
1 [011] 1 DB
6
3
FCC中的位错反应,即位 错的合成与分解也可以用 Thompson四面体中的向量
1 [110] 1 DC
皆为
在(111)面上:
a
a a
[101] [112] [211]
2
6
6
Shockley 不全位错。
在(111)面上:
a
[011]
a
[121]
a
[112]
2
6
6
当两个扩展位错
的领先不全位错C1D1 和C2D2 在外力作用下, 滑移至两滑移面的交
线上AD并相遇时, 可以合成一个新位错:
a 6
晶体中的层错区与正常堆垛区的交界即是不全位 错。在面心立方晶体中,存在两种不全位错,即是肖 克莱(Shockley)不全位错和弗兰克(Frank)不全位错。
Shockley分位错的定义: 在FCC晶体中位于{111}晶面上柏氏矢量为
位错实验报告
一、实验目的1. 理解位错的概念和类型。
2. 通过实验观察位错的产生、运动和扩展。
3. 研究位错对材料力学性能的影响。
二、实验原理位错是晶体中的一种缺陷,是晶体中原子排列发生局部畸变的结果。
位错的存在对材料的力学性能、导电性、热膨胀性等方面都有重要影响。
本实验通过观察和测量位错,研究其产生、运动和扩展过程,以及位错对材料力学性能的影响。
三、实验材料与设备1. 实验材料:纯铜片2. 实验设备:- 金相显微镜- 拉伸试验机- 磁力显微镜- 粒子加速器四、实验步骤1. 制备试样将纯铜片切割成适当尺寸的试样,并进行表面抛光处理。
2. 位错观察利用金相显微镜观察试样表面,寻找位错线。
3. 拉伸试验将试样放置在拉伸试验机上,进行拉伸试验。
记录试样断裂时的应力、应变等力学性能参数。
4. 磁力显微镜测量利用磁力显微镜观察位错线在试样中的分布情况,测量位错线的长度、宽度等参数。
5. 粒子加速器实验将试样放置在粒子加速器中,对试样进行辐照,观察位错线的产生、运动和扩展过程。
五、实验结果与分析1. 位错观察结果在金相显微镜下,观察到试样表面存在位错线。
位错线呈直线状,具有一定的长度和宽度。
2. 拉伸试验结果在拉伸试验中,试样断裂时的应力、应变等力学性能参数与位错线的分布和数量有关。
位错线的存在会降低材料的强度和韧性。
3. 磁力显微镜测量结果通过磁力显微镜测量,得到位错线的长度、宽度等参数。
位错线的长度一般在几十到几百纳米之间,宽度在几纳米左右。
4. 粒子加速器实验结果在粒子加速器辐照实验中,观察到位错线的产生、运动和扩展过程。
位错线的产生、运动和扩展与辐照剂量有关。
六、结论1. 位错是晶体中的一种缺陷,对材料的力学性能有重要影响。
2. 位错线的产生、运动和扩展与辐照剂量、应力等因素有关。
3. 位错线的分布和数量对材料的力学性能有显著影响。
七、实验注意事项1. 实验过程中,注意保护试样表面,避免划伤或污染。
2. 在金相显微镜观察时,调整显微镜的焦距,确保位错线清晰可见。
材料微观结构第四章晶体中的位错与层错1详解
2 螺位错
形成及定义:
晶体在外加切应力作用下,沿ABCD面滑移, 图中EF线为已滑移区与未滑移区的分界处。由于位 错线周围的一组原子面形成了一个连续的螺旋形坡面, 故称为螺位错。 几何特征:位错线与原子滑移方向相平行;位错线周 围原子的配置是螺旋状的。 分类:有左、右旋之分,分别以符号“”和“” 表示。其中小圆点代表与该点垂直的位错,旋转箭头 表示螺旋的旋转方向。它们之间符合左手、右手螺旋 定则。
第四章 晶体中的 位错与层错
4.1引言
完整晶体的理论切变强度=G/2π(切变模量 G=104~105N/mm2)»实际临界切应力 1934年,Taylor提出“位错”(line defects ,
dislocation )概念-原子可能偏离其正常平衡位
置。
在此后20多年的时间里,人们一直持怀疑态度 1956年,博尔曼、赫尔什、门特实验观察到缺陷, 证实Taylor的说法。
晶体中的混合型位错
补充
无论任何位错都具有连续性。 存在状态:形成闭合位错环、终止于晶界 或其他界面、在晶体表面露头,而不会终
止于晶体内部。
4.2.2 柏氏矢量的基本性质
为了便于描述晶体中的位错,以及更为确切地表征不同类 型位错的特征,1939年柏格斯(J. M. Burgers)提出了
采用柏氏回路来定义位错,借助一个规定的矢量即柏氏矢
刃型位错结构的特点:
1).刃型位错有一个额外的半原子面。一般把多出的半原子面在滑 移面上边的称为正刃型位错,记为“┻”;而把多出在下边的称为负 刃型位错,记为“┳”。其实这种正、负之分只具相对意义而无本质 的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界线。它 不一定是直线,也可以是折线或曲线,但它必与滑移方向相垂直, 也垂直于滑移矢量. 如纯刃型位错环。 3).滑移面必定是同时包含有位错线和滑移矢量的平面,在其他面 上不能滑移。由于在刃型位错中,位错线与滑移矢量互相垂直,因 此,由它们所构成的平面只有一个。 4).晶体中存在刃型位错之后,位错周围的点阵发生弹性畸变,既 有切应变,又有正应变。就正刃型位置而言,滑移面上方点阵受到 压应力,下方点阵受到拉应力:负刃型位错与此相反。 5).在位错线周围的过渡区(畸变区)每个原子具有较大的平均能 量。但该处只有几个原子间距宽,畸变区是狭长的管道,所以刃型 位错是线缺陷。
2.4晶体的位错
螺位错的双交滑移增殖模型(链接)
(111) 滑移面
螺型位错 b
螺型位错在(111) 面上滑移。
C
D
B (111) 滑移面 (111) 交滑移面 C D B (111) b
A
因局部切应力变化 螺型位错改变了滑 移面。
b
刃型割阶
A
又因局部切应力的 减弱螺型位错发生 交滑移,又回到原 来的滑移面上。
有时在第二个 (111)面扩展出 来的位错圈又 可以通过交滑 移转移到第三 个(111)面上进 行增殖。从而 使位错迅速增 加,因此,它 是比上述的弗 兰克一瑞德更 有效的增殖机 制
晶体中的位错 (二)
主要研究内容
位错的应变能 位错的受力
位错与晶体缺陷的相互作用
位错的萌生与增值
五、位错的应变能
本节主要内容:
1.螺型位错的应变能
2.刃型位错的应变能
3.混合位错的应变能
位错的应变能:位错周围点阵畸变引起弹性应力场导致晶 体能量的增加。 位错的能量可分为位错中心畸变能和位错应力场引起的弹 性应变能。其中弹性应变能约占总能量的90%。
与位错滑移力推导过程一样,根据虚功原理,最终得出:
F b
七、位错与晶体缺陷的相互作用
本节主要内容: 1.位错之间的相互作用
2.位错的塞积
3.位错与点缺陷之间的相互作用
1、位错之间的相互作用
两个平行螺位错之间的相互作用
把坐标z轴放在第一个位错线上,坐标原 点为(0, 0),其柏氏向量为b。
弗兰克-瑞德(F-R)源 增殖过程(链接)
弯曲
卷曲
……
分裂增殖
变直
透射电镜下观察到的位错增殖过程(链接)(F-R机制)
2.5 实际晶体中的位错(白底)
单位位错的柏氏矢量一定平行于晶 体的最密排方向
柏氏矢量表示位错运动后晶体相对的滑 移量, 移量,因此它只能由原子的一个平衡位 置指向另一个平衡位置。 置指向另一个平衡位置。 从能量条件看,由于位错能量正比于 从能量条件看,由于位错能量正比于b2, 故柏氏矢量越小,位错能量越低。 故柏氏矢量越小,位错能量越低。
2011-10-12 16
(2)弗兰克不全位错 )
层错区与正常堆垛区交界就是弗兰克不全位错。其中 层错区与正常堆垛区交界就是弗兰克不全位错。 抽出部分{111}面形成的层错叫内禀层错, {111}面形成的层错叫内禀层错 抽出部分{111}面形成的层错叫内禀层错,内禀层错区 与正常堆垛区交界称为负弗兰克不全位错,如图a 与正常堆垛区交界称为负弗兰克不全位错,如图a, 插入部分{111}面形成的层错叫外禀层错, 插入部分{111}面形成的层错叫外禀层错,外禀层错区与 {111}面形成的层错叫外禀层错 正常堆垛区交界称为正弗兰克不全位错,如图b 正常堆垛区交界称为正弗兰克不全位错,如图b。
四、 扩展位错
2011-10-12
24
1、 面心立方晶体的滑移 、
2011-10-12
25
1、 面心立方晶体的滑移 、
面心立方晶体按ABCABC…顺序堆垛而成 顺序堆垛而成 面心立方晶体按 第一层原子占A位置,此时有两种凹坑出现, 图a中,第一层原子占A位置,此时有两种凹坑出现,若将 凹坑看成B位置, 凹坑即为C位置。 △凹坑看成B位置,则▽凹坑即为C位置。 当发生滑移时,若从B位置滑移到相邻的B位置, 当发生滑移时,若从B位置滑移到相邻的B位置,即滑移矢 量为单位位错柏氏矢量时,此时要滑过A层原子的“ 量为单位位错柏氏矢量时,此时要滑过A层原子的“高 滑移所需能量较高。 峰”,滑移所需能量较高。 如果B层原子作“之”字运动,先由B滑移到C,再由C滑移 如果B层原子作“ 字运动,先由B滑移到C 再由C 就比较省力,即用两个部分位错的运动代替b 到B,就比较省力,即用两个部分位错的运动代替b1全位 错的运动,如图b 错的运动,如图b。 单位位错BC BC可分解为两个肖克莱不全位错 单位位错BC可分解为两个肖克莱不全位错
9真实晶体中的位错
2 0 1
2 1 0
0 0 1
t
26
0
2
1
2
6
1
0
1
2
6
1
2 1 0
1 1 0
0 1 2
1 0 2
这证明了这三个滑移系并非完全独立。以这三个滑移系为讨论基点, 再在12个滑移系剩余的9个中任取两个组成五个滑移系组,可能的方 式有
C92 79!!2! 36
按照类似的讨论,最后知道真正能构成5个完全独立的滑移系组 的方式共有384种。面心立方能选择5个完全独立的滑移系的方式如 此之多,说明面心立方晶体具有较高延展性的原因。
若在面的堆垛中任意插入一层 (111) 面(例如在B和C层之间插入 一层A),于是堆垛顺序变成……ABCABCAB┇A┇CABCABC……, 这也是外延层错。这时的层错矢量是[111] / 3。
层错矢量为a<111>/3
两类层错的比较
类型
内禀(I型)
外延(E型)
堆垛方式 形成方式 层错矢量
厚度
1n3 3n1
2 n3
3n2
1n3 3n1 2n3 3n2
23n3
现讨论的三个滑移系的滑移面都是(111),它的单位法线矢量n的方
向余弦都是 3 3,而滑移方向是<110>,所以i等于 2 2或者为0。把
三个滑移系具体的ni和i值代入并相加,就获得三个滑移系切动相
同的后所得的总应变t:
若这位错作离开滑移面运 动,则会产生严重错排, 故这位错是不可能攀移的
扩展位错
把全位错的 滑动分成两步: 第一步从C位置 到邻近的B位置, 移动 a[211] / 6(B), 然后再从B位置 移动到另一个C 位置,移动 a[121] 6 (A)。即一个全 位错发生分解:
第3章 晶体缺陷(4)-实际晶体中的位错
弗兰克-瑞德(Frank-Read)位错源
刃型位错的两端被位错网点钉住不能运动。若沿柏氏 矢量b方向施加一切应力,使位错沿滑移面向前滑移运动。 作用于位错线上的力,总是与位错线本身垂直,所以弯 曲后的位错每一小段继续沿它的法线方向向外扩展。 当两端弯出来的线段相互靠近时,由于该两线段平行于 柏氏矢量b,但位错线方向却相反,分别属于左螺和右螺位 错,因此会互相抵消,形成一闭合的位错环以及位错环内 的一小段弯曲位错线。
(1)位错少,材料强度极高,但不能直接应用。(晶 须) (2)位错增加,使位错线之间相互缠结难以移动,亦 可增加材料强度(材料强化途径:晶体经过冷变形或者 引入第二相,会使位错的晶体中为104~108cm-2数量级,经剧 烈冷加工的金属晶体中,为1012~1014cm-2
一、位错的密度
1、位错密度的概念
晶体中位错的数量用位错密度ρ表示,它的意 义是单位体积晶体中所包含的位错线总长度,或穿 越单位截面积的位错线数目。
2、位错密度的计算公式
S n V A
V为体积, S为晶体中位错线的总长度; A为截面积, n为穿过面积A的位错线数目。
3、位错与材料强度的关系
序堆层……ABCACBCAB……称插入型(或外禀)层错。
这种结构变化,并不改变层错处原子最近邻的关 系(包括配位数、键长、键角),只改变次邻近关系, 几乎不产生畸变,所引起的畸变能很小。因而,层错 是一种低能量的界面。
分位错非点阵矢量的滑移破坏了原子的正常排 列次序,在晶体内产生了堆垛层错;
层错使两个分位错成不可分割的位错对,称 其扩展位错。
若堆垛层错不是发生在晶体的整个原子面 上,而只是在部分局部区域存在,则在层错与 完整晶体的交界处就出现柏氏矢量b不等于点阵 矢量的不全位错。
材料微观结构晶体中的位错与层错
3. 密排六方晶体中的层错与扩展位错
HCP晶体中密排面是(0001), 整个晶体以它为基面一层一 层按ABABAB…顺序堆垛,如 果出现ABABABCABAB…,如 图4-15,那么其中的ABC, CAB,ABCAB都是错排,即 层错,它们其实相当于FCC的 堆垛方式。
正顺序:ABC,BCA,CAB 逆顺序:CBA,BAC,ACB
ABABCBABAB
另一种情况是从正常的HCP排列顺序中加入两个 FCC排列,如ABCBA,就形成了中间的五层孪晶。
在WC硬质合金研究工作中,在粘结相Co中曾经观 察到HCP的βCo中,出现了ABC排列的FCC胚胎, 最终形成FCC的αCo,即发生了βCo→αCo的相变。
在电镜观察HCP时,若要知道引起层错衬度的 (0001)层数的多少,可以用出现的ABC(含逆顺序) 的层数减2得到,上面两种情况下应该是5-2=3层, 这在计算层错衬度和计算由于层错引起的系统能 量升高有用。
第二种情况
参看图4-14(b),若正常排列中某C1的原子层作a/3[11-1]或 a/6[-1-11]滑移,此时C1层变成了A1层,以后各层顺序位错 a/3[11-1]或a/6[-1-11],就得到图4-14(b)的新排列: C1C2A1A2B1B2A1A2B1B2C1C2…,这相当于正常顺序中抽出了 C1C2,其结果是形成了四层层错A1A2B1B2,这和FCC的抽出型 层错相当。
a [111] a [111] a [111] a [111]
2
6
6
6
三个a/6[111]位错分别扩展到三个相交的{112}面上,如图 (a)(b),此时分解后的位错组态极不稳定,以致常转成非对称 分布,如图(c)。
全位错a/2[111]在[110]上运动,可以
激光定向与硅单晶中位错层错的观察
激光定向与硅单晶中位错、层错的观察实 验 目 的1.学习硅单晶的激光定向原理。
2.掌握激光定向仪确定晶向的方法。
3.了解硅单晶中晶体缺陷的腐蚀显示方法。
实 验 原 理要研究半导体性质和制造半导体器件,其首要的条件是应有特定电性能,完整性好的半导体单晶,对单晶特性参数的测试是半导体材料物理研究的重要方面。
一、 激光晶轴定向半导体单晶是具有一定晶向的,检测它的方法很多,这里主要介绍激光晶轴定向法。
1.直接定向激光晶轴定向是在光点定向原理的基础上发展起来的.所谓光点定向就是在腐蚀坑基础上,用特制的光点反射仪来代替金相显微镜,可以较精确的从光学屏上反射出的图形位置来确定晶体的晶向,而激光定向就是用激光晶轴定向仪代替金相显微镜。
它是基于各个晶轴方向具有不同的对称性,因而围绕这些晶轴腐蚀坑或解理面也具有不同对称分布的特征如图一所示。
图1当一束激光通过准直器从光屏中心的小孔中射出,并投射在被腐蚀或解理过的晶体端面上时,即产生若干束具有一定对称分布的反射光,其反射光即按端面上的结晶学构造(腐蚀坑或解理面)在光屏上显示出特征光图,由此可判断晶向。
下面分别叙述金相腐蚀法和解理法在单晶端面上获得结晶学构造与特征光图的关系。
(1)金相腐蚀法在进行金相腐蚀之前,应先将晶体端面用80#金刚砂在平板玻璃上湿磨,使在端面上解理出无数微小的解理坑,洗净后,按指定的腐蚀工艺条件进行腐蚀。
本实验定向的硅单晶,在5%的NaOH水溶液中沸腾煮7分钟.经过金相腐蚀的硅单晶(111),(100),(110)晶面,腐蚀坑底的平面是垂直于上述相应晶轴的晶面,而其边缘上的几个侧面则为另一些具有特定的结晶学指数的晶面族,这些侧面按轴对称的规律围绕着腐蚀坑的底面,从而构 成各种具有特殊对称性的腐蚀坑构造.腐蚀坑的直径大约为10μ的数量级,而激光束的直径为1mm,因而同一束激光可以照射到许多腐蚀坑上。
每一腐蚀坑在表面上的分布虽然是不规则的,但每个腐蚀坑均具有严格的轴对称性,因而它们每一个相应的侧面都取相同的方向,从而将平行的入射光也反射在相同的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一晶体位错观察
一、实验目的
1.初步掌握用浸蚀法观察位错的实验技术。
2.学会计算位错密度。
二、实验设备
1. 单晶硅专用磨片机;
2. 高纯热处理炉;
3. 反光显微镜;
4. 酸处理风橱;
5. 纯水系统;
6. 大、小烧杯;
7. 大、小量筒
8. 纯净干燥箱
9. 超声清洗机,10. 硅单晶试样、11. 带测微目镜的金相显微镜、12. 切片机。
三、实验原理
由于位错是点阵中的一种缺陷,所以当位错线与晶体表面相交时,交点附近的点阵将因位错的存在而发生畸变,同时,位错线附近又利于杂质原子的聚集。
因此,如果以适当的浸蚀剂浸蚀金属的表面,便有可能使晶体表面的位错露头处因能量较高而较快地受到浸蚀,从而形成小的蚀坑,如图1-1所示。
这些蚀坑可以显示晶体表面位错露头处的位置,因而可以利用位错蚀坑来研究位错分布以及由位错排列起来的晶界等。
但需要说明的是,不是得到的所有蚀坑都是位错的反映,为了说明它是位错,还必须证明蚀坑和位错的对应关系。
由于浸蚀坑的形成过程以及浸蚀坑的形貌对所在晶体表面的取向敏感,根据这一点可确定蚀坑是否有位错的特征(图1-1所示)。
本实验所用的硅单晶及其它立方晶体中的位错在各种晶面上蚀坑的几种特征如图1-2所示。
图1-1 位错在晶体表面露头处蚀坑的形成
(a)刃型位错,包围位错的圆柱区域与其周围的晶体具有不同的物理和化学性质;
(b)缺陷区域的原子优先逸出,导致刃型位错处形成圆锥形蚀坑;(c)螺位错的露头位置;(d)螺位错形成的卷线形蚀坑,这种蚀坑的形成过程与晶体的生长机制相反。
60°>
b=g
a b a<b a b
g
a
b
g
a
b
g
a
b
60°<a<90°
b=g
a=b=g=60°
(100)
(111)
图1-2 立方晶体中位错蚀坑形状与晶体表面晶向的关系由于浸蚀坑有一定大小,当它们互相重叠时,难以分辨,故浸蚀法只适用于位错密度小于106cm-2的晶体,且此法所显示的只是表面附近的位错,有一定的局限性。
四、实验步骤
A. 浸蚀法观察位错
浸蚀表面最常用的方法是化学法和电解浸蚀法。
化学法的步骤如下:
1.切片:用切片机沿待观察的晶面切开硅单晶棒,制成试样。
2.磨制试样:右手握住试样,左手掀住玻璃片,依次用300#、302#金刚砂进行研磨,每道工序完毕后用水冲洗。
3.清洗:用有机溶剂(如丙酮)或洗涤剂擦洗待观察表面,去除表面油污,继之用清水冲洗。
4.化学抛光:目的是清洁表面并使其平整光亮。
抛光液的配比为HF(42%):HNO3(65%)=1:3,处理时温度为18~23℃,时间为1.5~4分钟,操作时应将样品浸没在浸蚀液中,且不停地搅拌,隔一定时间取出后,立即用水冲洗,察看表面,反复几次,直到表面光亮为止。
最后再用水冲洗干净。
5.位错坑的浸蚀:常用的腐蚀剂有三种:①Dash腐蚀液:HF∶HNO3∶CH3COOH=1∶2.5∶10;②Wright腐蚀液:HF(60ml)+HAc(60ml)+H2O(30ml)+CrO3(30ml) +Cu(NO3)2(2g);③铬酸腐蚀液:CrO3(50g)+ H2O(100ml)+HF(80ml)。
本实验采用铬酸法。
按以下配比配制CrO3标准液:
(1)标准液:HF(42%)=2:1(慢蚀速);
(2)标准液:HF(42%)=3:2(慢蚀速);
(3)标准液:HF(42%)=1:1(慢蚀速);
(4)标准液:HF(42%)=1:2(快蚀速);
实验时优先配方(3),对位错密度较高的样品及重掺杂样品可也用配方
(1),这是因为位错密度较高的样品腐蚀时,用快蚀剂不易控制,会使位错
坑重叠起来而不易辨别。
重掺杂样品由于含杂质量较大,本身就能促进蚀速加快,故也不宜采用快速蚀剂。
硅晶体在浸蚀过程中与浸蚀剂发生一种连续不断的氧化—还原反应,即CrO42-使硅表面氧化,形成SiO2,继之HF与SiO2相互作用,形成溶于水的络合物H2SiF6,随后再氧化,再溶解,如此循环,其反应式为:
3Si + 2Cr2O72-→ 3SiO2 + 2Cr2O42-
SiO2 + 6HF → H2SiF6 + 2H2O
总反应式为:3Si + 2Cr2O72- + 18HF → 3H2SiF6 + 2Cr2O42- + 6H2O
具体的浸蚀方法是:将抛光后的样品放入蚀槽中,槽中蚀剂量的多少视样品的大小而定,不要让样品露出液面即可。
在15~20℃温度下浸蚀5~30分钟即可取出。
如果温度太低也可延长时间,取出样品后,用水充分冲洗并干燥之。
6.观察:样品在干燥后即可在金相显微镜下观察。
各个样品依次观察,画下蚀坑特征及其分布图象;根据各样品观察面上具有不同形状(如三角形、正方形、矩形等)特征的位错蚀坑,判别观察面的面指数。
B. 计算位错密度
利用测微目镜计算所观察样品的位错密度。
硅单晶位错一般为环形线,位错线只能终止晶体表面或界面上,用单位面积内所包含的露头数可求得硅单晶试样中的位错密度。
ρ=N/S,其中N为观察视域中的全部露头数,S为观察视域的面积,用测微目镜中标尺测得其直径后算得。
(测微目镜标尺格值:450×每小格0.003mm;80×0.016mm)。
五、思考题
1.如何根据蚀坑的特征确定位错的性质及蚀坑所在面的指数?
2.如何根据蚀坑排列方向来判断位错性质?
3.如何用蚀坑法来测定位错的运动速度?
位错密度的计算有何使用价值?本实验采用的计算方法有何局限性?
4.。