人教版高中数学必修1集合教案

合集下载

高中数学 必修一 集合的概念 教案

高中数学 必修一 集合的概念   教案

集合的概念【教学目标】1.知识与技能:(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、互异性、无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力。

2.过程与方法:(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。

(2)让学生归纳整理本节所学知识。

3.情感、态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性。

【教学重难点】教学重点:集合的含义与表示方法。

教学难点:表示法的恰当选择。

【教学过程】一、创设情景,揭示课题。

1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆。

举例和互相交流。

与此同时,教师对学生的活动给予评价。

2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。

二、研探新知。

1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的正方形;(4)海南省在2004年9月之前建成的所有立交桥;(5)到一个角的两边距离相等的所有的点;(6)方程2560-+=的所有实数根;x xx->的所有解;(7)不等式30(8)国兴中学2004年9月入学的高一学生的全体。

2.教师组织学生分组讨论:这8个实例的共同特征是什么?3.每个小组选出—位同学发表本组的讨论结果,在此基础上,师生共同概括出8个实例的特征,并给出集合的含义。

一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。

a b c d…表4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母,,,示。

三、质疑答辩,排难解惑,发展思维。

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。

使学生明确集合元素的三大特性,即:确定性。

高中数学人教版集合教案

高中数学人教版集合教案

高中数学人教版集合教案
教学目标:
1. 熟练掌握集合的概念和表示方法;
2. 能够进行集合的基本运算;
3. 能够解决与集合相关的问题。

教学重点和难点:
重点:集合的定义和表示方法,集合的基本运算
难点:集合的应用题目解答
教学准备:教材《人教版高中数学》,课件,黑板,彩色粉笔
教学过程:
一、导入(5分钟)
通过举例的方式引出问题:在日常生活中,我们经常听到“集合”的说法,你们知道集合是什么吗?集合有哪些表示方法?
二、讲解与示范(15分钟)
1. 集合的概念:集合是由一些对象组成的总体,这些对象称为集合的元素,用大括号{}表示。

2. 集合的表示方法:列举几个例子,让学生理解集合的表示方法。

3. 集合的基本运算:并集、交集、差集的概念及表示方法。

三、练习与讨论(20分钟)
1. 让学生做一些与集合相关的练习题,巩固集合的概念和基本运算。

2. 引导学生讨论集合的应用题目,如排列组合等。

四、小结与展示(10分钟)
总结本节课的学习内容,强调集合的重要性和应用价值。

五、作业布置(5分钟)
布置相关的练习题,巩固学生的学习成果。

教学反思:
本节课主要是介绍集合的概念和表示方法,以及集合的基本运算。

通过示范和练习,学生能够更好地理解集合的相关知识,并能够在实际问题中灵活运用。

在教学过程中,可以引导学生进行讨论和合作,提高他们的思维能力和解决问题的能力。

《高中数学集合》教案模板

《高中数学集合》教案模板

《高中数学集合》教案模板一、教学目标1.知识与技能:●理解集合的概念及其表示方法(列举法、描述法)。

●掌握集合的基本性质:确定性、无序性、互异性。

●能够运用集合的基本运算:并集、交集、补集。

2.过程与方法:●通过实例引入,让学生感受集合概念在现实生活中的应用。

●通过讨论与探索,培养学生的逻辑推理能力和抽象思维能力。

3.情感态度与价值观:●激发学生对数学学习的兴趣和好奇心。

●培养学生的团队合作精神和数学表达的自信心。

二、教学重点与难点1.教学重点:●集合的定义与表示方法。

●集合的基本运算。

2.教学难点:●对集合概念的理解及其在实际问题中的应用。

●集合运算的灵活运用。

三、教学准备•多媒体课件,包括集合的基本概念、表示方法、运算的演示。

•黑板及粉笔,用于板书重点概念和例题。

•练习题册或教学软件,用于学生课堂练习和巩固。

四、教学过程1.导入新课●通过生活中的实例(如班级学生的集合、水果种类的集合等)引出集合的概念。

●提问学生:“你们认为什么是集合?”引导学生初步思考。

2.讲授新课●讲解集合的定义和表示方法(列举法、描述法),并举例说明。

●介绍集合的基本性质,并通过实例让学生理解这些性质。

●讲解集合的基本运算(并集、交集、补集),通过图示和实例帮助学生理解运算过程。

3.互动探究●分组讨论:让学生分组讨论集合概念在实际生活中的应用,并分享讨论结果。

●教师引导:针对学生的讨论结果,教师进行点评和总结,并引导学生深入思考。

4.巩固练习●学生独立完成练习题册中的题目,教师巡视指导。

●针对学生练习中出现的问题,教师进行解答和讲解。

5.课堂小结●总结本节课的学习内容,强调集合概念和运算的重要性。

●布置课后作业,包括复习本节课知识点和完成相关练习题。

五、板书设计●集合的定义与表示方法•列举法•描述法●集合的基本性质•确定性•无序性•互异性●集合的基本运算•并集•交集•补集六、教学反思●在课后对本节课的教学效果进行反思,总结教学中的成功之处和不足。

高中数学第一章集合教案1

高中数学第一章集合教案1

高中数学第一章集合教案1
教学目标:使学生掌握集合的基本概念和表示方法,了解集合的运算及其性质。

一、集合的定义和表示方法
1. 集合的基本概念
- 了解集合的概念和元素的概念
- 掌握集合的表示方法:列举法、描述法
2. 集合的符号表示
- 学习如何用符号表示集合:A={1,2,3,4,5}
二、集合的运算及其性质
1. 集合的运算
- 了解集合的交集、并集、差集等运算
- 学习集合的运算规则和性质:交换律、结合律、分配律
2. 集合的运算应用
- 能够解决实际问题中的集合运算
三、集合的性质和定理
1. 集合的性质
- 了解集合的基本性质:互斥、重复、子集等
- 学习如何判断两个集合是否相等
2. 集合的定理
- 掌握集合的代数定理和逻辑定理
教学步骤:
1. 引入新知识,通过生动有趣的例子引出集合的概念和表示方法
2. 介绍集合的运算及其性质,让学生掌握集合的基本运算规则
3. 练习集合的运算和性质,加深学生的理解和掌握程度
4. 引导学生应用集合运算解决实际问题,培养学生的应用能力
5. 总结本节课的内容,强调重点,帮助学生做好知识的复习和巩固
教学反馈:通过课堂练习、作业布置等方式对学生的学习情况进行及时反馈,发现问题及时纠正,提高学生的学习效果。

教学资源:教科书、课件、练习题等
教学评价方法:通过课堂练习、小测验、作业等不同方式对学生的学习情况进行评价,及时发现问题,实施个性化教学。

高一必修一数学集合教案

高一必修一数学集合教案

高一必修一数学集合教案高一必修一数学集合教案篇1教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的"属于"和"不属于"关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程的解;(5) 某校2021级新生;(6) 血压很高的人;(7) 的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。

对学生的解答予以讨论、点评,进而讲解下面的问题。

4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,_是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

(4)集合相等:构成两个集合的元素完全一样。

5. 元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A4A,等等。

高中数学人教版必修1全套教案

高中数学人教版必修1全套教案

第一章 集合与函数§1.1.1集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗? 引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

高中数学必修一教学案:集合(共7份)人教课标版4(优秀教案)

高中数学必修一教学案:集合(共7份)人教课标版4(优秀教案)

第五课时会合的基本运算(一)编制:黄小红审查:赵家早班次姓名一、【课程要求】. 理解交集与并集的含义;会求两个已知会合的交集和并集,并能正确应用它们解决一些简单问题。

.经过详细例子,认识数学三种语言特色及其互相转变,培育数形联合剖析和办理问题的能力。

. 深入数学课本阅读自学,进一步理解数学观点、课本例题阅读自学方法。

二、【预习案】. 阅读课本P8P10的内容。

. 进行阅读自学检查:课本第页练习第、、题(答案写在课本上)。

. 知识点:文字语言符号语言图形语言并 A BA B交.向讲堂提交的问题:三、【研究案】.改正阅读自学检查题。

. 指导学生填补上述“知识点”,解读课本例、例、例、例。

.剖例探法:【例】设会合A x 1 x 2 , B x 1 x 3 ,求∪和 A B .解:【例】已知 { , >}{}{},且X A,X B X ,试求、。

解:【例】已知会合 A x x2mx m219 0,B y y25y 60 ,C z z22z 80 ,能否存在实数,同时知足 A B, A C?解:.课中检测:课本第页习题 1.1组第、、题(答案写在课本上)。

.思虑:课本第页、第页的“思虑”,还能够获得什么结论?.学习反省:四、【检测案】. 达成以下各题:()设 { 奇数 } 、 { 偶数 } ,则∩,∩,∩。

()设 { 奇数 } 、 { 偶数 } ,则∪,∪,∪。

(3) 会合{ n|n,m1,2Z} B{m|Z}2则A B __________.会合{ x |4,1,(4)A x 2} B { x |x 3}C { x| x,或52那么B C_______________,AA B C_____________..学习领会:.还没有解决好的问题:学习是一件增加知识的工作,在茫茫的学海中,也许我们困苦过,在困难的竞争中,也许我们疲惫过,在失败的暗影中,也许我们绝望过。

但我们发现自己的知识在慢慢的增加,从哑哑学语的婴儿到无所不可以的青年时,这类巧妙而巨大的变化怎能不让我们感觉骄傲而骄傲呢?当我们在学习中碰到困难而困难的战胜时,当我们在漫长的奋斗后成功时,那种无与伦比的感觉又有谁能表达出来呢?所以学习更是一件快乐的事情,只需我们用另一种心态去领会,就会发现有学习的日子真好!假如你热爱念书,那你就会从书本中获得灵魂的安慰;从书中找到生活的楷模;从书中找到自己生活的乐趣;并从中不停地发现自己,提高自己,进而超越自己。

人教版高中数学必修1集合教案

人教版高中数学必修1集合教案

集 合教学目标: 1、理解集合的概念和性质.2、了解元素与集合的表示方法.3、熟记有关数集.4、培养学生认识事物的能力.教学重点: 集合概念、性质教学难点: 集合概念的理解教学过程:1、 定义:集合:一般地,某些指定的对象集在一起就成为一个集合(集).元素:集合中每个对象叫做这个集合的元素.由此上述例中集合的元素是什么?例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式3x-2> x+3的实数x ,例(4)的元素为所有直角三角形,例(5)为高一·六班全体男同学.一般用大括号表示集合,{ … }如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。

则上几例可表示为……为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}2(1)确定性;(2)互异性;(3)无序性.3、元素与集合的关系:隶属关系元素与集合的关系有“属于∈”及“不属于∉(∉ 也可表示为 )两种。

如A={2,4,8,16},则4∈A ,8∈A ,32 A.∈∉集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集A 记作a ∈A ,相反,a 不属于集A 记作 a ∉A (或a A )注:1、集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……2、“∈”的开口方向,不能把a ∈A 颠倒过来写。

4注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。

记作N *或N + 。

Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *请回答:已知a+b+c=m ,A={x|ax 2+bx+c=m},判断1与A 的关系。

1.1.2 集合间的基本关系教学目标:1.理解子集、真子集概念;2.会判断和证明两个集合包含关系;3.理解 ”、“⊆”的含义; 4.会判断简单集合的相等关系;5.渗透问题相对的观点。

人教版高中数学必修1学案:集合的基本运算(含答案)

人教版高中数学必修1学案:集合的基本运算(含答案)

1.1.3集合的基本运算(一)1.理解并集、交集的含义,会求两个简单集合的并集与交集.2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自主探究能力.3.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”),即A∪B={x|x∈A,或x∈B}.2.一般地,由属于集合A且属于集合B的所有元素组成的集合,称为集合A与B的交集,记作A∩B(读作“A交B”),即A∩B={x|x∈A,且x∈B}.3.A∩A=__A__,A∪A=__A__,A∩∅=__∅__,A∪∅=A.4.若A⊆B,则A∩B=__A__,A∪B=__B__.5.A∩B⊆A,A∩B⊆B,A⊆A∪B,A∩B⊆A∪B.对点讲练求两个集合的交集与并集【例1】求下列两个集合的并集和交集.(1)A={1,2,3,4,5},B={-1,0,1,2,3};(2)A={x|x<-2},B={x|x>-5}.解(1)如图所示,A∪B={-1,0,1,2,3,4,5},A∩B={1,2,3}.(2)结合数轴(如图所示)得:A∪B=R,A∩B={x|-5<x<-2}.规律方法求两个集合的交集、并集依据它们的定义,借用Venn图或结合数轴分析两个集合的元素的分布情况,有利于准确写出交集、并集.变式迁移1(1)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A .{x |x >-2}B .{x |x >-1}C .{x |-2<x <-1}D .{x |-1<x <2} (2)若将(1)中A 改为A ={x |x >a },求A ∪B ,A ∩B . (1)答案 A解析 画出数轴,故A ∪B ={x |x >-2}.(2)解 如图所示,当a <-2时,A ∪B =A ,A ∩B ={x |-2<x <2}; 当-2≤a <2时,A ∪B ={x |x >-2},A ∩B ={x |a <x <2}; 当a ≥2时,A ∪B ={x |-2<x <2或x >a },A ∩B =∅.已知集合的交集、并集求参数【例2】 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5}. (1)若A ∩B =∅,求a 的取值范围; (2)若A ∪B =R ,求a 的取值范围. 解 (1)由A ∩B =∅, ①若A =∅, 有2a >a +3,∴a >3. ②若A ≠∅,如图:∴⎩⎪⎨⎪⎧2a ≥-1a +3≤52a ≤a +3,解得-12≤a ≤2.综上所述,a 的取值范围是{a |-12≤a ≤2或a >3}.(2)由A ∪B =R ,如图所示,∴⎩⎪⎨⎪⎧2a ≤-1a +3≥5,解得a ∈∅. 规律方法 出现交集为空集的情形,应首先考虑集合中有没有空集,即分类讨论.其次,与不等式有关的集合的交、并运算中,数轴分析法直观清晰,应重点考虑.变式迁移2 已知集合A ={x |2<x <4},B ={x |a <x <3a }. (1)若A ∩B =∅,试求a 的取值范围; (2)若A ∩B ={x |3<x <4},试求a 的取值范围. 解 (1)如图,有两类情况,一类是B ≠∅⇒a >0. 此时,又分两种情况:①B 在A 的左边,如图B 所示; ②B 在A 的右边,如图B ′所示.B 或B ′位置均使A ∩B =∅成立, 即3a ≤2或a ≥4,解得0<a ≤23,或a ≥4.另一类是B =∅,即a ≤0时,显然A ∩B =∅成立. 综上所述,a 的取值范围是{a |a ≤23,或a ≥4}.(2)因为A ={x |2<x <4},A ∩B ={x |3<x <4}, 如图所示:集合B 若要符合题意,显然有a =3,此时B ={x |3<x <9},所以a =3为所求.交集、并集性质的运用【例3】 已知集合A ={x |1<ax <2},B ={x ||x |<1},且满足A ∪B =B ,求实数a 的取值范围.解 ∵A ∪B =B ,∴A ⊆B . (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A =⎩⎨⎧⎭⎬⎫x |1a <x <2a .∵A ⊆B ,∴⎩⎨⎧1a ≥-12a ≤1∴a ≥2.(3)当a <0时,A =⎩⎨⎧⎭⎬⎫x |2a <x <1a .∵A ⊆B ,∴⎩⎨⎧2a≥-11a ≤1∴a ≤-2.综合(1)(2)(3)知,a 的取值范围是 {a |a ≤-2或a =0或a ≥2}.规律方法 明确A ∩B =B 和A ∪B =B 的含义,根据问题的需要,将A ∩B =B 和A ∪B =B 转化为等价的关系式B ⊆A 和A ⊆B 是解决本题的关键.另外在B ⊆A 时易忽视B =∅时的情况.变式迁移3 设集合A ={-2},B ={x |ax +1=0,a ∈R },若A ∩B =B ,求a 的值. 解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅, ∴B =∅或B ≠∅. 当B =∅时,方程ax +1=0无解,此时a =0. 当B ≠∅时,此时a ≠0,则B ={-1a },∴-1a∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.1.A ∪B 的定义中“或”的意义与通常所说的“非此即彼”有原则的区别,它们是“相容”的.求A ∪B 时,相同的元素在集合中只出现一次.2.A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B ,这两个性质非常重要.另外,在解决有条件A ⊆B 的集合问题时,不要忽视A =∅的情况.课时作业一、选择题 1.设集合A ={x |-5≤x <1},B ={x |x ≤2},则A ∩B 等于( ) A .{x |-5≤x <1} B .{x |-5≤x ≤2}C.{x|x<1} D.{x|x≤2}答案 A2.下列四个推理:①a∈(A∪B)⇒a∈A;②a∈(A∩B)⇒a∈(A∪B);③A⊆B⇒A∪B=B;④A∪B=A⇒A∩B=B.其中正确的个数是()A.1个B.2个C.3个D.4个答案 C解析②③④正确.3.设A={x|1≤x≤3},B={x|x<0或x≥2},则A∪B等于()A.{x|x<0或x≥1} B.{x|x<0或x≥3}C.{x|x<0或x≥2} D.{x|2≤x≤3}答案 A解析结合数轴知A∪B={x|x<0或x≥1}.4.已知A={x|x≤-1或x≥3},B={x|a<x<4},若A∪B=R,则实数a的取值范围是() A.3≤a<4 B.-1<a<4 C.a≤-1 D.a<-1答案 C解析结合数轴知答案C正确.5.满足条件M∪{1}={1,2,3}的集合M的个数是()A.1 B.2 C.3 D.4答案 B解析由已知得M={2,3}或{1,2,3},共2个.二、填空题6.已知A={(x,y)|x+y=3},B={(x,y)|x-y=1},则A∩B=________.答案{(2,1)}7.设集合A={x|-1≤x<2},B={x|x≤a},若A∩B≠∅,则实数a的取值范围为________.答案a≥-1解析由A∩B≠∅,借助于数轴知a≥-1.8.已知集合A={x|x<1或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.答案-4解析如图所示,可知a=1,b=6,2a-b=-4.三、解答题9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.解∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±6.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.解A={1,2},∵A∪B=A,∴B⊆A,集合B有两种情况:B=∅或B≠∅.(1)B=∅时,方程x2-4x+a=0无实数根,∴Δ=16-4a<0,∴a>4.(2)B≠∅时,当Δ=0时,a=4,B={2}⊆A满足条件;当Δ>0时,若1,2是方程x2-4x+a=0的根,由根与系数的关系知矛盾,无解,∴a=4.综上,a的取值范围是a≥4.【探究驿站】11.求满足P∪Q={1,2}的集合P,Q共有多少组?解可采用列举法:当P=∅时,Q={1,2};当P={1}时,Q={2},{1,2};当P={2}时,Q={1},{1,2};当P={1,2}时,Q=∅,{1},{2},{1,2},∴一共有9组.。

数学人教版高中一年级必修1 高一数学集合教学案(4课时)

数学人教版高中一年级必修1 高一数学集合教学案(4课时)

高一数学《集合》教学案一、教材分析(一)学习目标Ⅰ、知识与技能:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

Ⅱ、过程与方法:通过讲练结合让学生在实践中突破重点和难点,并对易错、易混点重新认定,达到熟练应用的地板。

情感态度与价值观:让学生在重新审视的基础上重新定位对知识的把握,在充分发挥学习的主动性地基础上提高自己在学习中的信心和进一步学习数学的兴趣。

(二)重点、难点重点:理解集合之间包含与相等的含义,能识别给定集合的子集;理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

难点:能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

二、教学计划:四课时三、教学设计第一课时1.1.1《集合的概念》一、课题引入阅读教材中的章头引言二、概念形成与深化1、集合的概念(1)对象:阅读课本P 3(2)集合:把一些能够 的 的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个 叫做这个集合的元素,元素通常用 表示2、元素与集合的关系(1)属于:记作:A a ___;(2)不属于:记作:A a ___;(1) 参加2008北京奥运会的中国代表团的所有成员构成的集合; 其中元素为(2) 三角形的全体构成的集合; 其中元素为(3) 方程方程21x =的解的全体构成的集合; 其中元素为(4) 不等式122x x +>+的解的全体构成的集合. 其中元素为 你能指出各个集合的元素吗?各个集合的元素与集合之间是什么关系?3、集合中元素的性质”年轻人”、“较小的有理数”能否分别构成一个集合,为什么? 集合中元素的性质(1) ;(2) ;(3)_____________.(1) 节头图是中国体育代表团步入亚特兰大奥林匹克体育场的照片,代表团有309名成员;(2) 平面上与一个定点O 的距离等于定长r 的点的全体;(3) 方程12x x +=+的解的全体.4、空集: 集合,记作 .5、集合分类(1)含有 个元素的集合叫做有限集(2)含有 个元素的集合叫做无限集6、常用数集及其表示方法(1)自然数集: 的集合.记作 ;(2)正整数集: 的集合.记作 ;(3)整数集: 的集合.记作 ;(4)有理数集: 的集合.记作 ;(5)实数集: 的集合.记作 。

人教版高中数学必修1第1章第一章 集合与函数概念复习课教案

人教版高中数学必修1第1章第一章  集合与函数概念复习课教案

第一章集合与函数概念复习课教学目标分析:知识目标:进一步领会函数单调性和奇偶性的定义,并在此基础上,熟练应用定义判断和证明函数的单调性及奇偶性,初步学习单调性和奇偶性结合起来解决函数的有关问题。

过程与方法:体会单调性和奇偶性在解决函数有关问题中的重要作用,提高应用知识解决问题的能力。

情感目标:体会转化化归及数形结合思想的应用,培养学生的逻辑思维能力。

重难点分析:重点:函数的性质的灵活应用。

难点:函数的性质的灵活应用。

互动探究:一、课堂探究:一、复习回顾1、集合的包含关系;2、集合的交、并、补运算;3、函数的单调性(概念、判断方法、应用——求函数的最值);4、函数的奇偶性(概念、图像特征、判断方法);5、函数最值的求法.二、典型例题探究1、集合的概念以及运算例1、设集合2==∈==-∈,求P Q.P y y x x R Q y y x x R{|,},{|2||,}答案:{|02}=≤≤.P Q y y变式:已知全集32C A=,求=++和它的子集{1,|21|}U x x x{1,3,32}A x=-,如果{0}U实数x的值.答案:1x=-2、函数及映射的概念例2、已知集合42{1,2,3,},{4,7,,3}==+,且,,,A kB a a a∈∈∈∈,映射a N k N x A y B=+和A中元素x对应,求,a k的值.y x→,使B中元素31:f A B答案:2,5==a k3、分段函数例3、若不等式|2||1|++->恒成立,求实数a的取值范围.x x a答案:3a <.变式:若不等式|2||1|x x a +-->的解集是空集,求实数a 的取值范围.答案:3a ≥.4、函数的定义域和值域例4、若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求,a b 的值.答案:3,32a b ==.变式1:若函数()y f x =的值域是[1,3],求函数()12(3)F x f x =-+的值域.答案:[5,1]--变式2:若函数()y f x =的值域为1[,3]2,求函数1()()()F x f x f x =+的值域.答案:10[2,]35、函数的单调性例5、已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是多少?答案:(1)-变式:已知()(0,)()()(),(2)1x f x f f x f y f y+∞=-=是定义在上的增函数,且, 解不等式1()()23f x f x -≤-。

高中数学集合的概念教案1 新课标 人教版 必修1(B)

高中数学集合的概念教案1 新课标 人教版 必修1(B)

集合的概念(1)教学目标(一)教学知识点1、集合的概念和性质.2、集合的元素特征.3、有关数的集合.教学重点1、集合.的概念.2、集合.元素的三个特征.教学过程Ⅱ新课讲授:实例:⑴数组 1,3,5,7.⑵到两定点距离的和等于两定点间距离的点.⑶满足的全体实数3x-2> x+3.⑷所有直角三角形.⑸高一(3)班全体男同学.⑹所有绝对值等于6的数的集合.⑺所有绝对值小于3的整数的集合..⑻中国足球男队的队员.⑼参加2008年奥运会的中国代表团成员.⑽参与中国加入WTO谈判的中方成员.1、定义一般地,某些指定对象集在一起就成为一个集合(集).集合中每个对象叫做这个集合的元素.一般地来讲,用大括号表示集合.2、集合元素的三个特征问题及解释⑴A={1,3}问3,5哪个是A的元素?⑵A={所有素质好的人}能否表示为集合?⑶A={2,2,4}表示是否准确?⑷A={太平洋,大西洋},B={大西洋,太平洋}是否表示为同一集合?教师指导由此可知,集合元素具有以下三个特征:⑴确定性集合中的元素必须是确定的,也就是说,对于一个给定的集合,其元素的意义是明确的.⑵互异性集合中的元素必须是互异的,也就是说,对于一个给定的集合,它的任何两个元素都是不同的.⑶无序性集合中的元素是无先后顺序,也就是说,对于一个给定集合,它的任何两个元素都是可以交换的.元素与集合的关系有“属于∈”及“不属于∈”(∈也可表示为∈)两种.如A={2,4,8,16}4_____A 8______A 32________A.请同学们考虑:A={2,4},B={{1,2},{2,3},{2,4},{3,5}}.A与B的关系如何?虽然A本身是一个集合.但相对B来讲,A是B的一个元素.故A∈B.3、常见数集的专用符号N:非负整数集(或自然数集)N*或N+:正整数集(非负整数集N内排除0的集合)Z:整数集(全体整数的集合)Q:有理数集(全体有理数的集合)R:实数集(全体实数的集合)请同学们熟记上述符号及其意义.Ⅲ课堂练习:课本P51、(口答)说出下面集合中的元素.⑴{大于3小于11的偶数}⑵{平方等于1的数}⑶{15的正约数}2、用符号∈或∈填空1_____N 0______N -3_____N 0.5______N1_____Z 0______Z -3______Z 0.5_____Z1_____Q 0______Q -3______Q 0.5_____Q1_____R 0_______R -3______R 0.5______R。

人教版高中数学必修1第一章教案

人教版高中数学必修1第一章教案

1.1.1集合的含义通过本节学习应到达如下目标:(1)初步理解集合的含义,知道常用数集及其记法.,初步了解“∈〞关系的意义.。

.(2)通过实例,初步体会元素与集合的〞属于〞关系,从观察分析集合的元素入手,正确地理解集合.(3)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(4)学会借助实例分析、探究数学问题(如集合中元素确实定性、互异性).(5)在学习运用集合语言的过程中,增强认识事物的能力,初步培养实事求是、扎实严谨的科学态度.学习重点:集合概念的形成。

学习难点:理解集合的元素确实定性和互异性.学习过程〔一〕自主学习阅读课本,完成以下问题:1、例〔3〕到例〔8〕和例〔1〕〔2〕是否具有相同的特点,它们能否构成集合,如果能,他们的元素是什么?结合现实生活,请你举出一些有关集合的例子。

2、一般地,我们把研究对象称为.,把一些元素组成的总体叫做。

3、集合的元素必须是不能确定的对象不能构成集合。

4、集合的元素一定是的,相同的几个对象归于同一个集合时只能算作一个元素。

5、集合通常用大写的拉丁字母表示,如。

元素通常用小写的拉丁字母表示,如。

6、如果a是集合A 的元素,就说a属于A ,记作,读作〞〞。

如果a不是集合A的元素,就说a不属于A ,记作,读作〞〞。

7、非负整数集〔或自然数集〕,正整数集,整数集,有理数集,有理数集,实数集。

〔二〕合作探讨1、以下元素全体是否构成集合,并说明理由〔1〕世界上最高的山〔2〕世界上的高山。

(3) 2的近似值(4)爱好唱歌的人〔5〕本届奥运会我国取得优秀成绩的运发动。

〔6〕本届奥运会我国参加的所有运动工程。

2、结合具体例子,请你说明你对集合中元素具有的互异性和确定性的理解。

3、如果用A表示高一〔3〕班全体学生组成的集合,用a表示高一〔3〕班的一位同学,b是高一〔4〕班的一位同学,那么a, b与集合A有什么关系?由此可见元素与集合间有什么关系?4、请你指出以下集合中的元素。

高中数学_必修1_集合教案1

高中数学_必修1_集合教案1

集合(第2课时)一、知识目标:①内容:深入理解集合的基本概念,掌握集合元素的三个特征并会应用,了解有限集、无限集的概念②重点:集合元素的三个特征,空集③难点:集合元素的三个特征的应用二、能力目标:①由判断一组对象是否能组成集合及其对象是否从属已知集合,培养分析、判断的能力;③由运用集合的观点分析、处理实际问题,培养由具体到抽象,由抽象到具体的思维方式,形成正确的认知观;三、教学过程:1)情景设置:复习上一节课所学的主要内容①集合的概念:某些指定的对象集在一起就成为一个集合。

集合非常类似于电脑中的文件夹,文件夹就是一个集合,文件夹的内容就是该集合的元素②元素:集合中的每个对象③元素与集合的关系:∈、∉④集合中元素的特征:确定性、互异性、无序性⑤常用数集2)新课讲授例1、下列指定的对象,能构成一个集合的是①很小的数②不超过30的非负实数③直角坐标平面内横坐标与纵坐标相等的点④π的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2的整数⑧正三角形全体分析:①“很小”是不明确的,不确定的②“π的近似值”也是不确定的③“优秀”不确定例2、给出下列说法:①较小的自然数组成一个集合②集合{1,-2,3,π}与集合{π,-2,3,1}是同一个集合③某同学的数学书和物理书组成一个集合④若a∈R,则a∉Q⑤已知集合{x,y,z}与集合{1,2,3}是同一个集合,则x=1,y=2,z=3其中正确说法个数是()A、1个B、2个C、3个D、4个例3、已知集合A={a+2,(a+1)2,a 2+3a+3},且1∈A ,求实数a 的值 解:若a+2=1,则a=-1,此时A={1,0,0}违反互异性,舍去 若(a+1)2=1,则a=0或-2当a=0时,此时A={2,1,3}当a=-2时,此时A={0,1,1}违反互异性,舍去若a 2+3a+3=1,则a=-1(舍去)或a=-2(舍去) 所以a=0练习1:在下列各题中,分别指出集合的所有元素① 世界上最高的山峰② 组成中国国旗图案的颜色 ③ 所有大于0且小于10的奇数 ④ 小于100的自然数 ⑤ 由1,2,3这三个数字抽出一部分或全部数字所组成的一切自然数(没有重复)⑥ 不等式x-3>2的解集⑦ 平面内到一定点o 的距离等于定长1的所有的点P ⑧ 两边之和小于第三边的三角形练习2:集合{3,x,x 2-2x}中,x 应满足什么条件? 解:根据集合元素的互异性,x 应满足 x ≠3,且x 2-2x ≠3,且x 2-2x ≠x 解得x ≠3且x ≠0且x ≠-1为进一步研究集合,需要将行行色色的集合进行分类,假如这项工作由你来做,你会选用什么标准对集合进行分类呢?(拿刚才的练习题为例加以讨论) 师生共同探讨形成共识:根据“集合中元素个数”可将形形色色集合分成以下三类:a) 有限集——含有有限个元素的集合 b) 无限集——含有无限个元素的集合c) 空集——不含任何元素的集合,记作φ练习3:指出下列集合中哪些是有限集?哪些是无限集?哪些是空集?为什么? ①{0}②{x 2+x+2=0的解}③{使得x6为自然数的整数}④{不等式x-3>2的解}思考题:已知集合{关于x 的 方程ax 2+2x+1=0的解}只含1个元素,求a 的值。

人教版高中数学必修一第一章 集合与函数概念全章教案

人教版高中数学必修一第一章 集合与函数概念全章教案

课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

人教版高中数学必修一教案(完整版)

人教版高中数学必修一教案(完整版)

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

新人教版高中数学必修1教案全套

新人教版高中数学必修1教案全套

新人教版高中数学必修1教案全套1.1.1集合的含义与表示教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法. 教学重难点:1、元素与集合间的关系 2、集合的表示法教学过程:一、集合的概念实例引入:⑴ 1~20以内的所有质数;⑵ 我国从1991~2021的13年内所发射的所有人造卫星; ⑶ 金星汽车厂2021年生产的所有汽车;⑷ 2021年1月1日之前与我国建立外交关系的所有国家; ⑸ 所有的正方形;⑹ 黄图盛中学2021年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素. (3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴ 2,3,4 ⑵ (2,3),(3,4)⑶ 三角形⑷ 2,4,6,8,?⑸ 1,2,(1,2),{1,2} ⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A (2)如果a不是集合A的元素,就说a不属于A,记作a∈A 五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例 1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一集合(§1.1.1 集合)
教学时间 :第一课时
课题:§1.1.1 集合
教学目标: 1、理解集合的概念和性质.
2、了解元素与集合的表示方法.
3、熟记有关数集.
4、培养学生认识事物的能力.
教学重点:集合概念、性质
教学难点:集合概念的理解
教学方法:尝试指导
教具准备:投影片(3张)
教学过程:
(I)引入新课
同学们好!首先,我祝贺大家能升入苍梧第一高级中学进行高中学习。

下面我想初步了解一下同学们的情况。

请来自××中学的同学站起来。

依次询问他们的名字,并板书。

同样询问来自另一学校学生情况。

××同学你为什么不站起来?来自××中学的三位虽然性别不同,年龄有差异,但他们有一个共同的性质——来自××中学。

所以,在数学上可以把他们看作为有3个元素的集合(板书课题:集合,并将其姓名用{ }括起来),同样,××中学的二位同学也可看作有2个元素的集合。

显然,刚才抽到的××同学如果作为一个元素就不属于上面这两个集合了。

同学们!这节课我们将系统地研究集合的一些概念。

讲四个问题:(1)集合和元素;(2)集合的分类;(3)集合的表示方法;(4)为什么要学习集合的表示方法?
(II)复习回顾
师生共同回顾初中代数中涉及“集合”提法.
(Ⅲ)讲授新课
观察下列实例(投影〈a〉)
(1)数组1、3、5、7.
(2)到两定点距离等于两定点间距离的点.
(3)满足3x-2>x+3的全体实数.
(4)所有直角三角形.
(5)高一·六班全体男同学.
通过以上实例,教师指出:
1、定义:
集合:一般地,某些指定的对象集在一起就成为一个集合(集).
师:进一步指出:
元素:集合中每个对象叫做这个集合的元素.
由此上述例中集合的元素是什么?
生:例(1)的元素为1、3、5、7,
例(2)的元素为到两定点距离等于两定点间距离的点,
例(3)的元素为满足不等式3x-2> x+3的实数x,
例(4)的元素为所有直角三角形,
例(5)为高一·六班全体男同学.
师:请同学们另外举出三个例子,并指出其元素.
生:略.(教师给予评议)。

师:一般用大括号表示集合,{ …}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。

则上几例可表示为……
为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}
2
问题及解释(投影〈b〉)
(1)A={1,3},问3、5哪个是A的元素?
(2)A={所有素质好的人},能否表示为集合?
(3)A={2,2,4},表示是否准确?
(4)A={太平洋,大西洋},B={大西洋,太平洋},
是否表示为同一集合?
生:在师指导下一一回答上述问题.
师:由以上四个问题可知,
集合元素具有三个特征:
(1)确定性;(2)互异性;(3)无序性.
3、元素与集合的关系:隶属关系
∈师:元素与集合的关系有“属于∈”及“不属于∉(∉也可表示为)两种。

如A={2,4,8,16},则4∈A ,8∈A ,32 A.(请学生填充)。

集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集A 记作 a ∈A ,相反,a 不属于集A 记作 a ∉A (或a A )
注:1、集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……
元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……
2、“∈”的开口方向,不能把a ∈A 颠倒过来写。

44、常见数集的专用符号(投影〈c 〉)
N :非负整数集(自然数集).
N*或N +正整数集,N 内排除0的集.
Q :有理数集.
R :全体实数的集合。

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。

记作N *或N + 。

Q 、Z 、R 等其它数集内排除0
的集,也是这样表示,例如,整数集内排除0的集,表示成Z *
请同学们熟记上述符号及其意义.
请同学回答:已知a+b+c=m ,A={x|ax 2+bx+c=m},判断1与A 的关系。

[1∈A]
(Ⅳ)课堂练习
课本P 5,练习1、2
补充练习:若-3∈{m-1,3m ,m 2+1},求m[m=-1或m=-2]
(Ⅴ)课时小结
1、集合的概念。

2、集合元素的三个特征。

其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.
“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.
3、常见数集的专用符号.
(Ⅵ)课后作业
一、课本P 7,习题1.1 1
二、1、预习内容,课本P 5—P 6
2、预习提纲:
∉∈
(1)集合的表示方法有几种?怎样表示,试举例说明.
(2)集合如何分类,依据是什么?
板书设计
§1.1.1 集合
1.集合.
2.集合元素的三个特征:
(1)确定性;(2)互异性;(3)无序性.
3.常见数集专用符号.
练习
小结
作业.。

相关文档
最新文档