八年级上册青岛版数学配套练习册答案

合集下载

青岛版八年级数学上册同步练习附答案1.1 全等三角形

青岛版八年级数学上册同步练习附答案1.1 全等三角形

1.1 全等三角形一、选择题1.△ABC≌△BAD,A和B,C和D是对应点,∠CAB的对应角是()A.∠DAB B.∠DBA C.∠DBC D.∠CAD2.下列说法正确的是()A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形3.在△ABC中,∠A=∠B,若与△ABC全等的三角形中有一个角为90°,则△ABC中等于90°的角是()A.∠A B.∠B C.∠C D.∠B或∠C4.如图,在A,B,C,D,E,F几个区域中,其中全等图形的对数为()(第4题图)A.1 B.2 C.3 D.45.有下列说法:①能够完全重合的两个三角形是全等三角形;②一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小没有改变,即平移、翻折、旋转前后的两个图形是全等形;③面积相等的两个三角形是全等三角形;④全等三角形的周长相等;⑤全等三角形的对应边相等,对应角相等.其中正确的个数是()A.1B.2 C.3 D.46.有下列图形:①两个正方形;②每边长都是1cm的两个四边形;③每边都是2cm的两个三角形;④半径都是1.5cm的两个圆.其中是一对全等图形的有()A.1个B.2个C.3个D.4个二.填空题7.请观察图中的5组图案,其中是全等形的是(填序号).(第7题图)8.如图,△ABC≌△ADE,则AB=.若∠BAE=120°,∠BAD=40°,则∠BAC=°.(第8题图)(第9题图)9.如图,BE交AD于点C,△ABC≌△DEC,则∠A=,∠E=,∠BCA=,AB=,BC=,AC=,点C的对应点是点,AB∥,若AB⊥BE,则DE BE.10.如图,△ABC≌△DEF,若AB=7cm,BC=8cm,AC=6cm,BE=5cm,则EC=cm,△DEF的周长=cm.(第10题图)三、解答题11.已知△ABC≌△FED,若△ABC的周长为32,AB=8,BC=12,求FD的长.12.已知△ABC≌△DEF,∠A=85゜,∠B=60゜,AB=8,EH=5.求∠DFE的度数及DH的长.(第12题图)13.如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?(第13题图)答案一、1. B【分析】∵△ABC≌△BAD,A和B,C和D是对应点,∴∠CAB=∠DBA.故选B.2. D【分析】A.面积相等,但图形不一定能完全重合,故错误;B.周长相等的两个图形不一定能完全重合,故错误;C.正方形的面积不相等,也不是全等形,故错误;D.符合全等形的概念,故正确.故选D.3. C【分析】∵与△ABC全等的三角形中有一个角为90°,∠A=∠B,∴∠C=90°.故选C.4. C【分析】观察图形,根据全等的概念可知,图中A与D,E与F,B与C能够重合,是全等形,共3对.故选C.5. D【分析】①能够完全重合的两个三角形是全等三角形,故正确;②一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小没有改变,即平移、翻折、旋转前后的两个图形是全等形,故正确;③面积相等的两个三角形不一定是全等三角形,故错误;④全等三角形的周长相等,故正确;⑤全等三角形的对应边相等,对应角相等,故正确.故正确的有4个.故选D.6. B【分析】①两个正方形是相似图形,但不一定全等,故不符合题意;②每边长都是1cm 的两个四边形是菱形,其内角不一定对应相等,故不符合题意;③每边都是2cm的两个三角形是两个全等的等边三角形,故不符合题意;④半径都是1.5cm的两个圆是全等形,故符合题意.故选B.二、7.(1)(4)(5)8.AD,80【分析】∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∵∠BAD=40°,∴∠CAE=40°.∵∠BAE=120°,∴∠BAC=∠BAE-∠CAE=80°.9. ∠D,∠B,∠ECD,DE,EC,DC,C,DE,⊥【分析】△ABC≌△DEC,则∠A=∠D,∠E=∠B,∠BCA=∠ECD,AB=DE,BC=EC,AC=DC,点C的对应点是点C,AB∥DE,若AB⊥BE,则DE⊥BE.10. 3,21【分析】∵AB=7cm,BC=8cm,AC=6cm,∴EC=BC-BE=8-5=3(cm),△ABC的周长是21cm.∵△ABC≌△DEF,∴△DEF的周长=△ABC的周长=21cm.三、11. 解:∵△ABC的周长为32,AB=8,BC=12,∴AC=32-8-12=12.∵△ABC≌△FED,∴FD=AC=12.12. 解:∵△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=5,∴∠D=∠A=85°,∠DEF=∠B=60°,DE=AB=8,∴∠DFE=180°-∠D-∠DEF=35°,DH=DE-EH=8-5=3.13. 解:如答图.(第13题答图)。

八年级上册青岛版《数学配套练习册》答案

八年级上册青岛版《数学配套练习册》答案

青岛版数学练习册八年级上册参考答案1.11.略.2.DE,∠EDB,∠E.3.略.4.B5.C6.AB=AC,BE=CD,AE=AD,∠BAE=∠CAD7.AB∥EF,BC∥∠ADB=∠AEC.4.∠1=∠25.△ABC≌△FDE(SAS)6.AB∥CD.因为△ABO≌△CDO(SAS).∠A=∠△ABE≌△ACD(SAS).第2课时∠ADE=∠ACB;(2)∠E=∠B.4.△ABD≌△BAC(AAS)5.(1)相等,因为△ABE≌△CBD(ASA);(2)DF=EF,因为△ADF≌△CEF(ASA).6.相等,因为△ABC ≌△ADC(AAS).7.(1)△ADC≌△AEB;(2)AC=AB,DC=EB,BD=EC;∠ABE=∠ACD,∠BDO=∠CEO,∠BOD=∠COE.第3课时°4.BC的中点.因为△ABD≌△ACD(SSS).5.正确.因为△DEH≌△DFH(SSS).6.全等.因为△ABD≌△ACD(SSS).∠BAF=∠CAF.7.相等,因为△ABO≌△ACO(SSS).1.3第1课时1~6(略).7.作∠AOB=∠α,延长BO,在BO上取一点C,则∠AOC即为所求.8.作∠AOB=∠α,以OB为边,在∠AOB的外部作∠BOC=∠β;再以OA为边,在∠AOC的内部作∠AOD=∠γ,则∠DOC即为所求.第2课时1.略.2.(1)略;(2)全等(SAS).3.作BC=a-b;分别以点B、C为圆心,a为半径画弧,两弧交于点A;连接AB,AC,△ABC即为所求.4.分四种情况:(1)顶角为∠α,腰长为a;(2)底角为∠α,底边为a;(3)顶角为∠α,底边为a;(4)底角为∠α,腰长为a.((3),(4)暂不作).第3课时1.四种:SSS,SAS,ASA,AAS.2.作线段AB;作∠BAD=∠α,在∠BAD同侧作∠ABE=∠B;AD与BE相交于点C.△ABC即为所求.3.作∠γ=∠α+∠β;作∠γ的外角∠γ′;作△ABC,使AB=c.∠A=∠γ′,∠B=∠α.4.作∠γ=180°-∠β;作△ABC,使BC=a,∠B=∠α,∠C=∠γ. 第一章综合练习∠ACB=∠DBC或∠A=∠D.5.△ACD≌△BDC,△ABC≌△BAC.6.△ABC≌△CDE(AAS)7.4分钟8.△BOC′≌△B′OC(AAS)9.略10.相等.△BCF≌△EDF(SAS).△ABF≌△AEF(SSS)检测站°4.∠BCD5.相等.△ABP≌△ACP(SSS),△PDB≌△PEC(AAS).6.略2.1°;30°.8.略2.2第1课时°7.(1)AA′∥CC′∥BB′,且AA′⊥MN,BB′⊥MN,CC′⊥MN.(2)5 cm8.(1)DE⊥AF;(2)略.第2课时1.(-2,-3),(2,3).2.3,-43.(3,2)4.B5~6.略7.(1)(-a,b);(2)当n=4k+1时,在第一象限,n=4k+2时,在第四象限,n=4k+3时,在第三象限,n=4(n+1)时,在第二象限,k为非负整数.2.32.4第1课时∠A=∠B,∠ACD=∠BCD,∠ADC=∠BDC.5~6.略.7.连接BM,PB<PM+MB,∵MB=MA,∴PB<PA.第2课时1.作一条线段的垂直平分线2.D3~5.略.6.分别作点A关于OM,ON的对称点D,E.连接DE,分别交OM,ON于点B,C.连接AB,AC,则△ABC的周长最小.2.5∠AOB的平分线交MN于点P.则P即为所示.6.(1)DE=DC,AE=BE,BE=BC;(2)7.7.(1)△ADO≌△AEO(AAS),△BOD≌△COE(ASA),OB=OC;(2)∠1=∠2.6第1课时1.略.2.35°,35°.3.50°,80°或65°,65°.4.C5.B6.∠EBC=36°,∠C=∠BEC=72°.7.△ACD≌ABD(SSS),∠CAG=∠BAG.AG是等腰三角ABC的顶角平分线.∴°第2课时1.略.2.△ABE,△ECD,△△DBE是等腰三角形.因为∠B=∠C=∠DEB.5.△AED是等腰三角,因为∠EAD=∠BAD=∠ADE.6~7.略.第3课时△ADE是等边三角形.因为三个角都等于60°△ADC≌△ABE(SAS). 第二章综合练习1.GH,∠°;58°∠BAC=∠DAE,∠B=∠D,∠C=∠E,∠BAE=∠DAC,∠EAF=∠CAF,∠BFE=∠DFC,∠BAF=∠DAF.(2)△AEF与△ACF,△ABF与△ADF都关于直线MN成轴对称.11.△ABC与△A′B′C′关于y轴对称.12.△ACE≌△DCB(SAS).AE=BD.又∠HGE=∠CGB.∠HEG=∠CBG.∠HGE+∠HEG=∠CGB+∠CBG=90°.∠EHG=90°.AE⊥①以BC为底边的等腰三角形可作1个;②以BC为腰的等腰三角形可作3个.检测站1.60°2.AP;PC,AP;∠°,55°或70°,40°.5.AC,∠C,△10.A11.略.12.∠BAC=60°,∠C=90°,∠B=30°.13.∵△ABC≌△BAD.∠CAB=∠DBA,∴△EBA是等腰三角形.14.(1)5;(2)80°.15.∠ACD=180°-A2,∠BCE=180°-B2,∠ACB=90°.∴∠ACD+∠BCE=90°+∠DCE.∠DCE=45°.3.1第1课时1.B≠0;B=0;A=0且B≠0.2.≠≠10.a=-1.11.略.12.n+13n-2第2课时≠1且x≠07.当a≠0时,a2a=12;当m≠0,n≠≠3.28.a-b+ca+b+c9.略.3.33.49.(1)把前一个分式的分子,分母同乘-a2b即得下一个分式;(2)-a12b8a13b6.(3)(-1)na2n-2bn+1(-1)n+1a2n-1bn-1.3.5第1课时第2课时7.(1)3c3-4a2b12ab2c2;(2)6x2+xy+7y242x2y2;(3)2mn-m2n2-m2.8.-659.(1)11-a;(2)x2.10.1(x-1)(x-2),1(x-2)(x-3),1(x-3)(x-4),1x-100.第3课时6.∵ca+b<1.∴c2(a+b)2<ca+b3.6第1课时1.(1)7x4y;(2)b2a;(3)2x-y;(4)a+ba-b2.ala+b,ala+b.8.(1)xyx+y(天);(2)甲:myx+y(元),乙:mxx+y(元).9.(1)ba;(2)b-10a-10,b+10a+10;(3)b-10a-10<ba<b+10a+10.第2课时1.略.2.8∶8.a-b=-39.260 mm10.5211.-5.第3课时1.略.2.2∶33.33124.1 m5.10∶15∶∶y∶z=(a+b)2∶(a2-b2)∶3.7第1课时11.(1)x=5;(2)a=6.第5个方程;(3)1+x2x=n+1x,x=2n+1.第2课时(4)无解.7.a=-58.(1)①x=1;②x=2;③x=3;(2)方程1x-2-1x-3=1x-5-1x-6的解为x=4;方程1x+2-1x+1=1x-1-2x-2的解为x=0.第3课时1.略.2.12010-x-12010=33.16+1x=13.4.D5.(1)设去年每间屋的租金为x元,9.6x=10.2x+500;(2)8 000元.6.4 km/h7.37.5 km/h8.1.5 t9.(1)设预定工期为x天,4x+xx+5=1,x=20(天).(2)采取联合施工4天,然后由乙单独施工的方案省工程费.第三章综合练习1.a≠≠5.a∶b=b∶c,c∶b=b∶a,ac=b26.127.3∶4∶∶S2=1∶220.21821.(1)无解;(2)x=1912;(3)x=-2;(4)无解.22.应提高60 km/h23.(1)x≠检测站1.x≠32,x=-23.2.x≠0且x≠4.1第1课时8.a·10%+b·15%+c·5%a+b+c (a,b,c为甲、乙、丙三种汽油原价)第2课时4.24.3第1课时第2课时4.41~2.略.3.(1)平均直径都是20 mm;(2)小明.4.乙地;甲地温差比乙地大.5.(1)平均身高都是178 cm;(2)图略.甲队整齐.6.(1)x甲=1.69 m,x乙=1.68 m;(2)图略.甲比较稳定.4.5第1课时第2课时1.乙2.D3.(1)略;(2)大刚的平均数为13.35,方差为0.004;小亮的平均数为13.3,方差为0.02.大刚成绩好.4.(1)x苹果=8,x香蕉=8,S2苹果=9,S2香蕉=1.333;(2)略;(3)9月份多进苹果.5.S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]=1n[x21+x22+…+x2n-2x(x1+x2+…+xn)+nx2]=1n[x21+x22+…+x2n-2nx(x1+x2+…+xnn+nx2)]=1n[x21+x22+…+x2n-nx2].4.6第四章综合练习℃;(2)20.8℃;(3)146天.13.乙成绩稳定检测站℃12.(1)甲班:平均分24,方差5.4;乙班中位数24,众数21,方差19.8;(2)甲班42人,乙班36人;(3)甲班.综合与实践略.5.15.21.略.2.不正确.如正方形与菱形.3.小亮不对;小莹说法正确.4.不正确.如2≠-2,但22=(-2)2.5.不正确;t=20t1+30t220+30.5.31~3.略.4.C5.直角定义;余角定义;对顶角相等;等量代换;余角定义.6.(1)C,E,F,G;(2)E;(3)K;(4)略.7.C5.4∠D;内错角相等,两直线平行;(2)∠DEC;AB∥DE.同位角相等,两直线平行.4.已知:∠CBE;两直线平行,同位角相等;已知,∠CBE;等量代换;内错角相等,两直线平行.5.略.6.(1)如果两个角相等,那么这两个角是同角或等角的补角.真命题;(2)如果三角形中有两个角是锐角,那么第三个角是钝角,假命题,如∠A=80°,∠B=70°,∠C=30°.7.(1)延长AE与CD相交于点G.∵AB∥EF.∴∠A+∠AEF=180°.∵AB∥CD,∴∠A+∠G=180°.∴∠A+∠AEF=∠A+∠G,∠AEF=∠G.∴EF∥CD;(2)360°.5.5第1课时∠B=∠C,∠AOB=∠DOC.5.∠1>∠ACB>∠26.略.7.(1)∠A逐渐减小,∠B,∠C逐渐变大;若点A向下运动,变化相反;(2)α=β+γ.5.5第2课时1.(1)∠B=∠DAC;(2)∠A=∠D;∠CGE+∠B=180°∠1=∠C+∠CDE,∠2=∠C+∠CED,∠1+∠2=180°.6.(1)∠EFD=90°-∠FED=12(∠A+∠B+∠C)-(∠B+12∠A)=12(∠C-∠B);(2)不变.5.6第1课时∠A=∠D;(3)∠C=∠F.4.(1)△ABE≌△DCF(SAS),△ABF≌△DCE(SAS),△BEF≌△CFE;(2)略.5.△AFC≌△BED(ASA)6.取EF的中点M,连接GM,并延长交FH于点N.GN分别交AD,BC于点P,Q.△PEM≌△QFM.沿GN将道路取直即可.第2课时1.平行2.90°∵∠ABD=∠ADB,∴∠CBD=∠CDB.∴BC=DC.6.△ABD 与△ACD都是等腰三角形,BD=AD=DC.7.△ABD≌△ACE(SAS).∠A=∠CAE=60°.∴△ADE为等边三角形.8.∵△AEB≌△BDA(ASA).∴AE=BD,EB=DA,CE=CD,EF=DF.AF=BF.第3课时1.=2.①②③3.A4.略.5.△ABD≌△AED(SAS),∴AB=AE.DC=AB+BD=AE+DE,DC=DE+EC,∴AE=EC.∴点E在线段AC的垂直平分线上.6.(1)∠A≠∠C.因为△ABD与△CBD不全等;(2)∠A>∠C.因为AB<BC,在BC上取BA′=BA.△ABD≌△A′BD.∠A=∠BA′D.∠BA′D>∠C,∴∠A>∠C;(3)当AB=CB时.∠A=∠C;当AB<BC时,∠A>∠C;当AB>BC时,∠A<∠C.第4课时△ADE≌△ADF.AE=AD.△AEF为等腰三角形.6.△BEO≌△BFO (AAS),△BED≌△BFD(SAS).△EOD≌△FOD(SSS)或(SAS).7.DE=BD-CE.由DE∥BC.∠BOD=∠OBC=∠OBD.∴BD=OD.又∠OCE=∠OCF=∠BOC+∠OBC=∠BOC+∠BOE=∠COE.∴CE=OE.DE=OD-OE=BD-CE.第5课时△ABC即为所求.5.连接AC.Rt△ABC≌RtADC(HL).∴BC=DC.Rt△BCE≌Rt△DCF(HL).6.连接AF,BF.△AEF≌△BEF△AFC≌△BFD(SAS).7.(1)Rt△OBD≌Rt△OCE(HL);(2)Rt△OBD≌△OCE(HL);(3)相等.第五章综合练习°8.∠2=∠1.∴∠2=∠C,AB∥CD.9.延长EF交BC于点G.∵∠2=∠4,∴AB∥EF.∠3=∠B=∠EGC.∴DE∥BC.∴∠AED=∠ACB.10.∠ABE=∠FBD,∠ABE+∠AEB=90°,∠FBD+∠AFE=90°.∴∠AEB=∠AFE.∴AE=AF.11.△ACE≌△BDE(AAS),∴EC=ED.12.(1)∠D=∠AEC(同角的余角相等).△ACE≌△CBD.∴AE=CD;(2)BD=CE=12AC=6 cm.13.(1)Rt△ADE≌Rt△ADF;(2)DB=DC,Rt△DBE≌Rt△DCF(HL).14.(1)略;(2)连接BD.∠DBC=12∠B=30°.∵∠CDE=∠CED.∴∠CED=12∠ACB=30°.∴△DBE为等腰三角形.∵DM⊥BE,∴BM=EM.15.△BPD≌△BDC(SAS),△BCD≌△ACD(SSS).∠P=∠BCD=∠ACD=12∠ACB=30°.16.(1)作DF⊥AB,垂足为点E.AC=AE,DE=DC.∵∠B=∠A=45°,∴BE=DE.∴AB=AE+BE=AC+CD.(2)(1)中的等量关系仍成立.∵∠ACB >∠B,∴AB>AC.在AB上截取AG=AC.分别作DF⊥AC,DE⊥AB.△DCF≌△DGE.∵∠EGD=∠C=2∠B.∴∠B=∠BDG.BG=DG=DC.∴AB=AG+GB=AC+CD.检测站△ODG≌△OEG,△DPG≌△EPG;△ODP≌△OEP,HL或AAS.5.略.6.FA=FD,∠ADF=∠DAF=∠DAC+∠CAF.∵∠DAC=∠BAD.∴∠B=∠ADF-∠BAD=∠DAF-∠DAC=∠CAF.7.(1)略;(2)∵CA=CE,∴∠CAE=∠E.∵∠ACB=∠CAE+∠E=2∠E,∠ACB=2∠BCD,∴∠E=∠BCD.CD∥AE.8.(1)①③或②③;(2)略.9.(1)△ABQ≌△PBC;(3)∠MBN=60°,△ABM≌△PBN(ASA).BM=BN.∴△BMN为等边三角形.∠MNB=∠QBC.MN∥AC.总复习题1.(3,4),等腰2.-53.50°,60°,70°°13.-314.设每天修x m,3 600x-3 6001.8x=20.x=80 m.15.(1)中位数12℃,众数11℃⊥BC,FM⊥AD,FN⊥AE,垂足分别为点G,M,N.FM=FG=FN.17.∵∠BAD=∠BDA,∴AB=DB=CD.∵BE=DE,∴△ABE≌△ADE.AB=AD,△ABD为等边三角形.连接CF.△AEC≌△FEC.∵∠ACF=60°,∴△AFC为等边三角形.∴AF=AC,AE=12AC.18.延长BO交AC于点D.∠BOC=110°.19.作CF⊥AC,交AD延长线于点F.∵∠BAC=90°,AD⊥BM.∴∠ABM=∠MAE.∵AB=AC,∴△ABM≌△CFA.∠1=∠F.AM=CF.∵AM=CM,∴CF=CM.∠FCD=45°=∠MCD.∴△FCD≌△MCD(SAS).∠2=∠F=∠1.总检测站△ABC≌△ABD,△ACE≌△ADE,△CEB≌△12.(1)x=-2;(2)无解.13.30 m14.∵△ABE≌△ACE,∴BE=CE,BD=CD.△BDE≌△CDE(SSS).15.(1)①②③④,①③②④,①④②③,②③①④,②④①③.(2)略.≤≥<>×≠÷′△∠°αβ⊥∥∵∴△≌△S△ACC′。

八年级上册 青岛版《数学配套练习册》答案

八年级上册  青岛版《数学配套练习册》答案

青岛版数学练习册八年级上册参考答案1.11.略.2.DE,∠EDB,∠E.3.略.4.B5.C6.AB=AC,BE=CD,AE=AD,∠BAE=∠CAD7.AB∥EF,BC∥ED.8.(1)2a+2b;(2)2a+3b;(3)当n为偶数时,n2(a+b);当n为奇数时,n-12a+n+12b.1.2第1课时1.D2.C3.(1)AD=AE;(2)∠ADB=∠AEC.4.∠1=∠25.△ABC≌△FDE(SAS)6.AB∥CD.因为△ABO≌△CDO(SAS).∠A=∠C.7.BE=CD.因为△ABE≌△ACD(SAS).第2课时1.B2.D3.(1)∠ADE=∠ACB;(2)∠E=∠B.4.△ABD≌△BAC(AAS)5.(1)相等,因为△ABE≌△CBD(ASA);(2)DF=EF,因为△ADF≌△CEF(ASA).6.相等,因为△ABC≌△ADC(AAS).7.(1)△ADC≌△AEB;(2)AC=AB,DC=EB,BD=EC;∠ABE=∠ACD,∠BDO=∠CEO,∠BOD=∠COE.第3课时1.B2.C3.110°4.BC的中点.因为△ABD≌△ACD(SSS).5.正确.因为△DEH≌△DFH(SSS).6.全等.因为△ABD≌△ACD(SSS).∠BAF=∠CAF.7.相等,因为△ABO≌△ACO(SSS).1.3第1课时1~6(略).7.作∠AOB=∠α,延长BO,在BO上取一点C,则∠AOC即为所求.8.作∠AOB=∠α,以OB为边,在∠AOB的外部作∠BOC=∠β;再以OA为边,在∠AOC的内部作∠AOD=∠γ,则∠DOC即为所求.第2课时1.略.2.(1)略;(2)全等(SAS).3.作BC=a-b;分别以点B、C为圆心,a为半径画弧,两弧交于点A;连接AB,AC,△ABC即为所求.4.分四种情况:(1)顶角为∠α,腰长为a;(2)底角为∠α,底边为a;(3)顶角为∠α,底边为a;(4)底角为∠α,腰长为a.((3),(4)暂不作).第3课时1.四种:SSS,SAS,ASA,AAS.2.作线段AB;作∠BAD=∠α,在∠BAD同侧作∠ABE=∠B;AD与BE相交于点C.△ABC即为所求.3.作∠γ=∠α+∠β;作∠γ的外角∠γ′;作△ABC,使AB=c.∠A=∠γ′,∠B=∠α.4.作∠γ=180°-∠β;作△ABC,使BC=a,∠B=∠α,∠C=∠γ.第一章综合练习1.A2.C3.C4.AB=DC或∠ACB=∠DBC或∠A=∠D.5.△ACD≌△BDC,△ABC ≌△BAC.6.△ABC≌△CDE(AAS)7.4分钟8.△BOC′≌△B′OC(AAS)9.略10.相等.△BCF≌△EDF(SAS).△ABF≌△AEF(SSS)检测站1.B2.B3.20°4.∠BCD5.相等.△ABP≌△ACP(SSS),△PDB≌△PEC(AAS).6.略2.11~3.略.4.B5.C6.(1)(2)(4)7.20°;30°.8.略2.2第1课时1~2.略3.C4.D5.略6.66°7.(1)AA′∥CC′∥BB′,且AA′⊥MN,BB′⊥MN,CC′⊥MN.(2)5 cm8.(1)DE⊥AF;(2)略.第2课时1.(-2,-3),(2,3).2.3,-43.(3,2)4.B5~6.略7.(1)(-a,b);(2)当n=4k+1时,在第一象限,n=4k+2时,在第四象限,n=4k+3时,在第三象限,n=4(n+1)时,在第二象限,k为非负整数.2.31~3.略.4.B5.C.6.略.7.4条.8.略.2.4第1课时1.略.2.CM=DM,CE=DE.3.C4.∠A=∠B,∠ACD=∠BCD,∠ADC=∠BDC.5~6.略.7.连接BM,PB<PM+MB,∵MB=MA,∴PB<PA.第2课时1.作一条线段的垂直平分线2.D3~5.略.6.分别作点A关于OM,ON的对称点D,E.连接DE,分别交OM,ON于点B,C.连接AB,AC,则△ABC 的周长最小.2.51.略.2.103.D4.C5.作∠AOB的平分线交MN于点P.则P即为所示.6.(1)DE=DC,AE=BE,BE=BC;(2)7.7.(1)△ADO≌△AEO(AAS),△BOD≌△COE(ASA),OB=OC;(2)∠1=∠2.8.4处.三条直线围成的三角形的三内角平分线的交点,及任一内角平分线与其他两个角的外角平分线的交点.2.6第1课时1.略.2.35°,35°.3.50°,80°或65°,65°.4.C5.B6.∠EBC=36°,∠C=∠BEC=72°.7.△ACD≌ABD(SSS),∠CAG=∠BAG.AG 是等腰三角ABC的顶角平分线.∴AD垂直平分BC.8.99°第2课时1.略.2.△ABE,△ECD,△EBC.3.C4.△DBE是等腰三角形.因为∠B=∠C=∠DEB.5.△AED是等腰三角,因为∠EAD=∠BAD=∠ADE.6~7.略.第3课时1.略.2.1,3.3.C4.△ADE是等边三角形.因为三个角都等于60°.5.略.6.任两边的垂直平分线的交点即为点O.7.BE=DC.因为△ADC≌△ABE(SAS).第二章综合练习1.GH,∠E,EO.1.B(4,-3);C(-4,3);6;8.3.24.45.64°;58°.6.D7.C8.A9.A10.(1)AB=AD,AE=AC,BC=DE,BF=DF,EF=CF;∠BAC=∠DAE,∠B=∠D,∠C=∠E,∠BAE=∠DAC,∠EAF=∠CAF,∠BFE=∠DFC,∠BAF=∠DAF.(2)△AEF与△ACF,△ABF与△ADF都关于直线MN成轴对称.11.△ABC 与△A′B′C′关于y轴对称.12.△ACE≌△DCB(SAS).AE=BD.又∠HGE=∠CGB.∠HEG=∠CBG.∠HGE+∠HEG=∠CGB+∠CBG=90°.∠EHG=90°.AE⊥BD.13.4个.①以BC为底边的等腰三角形可作1个;②以BC为腰的等腰三角形可作3个.检测站1.60°2.AP;PC,AP;∠CAP.3.1;7.4.55°,55°或70°,40°.5.AC,∠C,△ABD.6.B7.B8.B9.D10.A11.略.12.∠BAC=60°,∠C=90°,∠B=30°.13.∵△ABC≌△BAD.∠CAB=∠DBA,∴△EBA是等腰三角形.14.(1)5;(2)80°.15.∠ACD=180°-A2,∠BCE=180°-B2,∠ACB=90°.∴∠ACD+∠BCE=90°+∠DCE.∠DCE=45°.3.1第1课时1.B≠0;B=0;A=0且B≠0.2.≠23.1,0.4.B5.D6.B7.x=-1且y≠08.19.ba-5;400.10.a=-1.11.略.12.n+13n-2第2课时1.略2.(1)2abc2;(2)xy(x+y);(3)a(a+b);(4)2x(x+y).3.A4.C5.B6.x ≠1且x≠07.当a≠0时,a2a=12;当m≠0,n≠0时,n2mn=nm.8.M=-3x(a+x)2;x≠0,-a,a.9.5a2-1030a2-2a3.21.略.2.2a(b-a)3.C4.C5.B6.(1)3y2x;(2)-1(x-y)2;(3)a+22-a;(4)2a2a -3b.7.-78.a-b+ca+b+c9.略.3.31~3.略.4.(1)-1ab;(2)ab18c;(3)4yx;(4)4yx.5.D6.C7.(1)a+1;(2)-b3x;( 3)xy2;(4)aa+b8.-139.略.3.41.略.2.6a2b2,ab,3b,2a.3.(x+2)(x-2)24.D5.D6.2b24a2b2c2,3ac324a2 b2c2;(2)5(a-b)215a(a+b)(a-b),3(a+b)215(a+b)(a-b);(3)3x-2y(3x +2y)(3x-2y),2(3x+2y)(3x-2y);(4)(x+1)2(x-1)(x+1)2,x(x-1)(x+1)(x-1)(x+1)2,x-1(x-1)(x+1)2.7 .(m-n)2m-n,-mnm-n.8.cyz(b-c)(c-a)xyz(a-b)(b-c)(c-a),axz(a-b) (c-a)xyz(a-b)(b-c)(c-a),bxy(a-b)(b-c)xyz(a-b)(b-c)(c-a). 9.(1)把前一个分式的分子,分母同乘-a2b即得下一个分式;(2)-a12b8a13b6.(3)(-1)na2n-2bn+1(-1)n+1a2n-1bn-1.3.5第1课时1.略.2.(1)-b2a;(3)2aa-b.3.C4.D5.(1)y2x;(2)x+2;(3)3.6.(1)2+x;(2)3abb-a.7.x+2.8.原式=1.第2课时1.略.2.b2-4c4a3.-4(x+2)(x-2)4.C5.D6.D7.(1)3c3-4a2b12ab2c2;(2)6x2+xy+7y242x2y2;(3)2mn-m2n2-m2.8.-659.(1)11-a;(2)x2.10.1(x-1)(x-2),1(x-2)(x-3),1(x-3)(x-4),1x-100.第3课时1.C2.D3.B4.(1)a-bb;(2)x+2.5.126.∵ca+b<1.∴c2(a+b)2<ca+b3.6第1课时1.(1)7x4y;(2)b2a;(3)2x-y;(4)a+ba-b2.ala+b,ala+b.3.23;49;13.4.A5.C6.(1)2;(2)2;(3)4.7.68.(1)xyx+y(天);(2)甲:myx+y(元),乙:mxx+y(元).9.(1)ba;(2)b-10a-10,b+10a+10;(3)b-10a-10<ba<b+10a+10.第2课时1.略.2.8∶93.124.245.C6.D7.8a38.a-b=-39.260 mm10.5211.-5.第3课时1.略.2.2∶33.33124.1 m5.10∶15∶216.D7.B8.x∶y∶z=(a+b)2∶(a2-b2)∶(a-b)29.34a,a,54a.10.6,8,10.11.63人,192人,45人.3.7第1课时1.略.2.去分母,将分式方程转化为整式方程求解,然后验根.3.-124.-325.B6.B7.D8.30x-2-30x=12.9.(1)x=4;(2)x=0.10.m=-1 8711.(1)x=5;(2)a=6.第5个方程;(3)1+x2x=n+1x,x=2n+1.第2课时1.略.2.无解3.C4.B5.不正确,错在第3步,没有检验;方程无解.6.(1)x=3;(2)无解;(3)无解;(4)无解.7.a=-58.(1)①x=1;②x=2;③x=3;(2)方程1x-2-1x-3=1x-5-1x-6的解为x=4;方程1x+2-1x+1=1x-1-2x-2的解为x=0.第3课时1.略.2.12010-x-12010=33.16+1x=13.4.D5.(1)设去年每间屋的租金为x元,9.6x=10.2x+500;(2)8 000元.6.4 km/h7.37.5 km/h8.1.5 t9.(1)设预定工期为x天,4x+xx+5=1,x=20(天).(2)采取联合施工4天,然后由乙单独施工的方案省工程费.第三章综合练习1.a≠32;x=-1.2.m=3,m≠1.3.24.125.a∶b=b∶c,c∶b=b∶a,ac=b26.127.3∶4∶58.39.C10.C11.A12.D13.B14.D15.616.a+b=0.17.(1)-5y2ax;(2)-x3y ;(3)2xy;(4)3x+1;(5)1681x4y4;(6)2a2b2;(7)a-3a2-13;(8)-1a+1.18.(1)-715;(2)310.19.S1∶S2=1∶220.21821.(1)无解;(2)x=1912;(3)x=-2;(4)无解.22.应提高60 km/h23.(1)x ≠-1,0,1;(2)原式=1.24.1次清洗.残留农药比为11+y;分两次清洗后,残留农药比为:4(2+)2,11+y-4(2+y)2=y2(1+y)(2+y)2>0.第2种方案好.检测站1.x≠32,x=-23.2.x≠0且x≠-53.164.295.326.D7.C8.B9.B10.相等11.(1)mn-m;(2)ab;(3)2x-1x.12.11-x;-1.13.(1)x=4;(2)无解;(3)x=2.14.a=-115.14516.3617.28天4.1第1课时1~2.略.3.3.44.C5.B6.总产量1 757 t;平均产量8.53 t.7.9 000 m3 8.a·10%+b·15%+c·5%a+b+c (a,b,c为甲、乙、丙三种汽油原价) 第2课时1.820,920,320.2.86 km/h3.C4.(1)甲;(2)乙.5.9.9%6.(1)1.84 kg;(2)3 312 kg.4.21.略.2.94.53.C4.x=225.平均数:1 626,中位数1 680.6.26 cm7.9或108.(1)85.5;(2)41人;(3)高低分悬殊大.4.3第1课时1.2;1与2.2.7与83.B4.平均数、中位数、众数都是21岁5.平均数为2,中位数是3,众数是1.6.(1)3个;(2)32 000个.7.(1)甲组:平均数80,中位数80,众数90;乙组:平均数80.2,中位数80,众数70;(2)略.第2课时1.72.A3.平均数13千瓦时,中位数22.5千瓦时,众数10千瓦时.4.(1)众数55 min,中位数55 min;(2)平均数为55 min.符合学校的要求.5.甲当选4.41~2.略.3.(1)平均直径都是20 mm;(2)小明.4.乙地;甲地温差比乙地大.5.(1)平均身高都是178 cm;(2)图略.甲队整齐.6.(1)x甲=1.69 m,x乙=1.68 m;(2)图略.甲比较稳定.4.5第1课时1.1.22.10,26.3.10,1.8.4.A5.D6.S2甲=0.055,S2乙=0.105;果农甲.7.(1)x=3,S2=2;(2)x=13,S2=2;(3)x=30,S2=200.8.(1)xA=0,S2A=2.29;(2)取-2,-1,0,3,0;xB=0,S2B=2.8.第2课时1.乙2.D3.(1)略;(2)大刚的平均数为13.35,方差为0.004;小亮的平均数为13.3,方差为0.02.大刚成绩好.4.(1)x苹果=8,x香蕉=8,S2苹果=9,S2香蕉=1.333;(2)略;(3)9月份多进苹果.5.S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]=1n[x21+x22+…+x2n-2x(x1+x2+…+xn)+nx2]=1n[x21+x22+…+x2n-2nx(x1+x2+…+xnn+nx2)]=1n[x21+x22+…+x2n-nx2].4.61.C2.略3.甲4.相差75.x甲=178,S2甲=0.6;x乙=178,S2乙=1.8.6.(1)x甲=200.8,S2甲=7.96;x乙=201.5,S2乙=38.05;(2)甲. 第四章综合练习1.1.62 m2.8,8,8,1.23.20,18,184.4,3.5.b>a>c6.C7.D8.C9.(1)甲组:x甲=3.中位数2,众数1,S2甲=7.67;乙组:x乙=3,中位数3,众数3,S2乙=1.67;(2)乙组.10.(1)x=2 135.7(元),众数为800元,中位数为1 600元;(2)略.11.(1)x=2,众数为3,中位数为2;(2)68人.12.(1)22℃;(2)20.8℃;(3)146天.13.乙成绩稳定检测站1.2.12元2.23.64.31.8℃,4.965.D6.C7.D8.90.6分9.(1)x甲=5.6 cm,S2甲=1.84,x乙=5.6 cm,S2乙=1.04.(2)乙苗长的比较整齐.10.(1)x甲=7,S2甲=0.4,x乙=7,S2乙=2.8;(2)甲.11.612.(1)甲班:平均分24,方差5.4;乙班中位数24,众数21,方差19.8;(2)甲班42人,乙班36人;(3)甲班.综合与实践略.5.11~2.略.3.面积相等的三角形,是全等三角形,假.4.D5.D6.B7~9.略.5.21.略.2.不正确.如正方形与菱形.3.小亮不对;小莹说法正确.4.不正确.如2≠-2,但22=(-2)2.5.不正确;t=20t1+30t220+30.5.31~3.略.4.C5.直角定义;余角定义;对顶角相等;等量代换;余角定义.6.(1)C,E,F,G;(2)E;(3)K;(4)略.7.C5.41.B2.C3.(1)∠D;内错角相等,两直线平行;(2)∠DEC;AB∥DE.同位角相等,两直线平行.4.已知:∠CBE;两直线平行,同位角相等;已知,∠CBE;等量代换;内错角相等,两直线平行.5.略.6.(1)如果两个角相等,那么这两个角是同角或等角的补角.真命题;(2)如果三角形中有两个角是锐角,那么第三个角是钝角,假命题,如∠A=80°,∠B=70°,∠C=30°.7.(1)延长AE与CD相交于点G.∵AB∥EF.∴∠A+∠AEF=180°.∵AB∥CD,∴∠A+∠G=180°.∴∠A+∠AEF=∠A+∠G,∠AEF=∠G.∴EF∥CD;(2)360°.5.5第1课时1.略.2.C3.D4.∠B=∠C,∠AOB=∠DOC.5.∠1>∠ACB>∠26.略.7.(1)∠A逐渐减小,∠B,∠C逐渐变大;若点A向下运动,变化相反;(2)α=β+γ.5.5第2课时1.(1)∠B=∠DAC;(2)∠A=∠D;∠CGE+∠B=180°.2.D3.B4.略.5.∠1=∠C+∠CDE,∠2=∠C+∠CED,∠1+∠2=180°.6.(1)∠EFD=90°-∠FED=12(∠A+∠B+∠C)-(∠B+12∠A)=12(∠C-∠B);(2)不变.5.6第1课时1.D2.C3.(1)BC=EF或BE=CF;(2)∠A=∠D;(3)∠C=∠F.4.(1)△ABE≌△DCF(SAS),△ABF≌△DCE(SAS),△BEF≌△CFE;(2)略.5.△AFC≌△BED(ASA)6.取EF的中点M,连接GM,并延长交FH于点N.GN 分别交AD,BC于点P,Q.△PEM≌△QFM.沿GN将道路取直即可.第2课时1.平行2.90°3.B4.D5.∵∠ABD=∠ADB,∴∠CBD=∠CDB.∴BC=DC.6.△ABD与△ACD都是等腰三角形,BD=AD=DC.7.△ABD≌△ACE(SAS).∠A=∠CAE=60°.∴△ADE为等边三角形.8.∵△AEB≌△BDA(ASA).∴AE=BD,EB=DA,CE=CD,EF=DF.AF=BF.第3课时1.=2.①②③3.A4.略.5.△ABD≌△AED(SAS),∴AB=AE.DC=AB+BD=AE+DE,DC=DE+EC,∴AE=EC.∴点E在线段AC的垂直平分线上.6.(1)∠A≠∠C.因为△ABD与△CBD不全等;(2)∠A>∠C.因为AB <BC,在BC上取BA′=BA.△ABD≌△A′BD.∠A=∠BA′D.∠BA′D>∠C,∴∠A>∠C;(3)当AB=CB时.∠A=∠C;当AB<BC时,∠A>∠C;当AB>BC时,∠A<∠C.第4课时1.OA=OB.2.=.三角形的三内角平分线相交于一点.3.B4.B5.△ADE≌△ADF.AE=AD.△AEF为等腰三角形.6.△BEO≌△BFO(AAS),△BED≌△BFD(SAS).△EOD≌△FOD(SSS)或(SAS).7.DE=BD-CE.由DE∥BC.∠BOD=∠OBC=∠OBD.∴BD=OD.又∠OCE=∠OCF=∠BOC+∠OBC=∠BOC+∠BOE=∠COE.∴CE=OE.DE=OD-OE=BD-CE.第5课时1.AB=AD或BC=DC(HL)2.D3.B4.作直线MN,过MN上一点D作MN的垂线l;在直线l上截取DA=h;以A为圆心,a为半径画弧交MN于点B,C两点;连接AB,AC.△ABC即为所求.5.连接AC.Rt△ABC≌RtADC(HL).∴BC=DC.Rt△BCE≌Rt△DCF(HL).6.连接AF,BF.△AEF≌△BEF△AFC≌△BFD(SAS).7.(1)Rt△OBD≌Rt△OCE(HL);(2)Rt△OBD≌△OCE(HL);(3)相等.第五章综合练习1.A2.C3.D4.B5.D6.略.7.120°8.∠2=∠1.∴∠2=∠C,AB∥CD.9.延长EF交BC于点G.∵∠2=∠4,∴AB∥EF.∠3=∠B=∠EGC.∴DE∥BC.∴∠AED=∠ACB.10.∠ABE=∠FBD,∠ABE+∠AEB=90°,∠FBD+∠AFE=90°.∴∠AEB=∠AFE.∴AE=AF.11.△ACE≌△BDE(AAS),∴EC=ED.12.(1)∠D=∠AEC(同角的余角相等).△ACE≌△CBD.∴AE=CD;(2)BD=CE=12AC=6 cm.13.(1)Rt△ADE≌Rt△ADF;(2)DB=DC,Rt△DBE≌Rt△DCF(HL).14.(1)略;(2)连接BD.∠DBC=12∠B=30°.∵∠CDE=∠CED.∴∠CED=12∠ACB=30°.∴△DBE为等腰三角形.∵DM⊥BE,∴BM=EM.15.△BPD≌△BDC(SAS),△BCD≌△ACD(SSS).∠P=∠BCD=∠ACD=12∠ACB=30°.16.(1)作DF⊥AB,垂足为点E.AC=AE,DE=DC.∵∠B=∠A=45°,∴BE=DE.∴AB=AE+BE=AC+CD.(2)(1)中的等量关系仍成立.∵∠ACB>∠B,∴AB >AC.在AB上截取AG=AC.分别作DF⊥AC,DE⊥AB.△DCF≌△DGE.∵∠EGD=∠C=2∠B.∴∠B=∠BDG.BG=DG=DC.∴AB=AG+GB=AC+CD.检测站1.A2.C3.C4.三;△ODG≌△OEG,△DPG≌△EPG;△ODP≌△OEP,HL或AAS.5.略.6.FA=FD,∠ADF=∠DAF=∠DAC+∠CAF.∵∠DAC=∠BAD.∴∠B=∠ADF-∠BAD=∠DAF-∠DAC=∠CAF.7.(1)略;(2)∵CA=CE,∴∠CAE=∠E.∵∠ACB=∠CAE+∠E=2∠E,∠ACB=2∠BCD,∴∠E=∠BCD.CD∥AE.8.(1)①③或②③;(2)略.9.(1)△ABQ≌△PBC;(3)∠MBN=60°,△ABM≌△PBN(ASA).BM=BN.∴△BMN为等边三角形.∠MNB=∠QBC.MN∥AC.总复习题1.(3,4),等腰2.-53.50°,60°,70°.4.略.5.5,5.6.D7.C8.D9.B10.D11.(1)11-x;(2)x2-xy-2y23xy2;(3)-(1-m)2;(4) 1-a.12.32°13.-314.设每天修x m,3 600x-3 6001.8x=20.x=80 m.15.(1)中位数12℃,众数11℃;(2)1.143.16.分别作FG⊥BC,FM⊥AD,FN⊥AE,垂足分别为点G,M,N.FM=FG=FN.17.∵∠BAD=∠BDA,∴AB=DB=CD.∵BE=DE,∴△ABE≌△ADE.AB=AD,△ABD为等边三角形.连接CF.△AEC≌△FEC.∵∠ACF=60°,∴△AFC为等边三角形.∴AF=AC,AE=12AC.18.延长BO交AC于点D.∠BOC=110°.19.作CF⊥AC,交AD延长线于点 F.∵∠BAC=90°,AD⊥BM.∴∠ABM=∠MAE.∵AB=AC,∴△ABM≌△CFA.∠1=∠F.AM=CF.∵AM=CM,∴CF=CM.∠FCD=45°=∠MCD.∴△FCD≌△MCD(SAS).∠2=∠F=∠1.总检测站1.a-12.(1)SSS;(2)SAS;(3)HL.3.5,5,5.25.4.4,3.5.△ABC≌△ABD,△ACE≌△ADE,△CEB≌△DEB.6.C7.D8.D9.D10.B11.113 850 kg 12.(1)x=-2;(2)无解.13.30 m14.∵△ABE≌△ACE,∴BE=CE,BD=CD.△BDE≌△CDE(SSS).15.(1)①②③④,①③②④,①④②③,②③①④,②④①③.(2)略.≤≥<>×≠÷′△∠°αβ⊥∥∵∴△≌△S△ACC′1.2.3.4.5.6.7.8.9.10.。

最新青岛版数学八年级上册2.6.3等腰三角形(同步练习)及答案.docx

最新青岛版数学八年级上册2.6.3等腰三角形(同步练习)及答案.docx

2.6.3 等腰三角形1.正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( )A .60°B .90°C .120°D .150°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③B .①②④C .①③D .①②③④3.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF •的形状是( )A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形E DCAB F21E D C A B4.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是( )A .2cmB .4cmC .8cmD .16cm5.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状6.△ABC 中,AB=AC ,∠A=∠C ,则∠B=_______.7.已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE=______.8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________.9.△ABC 中,∠B=∠C=15°,AB=2cm ,CD ⊥AB 交BA 的延长线于点D ,•则CD •的长度是_______.10.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC•于点D ,•求证:•BC=3AD. D CAB参考答案1.C 2.D 3.A 4.C 5.B6.60°7.60°8.三;三边的垂直平分线9.1cm 10.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∴在Rt△ADC中CD=•2AD,•∵∠BAC=120°,∴∠BAD=120°-90°=30°,∴∠B=∠BAD,∴AD=BD,∴BC=3AD。

青岛版数学配套练习册答案八上

青岛版数学配套练习册答案八上

青岛版数学配套练习册答案八上【练习一:数与式】1. 计算下列各题:(1) (-2) × 3 = -6(2) (-3)² = 9(3) 5 - (-3) = 8(4) 4 × (-2) - 3 = -112. 化简下列各题:(1) 3x - 2x + 5 = x + 5(2) 4y + 3y - 2y = 5y3. 求下列方程的解:(1) 2x - 3 = 7,解得 x = 5(2) 3x + 4 = 2x - 1,解得 x = -5【练习二:方程与不等式】1. 解一元一次方程:(1) x + 6 = 11,解得 x = 5(2) 3x - 9 = 6,解得 x = 72. 解一元一次不等式:(1) 2x + 5 > 3,解得 x > -1(2) 4 - 3x ≥ 1,解得x ≤ 1【练习三:函数】1. 根据函数的定义域,求下列函数的值域:(1) f(x) = x²,值域为[0, +∞)(2) g(x) = 2x - 3,值域为 (-∞, +∞)2. 判断下列函数的单调性:(1) f(x) = x³,为增函数(2) g(x) = -x² + 2,为减函数在(0, +∞),增函数在 (-∞, 0)【练习四:几何】1. 已知三角形ABC,∠A = 60°,AB = 8,AC = 6,求BC的长度:BC = √(8² + 6² - 2 × 8 × 6 × cos(60°)) = √(64 + 36 - 48) = √522. 已知圆的半径为5,求圆的面积:面积= π× 半径² = 25π【练习五:统计与概率】1. 某班级有50名学生,随机抽取5名学生进行数学测试,求这5名学生的平均分超过90分的概率。

(此题需要具体数据,无法给出具体答案)2. 抛一枚均匀硬币两次,求正面朝上的次数为1的概率。

八年级上册青岛版数学配套练习册答案

八年级上册青岛版数学配套练习册答案

八年级上册青岛版数学配套练习册答案Prepared on 21 November 2021青岛版数学练习册八年级上册参考答案1.11.略.2.DE,∠EDB,∠E.3.略.4.B5.C6.AB=AC,BE=CD,AE=AD,∠BAE=∠CAD7.AB∥EF,BC∥∠ADB=∠AEC.4.∠1=∠25.△ABC≌△FDE(SAS)6.AB∥CD.因为△ABO≌△CDO(SAS).∠A=∠△ABE≌△ACD(SAS).第2课时∠ADE=∠ACB;(2)∠E=∠B.4.△ABD≌△BAC(AAS)5.(1)相等,因为△ABE≌△CBD(ASA);(2)DF=EF,因为△ADF≌△CEF(ASA).6.相等,因为△ABC≌△ADC(AAS).7.(1)△ADC≌△AEB;(2)AC=AB,DC=EB,BD=EC;∠ABE=∠ACD,∠BDO=∠CEO,∠BOD=∠COE.第3课时°4.BC的中点.因为△ABD≌△ACD(SSS).5.正确.因为△DEH≌△DFH(SSS).6.全等.因为△ABD≌△ACD(SSS).∠BAF=∠CAF.7.相等,因为△ABO≌△ACO(SSS).1.3第1课时1~6(略).7.作∠AOB=∠α,延长BO,在BO上取一点C,则∠AOC即为所求.8.作∠AOB=∠α,以OB为边,在∠AOB的外部作∠BOC=∠β;再以OA为边,在∠AOC的内部作∠AOD=∠γ,则∠DOC即为所求.第2课时1.略.2.(1)略;(2)全等(SAS).3.作BC=a-b;分别以点B、C为圆心,a为半径画弧,两弧交于点A;连接AB,AC,△ABC即为所求.4.分四种情况:(1)顶角为∠α,腰长为a;(2)底角为∠α,底边为a;(3)顶角为∠α,底边为a;(4)底角为∠α,腰长为a.((3),(4)暂不作).第3课时1.四种:SSS,SAS,ASA,AAS.2.作线段AB;作∠BAD=∠α,在∠BAD同侧作∠ABE=∠B;AD与BE相交于点C.△ABC即为所求.3.作∠γ=∠α+∠β;作∠γ的外角∠γ′;作△ABC,使AB=c.∠A=∠γ′,∠B=∠α.4.作∠γ=180°-∠β;作△ABC,使BC=a,∠B=∠α,∠C=∠γ.第一章综合练习∠ACB=∠DBC或∠A=∠D.5.△ACD≌△BDC,△ABC≌△BAC.6.△ABC≌△CDE(AAS)7.4分钟8.△BOC′≌△B′OC(AAS)9.略10.相等.△BCF≌△EDF(SAS).△ABF≌△AEF(SSS)检测站°4.∠BCD5.相等.△ABP≌△ACP(SSS),△PDB≌△PEC(AAS).6.略2.1°;30°.8.略2.2第1课时°7.(1)AA′∥CC′∥BB′,且AA′⊥MN,BB′⊥MN,CC′⊥MN.(2)5 cm8.(1)DE⊥AF;(2)略.第2课时1.(-2,-3),(2,3).2.3,-43.(3,2)4.B5~6.略7.(1)(-a,b);(2)当n=4k+1时,在第一象限,n=4k+2时,在第四象限,n=4k+3时,在第三象限,n=4(n+1)时,在第二象限,k 为非负整数.2.32.4第1课时∠A=∠B,∠ACD=∠BCD,∠ADC=∠BDC.5~6.略.7.连接BM,PB<PM+MB,∵MB=MA,∴PB<PA.第2课时1.作一条线段的垂直平分线2.D3~5.略.6.分别作点A关于OM,ON的对称点D,E.连接DE,分别交OM,ON于点B,C.连接AB,AC,则△ABC的周长最小.2.5∠AOB的平分线交MN于点P.则P即为所示.6.(1)DE=DC,AE=BE,BE=BC;(2)7.7.(1)△ADO≌△AEO(AAS),△BOD≌△COE(ASA),OB=OC;(2)∠1=∠2.6第1课时1.略.2.35°,35°.3.50°,80°或65°,65°.4.C5.B6.∠EBC=36°,∠C=∠BEC=72°.7.△ACD≌ABD(SSS),∠CAG=∠BAG.AG 是等腰三角ABC的顶角平分线.∴°第2课时1.略.2.△ABE,△ECD,△△DBE是等腰三角形.因为∠B=∠C=∠DEB.5.△AED是等腰三角,因为∠EAD=∠BAD=∠ADE.6~7.略.第3课时△ADE是等边三角形.因为三个角都等于60°△ADC≌△ABE(SAS).第二章综合练习1.GH,∠°;58°∠BAC=∠DAE,∠B=∠D,∠C=∠E,∠BAE=∠DAC,∠EAF=∠CAF,∠BFE=∠DFC,∠BAF=∠DAF.(2)△AEF与△ACF,△ABF与△ADF都关于直线MN成轴对称.11.△ABC与△A′B′C′关于y轴对称.12.△ACE≌△DCB(SAS).AE=BD.又∠HGE=∠CGB.∠HEG=∠CBG.∠HGE+∠HEG=∠CGB+∠CBG=90°.∠EHG=90°.AE⊥①以BC为底边的等腰三角形可作1个;②以BC为腰的等腰三角形可作3个.检测站1.60°2.AP;PC,AP;∠°,55°或70°,40°.5.AC,∠C,△10.A11.略.12.∠BAC=60°,∠C=90°,∠B=30°.13.∵△ABC≌△BAD.∠CAB=∠DBA,∴△EBA是等腰三角形.14.(1)5;(2)80°.15.∠ACD=180°-A2,∠BCE=180°-B2,∠ACB=90°.∴∠ACD+∠BCE=90°+∠DCE.∠DCE=45°.3.1第1课时1.B≠0;B=0;A=0且B≠0.2.≠≠10.a=-1.11.略.12.n+13n-2第2课时≠1且x≠07.当a≠0时,a2a=12;当m≠0,n≠≠3.28.a-b+ca+b+c9.略.3.33.49.(1)把前一个分式的分子,分母同乘-a2b即得下一个分式;(2)-a12b8a13b6.(3)(-1)na2n-2bn+1(-1)n+1a2n-1bn-1.3.5第1课时第2课时7.(1)3c3-4a2b12ab2c2;(2)6x2+xy+7y242x2y2;(3)2mn-m2n2-m2.8.-659.(1)11-a;(2)x2.10.1(x-1)(x-2),1(x-2)(x-3),1(x-3)(x-4),1x-100.第3课时6.∵ca+b<1.∴c2(a+b)2<ca+b3.6第1课时1.(1)7x4y;(2)b2a;(3)2x-y;(4)a+ba-b2.ala+b,ala+b.8.(1)xyx+y(天);(2)甲:myx+y(元),乙:mxx+y(元).9.(1)ba;(2)b-10a-10,b+10a+10;(3)b-10a-10<ba<b+10a+10.第2课时1.略.2.8∶8.a-b=-39.260 mm10.5211.-5.第3课时1.略.2.2∶33.33124.1 m5.10∶15∶∶y∶z=(a+b)2∶(a2-b2)∶3.7第1课时11.(1)x=5;(2)a=6.第5个方程;(3)1+x2x=n+1x,x=2n+1.第2课时(4)无解.7.a=-58.(1)①x=1;②x=2;③x=3;(2)方程1x-2-1x-3=1x-5-1x-6的解为x=4;方程1x+2-1x+1=1x-1-2x-2的解为x=0.第3课时1.略.2.12010-x-12010=33.16+1x=13.4.D5.(1)设去年每间屋的租金为x元,9.6x=10.2x+500;(2)8 000元.6.4 km/h7.37.5 km/h8.1.5 t9.(1)设预定工期为x天,4x+xx+5=1,x=20(天).(2)采取联合施工4天,然后由乙单独施工的方案省工程费.第三章综合练习1.a≠≠5.a∶b=b∶c,c∶b=b∶a,ac=b26.127.3∶4∶∶S2=1∶220.21821.(1)无解;(2)x=1912;(3)x=-2;(4)无解.22.应提高60km/h23.(1)x≠检测站1.x≠32,x=-23.2.x≠0且x≠4.1第1课时8.a·10%+b·15%+c·5%a+b+c (a,b,c为甲、乙、丙三种汽油原价)第2课时4.24.3第1课时第2课时4.41~2.略.3.(1)平均直径都是20 mm;(2)小明.4.乙地;甲地温差比乙地大.5.(1)平均身高都是178 cm;(2)图略.甲队整齐.6.(1)x甲=1.69 m,x乙=1.68 m;(2)图略.甲比较稳定.4.5第1课时第2课时1.乙2.D3.(1)略;(2)大刚的平均数为13.35,方差为0.004;小亮的平均数为13.3,方差为0.02.大刚成绩好.4.(1)x苹果=8,x香蕉=8,S2苹果=9,S2香蕉=1.333;(2)略;(3)9月份多进苹果.5.S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]=1n[x21+x22+…+x2n-2x(x1+x2+…+xn)+nx2]=1n[x21+x22+…+x2n-2nx(x1+x2+…+xnn+nx2)]=1n[x21+x22+…+x2n-nx2].4.6第四章综合练习℃;(2)20.8℃;(3)146天.13.乙成绩稳定检测站℃12.(1)甲班:平均分24,方差5.4;乙班中位数24,众数21,方差19.8;(2)甲班42人,乙班36人;(3)甲班.综合与实践略.5.15.21.略.2.不正确.如正方形与菱形.3.小亮不对;小莹说法正确.4.不正确.如2≠-2,但22=(-2)2.5.不正确;t=20t1+30t220+30.5.31~3.略.4.C5.直角定义;余角定义;对顶角相等;等量代换;余角定义.6.(1)C,E,F,G;(2)E;(3)K;(4)略.7.C5.4∠D;内错角相等,两直线平行;(2)∠DEC;AB∥DE.同位角相等,两直线平行.4.已知:∠CBE;两直线平行,同位角相等;已知,∠CBE;等量代换;内错角相等,两直线平行.5.略.6.(1)如果两个角相等,那么这两个角是同角或等角的补角.真命题;(2)如果三角形中有两个角是锐角,那么第三个角是钝角,假命题,如∠A=80°,∠B=70°,∠C=30°.7.(1)延长AE与CD相交于点G.∵AB∥EF.∴∠A+∠AEF=180°.∵AB∥CD,∴∠A+∠G=180°.∴∠A+∠AEF=∠A+∠G,∠AEF=∠G.∴EF∥CD;(2)360°.5.5第1课时∠B=∠C,∠AOB=∠DOC.5.∠1>∠ACB>∠26.略.7.(1)∠A逐渐减小,∠B,∠C逐渐变大;若点A向下运动,变化相反;(2)α=β+γ.5.5第2课时1.(1)∠B=∠DAC;(2)∠A=∠D;∠CGE+∠B=180°∠1=∠C+∠CDE,∠2=∠C+∠CED,∠1+∠2=180°.6.(1)∠EFD=90°-∠FED=12(∠A+∠B+∠C)-(∠B+12∠A)=12(∠C-∠B);(2)不变.5.6第1课时∠A=∠D;(3)∠C=∠F.4.(1)△ABE≌△DCF(SAS),△ABF≌△DCE(SAS),△BEF≌△CFE;(2)略.5.△AFC≌△BED(ASA)6.取EF的中点M,连接GM,并延长交FH于点N.GN分别交AD,BC于点P,Q.△PEM≌△QFM.沿GN将道路取直即可.第2课时1.平行2.90°∵∠ABD=∠ADB,∴∠CBD=∠CDB.∴BC=DC.6.△ABD与△ACD都是等腰三角形,BD=AD=DC.7.△ABD≌△ACE(SAS).∠A=∠CAE=60°.∴△ADE为等边三角形.8.∵△AEB≌△BDA(ASA).∴AE=BD,EB=DA,CE=CD,EF=DF.AF=BF.第3课时1.=2.①②③3.A4.略.5.△ABD≌△AED(SAS),∴AB=AE.DC=AB+BD=AE+DE,DC=DE+EC,∴AE=EC.∴点E在线段AC的垂直平分线上.6.(1)∠A≠∠C.因为△ABD与△CBD不全等;(2)∠A>∠C.因为AB<BC,在BC上取BA′=BA.△ABD≌△A′BD.∠A=∠BA′D.∠BA′D >∠C,∴∠A>∠C;(3)当AB=CB时.∠A=∠C;当AB<BC时,∠A>∠C;当AB>BC时,∠A<∠C.第4课时△ADE≌△ADF.AE=AD.△AEF为等腰三角形.6.△BEO≌△BFO(AAS),△BED≌△BFD(SAS).△EOD≌△FOD(SSS)或(SAS).7.DE=BD-CE.由DE∥BC.∠BOD=∠OBC=∠OBD.∴BD=OD.又∠OCE=∠OCF=∠BOC+∠OBC=∠BOC+∠BOE=∠COE.∴CE=OE.DE=OD-OE=BD-CE.第5课时△ABC即为所求.5.连接AC.Rt△ABC≌RtADC(HL).∴BC=DC.Rt△BCE≌Rt△DCF(HL).6.连接AF,BF.△AEF≌△BEF△AFC≌△BFD(SAS).7.(1)Rt△OBD≌Rt△OCE(HL);(2)Rt△OBD≌△OCE(HL);(3)相等.第五章综合练习°8.∠2=∠1.∴∠2=∠C,AB∥CD.9.延长EF交BC于点G.∵∠2=∠4,∴AB∥EF.∠3=∠B=∠EGC.∴DE∥BC.∴∠AED=∠ACB.10.∠ABE=∠FBD,∠ABE+∠AEB=90°,∠FBD+∠AFE=90°.∴∠AEB=∠AFE.∴AE=AF.11.△ACE≌△BDE(AAS),∴EC=ED.12.(1)∠D=∠AEC(同角的余角相等).△ACE≌△CBD.∴AE=CD;(2)BD=CE=12AC=6 cm.13.(1)Rt△ADE≌Rt△ADF;(2)DB=DC,Rt△DBE≌Rt△DCF(HL).14.(1)略;(2)连接BD.∠DBC=12∠B=30°.∵∠CDE=∠CED.∴∠CED=12∠ACB=30°.∴△DBE为等腰三角形.∵DM⊥BE,∴BM=EM.15.△BPD≌△BDC(SAS),△BCD≌△ACD(SSS).∠P=∠BCD=∠ACD=12∠ACB=30°.16.(1)作DF⊥AB,垂足为点E.AC=AE,DE=DC.∵∠B=∠A=45°,∴BE=DE.∴AB=AE+BE=AC+CD.(2)(1)中的等量关系仍成立.∵∠ACB>∠B,∴AB>AC.在AB上截取AG=AC.分别作DF⊥AC,DE⊥AB.△DCF≌△DGE.∵∠EGD=∠C=2∠B.∴∠B=∠BDG.BG=DG=DC.∴AB=AG+GB=AC+CD.检测站△ODG≌△OEG,△DPG≌△EPG;△ODP≌△OEP,HL或AAS.5.略.6.FA=FD,∠ADF=∠DAF=∠DAC+∠CAF.∵∠DAC=∠BAD.∴∠B=∠ADF-∠BAD=∠DAF-∠DAC=∠CAF.7.(1)略;(2)∵CA=CE,∴∠CAE=∠E.∵∠ACB=∠CAE+∠E=2∠E,∠ACB=2∠BCD,∴∠E=∠BCD.CD∥AE.8.(1)①③或②③;(2)略.9.(1)△ABQ≌△PBC;(3)∠MBN=60°,△ABM≌△PBN(ASA).BM=BN.∴△BMN为等边三角形.∠MNB=∠QBC.MN∥AC.总复习题1.(3,4),等腰2.-53.50°,60°,70°°13.-314.设每天修x m,3 600x-3 6001.8x=20.x=80 m.15.(1)中位数12℃,众数11℃⊥BC,FM⊥AD,FN⊥AE,垂足分别为点G,M,N.FM=FG=FN.17.∵∠BAD=∠BDA,∴AB=DB=CD.∵BE=DE,∴△ABE≌△ADE.AB=AD,△ABD为等边三角形.连接CF.△AEC≌△FEC.∵∠ACF=60°,∴△AFC为等边三角形.∴AF=AC,AE=12AC.18.延长BO交AC于点D.∠BOC=110°.19.作CF⊥AC,交AD延长线于点F.∵∠BAC=90°,AD⊥BM.∴∠ABM=∠MAE.∵AB=AC,∴△ABM≌△CFA.∠1=∠F.AM=CF.∵AM=CM,∴CF=CM.∠FCD=45°=∠MCD.∴△FCD≌△MCD(SAS).∠2=∠F=∠1.总检测站△ABC≌△ABD,△ACE≌△ADE,△CEB≌△12.(1)x=-2;(2)无解.13.30 m14.∵△ABE≌△ACE,∴BE=CE,BD=CD.△BDE≌△CDE(SSS).15.(1)①②③④,①③②④,①④②③,②③①④,②④①③.(2)略.≤≥<>×≠÷′△∠°αβ⊥∥∵∴△≌△S△ACC′。

八年级上册 青岛版数学配套练习册答案

八年级上册 青岛版数学配套练习册答案

读书破万卷下笔如有神青岛版数学练习册八年级上册参考答案1.11.略.2.DE,∠EDB,∠E.3.略.4.B5.C6.AB=AC,BE=CD,AE=AD,∠BAE=∠CAD7.AB∥EF,BC∥ED.8.(1)2a+2b;(2)2a+3b;(3)当n为偶数时,n2(a+b);当n为奇数时,n-12a+n+12b.1.2第1课时1.D2.C3.(1)AD=AE;(2)∠ADB=∠AEC.4.∠1=∠25.△ABC≌△FDE(SAS)6.AB∥CD.因为△ABO≌△CDO(SAS).∠A=∠C.7.BE=CD.因为△ABE≌△ACD(SAS).第2课时1.B2.D3.(1)∠ADE=∠ACB;(2)∠E=∠B.4.△ABD≌△BAC(AAS)5.(1)相等,因为△ABE≌△CBD(ASA);(2)DF=EF,因为△ADF≌△CEF(ASA).6.相等,因为△ABC≌△ADC(AAS).7.(1)△ADC≌△AEB;(2)AC=AB,DC=EB,BD=EC;∠ABE=∠ACD,∠BDO=∠CEO,∠BOD=∠COE.第3课时1.B2.C3.110°4.BC的中点.因为△ABD≌△ACD(SSS).5.正确.因为△DEH≌△DFH(SSS).6.全等.因为△ABD≌△ACD(SSS).∠BAF=∠CAF.7.相等,因为△ABO≌△ACO(SSS).1.3第1课时即为AOC,则∠C上取一点BO,在BO延长,α∠AOB=作∠).7.略1~6(读书破万卷下笔如有神所求.8.作∠AOB=∠α,以OB为边,在∠AOB的外部作∠BOC=∠β;再以OA为边,在∠AOC的内部作∠AOD=∠γ,则∠DOC即为所求.第2课时1.略.2.(1)略;(2)全等(SAS).3.作BC=a-b;分别以点B、C为圆心,a为半径画弧,两弧交于点A;连接AB,AC,△ABC即为所求.4.分四种情况:(1)顶角为∠α,腰长为a;(2)底角为∠α,底边为a;(3)顶角为∠α,底边为a;(4)底角为∠α,腰长为a.((3),(4)暂不作). 第3课时1.四种:SSS,SAS,ASA,AAS.2.作线段AB;作∠BAD=∠α,在∠BAD同侧作∠ABE=∠B;AD与BE相交于点C.△ABC即为所求.3.作∠γ=∠α+∠β;作∠γ的外角∠γ′;作△ABC,使AB=c.∠A=∠γ′,∠B=∠α.4.作∠γ=180°-∠β;作△ABC,使BC=a,∠B=∠α,∠C=∠γ. 第一章综合练习1.A2.C3.C4.AB=DC或∠ACB=∠DBC或∠A=∠D.5.△ACD≌△BDC,△ABC≌△BAC.6.△ABC≌△CDE(AAS)7.4分钟8.△BOC′≌△B′OC(AAS)9.略10.相等.△BCF≌△EDF(SAS).△ABF≌△AEF(SSS)检测站1.B2.B3.20°4.∠BCD5.相等.△ABP≌△ACP(SSS),△PDB≌△PEC(AAS).6.略2.1.°;30°.4.B5.C6.(1)(2)(4)7.20略1~3.读书破万卷下笔如有神8.略2.2第1课时1~2.略3.C4.D5.略6.66°7.(1)AA′∥CC′∥BB′,且AA′⊥MN,BB′⊥MN,CC′⊥MN.(2)5 cm8.(1)DE⊥AF;(2)略.第2课时1.(-2,-3),(2,3).2.3,-43.(3,2)4.B5~6.略7.(1)(-a,b);(2)当n=4k+1时,在第一象限,n=4k+2时,在第四象限,n=4k+3时,在第三象限,n=4(n+1)时,在第二象限,k 为非负整数.2.31~3.略.4.B5.C.6.略.7.4条.8.略.2.4第1课时1.略.2.CM=DM,CE=DE.3.C4.∠A=∠B,∠ACD=∠BCD,∠ADC=∠BDC.5~6.略.7.连接BM,PB<PM+MB,∵MB=MA,∴PB<PA.第2课时1.作一条线段的垂直平分线2.D3~5.略.6.分别作点A关于OM,ON的对称点D,E.连接DE,分别交OM,ON于点B,C.连接AB,AC,则△ABC的周长最小.2.51.略.2.103.D4.C5.作∠AOB的平分线交MN于点P.则P即为所示.6.(1)DE=DC,AE=BE,BE=BC;(2)7.7.(1)△ADO≌△AEO(AAS),△BOD ≌三条直线围成的三角形的三.处2.8.4∠1=∠COE(ASA),OB=OC;(2)△.读书破万卷下笔如有神内角平分线的交点,及任一内角平分线与其他两个角的外角平分线的交点.2.6第1课时1.略.2.35°,35°.3.50°,80°或65°,65°.4.C5.B6.∠EBC=36°,∠C=∠BEC=72°.7.△ACD≌ABD(SSS),∠CAG=∠BAG.AG是等腰三角ABC的顶角平分线.∴AD垂直平分BC.8.99°第2课时1.略.2.△ABE,△ECD,△EBC.3.C4.△DBE是等腰三角形.因为∠B=∠C=∠DEB.5.△AED是等腰三角,因为∠EAD=∠BAD=∠ADE.6~7.略. 第3课时1.略.2.1,3.3.C4.△ADE是等边三角形.因为三个角都等于60°.5.略.6.任两边的垂直平分线的交点即为点O.7.BE=DC.因为△ADC≌△ABE(SAS).第二章综合练习1.GH,∠E,EO.1.B(4,-3);C(-4,3);6;8.3.24.45.64°;58°.6.D7.C8.A9.A10 .(1)AB=AD,AE=AC,BC=DE,BF=DF,EF=CF;∠BAC=∠DAE,∠B=∠D,∠C=∠E,∠BAE=∠DAC,∠EAF=∠CAF,∠BFE=∠DFC,∠BAF=∠DAF. (2)△AEF与△ACF,△ABF与△ADF都关于直线MN成轴对称.11.△ABC与△A′B′C′关于y轴对称.12.△ACE≌△DCB(SAS).AE=BD.又∠HGE=∠CGB.∠HEG=∠CBG.∠HGE+∠HEG=∠CGB+∠CBG=90°.∠②;个1为底边的等腰三角形可作BC①以.个BD.13.4⊥.AE°EHG=90.读书破万卷下笔如有神以BC为腰的等腰三角形可作3个.检测站1.60°2.AP;PC,AP;∠CAP.3.1;7.4.55°,55°或70°,40°.5.AC,∠C,△ABD.6.B7.B8.B9.D10.A11.略.12.∠BAC=60°,∠C=90°,∠B=30°.13.∵△ABC≌△BAD.∠CAB=∠DBA,∴△EBA是等腰三角形.14.(1)5;(2)80°.15.∠ACD=180°-A2,∠BCE=180°-B2,∠ACB=90°.∴∠ACD+∠BCE=90°+∠DCE.∠DCE=45°.3.1第1课时1.B≠0;B=0;A=0且B≠0.2.≠23.1,0.4.B5.D6.B7.x=-1且y≠08.19.ba-5;400.10.a=-1.11.略.12.n+13n-2第2课时1.略2.(1)2abc2;(2)xy(x+y);(3)a(a+b);(4)2x(x+y).3.A4.C5.B6.x ≠1且x≠07.当a≠0时,a2a=12;当m≠0,n≠0时,n2mn=nm.8.M=-3x(a+x)2;x≠0,-a,a.9.5a2-1030a2-2a3.21.略.2.2a(b-a)3.C4.C5.B6.(1)3y2x;(2)-1(x-y)2;(3)a+22-a;(4)2a2a-3b.7.-78.a-b+ca+b+c9.略.3.3读书破万卷下笔如有神1~3.略.4.(1)-1ab;(2)ab18c;(3)4yx;(4)4yx.5.D6.C7.(1)a+1;(2)-b3x;(3)xy2;(4)aa+b8.-139.略.3.41.略.2.6a2b2,ab,3b,2a.3.(x+2)(x-2)24.D5.D6.2b24a2b2c2,3ac324a 2b2c2;(2)5(a-b)215a(a+b)(a-b),3(a+b)215(a+b)(a-b);(3)3x-2y( 3x+2y)(3x-2y),2(3x+2y)(3x-2y);(4)(x+1)2(x-1)(x+1)2,x(x-1)(x+1)(x-1)(x+1)2,x-1(x-1)(x+1)2.7.(m-n)2m-n,-mnm-n.8.cyz(b-c)(c-a)xyz(a-b)(b-c)(c-a),axz(a-b)(c-a)xyz(a-b)(b-c)(c-a),bxy(a-b)(b-c)xyz(a-b)(b-c)(c-a).9.(1)把前一个分式的分子,分母同乘-a2b即得下一个分式;(2)-a12b8a13b6.(3)(-1)na2n-2bn+1(-1)n+1a2n-1bn-1.3.5第1课时1.略.2.(1)-b2a;(3)2aa-b.3.C4.D5.(1)y2x;(2)x+2;(3)3.6.(1)2+x;(2)3abb-a .7.x+2.8.原式=1.第2课时1.略.2.b2-4c4a3.-4(x+2)(x-2)4.C5.D6.D7.(1)3c3-4a2b12ab2c2;(2)6x2+xy+7y242x2y2;(3)2mn-m2n2-m2.8.-659.(1)11-a;(2)x2.10.1(x-1)(x-2),1(x-2)(x-3),1(x-3)(x-4),1x-100.读书破万卷下笔如有神第3课时1.C2.D3.B4.(1)a-bb;(2)x+2.5.126.∵ca+b<1.∴c2(a+b)2<ca+b3.6第1课时1.(1)7x4y;(2)b2a;(3)2x-y;(4)a+ba-b2.ala+b,ala+b.3.23;49;13.4.A5.C6.(1)2;(2)2;(3)4.7.68.(1)xyx+y(天);(2)甲:myx+y(元),乙:mxx+y(元).9.(1)ba;(2)b-10a-10,b+10a+10;(3)b-10a-10<ba<b+10a+10.第2课时1.略.2.8∶93.124.245.C6.D7.8a38.a-b=-39.260 mm10.5211.-5.第3课时1.略.2.2∶33.33124.1 m5.10∶15∶216.D7.B8.x∶y∶z=(a+b)2∶(a2-b2)∶(a-b)29.34a,a,54a.10.6,8,10.11.63人,192人,45人.3.7第1课时1.略.2.去分母,将分式方程转化为整式方程求解,然后验根.3.-124.-325.B6.B7.D8.30x-2-30x=12.9.(1)x=4;(2)x=0.10.m=-18711.(1)x=5;(2)a=6.第5个方程;(3)1+x2x=n+1x,x=2n+1.第2课时1.略.2.无解3.C4.B5.不正确,错在第3步,没有检验;方程无)无解;3(;无解.6.(1)x=3;(2)解.读书破万卷下笔如有神(4)无解.7.a=-58.(1)①x=1;②x=2;③x=3;(2)方程1x-2-1x-3=1x-5-1x-6的解为x=4;方程1x+2-1x+1=1x-1-2x-2的解为x=0.第3课时1.略.2.12010-x-12010=33.16+1x=13.4.D5.(1)设去年每间屋的租金为x元,9.6x=10.2x+500;(2)8 000元.6.4 km/h7.37.5 km/h8.1.5 t9.(1)设预定工期为x天,4x+xx+5=1,x=20(天).(2)采取联合施工4天,然后由乙单独施工的方案省工程费.第三章综合练习1.a≠32;x=-1.2.m=3,m≠1.3.24.125.a∶b=b∶c,c∶b=b∶a,ac=b26.127.3∶4∶58.39.C10.C11.A12.D13.B14.D15.616.a+b=0.17.(1)-5y2ax;(2)-x3 y;(3)2xy;(4)3x+1;(5)1681x4y4;(6)2a2b2;(7)a-3a2-13;(8)-1a+1.18.(1)220.218S2=1∶-715;(2)310.19.S1∶km/h23.(1)x60 无解.22.应提高)21.(1)无解;(2x=1912;(3)x=-2;(4)分两次清残留农药比为11+y;)原式2=1.24.1次清洗.1-1≠,0,;(0.>,11+y-4(2+y)2=y2(1+y)(2+y)224洗后,残留农药比为:(2+). 2种方案好第检测站-53.164.29≠x且0≠32,x=-23.2.x≠1.x读书破万卷下笔如有神5.326.D7.C8.B9.B10.相等11.(1)mn-m;(2)ab;(3)2x-1x.12.11-x;-1.13.(1)x=4;(2)无解;(3)x=2.14.a=-115.14516.3617.28天4.1第1课时1~2.略.3.3.44.C5.B6.总产量1 757 t;平均产量8.53 t.7.9 000 m3 8.a·10%+b·15%+c·5%a+b+c (a,b,c为甲、乙、丙三种汽油原价) 第2课时1.820,920,320.2.86 km/h3.C4.(1)甲;(2)乙.5.9.9%6.(1)1.84 kg;(2)3 312 kg.4.21.略.2.94.53.C4.x=225.平均数:1 626,中位数1 680.6.26 cm7.9或108.(1)85.5;(2)41人;(3)高低分悬殊大.4.3第1课时1.2;1与2.2.7与83.B4.平均数、中位数、众数都是21岁5.平均数为2,中位数是3,众数是1.6.(1)3个;(2)32 000个.7.(1)甲组:平均数80,中位数80,众数90;乙组:平均数80.2,中位数80,众数70;(2)略.第2课时1.72.A3.平均数13千瓦时,中位数22.5千瓦时,众数10千瓦时.4.(1)众数55 min,中位数55 min;(2)平均数为55 min.符合学校的要求.5.甲当选4.4读书破万卷下笔如有神1~2.略.3.(1)平均直径都是20 mm;(2)小明.4.乙地;甲地温差比乙地大.5.(1)平均身高都是178 cm;(2)图略.甲队整齐.6.(1)x甲=1.69 m,x乙=1.68 m;(2)图略.甲比较稳定.4.5第1课时1.1.22.10,26.3.10,1.8.4.A5.D6.S2甲=0.055,S2乙=0.105;果农甲.7.(1)x=3,S2=2;(2)x=13,S2=2;(3)x=30,S2=200.8.(1)xA=0,S2A=2.29;(2)取-2,-1,0,3,0;xB=0,S2B=2.8.第2课时1.乙2.D3.(1)略;(2)大刚的平均数为13.35,方差为0.004;小亮的平均数为13.3,方差为0.02.大刚成绩好.4.(1)x苹果=8,x香蕉=8,S2苹果=9,S2香蕉=1.333;(2)略;(3)9月份多进苹果.5.S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]=1n[x21+x22+…+x2n-2x(x1+x2+…+xn)+nx2]=1n[x21+x22+…+x2n-2nx(x1+x2+…+xnn+nx2)]=1n[x21+x22+…+x2n-nx2].4.61.C2.略3.甲4.相差75.x甲=178,S2甲=0.6;x乙=178,S2乙=1.8.6.(1)x甲=200.8,S2甲=7.96;x乙=201.5,S2乙=38.05;(2)甲. 第四章综合练习1.1.62 m2.8,8,8,1.23.20,18,184.4,3.5.b>a>c6.C7.D8.C9.(1)甲组:x甲=3.中位数2,众数1,S2甲=7.67;乙组:x乙=3,中位数3,众数3,S2乙=1.67;(2)乙组.10.(1)x=2 x=2,)1(.11.)略2(元;6001 元,中位数为800众数为),元135.7(读书破万卷下笔如有神众数为3,中位数为2;(2)68人.12.(1)22℃;(2)20.8℃;(3)146天.13.乙成绩稳定检测站1.2.12元2.23.64.31.8℃,4.965.D6.C7.D8.90.6分9.(1)x甲=5.6 cm,S2甲=1.84,x乙=5.6 cm,S2乙=1.04.(2)乙苗长的比较整齐.10.(1)x甲=7,S2甲=0.4,x乙=7,S2乙=2.8;(2)甲.11.612.(1)甲班:平均分24,方差5.4;乙班中位数24,众数21,方差19.8;(2)甲班42人,乙班36人;(3)甲班.综合与实践略.5.11~2.略.3.面积相等的三角形,是全等三角形,假.4.D5.D6.B7~9.略.5.21.略.2.不正确.如正方形与菱形.3.小亮不对;小莹说法正确.4.不正确.如2≠-2,但22=(-2)2.5.不正确;t=20t1+30t220+30.5.31~3.略.4.C5.直角定义;余角定义;对顶角相等;等量代换;余角定义.6.(1)C,E,F,G;(2)E;(3)K;(4)略.7.C5.4DE.∥AB;DEC)∠2(;内错角相等,两直线平行;D)∠1(1.B2.C3.读书破万卷下笔如有神同位角相等,两直线平行.4.已知:∠CBE;两直线平行,同位角相等;已知,∠CBE;等量代换;内错角相等,两直线平行.5.略.6.(1)如果两个角相等,那么这两个角是同角或等角的补角.真命题;(2)如果三角形中有两个角是锐角,那么第三个角是钝角,假命题,如∠A=80°,∠B=70°,∠C=30°.7.(1)延长AE与CD相交于点G.∵AB∥EF.∴∠A+∠AEF=180°.∵AB∥CD,∴∠A+∠G=180°.∴∠A+∠AEF=∠A+∠G,∠AEF=∠G.∴EF∥CD;(2)360°.5.5第1课时1.略.2.C3.D4.∠B=∠C,∠AOB=∠DOC.5.∠1>∠ACB>∠26.略.7.(1)∠A逐渐减小,∠B,∠C逐渐变大;若点A向下运动,变化相反;(2)α=β+γ.5.5第2课时1.(1)∠B=∠DAC;(2)∠A=∠D;∠CGE+∠B=180°.2.D3.B4.略.5.∠1=∠C+∠CDE,∠2=∠C+∠CED,∠1+∠2=180°.6.(1)∠EFD=90°-∠FED=12(∠A+∠B+∠C)-(∠B+12∠A)=12(∠C-∠B);(2)不变.5.6第1课时1.D2.C3.(1)BC=EF或BE=CF;(2)∠A=∠D;(3)∠C=∠F.4.(1)△ABE≌△DCF(SAS),△ABF≌△DCE(SAS),△BEF≌△CFE;(2)略.5.△AFC≌△BED(ASA)6.取EF的中点M,连接GM,并延长交FH于点N.GN 分别交AD,BC于点P,Q.△PEM≌△QFM.沿GN将道路取直即可.第2课时BC=DC.6.∴CDB.∠CBD=∴∠ADB,∠ABD=∵∠3.B4.D5.°2.90平行1.读书破万卷下笔如有神△ABD与△ACD都是等腰三角形,BD=AD=DC.7.△ABD≌△ACE(SAS).∠A=∠CAE=60°.∴△ADE为等边三角形.8.∵△AEB≌△BDA(ASA).∴AE=BD,EB=DA,CE=CD,EF=DF.AF=BF.第3课时1.=2.①②③3.A4.略.5.△ABD≌△AED(SAS),∴AB=AE.DC=AB+BD=AE+DE,DC=DE+EC,∴AE=EC.∴点E在线段AC的垂直平分线上.6.(1)∠A≠∠C.因为△ABD与△CBD不全等;(2)∠A>∠C.因为AB<BC,在BC上取BA′=BA.△ABD≌△A′BD.∠A=∠BA′D.∠BA′D >∠C,∴∠A>∠C;(3)当AB=CB时.∠A=∠C;当AB<BC时,∠A>∠C;当AB>BC时,∠A<∠C.第4课时1.OA=OB.2.=.三角形的三内角平分线相交于一点.3.B4.B5.△ADE≌△ADF.AE=AD.△AEF为等腰三角形.6.△BEO≌△BFO(AAS),△BED≌△BFD(SAS).△EOD≌△FOD(SSS)或(SAS).7.DE=BD-CE.由DE∥BC.∠BOD=∠OBC=∠OBD.∴BD=OD.又∠OCE=∠OCF=∠BOC+∠OBC=∠BOC+∠BOE=∠COE.∴CE=OE.DE=OD-OE=BD-CE.第5课时1.AB=AD或BC=DC(HL)2.D3.B4.作直线MN,过MN上一点D作MN的垂线l;在直线l上截取DA=h;以A为圆心,a为半径画弧交MN于点B,C两点;连接AB,AC.△ABC即为所求.5.连接AC.Rt△ABC≌RtADC(HL).∴BC=DC.Rt△BCE≌Rt△DCF(HL).6.连接AF,BF.△AEF≌△BEF读书破万卷下笔如有神AFC≌△BFD(SAS).7.(1)Rt△OBD≌Rt△OCE(HL);(2)Rt△OBD≌△OCE(HL);(3)相等.第五章综合练习1.A2.C3.D4.B5.D6.略.7.120°8.∠2=∠1.∴∠2=∠C,AB∥CD.9.延长EF交BC于点G.∵∠2=∠4,∴AB∥EF.∠3=∠B=∠EGC.∴DE∥BC.∴∠AED=∠ACB.10.∠ABE=∠FBD,∠ABE+∠AEB=90°,∠FBD+∠AFE=90°.∴∠AEB=∠AFE.∴AE=AF.11.△ACE≌△BDE(AAS),∴EC=ED.12.(1)∠D=∠AEC(同角的余角相等).△ACE≌△CBD.∴AE=CD;(2)BD=CE=12AC=6cm.13.(1)Rt△ADE≌Rt△ADF;(2)DB=DC,Rt△DBE≌Rt△DCF(HL).14.(1)略;(2)连接BD.∠DBC=12∠B=30°.∵∠CDE=∠CED.∴∠CED=12∠ACB=30°.∴△DBE为等腰三角形.∵DM⊥BE,∴BM=EM.15.△BPD≌△BDC(SAS),△BCD≌△ACD(SSS).∠P=∠BCD=∠ACD=12∠ACB=30°.16.(1)作DF⊥AB,垂足为点E.AC=AE,DE=DC.∵∠B=∠A=45°,∴BE=DE.∴AB=AE+BE=AC+CD.(2)(1)中的等量关系仍成立.∵∠ACB>∠B,∴AB>AC.在AB上截取AG=AC.分别作DF⊥AC,DE⊥AB.△DCF≌△DGE.∵∠EGD=∠C=2∠B.∴∠B=∠BDG.BG=DG=DC.∴AB=AG+GB=AC+CD. 检测站1.A2.C3.C4.三;△ODG≌△OEG,△DPG≌△EPG;△ODP≌△OEP,HL或AAS.5.略.6.FA=FD,∠ADF=∠DAF=∠DAC+∠CAF.∵∠DAC=∠BAD.∴∠B=∠ADF-∠BAD=∠DAF-∠DAC=∠CAF.7.(1)略;(2)∵CA=CE,∴∠CAE=∥BCD.CD∠E=∴∠BCD,∠ACB=2∠E,∠E=2∠CAE+∠ACB=∵∠E.∠.读书破万卷下笔如有神AE.8.(1)①③或②③;(2)略.9.(1)△ABQ≌△PBC;(3)∠MBN=60°,△ABM≌△PBN(ASA).BM=BN.∴△BMN为等边三角形.∠MNB=∠QBC.MN∥AC.总复习题1.(3,4),等腰2.-53.50°,60°,70°.4.略.5.5,5.6.D7.C8.D9.B10.D11.(1)11-x;(2)x2-xy-2y23xy2;(3)-(1-m)2;(4)1-a.12.32°13.-314.设每天修x m,3 600x-3 6001.8x=20.x=80 m.15.(1)中位数12℃,众数11℃;(2)1.143.16.分别作FG⊥BC,FM⊥AD,FN⊥AE,垂足分别为点G,M,N.FM=FG=FN.17.∵∠BAD=∠BDA,∴AB=DB=CD.∵BE=DE,∴△ABE≌△ADE.AB=AD,△ABD为等边三角形.连接CF.△AEC≌△FEC.∵∠ACF=60°,∴△AFC为等边三角形.∴AF=AC,AE=12AC.18.延长BO交AC于点D.∠BOC=110°.19.作CF⊥AC,交AD延长线于点F.∵∠BAC=90°,AD⊥BM.∴∠ABM=∠MAE.∵AB=AC,∴△ABM≌△CFA.∠1=∠F.AM=CF.∵AM=CM,∴CF=CM.∠FCD=45°=∠MCD.∴△FCD≌△MCD(SAS).∠2=∠F=∠1.总检测站1.a-12.(1)SSS;(2)SAS;(3)HL.3.5,5,5.25.4.4,3.5.△ABC≌△ABD,△ACE≌△ADE,△CEB≌△DEB.6.C7.D8.D9.D10.B11.113 850 kg 12.(1)x=-2;(2)无解.13.30 m14.∵△ABE≌△ACE,∴BE=CE,BD=CD.△BDE≌△CDE(SSS).15.(1),,,,读书破万卷下笔如有神③.(2)略.′ACC△S⊥∥∵∴△≌△βα1.2.3.4.5.6.7.8.9.10.。

八年级数学上册《第一章 怎样判定三角形全等》同步练习题及答案(青岛版)

八年级数学上册《第一章 怎样判定三角形全等》同步练习题及答案(青岛版)

八年级数学上册《第一章怎样判定三角形全等》同步练习题及答案(青岛版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是( )A.AB=ACB.DB=DCC.∠ADB=∠ADCD.∠B=∠C2.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )A.AB=DEB.∠B=∠EC.EF=BCD.EF∥BC3.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是( )A.SSSB.SASC.ASAD.HL4.下列判断中错误..的是( )A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.如图,AC与BD相交于点O,∠D=∠C,添加下列哪个条件后,仍不能使△ADO≌△BCO的是( )A.AD=BCB.AC=BDC.OD=OCD.∠ABD=∠BAC6.如图,已知△ABC的三个元素,则甲、乙、丙三个三角形中,和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙7.某大学计划为新生配备如图①所示的折叠凳.图②是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30 cm,则由以上信息可推得CB的长度也为30 cm,依据是( )A.SASB.ASAC.SSSD.AAS8.如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有( )A.5对B.4对C.3对D.2对二、填空题9.如图,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是 (填上适当的一个条件即可)10.如图,点F、C在线段BE 上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件,依据是 .11.如图,已知BD=CE,∠B=∠C,若AB=8,AD=3,则DC= .12.如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳).在图中,只要量出CD的长,就能求出工件内槽的宽,依据是 .13.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE =∠PAE.则说明这两个三角形全等的依据是.14.如图所示,在△ABC中,P,Q分别是BC,AC上的点,作PR⊥AB,PS⊥AC,垂足分别为点R,S,若AQ=PQ,PR=PS,QD⊥AP.现有下列结论:①AS=AR;②AP平分∠BAC;③△BRP≌△CSP;④PQ∥AR.其中正确的是 (把所有正确结论的序号都选上)三、解答题15.如图,已知∠1=∠2,∠3=∠4,AB与CD相等吗?请你说明理由.16.如图,在△ABC与△ABD中,BC=BD,∠ABC=∠ABD,E,F分别是BC,BD的中点,连结AE,AF.求证:AE=AF.17.如图,在△ABC中,AB=AC.分别以点B,C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB,AC的延长线分别交于点E,F,连结AD,BD,CD.求证:AD平分∠BAC.18.如图所示,A,B两个建筑物分别位于河的两岸,要测得它们之间的距离,可以从B出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E,C,A在同一条直线上,则DE的长就等于A,B之间的距离,请你说明道理.19.已知,△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.20.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:CO平分∠ACD;(2)求证:AB+CD=AC.答案1.B2.C.3.B.4.B5.B.6.B7.A8.B9.答案为:BC =BD.10.答案为:AC =DF ,SAS.11.答案为:5.12.答案为:根据SAS 证明△AOB ≌△COD.13.答案为:SSS.14.答案为:①②④.15.解:AB =CD ,理由如下:∵∠1=∠2,∠3=∠4∴∠1+∠3=∠2+∠4.∴∠ABC =∠DCB.又∵BC =CB ,∠3=∠4∴△ABC ≌△DCB(ASA).∴AB =CD.16.证明:∵BC =BD ,E ,F 分别是BC ,BD 的中点 ∴BE =BF .在△ABE 和△ABF 中∵⎩⎨⎧AB =AB ,∠ABE =∠ABF ,BE =BF ,∴△ABE ≌△ABF(SAS)∴AE =AF .17.证明:在△ABD 和△ACD 中∵⎩⎨⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD(SSS)∴∠BAD =∠CAD即AD 平分∠BAC .18.解:由题意并结合图形可以知道BC =CD ,∠ACB =∠ECD 又AB ∥DE ,从而∠A =∠E 或∠ABC =∠EDC故在△ABC 与△EDC 中所以△ABC ≌△EDC(AAS)所以AB =ED即测出ED 的长后即可知道A ,B 之间的距离.19.解:(1)在△ABC 中,∠BAC =90°∴∠BAD =90°﹣∠EAC 。

青岛版数学练习册八上答案

青岛版数学练习册八上答案

青岛版数学练习册八上答案青岛版数学练习册八年级上册答案【练习一:实数的概念和性质】1. 判断题:实数包括有理数和无理数。

(√)2. 选择题:下列哪个数是有理数?A. πB. √2C. 0.33333(无限循环小数)D. √3答案:C3. 填空题:若a是有理数,b是无理数,则a+b是____。

答案:实数【练习二:代数式的运算】1. 计算题:计算下列代数式的值。

(1) (3x - 2y) - (4x + 5y)答案:-x - 7y(2) (2a + 3b)(2a - 3b)答案:4a² - 9b²2. 应用题:若x = 1,y = -1,计算下列代数式的值。

(1) 2x + 3y答案:-1(2) (x - y)²答案:4【练习三:一次方程和不等式】1. 解方程题:解下列一次方程。

(1) 3x - 5 = 2x + 4答案:x = 9(2) 2x + 3 = 5x - 7答案:x = 52. 解不等式题:解下列不等式。

(1) 2x + 5 > 3x - 2答案:x < 7(2) 3x - 4 ≤ 2x + 6答案:x ≥ 10【练习四:几何图形的性质】1. 选择题:下列哪个图形是轴对称图形?A. 三角形B. 圆形C. 正方形D. 五边形答案:B和C2. 填空题:若一个正方形的边长为a,则其面积为____。

答案:a²【练习五:函数及其图像】1. 判断题:一次函数的图像是一条直线。

(√)2. 选择题:下列哪个函数是一次函数?A. y = x²B. y = 2x + 3C. y = 1/xD. y = |x|答案:B【结束语】通过以上练习,同学们应该对八年级上册数学的基本概念、运算规则、方程解法、不等式解法以及几何图形和函数图像有了更深入的理解。

希望这些练习能帮助大家巩固知识点,提高解题能力。

如果在学习过程中遇到任何问题,欢迎随时向老师或同学求助。

八上数学青岛版习题答案

八上数学青岛版习题答案

八上数学青岛版习题答案
《八上数学青岛版习题答案》
数学是一门让许多学生感到头疼的学科,但只要掌握了正确的方法和技巧,就能够轻松地解决各种数学问题。

八上数学青岛版习题答案提供了许多有趣而且实用的数学题目,让学生们能够更好地理解和掌握数学知识。

在这份习题答案中,我们可以看到许多涉及到代数、几何、概率等各个方面的题目。

通过这些题目的练习,学生们可以更好地理解数学知识,并且提高他们的解题能力和思维能力。

除了提供答案外,这份习题答案还给出了详细的解题步骤和方法,让学生们能够更好地理解题目的解法。

这样的设计不仅可以帮助学生们更好地掌握知识,还能够培养他们的独立思考和解决问题的能力。

通过认真地学习和练习这份习题答案,学生们可以在数学学习中取得更好的成绩,同时也能够培养自己的数学思维和解决问题的能力。

希望学生们能够认真对待这份习题答案,从中受益良多,取得更好的学习成绩。

青岛版八年级数学上册同步练习附答案1.2 怎样判定三角形全等

青岛版八年级数学上册同步练习附答案1.2 怎样判定三角形全等

1.2怎样判定三角形全等一、选择题1.如图,在∠AOB的两边上截取AO=BO,OC=OD,连接AD,BC交于点P,连接OP,则下列结论正确的是()①△APC≌△BPD ②△ADO≌△BCO ③△AOP≌△BOP ④△OCP≌△ODP.(第1题图)A.①②③④ B.①②③C.②③④D.①③④2.下列说法不正确的是()A.有两条边和它们的夹角对应相等的两个三角形全等B.有三个角对应相等的两个三角形全等C.有两个角及其中一角的对边对应相等的两个三角形全等D.有三条边对应相等的两个三角形全等3.如图,已知AB∥CD,AB=3,BC=4,要使△ABC≌△CDA,则需()A.AD=4 B.DC=3 C.AC=3 D.BD=4(第3题图)(第4题图)4.如图,AC与BD相交于点P,AP=DP,则需要“SAS”证明△APB≌△DPC,还需添加的条件是()A.BA=CD B.PB=PC C.∠A=∠D D.∠APB=∠DPC5.如图,在△ABD和△ACE中.AB=AC,AD=AE,如果由“SAS”可以判定△ABD≌△ACE,则需补充条件()A.∠EAD=∠BAC B.∠B=∠C C.∠D=∠E D.∠EAB=∠CAD(第5题图)(第6题图)6.小明不小心把三角形的玻璃摔碎成3块,现在要去玻璃店配一块完全一样的玻璃,他最省事的是带()去.A.①B.②C.③D.①和③二、填空题7.如图,在△ABC中,∠B=∠C,D,E,F分别是AB,BC,AC上的点,BD=CE,如果补充条件(填一个条件即可),那么可以判定△BDE≌△CEF.(第7题图)(第8题图)8.如图,填空:(填SSS、SAS、ASA或AAS)(1)已知BD=CE,CD=BE,利用可以判定△BCD≌△CBE;(2)已知AD=AE,∠ADB=∠AEC,利用可以判定△ABD≌△ACE;(3)已知OE=OD,OB=OC,利用可以判定△BOE≌△COD;(4)已知∠BEC=∠CDB,∠BCE=∠CBD,利用可以判定△BCE≌△CBD.三、解答题9.如图,AB=AD,BC=CD,∠ABC=∠ADC.求证:OB=OD.(第9题图)10.如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.(第10题图)(第11题图)11.如图,沿AC方向开山修路,为了加快施工进度,要在山的另一面同时施工,工人师傅在AC上取一点B,在小山外取一点D,连接BD并延长,使DF=BD,过F点作AB的平行线MF,连接MD并延长,在延长线上取一点E,使DE=DM,在E点开工就能使A,C,E 成一条直线,你知道其中的道理吗?12.如固,为了修筑一条公路,需测量出被大石头阻挡的∠BAC的大小,为此,小张师傅便在直线AC上取点D,使AC=CD,在BC的延长线上取点E,使BC=CE,连接DE,只要测出∠D的度数,则可知∠A的度数等于∠D的度数.请说明理由.(第12题图)13.已知,如图,在△ABC中,∠B=2∠C,AD是△ABC的角平分线,请说明AC=AB+BD.(第13题图)14.如图,AB=DE,AF=DC,BC⊥AD,EF⊥AD,垂足分别为C,F,AD与BE相交于点O.猜想:点O为哪些线段的中点?选择一种结论证明.(第14题图)答案一、1. A 【分析】∵AO =BO ,OC =OD ,∠O =∠O ,∴△ADO ≌△BCO (SAS ),故②正确. ∴∠COP =∠DOP .∵OC =OD ,OP =OP ,∴△OCP ≌△ODP (SAS ),故④正确.∴PC =PD . ∵∠CAP =∠DBP ,∠CP A =∠DPB ,∴△APC ≌△BPD (AAS ),故①正确.∴P A =PB . ∵AO =BO ,OP =OP ,∴△AOP ≌△BOP (SSS ),故③正确.故选A .2. B 【分析】A .正确,符合判定SAS ;B .不正确,全等三角形的判定必须有边的参与;C .正确,符合判定AAS ;D .正确,符合判定SSS .故选B .3. B 【分析】∵AB ∥CD ,∴∠BAC =∠DCA .∵AB =3,DC =3,∴AB =DC .∵AC =CA , ∴△ABC ≌△CDA (SAS ).故选B .4. B 【分析】在△APB 和△DPC 中,当⎪⎩⎪⎨⎧=∠=∠=PC PB DPC APB DP AP ,,时,△APB ≌△DPC ,∴需要“SAS ”证明△APB ≌△DPC ,还需添加的条件是PB =PC .故选B .5. A 【分析】补充∠EAD =∠BAC .∵∠EAD =∠BAC ,∴∠EAD +∠DAC =∠BAC +∠DAC ,即∠EAC =∠DAB .在△AEC 和△ADB 中,⎪⎩⎪⎨⎧=∠=∠=,,,AC AC DAB EAC AD AE ∴△ABD ≌△ACE (SAS ).故选A .6. C 【分析】第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA 判定,所以应该拿这块去.故选C .二、7. BE =FC 【分析】补充条件BE =FC .∵在△BDE 和△CEF 中,⎪⎩⎪⎨⎧=∠=∠=,,,FC EB C B EC DB ∴△BDE ≌△CEF (SAS ).8. SSS ,ASA ,SAS ,AAS 【分析】(1)∵BD =CE ,CD =BE ,BC 为公共边,∴△BCD ≌△CBE (SSS );(2)∵AD =AE ,∠ADB =∠AEC ,∠A 为公共角,∴△ABD ≌△ACE (ASA );(3)∵OE =OD ,OB =OC ,∠BOE =∠COD (对顶角相等),∴△BOE ≌△COD (SAS );(4)∵∠BEC =∠CDB ,∠BCE =∠CBD ,BC 为公共边,∴△BCE ≌△CBD (AAS ). 三、9.证明:在△ABC 和△ADC 中,∵AB =AD ,BC =CD ,AC 是公共边,∴△ABC ≌△ADC (SSS ),∴∠DCO =∠BCO .在△BCO 和△DCO 中,∵BC =CD ,CO 是公共边,∠DCO =∠BCO ,∴△BCO ≌△DCO (SAS ),∴OB =OD (全等三角形对应边相等).10. 证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高,且AD =AF ,AC=AE , ∴Rt △ADC ≌Rt △AFE (HL ),∴CD =EF .∵AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF (HL ).∴BD =BF .∴BD -CD =BF -EF ,即BC =BE .11. 解:∵在△BDE 和△FDM 中,⎪⎩⎪⎨⎧=∠=∠=,,,DM DE FDM BDE DF BD∴△BDE ≌△FDM (SAS ),∴∠BEM =∠FME ,∴BE ∥MF .∵AB ∥MF ,∴A ,C ,E 三点在一条直线上.12. 解:在△ABC 和△DEC 中,⎪⎩⎪⎨⎧=∠=∠=,,,EC BC DCE ACB CD AC∴△ABC ≌△DE C (SAS ),∴∠A=∠D ,∴测出∠D 的度数,即可得知∠A 的度数.13. 解:(方法一)如答图(1),在AC 上截取AE =AB ,连接DE .∵AD 是△ABC 的角平分线,∴∠BAD =∠EAD .在△BAD 和△EAD 中,⎪⎩⎪⎨⎧=∠=∠=,,,AE AB EAD BAD AD AD∴△BAD ≌△EAD ,∴BD =DE ,∠B =∠AED .∵∠B =2∠C ,∠AED =∠C +∠EDC ,∴∠C =∠EDC ,∴DE =EC =BD ,∴AC =AE +CE =AB +BD .(方法二)如答图(2),延长AB 到点F ,使AF =AC ,连接DF .∵在△F AD 和△CAD 中,⎪⎩⎪⎨⎧=∠=∠=,,,AD AD CAD FAD AC AF∴△F AD ≌△CAD ,∴∠C =∠F .∵∠ABC =2∠C ,∠ABC =∠F +∠BDF ,∴∠F =∠BDF ,∴BD =BF ,∴AC =AF =AB +BD .(1) (2)(第13题答图)14. 解:O 为线段EB ,线段FC ,线段AD 的中点.证明如下: ∵AF =CD ,∴AF +FC =CD +FC ,即AC=DF .∵BC ⊥AD ,EF ⊥AD ,∴∠ACB =∠DFE =90°.∴在Rt △ACB 和Rt △DFE 中,⎩⎨⎧==,,DF AC DE AB ∴Rt △ACB ≌Rt △DFE (HL ),∴EF =BC .在△EFO 和△BCO 中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BC EF BOC EOF BCO EOF∴△EFO ≌△BCO ,∴OE =OB ,即O 是线段BE 中点.。

青岛版8上同步练习册答案

青岛版8上同步练习册答案

青岛版8上同步练习册答案【数学】一、选择题1. 下列哪个选项不是有理数?A. √2B. -3C. 0.5D. π答案:D2. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 2答案:C二、填空题1. 如果一个直角三角形的两条直角边分别为3和4,则斜边的长度是______。

答案:52. 一个数的立方根是2,则这个数是______。

答案:8三、解答题1. 一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,求它的体积。

答案:6×4×3=72立方厘米【语文】一、阅读理解阅读下文,回答问题:《草船借箭》节选:周瑜对诸葛亮说:“军中缺少箭,你三天之内造十万支箭,可以吗?”诸葛亮说:“可以。

”周瑜问:“你用什么方法?”诸葛亮说:“我自有办法。

”1. 诸葛亮为什么能答应周瑜三天之内造十万支箭?答案:诸葛亮聪明机智,有计策。

2. 诸葛亮用什么方法造箭?答案:诸葛亮利用草船借箭的计策,利用雾气掩护,诱使曹操射箭。

二、作文题目:《我的家乡》要求:描述家乡的自然风光、人文景观、特色美食等。

【英语】一、选择题1. What does he usually do after school?A. He plays basketball.B. He watches TV.C. He goes to the library.D. He does his homework.答案:D2. Where is the cinema?A. Next to the bank.B. Opposite the hospital.C. Near the supermarket.D. Across from the school.答案:B二、完形填空(文章略)1. The answer is: A2. The answer is: C3. The answer is: B...三、作文题目:《My Favorite Hobby》要求:描述你的爱好,为什么喜欢它,以及你是如何开始这个爱好的。

青岛版八年级数学上册同步练习附答案2.3 轴对称图形

青岛版八年级数学上册同步练习附答案2.3 轴对称图形

2.3 轴对称图形一、选择题1.下图中的四个图案,是轴对称图形的有()A.4个B.3个C.2个D.1个2.分别以直线l为对称轴,所作轴对称图形错误的是()A B C D 3.如图的图形属于轴对称图形的个数是()(第3题图)A.4 B.3 C.2 D.14.如图的图案是轴对称图形的有()(第4题图)A.1个B.2个C.3个D.4个5.如图的扑克牌,是轴对称图形的有()(第5题图)A.4张B.3张C.2张D.0张6.下列图形不是轴对称图形的是()A.一条线段B.一个角C.一个平行四边形D.一个等腰梯形7.下面给出的每幅图形中的两个图案是轴对称的是()A B C D二、填空题8.如图,将标号为A,B,C,D的正方形沿图中虚线剪开后拼成标号为P,Q,M,N的四个轴对称图形,请对号入座.P与对应,Q与对应,M与对应,N与对应.9.如图是一个风筝的图案,它是轴对称图形,量得∠B=20°,则∠E=.(第9题图)10.如图是一个风筝的图案,它是轴对称图形,EF是对称轴.∠A=90°,∠AED=130°,∠C=45°,则∠BFC的度数为.(第10题图)11.如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中的方向被击出(球可以经过多次反射),那么该球最后将落入号球袋.(第11题图)三、解答题12.判断下列图形是否为轴对称图形,如果是,画出它的对称轴.13.把如图图形补成以直线l为对称轴的轴对称图形.(第13题图)14.如图,五边形ABCDE是轴对称图形,线段AF所在的直线为对称轴,找出图中所有相等的线段和相等的角.(第14题图)答案一、1.A【分析】根据轴对称图形的概念知,这四个图形全是轴对称图形.故选A.2.C【分析】根据轴对称的定义可得C沿l对折不能重合.故选C.3.C【分析】根据轴对称图形的性质得出从左起第1,3个图形是轴对称图形,故属于轴对称图形的个数是2.故选C.4.B【分析】第一个不是轴对称图形;第二个是轴对称图形;第三个不是轴对称图形;第四个是轴对称图形,则是轴对称图形的有2个.故选B.5.D【分析】根据轴对称图形的概念知,这四张扑克都不是轴对称图形.故选D.6.C【分析】A.一条线段,是轴对称图形,不符合题意;B.一个角,是轴对称图形,不符合题意;C.一个平行四边形,不是轴对称图形,符合题意;D.一个等腰梯形,是轴对称图形,不符合题意.故选C.7.A【分析】A.是轴对称图形,故符合题意;B.不是轴对称图形,故不符合题意;C.不是轴对称图形,故不符合题意;D.不是轴对称图形,故不符合题意.故选A.二、8.B,C,A,D9.20°【分析】∵风筝的图案是轴对称图形,∴∠E=∠B=20°.10.140°【分析】如答图.∵一个风筝的图案,它是轴对称图形,EF是对称轴.∠A=90°,∠AED=130°,∠C=45°,∴∠D=90°,∠MED=65°,∴∠DEF=115°,∴∠CFN=360°-115°-90°-45°=110°,∴∠BFC的度数为2×(180°-110°)=140°.(第10题答图)11. 1【分析】如答图,该球最后将落入1号球袋.(第11题答图)三、12.解:如答图.(第12题答图)13.解:如答图.14. 解:相等的线段:AB=AE,CB=DE,CF=DF;相等的角:∠B=∠E,∠C=∠D,∠BAF=∠EAF,∠AFD=∠AFC.。

青岛版八年级上册数学课后练习题答案

青岛版八年级上册数学课后练习题答案

青岛版八年级上册数学课后练习题答案
推荐文章
北师大版八年级下册数学练习题答案热度:八年级下册数学练习题及答案热度:八年级数学上册竞赛练习题含答案热度:8年级下册数学课后练习题答案热度:浙教版八年级上数学期末练习题热度:心专才能绣得花,心静才能织得麻。

专心才能做好八年级数学课本习题。

小编整理了关于八年级上册青岛版数学课后练习题答案,希望对大家有帮助!
八年级上册青岛版数学课后练习题答案(一)
第11页练习
1、解:全等.
理由:因为AB = DC,∠ABC = ∠DCB,BC = CB,
所以利用“SAS”可以判定△ABC ≌ △DCB.
2、解:全等.
理由:因为AB = AD,∠A = ∠A,AE = AC,
所以可以利用“SAS”判定△ABE ≌ △ADC.
八年级上册青岛版数学课后练习题答案(二)
第16页练习
1、解:(1)全等,因为这两个等腰三角形的三条边分别相等.
(2)不一定,因为这两个三角形的底不一定相等,顶角也不一定相等.
(3)全等,因为这两个等边三角形的三条边分别相等.
2、解:∠A = ∠C.
因为在△ABD与△CBD中,AB = CB,AD = CD,且BD为公共边,
所以△ABD ≌ △CBD,所以∠A = ∠C.
3、解:如厂房顶人字架,自行车架等是利用三角形的稳定性;电动推拉门等是利用四边形的不稳定性.
八年级上册青岛版数学课后练习题答案(三)
第20页练习
八年级上册数学课后习题答案。

青岛版八年级数学上册同步练习附答案3.5 分式的加法与减法

青岛版八年级数学上册同步练习附答案3.5 分式的加法与减法

3.5 分式的加法与减法一、选择题1. 计算的结果为()A. B. C. -1 D. 22. 化简的结果是()A. a+bB. aC.a-bD. b3. 计算的结果是()A. B. C. D.4. 若a-b=2ab,则的值为()A. B.- C. -2 D. 25. 若方程,则A,B的值分别为()A. 2,1B. 1,2C. 1,1D. -1,-16. 若,则的值为()A. B. ± C. 2 D. ±27. 设n=,若n的值为整数,则x可以取的值的个数是()A. 5B. 4C. 3D. 28. 一汽艇保持发动机功率不变,它在相距25千米的A,B两码头之间流动的河水中往返一次(其中汽艇的速度大于河水的速度)与它在平静的湖水中航行50千米比较,两次航行所用时间的关系是()A. 在平静的湖水中用的时间少B. 在流动的河水中用的时间少C. 两种情况所用的时间相等D. 以上均有可能二、解答题9. 计算:(1);(2);(3).10. (1)计算的值;(2)通过以上计算请你用一种你认为比较简便的方法计算m 的值: m =.11. 已知212122++++=+++x C x B x A x x x x ))((,试求A +B +2C 的值.答案一、1. C 2. A 3. C 4. C 5. C 6. B 7. B 8. A二、9. 解:(1)==a-2+a+2=2a.(2==5.(3)== .10. 解:(1)=.(2)=.11.解:因为,所以,即,所以解得所以A+B+2C=1+(-3)+6=4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青岛版数学练习册八年级上册参考答案1.11.略.2.DE,∠EDB,∠E.3.略.4.B5.C6.AB=AC,BE=CD,AE=AD,∠BAE=∠CAD7.AB∥EF,BC∥ED.8.(1)2a+2b;(2)2a+3b;(3)当n为偶数时,n2(a+b);当n为奇数时,n-12a+n+;(2)∠ADB=∠AEC.4.∠1=∠25.△ABC≌△FDE(SAS)6.AB∥CD.因为△ABO≌△CDO(SAS).∠A=∠第2课时;(2)∠E=∠B.4.△ABD≌△BAC(AAS)5.(1)相等,因为△ABE≌△CBD(ASA);(2)DF=EF,因为△ADF≌△CEF(ASA).6.相等,因为△ABC≌△ADC(AAS).7.(1)△ADC≌△AEB;(2)AC=AB,DC=EB,BD=EC;∠ABE=∠ACD,∠BDO=∠CEO,∠BOD=∠COE.第3课时6.全等.因为△ABD≌△ACD(SSS).∠BAF=∠CAF.7.相等,因为△ABO≌△ACO(SSS).1.3第1课时1~6(略).7.作∠AOB=∠α,延长BO,在BO上取一点C,则∠AOC即为所求.8.作∠AOB=∠α,以OB为边,在∠AOB的外部作∠BOC=∠β;再以OA为边,在∠AOC的内部作∠AOD=∠γ,则∠DOC即为所求.1.略.2.(1)略;(2)全等(SAS).3.作BC=a-b;分别以点B、C为圆心,a为半径画弧,两弧交于点A;连接AB,AC,△ABC即为所求.4.分四种情况:(1)顶角为∠α,腰长为a;(2)底角为∠α,底边为a;(3)顶角为∠α,底边为a;(4)底角为∠α,腰长为a.((3),(4)暂不作).第3课时1.四种:SSS,SAS,ASA,AAS.2.作线段AB;作∠BAD=∠α,在∠BAD同侧作∠ABE=∠B;AD与BE相交于点C.△ABC即为所求.3.作∠γ=∠α+∠β;作∠γ的外角∠γ′;作△ABC,使AB=c.∠A=∠γ′,∠B=∠α.4.作∠γ=180°-∠β;作△ABC,使BC=a,∠B=∠α,∠C=∠γ.第一章综合练习,△ABC≌△BAC.6.△ABC≌△CDE(AAS)7.4分钟8.△BOC′≌△B′OC(AAS)9.略10.相等.△BCF≌△EDF(SAS).△ABF≌△AEF(SSS)检测站,△PDB≌△PEC(AAS).6.略2.11~3.略.;30°.8.略2.2第1课时1~2.略,且AA′⊥MN,BB′⊥MN,CC′⊥MN.(2)5 cm8.(1)DE⊥AF;(2)略.1.(-2,-3),(2,3).2.3,-43.(3,2)4.B5~6.略7.(1)(-a,b);(2)当n=4k+1时,在第一象限,n=4k+2时,在第四象限,n=4k+3时,在第三象限,n=4(n+1)时,在第二象限,k为非负整数.2.31~3.略.2.4第1课时1.略.2.CM=DM,CE=,∠ACD=∠BCD,∠ADC=∠BDC.5~6.略.7.连接BM,PB <PM+MB,∵MB=MA,∴PB<PA.第2课时1.作一条线段的垂直平分线2.D3~5.略.6.分别作点A关于OM,ON的对称点D,E.连接DE,分别交OM,ON于点B,C.连接AB,AC,则△ABC 的周长最小.2.51.略.,AE=BE,BE=BC;(2)7.7.(1)△ADO≌△AEO(AAS),△BOD≌△COE(ASA),OB=OC;(2)∠1=∠,及任一内角平分线与其他两个角的外角平分线的交点.2.6第1课时1.略.2.35°,35°.3.50°,80°或65°,65°.4.C5.B6.∠EBC=36°,∠C=∠BEC=72°.7.△ACD≌ABD(SSS),∠CAG=∠BAG.AG 是等腰三角ABC的顶角平分线.∴AD垂直平分1.略.2.△ABE,△ECD,△,因为∠EAD=∠BAD=∠ADE.6~7.略.第3课时1.略.2.1,第二章综合练习1.GH,∠E,,-3);C(-4,3);6;;58°.,AE=AC,BC=DE,BF=DF,EF=CF;∠BAC=∠DAE,∠B=∠D,∠C=∠E,∠BAE=∠DAC,∠EAF=∠CAF,∠BFE=∠DFC,∠BAF=∠DAF.(2)△AEF与△ACF,△ABF与△ADF都关于直线MN成轴对称.11.△ABC 与△A′B′C′关于y轴对称.12.△ACE≌△DCB(SAS).AE=BD.又∠HGE=∠CGB.∠HEG=∠CBG.∠HGE+∠HEG=∠CGB+∠CBG=90°.∠EHG=90°.AE⊥;②以BC为腰的等腰三角形可作3个.检测站1.60°2.AP;PC,AP;∠CAP.3.1;,55°或70°,40°.5.AC,∠C,△10.A11.略.12.∠BAC=60°,∠C=90°,∠B=30°.13.∵△ABC≌△BAD.∠CAB=∠DBA,∴△EBA是等腰三角形.14.(1)5;(2)80°.15.∠ACD=180°-A2,∠BCE=180°-B2,∠ACB=90°.∴∠ACD+∠BCE=90°+∠DCE.∠DCE=45°.3.1第1课时1.B≠0;B=0;A=0且B≠0.2.≠23.1,;400.10.a=-1.11.略.12.n+13n-2第2课时1.略2.(1)2abc2;(2)xy(x+y);(3)a(a+b);(4)2x(x+y).,a2a=12;当m≠0,n≠0时,n2mn=;x≠0,-a,3.21.略.2.2a(b-a);(2)-1(x-y)2;(3)a+22-a;(4)2a2a-3b.7.-78.a-b+ca+b+c9.略.3.31~3.略.4.(1)-1ab;(2)ab18c;(3)4yx;(4);(2)-b3x;(3)xy2;(4)aa+b8.-13 9.略.3.41.略.2.6a2b2,ab,3b,2a.3.(x+2)(x-2),3ac324a2b2c2;(2)5(a-b)215a( a+b)(a-b),3(a+b)215(a+b)(a-b);(3)3x-2y(3x+2y)(3x-2y),2(3x+2y )(3x-2y);(4)(x+1)2(x-1)(x+1)2,x(x-1)(x+1)(x-1)(x+1)2,x-1(x-1)(x+1)2.7 .(m-n)2m-n,-mnm-,axz(a-b)(c-a)xyz(a-b)(b-c)(c-a),bxy(a-b)(b-c)xyz(a-b)(b-c)(c-a).9.(1)把前一个分式的分子,分母同乘-a2b即得下一个分式;(2)-a12b8a13b6.(3)(-1)na2n-2bn+1(-1)n+1a2n-1bn-1.3.5第1课时1.略.2.(1)-b2a;(3)2aa-;(2)x+2;(3)3.6.(1)2+x;(2)3abb-第2课时1.略.2.b2-4c4a3.-4(x+2)(x-2)7.(1)3c3-4a2b12ab2c2;(2)6x2+xy+7y242x2y2;(3)2mn-m2n2-m2.8.-659.(1)11-a;(2)x2.10.1(x-1)(x-2),1(x-2)(x-3),1(x-3)(x-4),1x-100.第3课时;(2)x+6.∵ca+b<1.∴c2(a+b)2<ca+b3.6第1课时1.(1)7x4y;(2)b2a;(3)2x-y;(4)a+ba-b2.ala+b,ala+b.3.23;49;;(2)2;(3)4.7.68.(1)xyx+y(天);(2)甲:myx+y(元),乙:mxx+y(元).9.(1)ba;(2)b-10a-10,b+10a+10;(3)b-10a-10<ba<b+10a+10.第2课时1.略.2.8∶8.a-b=-39.260 mm10.5211.-5.第3课时1.略.2.2∶33.33124.1 m5.10∶15∶,a,54a.10.6,8,,192人,45人.3.7第1课时1.略.2.去分母,将分式方程转化为整式方程求解,然后验根.3.-124.-;(2)x=11.(1)x=5;(2)a=6.第5个方程;(3)1+x2x=n+1x,x=2n+1.第2课时1.略.2.无解,错在第3步,没有检验;方程无解.6.(1)x=3;(2)无解;(3)无解;(4)无解.7.a=-58.(1)①x=1;②x=2;③x=3;(2)方程1x-2-1x-3=1x-5-1x-6的解为x=4;方程1x+2-1x+1=1x-1-2x-2的解为x=0.第3课时1.略.2.12010-x-12010=33.16+1x=13.4.D5.(1)设去年每间屋的租金为x元,9.6x=10.2x+500;(2)8 000元.6.4 km/h7.37.5 km/h8.1.5 t9.(1)设预定工期为x天,4x+xx+5=1,x=20(天).(2)采取联合施工4天,然后由乙单独施工的方案省工程费.第三章综合练习1.a≠32;x=-,m≠5.a∶b=b∶c,c∶b=b∶a,ac=;(2)-x3y;(3)2xy;(4)3x+1;(5)1681x4y4;(6)2a2b2;(7)a-3a2-13;(8)-1a+1.18.(1)-715;(2)21.(1)无解;(2)x=1912;(3)x=-2;(4)无解.22.应提高60 km/h23.(1)x ≠-1,0,1;(2)原式=;分两次清洗后,残留农药比为:4(2+)2,11+y-4(2+y)2=y2(1+y)(2+y)2>0.第2种方案好.检测站1.x≠32,x=-;(2)ab;(3)2x-;-1.13.(1)x=4;(2)无解;(3)x=4.1第1课时1~2.略. 757 t;平均产量8.53 t.7.9 000 m38.a·10%+b·15%+c·5%a+b+c (a,b,c为甲、乙、丙三种汽油原价) 第2课时1.820,920, km/h3.C4.(1)甲;(2)乙.kg;(2)3 312 kg.4.21.略. 626,中位数1 cm7.9或108.(1)85.5;(2)41人;(3)高低分悬殊大.4.3第1课时1.2;1与,中位数是3,众数是1.6.(1)3个;(2)32 000个.7.(1)甲组:平均数80,中位数80,众数90;乙组:平均数80.2,中位数80,众数70;(2)略.第2课时,中位数22.5千瓦时,众数10千瓦时.4.(1)众数55 min,中位数55 min;(2)平均数为55 min.符合学校的要求.5.甲当选4.41~2.略.3.(1)平均直径都是20 mm;(2)小明.4.乙地;甲地温差比乙地大.5.(1)平均身高都是178 cm;(2)图略.甲队整齐.6.(1)x甲=1.69 m,x乙=1.68 m;(2)图略.甲比较稳定.4.5第1课时,,,S2乙=0.105;果农甲.7.(1)x=3,S2=2;(2)x=13,S2=2;(3)x=30,S2=200.8.(1)xA=0,S2A=2.29;(2)取-2,-1,0,3,0;xB=0,S2B=2.8.第2课时1.乙2.D3.(1)略;(2)大刚的平均数为13.35,方差为0.004;小亮的平均数为13.3,方差为0.02.大刚成绩好.4.(1)x苹果=8,x香蕉=8,S2苹果=9,S2香蕉=1.333;(2)略;(3)9月份多进苹果.5.S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]=1n[x21+x22+…+x2n-2x(x1+x2+…+xn)+nx2]=1n[x21+x22+…+x2n-2nx(x1+x2+…+xnn+nx2)]=1n[x21+x22+…+x2n-nx2].4.61.C2.略3.甲4.相差75.x甲=178,S2甲=0.6;x乙=178,S2乙=,S2甲=7.96;x乙=201.5,S2乙=38.05;(2)甲.第四章综合练习m2.8,8,8,,18,184.4,3.5.b>a>,众数1,S2甲=7.67;乙组:x乙=3,中位数3,众数3,S2乙=1.67;(2)乙组.10.(1)x=2 135.7(元),众数为800元,中位数为1 600元;(2)略.11.(1)x=2,众数为3,中位数为2;(2)68人.12.(1)22℃;(2)20.8℃;(3)146天.13.乙成绩稳定检测站,cm,S2甲=1.84,x乙=5.6 cm,S2乙=1.04.(2)乙苗长的比较整齐.10.(1)x甲=7,S2甲=0.4,x乙=7,S2乙=2.8;(2)甲.11.612.(1)甲班:平均分24,方差5.4;乙班中位数24,众数21,方差19.8;(2)甲班42人,乙班36人;(3)甲班.综合与实践略.5.11~2.略.3.面积相等的三角形,是全等三角形,假.5.21.略.2.不正确.如正方形与菱形.3.小亮不对;小莹说法正确.4.不正确.如2≠-2,但22=(-2)2.5.不正确;t=20t1+30t220+30.5.31~3.略.4.C5.直角定义;余角定义;对顶角相等;等量代换;余角定义.6.(1)C,E,F,G;(2)E;(3)K;(4)略.7.C5.4;内错角相等,两直线平行;(2)∠DEC;AB∥DE.同位角相等,两直线平行.4.已知:∠CBE;两直线平行,同位角相等;已知,∠CBE;等量代换;内错角相等,两直线平行.5.略.6.(1)如果两个角相等,那么这两个角是同角或等角的补角.真命题;(2)如果三角形中有两个角是锐角,那么第三个角是钝角,假命题,如∠A=80°,∠B=70°,∠C=30°.7.(1)延长AE与CD相交于点G.∵AB∥EF.∴∠A+∠AEF=180°.∵AB∥CD,∴∠A+∠G=180°.∴∠A+∠AEF=∠A+∠G,∠AEF=∠G.∴EF∥CD;(2)360°.5.5第1课时1.略.,∠AOB=∠DOC.5.∠1>∠ACB>∠26.略.7.(1)∠A逐渐减小,∠B,∠C逐渐变大;若点A向下运动,变化相反;(2)α=β+γ.5.5第2课时1.(1)∠B=∠DAC;(2)∠A=∠D;∠CGE+∠B=180°.,∠2=∠C+∠CED,∠1+∠2=180°.6.(1)∠EFD=90°-∠FED=12(∠A+∠B+∠C)-(∠B+12∠A)=12(∠C-∠B);(2)不变.5.6第1课时;(2)∠A=∠D;(3)∠C=∠F.4.(1)△ABE≌△DCF(SAS),△ABF≌△DCE(SAS),△BEF≌△CFE;(2)略.5.△AFC≌△BED(ASA)6.取EF的中点M,连接GM,并延长交FH于点N.GN分别交AD,BC于点P,Q.△PEM≌△QFM.沿GN将道路取直即可.第2课时1.平行2.90°,∴∠CBD=∠CDB.∴BC=DC.6.△ABD与△ACD都是等腰三角形,BD=AD=DC.7.△ABD≌△ACE(SAS).∠A=∠CAE=60°.∴△ADE 为等边三角形.8.∵△AEB≌△BDA(ASA).∴AE=BD,EB=DA,CE=CD,EF=DF.AF=BF.第3课时1.=2.①②③3.A4.略.5.△ABD≌△AED(SAS),∴AB=AE.DC=AB+BD=AE+DE,DC=DE+EC,∴AE=EC.∴点E在线段AC的垂直平分线上.6.(1)∠A≠∠C.因为△ABD与△CBD不全等;(2)∠A>∠C.因为AB <BC,在BC上取BA′=BA.△ABD≌△A′BD.∠A=∠BA′D.∠BA′D>∠C,∴∠A>∠C;(3)当AB=CB时.∠A=∠C;当AB<BC时,∠A>∠C;当AB>BC时,∠A<∠C.第4课时1.OA=OB.2.=.三角形的三内角平分线相交于一点.,△BED≌△BFD (SAS).△EOD≌△FOD(SSS)或(SAS).7.DE=BD-CE.由DE∥BC.∠BOD=∠OBC=∠OBD.∴BD=OD.又∠OCE=∠OCF=∠BOC+∠OBC=∠BOC+∠BOE=∠COE.∴CE=OE.DE=OD-OE=BD-CE.第5课时1.AB=AD或BC=DC(HL),过MN上一点D作MN的垂线l;在直线l上截取DA=h;以A为圆心,a为半径画弧交MN于点B,C两点;连接AB,AC.△ABC即为所求.5.连接AC.Rt△ABC≌RtADC(HL).∴BC=DC.Rt△BCE≌Rt△DCF(HL).6.连接AF,BF.△AEF≌△BEF△AFC≌△BFD(SAS).7.(1)Rt△OBD≌Rt△OCE(HL);(2)Rt△OBD≌△OCE(HL);(3)相等.第五章综合练习,AB∥CD.9.延长EF交BC于点G.∵∠2=∠4,∴AB∥EF.∠3=∠B=∠EGC.∴DE∥BC.∴∠AED=∠ACB.10.∠ABE=∠FBD,∠ABE+∠AEB=90°,∠FBD+∠AFE=90°.∴∠AEB=∠AFE.∴AE=AF.11.△ACE≌△BDE(AAS),∴EC=ED.12.(1)∠D=∠AEC(同角的余角相等).△ACE≌△CBD.∴AE=CD;(2)BD=CE=12AC=6 cm.13.(1)Rt△ADE≌Rt△ADF;(2)DB=DC,Rt△DBE≌Rt△DCF(HL).14.(1)略;(2)连接BD.∠DBC=12∠B=30°.∵∠CDE=∠CED.∴∠CED=12∠ACB=30°.∴△DBE为等腰三角形.∵DM⊥BE,∴BM=EM.15.△BPD≌△BDC(SAS),△BCD≌△ACD(SSS).∠P=∠BCD=∠ACD=12∠ACB=30°.16.(1)作DF⊥AB,垂足为点E.AC=AE,DE=DC.∵∠B=∠A=45°,∴BE=DE.∴AB=AE+BE=AC+CD.(2)(1)中的等量关系仍成立.∵∠ACB>∠B,∴AB >AC.在AB上截取AG=AC.分别作DF⊥AC,DE⊥AB.△DCF≌△DGE.∵∠EGD=∠C=2∠B.∴∠B=∠BDG.BG=DG=DC.∴AB=AG+GB=AC+CD.检测站;△ODG≌△OEG,△DPG≌△EPG;△ODP≌△OEP,HL或AAS.5.略.6.FA=FD,∠ADF=∠DAF=∠DAC+∠CAF.∵∠DAC=∠BAD.∴∠B=∠ADF-∠BAD=∠DAF-∠DAC=∠CAF.7.(1)略;(2)∵CA=CE,∴∠CAE=∠E.∵∠ACB=∠CAE+∠E=2∠E,∠ACB=2∠BCD,∴∠E=∠BCD.CD∥AE.8.(1)①③或②③;(2)略.9.(1)△ABQ≌△PBC;(3)∠MBN=60°,△ABM≌△PBN(ASA).BM=BN.∴△BMN为等边三角形.∠MNB=∠QBC.MN∥AC.总复习题1.(3,4),等腰2.-53.50°,60°,70°.4.略.5.5,;(2)x2-xy-2y23xy2;(3)-(1-m)2;(4)1- m,3 600x-3 6001.8x=20.x=80 m.15.(1)中位数12℃,众数11℃;(2),FM⊥AD,FN⊥AE,垂足分别为点G,M,N.FM=FG=FN.17.∵∠BAD=∠BDA,∴AB=DB=CD.∵BE=DE,∴△ABE≌△ADE.AB=AD,△ABD为等边三角形.连接CF.△AEC≌△FEC.∵∠ACF=60°,∴△AFC为等边三角形.∴AF=AC,AE=12AC.18.延长BO交AC于点D.∠BOC=110°.19.作CF⊥AC,交AD延长线于点 F.∵∠BAC=90°,AD⊥BM.∴∠ABM=∠MAE.∵AB=AC,∴△ABM≌△CFA.∠1=∠F.AM=CF.∵AM=CM,∴CF=CM.∠FCD=45°=∠MCD.∴△FCD≌△MCD(SAS).∠2=∠F=∠1.总检测站1.a-12.(1)SSS;(2)SAS;(3)HL.3.5,5,,3.5.△ABC≌△ABD,△ACE≌△ADE,△CEB≌△ 850 kg12.(1)x=-2;(2)无解.13.30 m14.∵△ABE≌△ACE,∴BE=CE,BD=CD.△BDE≌△CDE(SSS).15.(1)①②③④,①③②④,①④②③,②③①④,②④①③.(2)略.≤≥<>×≠÷′△∠°αβ⊥∥∵∴△≌△S△ACC′。

相关文档
最新文档