第八章 欧氏空间

合集下载

欧氏空间

欧氏空间
6.为了便于学生记忆,可将欧氏空间的基础性质作如下整理:设v是一个欧氏空间,α、β、γ∈V,k∈R,有:把"内积"的性质及向量的长度、夹角、距离得到的有关性质总结一起.
二. 内容及要求
1、 内容:内积、欧氏空间、向量的长度、向量间的夹角、距离的概念、性质.
2、 重点:内积、欧氏空间的定义.
2.正交基(或标准正交基)的求法的基础是建立在"任一线性无关组可得一正交组(从而得一标准正交组)"之上的,上述证明思想的分析过程可从含两个向量的向量组出发,一般地用归纳法,这样易于接受,从而自然得正交基(标准正交基)的求法.这是本节的难点及重点.施密特正交化公式麻烦.
3.子空间的正交补是子空间的一类特殊的余子空间,其结论上不同于一般向量空间的有限维子空间的余子空间存在不唯一;而正交补存在且唯一.而求正交补的思想同求余子空间类似,不同的在于选标准正交基.
一 教学思考
1.在欧氏空间中讨论线性变换,最主要的是讨论那些与内积有关的线性变换,以后两节即讨论这样两类线性变换.
2.从内容上看本节给出了正交变换的定义及等价叙述(分一般欧空上及有限欧空),以及中正交变换的类型.从中建立了n 维欧氏空间中正交变换与n 阶正交矩阵的一一对应,此二者是同一事物的两种形式,可以相互借助一方讨论另一方,中的正交变换的形式及相应的矩阵的形式.另外n 维欧氏空间的正交变换是v的自同构映射,等结论.本节易理解不麻烦.
3.为更好的认识正交变换,可总结正交矩阵的若干性质.
Ⅱ)反过来:有了"内积"后,可用此表示行来年感的长度与夹角:.
③ 上述关系启发我们可以先定义"内积",然后利用"内积"定义向量的有关度量问题.

高等代数课件 第八章

高等代数课件 第八章
由此得 | | , x12 x22 xn2 (5)
( ,) (x1 y1)2 (xn yn )2 (6)
2.标准正交基的性质
设 {1,2} 是 V2 的一个基,但不一定是
正交基。从这个基出发,只要能得出 V2 的一个
正交基 {1, 2}, 问题就解决了,因为将 1和2
再分别除以它们的长度,就得到一个规范正交
注意:(7)和(8)在欧氏空间的不等式(6) 里被统一起来. 因此通常把(6)式称为柯西-施瓦兹不 等式.
三、向量的正交
定义4 欧氏空间的两个向量ξ与η说是正交的,
如果 , 0
定理8.1.2 在一个欧氏空间里,如果向量ξ
与1,2,,r 中每一个正交,那么ξ与 1,2,,r
的任意一个线性组合也正交.
2 a1 2 a1 0,
因而 2 0,
这就得到 V2 的一个正交基 {1, 2}.
3.标准正交基的存在性
定理8.2.2(正交化方法) 设 {1,2 ,,n}
是欧氏空间V的一组线性无关的向量, 那么可以求
出V 的一个正交组 {1, 2,, n}, 使得 k 可以由 1,2,,k 线性表示,k = 1,2,…,m.
由于1,2,,k 线性无关,得 k 0,
又因为假定了 1, 2 ,, k1 两两正交,所以
k ,i
k ,i
k ,i i , i
i , i 0, i 1,2,, k 1
这样,1, 2,, k 也满足定理的要求。
定理8.2.3 任意n(n >0)维欧氏空间一定有正交
基,因而有标准正交基.
例4 在欧氏空间 R3中对基
4) 当 0 时, , 0 这里 ,, 是V的任意向量,a是任意实数,那么
, 叫做向量ξ与η的内积,而V叫做对于 这个内积来说的一个欧氏空间(简称欧氏空间).

高等代数教案第 章欧氏空间

高等代数教案第 章欧氏空间
(线性双射),其次,它保持向量的内积不变. 因而欧氏空间的同构映射保持向量的长度不变,保持
第 4 页 共 21 页
《高等代数》教案-8-第 8 章 欧氏空间
向量的夹角不变,故它保持几何形状不变. 容易证明,同构作为欧氏空间之间的关系具有反身性、对称性和传递性,因而它是欧氏空间的等.
价关系. 两个有限维欧氏空间同构的充分必要条件是它们有相同的维数. 所以,任意一个 n 维欧氏空 间都与 Rn 同构.
α
cosθ
为向量α
在向量 β
上的投影,称向量 (α , β )
β2
β
是向量α
在向量 β
上的投影向量.
注意,α
在向量 β 上的投影可表示为
α
cosθ
=
(α, β
β
)
=
α
,
β β

向量α 在向量 β 上的投影向量亦可以表示为
第 2 页 共 21 页
《高等代数》教案-8-第 8 章 欧氏空间
(α, β
(1)σ (α + β ) = σ (α ) + σ (β ) , (2)σ (kα ) = kσ (α ) ,
(3)(σ (α ),σ (β )) = (α, β ) ,
这里α, β ∈V , k ∈ R ,则称欧氏空间V 与V ′ 同构,称σ 是V 到V ′ 的一个同构映射. 注 两个欧氏空间V 到V ′ 的“同构映射”是指:首先,把V 和V ′ 看成线性空间时它是同构映射
Ⅲ.重点与难点 重点: 内积、欧氏空间的概念,向量的正交性,正交阵的性质及运用,实对称阵的正交对角化; 难点: 正交阵的性质及运用,实对称阵的正交对角化.
Ⅳ.教学内容
§8.1 欧氏空间的概念

第8章.欧几里得空间doc

第8章.欧几里得空间doc

第八章 欧氏空间(讲授7学时)一、教学目标:1、深刻理解欧氏空间的定义及性质;掌握向量的长度,两个向量的夹角‘正交及度量矩阵等概念和基本性质,掌握各种概念之间的联系与区别。

2、正确理解正交向量组、标准正交基的概念,掌握施密特正交化过程,并能把一组线性无关的向量化为单位正交的向量。

3、正确理解和掌握正交变换的概念及几个等价关系,掌握正交变换与向量的长度,标准正交基,正交矩阵间的关系。

4、正确理解和掌握两个子空间正交的概念,掌握正交与直和的关系,及欧氏空间中的每一个子空间都有唯一的正交补性质。

5、深刻理解和掌握任一个对称矩阵均可正交相似与一个对角阵,并掌握求正交矩阵的方法。

能用正交变换化实二次型为标准形。

二、教学内容:欧几里德空间的定义与性质、标准正交基、正交变换、子空间、对称矩阵的标准形。

三、教学重点:标准正交基、正交变换、子空间、对称矩阵的标准形。

四、教学难点:标准正交基、正交变换、对称矩阵的标准形。

五、教学方法:讲授法六、教学过程(一)、欧式空间的基本概念、标准正交基1、内积:设V 是实数域R 上的线性空间,映射:f V V R ⨯→满足○1对称性:,,f f V αββααβ∀∈()=(),, ○2线性性:,,,,,f k l kf lf V k l R αβγαγβγαβγ+∀∈∀∈()=()+(),,, ○3非负性:,,0f V f αααααα≥∀∈=⇔=()0,且()0 则称f 为V 的内积。

2、欧式空间:定义了内积的线性空间V 称为欧式空间,不同的内积就是不同的欧氏空间。

3、长度与夹角:设V 是欧式空间○1称为α的长度,记作:α,显然00.= ○2夹角:非零向量αβ,,称(,)arccos αβαβ在π[0,]内的夹角为α与β的夹角,记作:,αβ<>.4、标准正交基:○1设V 是欧式空间,若(,)0αβ=,称α与β,记作:αβ⊥。

○2正交向量组:设V 是欧式空间,非零向量组12,,,,n V ααα∈ 满足(,)0i j αα=, (,,1,2,,),i j i j n ≠= 称12,,,n ααα 为正交向量组。

02-8.1 内积与欧氏空间

02-8.1 内积与欧氏空间

3 时,x1 = − 26
4
1
26
,
x3
= − ; 26
当x4 = −
3 时, x1 = 26
4 26 , x3 =
1; 26
所以Y =( 4 , 0, 1 , − 3 )T 或(− 4 , 0, − 1 , 3 )T .
26 26 26
26
26 26
8.1 内积和欧氏空间
小结 (1)内积、欧氏空间、长度、夹角、正交等概念 (2) Cauchy- Bunyakovsky -Schwarz不等式
(
X
,Y
)
=
max(|
i =1,2
ai
|,|
bi
|)
-1 1 0

X=
0

,Y
=

0
,Βιβλιοθήκη Z= 0

,
此时 ( X + Y, Z ) ≠ ( X, Z ) + (Y, Z ),
则(-,-)不是内积.
8.1 内积和欧氏空间
例3 设C[a, b]是 的闭区间[a, b]上连续函数全体构成
当且仅当 α , β 线性相关时, 等号成立.
证明 显然,当且仅当α = 0或β - tα = 0时等式成立. 即当且仅当α,β线性相关时等式成立.
8.1 内积和欧氏空间
例5 对任意实数 ai , bi (i = 1, 2, ..., n)总有
(a1b1 + ... + anbn )2 ≤ (a12 + ... + an2 )(b12 + ... + bn2 )
例4 在欧氏空间n 中, 向量 X = (a1, a2 , ..., an )T 的长度是 | X =| a12 + a22 + ... + an2 .

第八章欧氏空间

第八章欧氏空间
第八章 欧氏空间
8.1 向量的内积 8.2 正交基 8.3 正交变换 8.4 对称变换和对称矩阵
8.1 向量的内积
一、内容分布 8.1.1向量的内积、欧氏空间的定义 8.1.2向量的长度、两非零向量的夹角 8.1.3两向量正交、正交向量组的定义、性质
二、教学目的: 1.理解以下概念及其基本性质:向量的内积、欧氏空间、向量的长度、单位
不难验证, Rn 也作成一个欧氏空间.
例3 令C[a,b]是定义在[a,b]上一切连续实函数
所成的向量空间, f (x), g(x) C[a,b]
我们规定

b
f , g a f (x)g(x)dx.
根据定积分的基本性质可知,内积的公理
1)---4)都被满足,因而C[a,b]作成一个欧氏空间.
b2
b2
f (x)g(x)dx
(x)dx (x)dx.
a
a
a
(8)
(8)式称为施瓦兹(Schwarz)不等式.
(7)和(8)在欧氏空间的不等式(6)里被 统一 起来. 因此通常把(6)式称为柯西-施瓦兹 不等式.
例8 设 , 为欧氏空间V 中任意两个
非零向量.证明:
(1) a(a 0)当且仅当 , 的夹角为0;
i (0,,0, 1,0,,0), i =1,2,…,n,
是 Rn 的一个标准正交基. 如果
{1, 2 ,, n} 是n 维欧氏空间V的一个标准
正交基。令ξ是V的任意一个向量那么ξ是可
以唯一写成 x11 x22 xnn.
x1, x2 ,, xn 是ξ关于 {1, 2 ,, n} 的坐标。
求 A 的行列式 | A | 的值.
8.2 正交基

欧氏空间和酉空间

欧氏空间和酉空间

第八章 欧氏空间和酉空间§8.1向量的内积1.证明:在一个欧氏空间里,对于任意向量ηξ,,以下等式成立: (1)2222||2||2||||ηξηξηξ+=-++; (2).||41||41,22ηξηξηξ--+=在解析几何里,等式(1)的几何意义是什么?2.在区氏空间n R 里,求向量)1,,1,1( =α与每一向量)0,,0,1,0,,0()( i i =ε,n i ,,2,1 =的夹角.3.在欧氏空间4R 里找出两个单位向量,使它们同时与向量)4,5,2,3()2,2,1,1()0,4,1,2(=--=-=γβα 中每一个正交.4.利用内积的性质证明,一个三角形如果有一边是它的外接圆的直径,那么这个三角形一定是直角三角形.5.设ηξ,是一个欧氏空间里彼此正交的向量.证明:222||||||ηξηξ+=+(勾股定理)6.设βααα,,,,21n 都是一个欧氏空间的向量,且β是n ααα,,,21 的线性组合.证明,如果β与i α正交,n i ,,2,1 =,那么0=β.7.设n ααα,,,21 是欧氏空间的n 个向量.行列式><><><><><><><><><=n n n n n n n G ααααααααααααααααααααα,,,,,,,,,),,,(21222121211121叫做n ααα,,,21 的格拉姆(Gram)行列式.证明),,,(21n G ααα =0,必要且只要n ααα,,,21 线性相关.8.设βα,是欧氏空间两个线性无关的向量,满足以下条件:><><ααβα,,2和><><βββα,,2都是0≤的整数.证明:βα,的夹角只可能是6543,32,2ππππ或. 9.证明:对于任意实数n a a a ,,,21 ,23322211(||nni ia a a a n a++++≤∑= ). §8.2 正交基1.已知)0,1,2,0(1=α,)0,0,1,1(2-=α)1,0,2,1(3-=α,)1,0,0,1(4=α是4R 的一个基.对这个基施行正交化方法,求出4R 的一个规范正交基.2.在欧氏空间]1,1[-C 里,对于线性无关的向量级{1,x ,2x ,3x }施行正交化方法,求出一个规范正交组.3.令},,,{21n ααα 是欧氏空间V 的一组线性无关的向量,},,,{21n βββ 是由这组向量通过正交化方法所得的正交组.证明,这两个向量组的格拉姆行列式相等,即><>><=<=n n n n G G βββββββββααα,,,),,,(),,,(22112121 4.令n γγγ,,,21 是n 维欧氏空间V 的一个规范正交基,又令},2,1,10,|{1n i x x V K ni i i i =≤≤=∈=∑=γξξK 叫做一个n -方体.如果每一i x 都等于0或1,ξ就叫做K 的一个项点.K 的顶点间一切可能的距离是多少?5.设},,,{21m ααα 是欧氏空间V 的一个规范正交组.证明,对于任意V ∈ξ,以下等式成立:∑=≤mi i122||,ξα.6.设V 是一个n 维欧氏空间.证明)(i 如果W 是V 的一个子空间,那么W W =⊥⊥)(.)(ii 如果21,W W 都是V 的子空间,且21W W ⊆,那么⊥⊥⊆12W W )(iii 如果21,W W 都是V 的子空间,那么⊥⊥⊥+=+2121)(W W W W7.证明,3R 中向量),,(000z y x 到平面}0|),,{(3=++∈=cz by ax R z y x W的最短距离等于222000||cb a cz by ax ++++.8.证明,实系数线性方程组∑===nj i j ijn i b x a1,,2,1,有解的充分且必要条件是向量n n R b b b ∈=),,,(21 β与齐次线性方程组∑===nj j jin i x a1,,2,1,0的解空间正交.9.令α是n 维欧氏空间V 的一个非零向量.令}0,|{>=<∈=αξξαV P .αP 称为垂直于α的超平面,它是V 的一个1-n 维子空间.V 中有两个向量ξ,η说是位于αP 的同侧,如果><><αηαξ,,与同时为正或同时为负.证明,V 中一组位于超平面αP 同侧,且两两夹角都2π≥的非零向量一定线性无关.[提示:设},,,{21r βββ 是满足题设条件的一组向量.则)(0,j i j i ≠>≤<ββ,并且不妨设)1(0,r i i ≤≤>><αβ.如果∑==ri i i c 10β,那么适当编号,可设0,,,0,,,121≤≥+r s s c c c c c ,)1(r s ≤≤,令∑∑+==-==rs j j j s i i i c c 11ββγ,证明0=γ.由此推出0=i c )1(r i ≤≤.]10.设U 是一个正交矩阵.证明:)(i U 的行列式等于1或-1; )(ii U 的特征根的模等于1; )(iii 如果λ是U 的一个特征根,那么λ1也是U 的一个特征根;)(iv U 的伴随矩阵*U 也是正交矩阵.11.设02cos≠θ,且⎪⎪⎪⎭⎫⎝⎛-=θθθθcos sin 0sin cos 0001U . 证明,U I +可逆,并且⎪⎪⎪⎭⎫⎝⎛-=+--010*******tan ))((1θU I U I12.证明:如果一个上三角形矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n a a a a a a a a a a A 000000333223221131211是正交矩阵,那么A 一定是对角形矩阵,且主对角线上元素ij a 是1或-1. §8.3正交变换1.证明:n 维欧氏空间的两个正交变换的乘积是一个正交变换;一个正交变换的逆变换还是一个正交变换.2.设σ是n 维欧氏空间V 的一个正交变换.证明:如果V 的一个子空间W 在σ之下不变,那么W 的正交补⊥W 也在σ下不变.3.设V 是一个欧氏空间,αV ∈是一个非零向量.对于V ∈ξ,规定ααααξξξτ><><-=,,2)(.证明,τ是V 的一个正交变换,且ιτ=2,ι是单位变换.线性变换τ叫做由向量α所决定的一个镜面反射.当V 是一个n 维欧氏空间时,证明,存在V 的一个标准正交基,使得τ关于这个基的矩阵有形状:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-1000010000100001 在三维欧氏空间里说明线性变换τ的几何意义.4.设σ是欧氏空间V 到自身的一个映射,对ηξ,有,)(),(ηησξσ=证明σ是V 的一个线性变换,因而是一个正交变换.5.设U 是一个三阶正交矩阵,且1det =U .证明:)(i U 有一个特征根等于1; )(ii U 的特征多项式有形状1)(23-+-=tx tx x x f这里31≤≤-t .6.设},,,{21n ααα 和},,,{21n βββ 是n 维欧氏空间V 的两个规范正交基.)(i 证明:存在V 的一个正交变换σ,使n i i i ,,2,1,)( ==βασ.)(ii 如果V 的一个正交变换τ使得11)(βατ=,那么)(,),(2n ατατ 所生成的子空间与由n ββ,,2 所生成的子空间重合.7.令V 是一个n 维欧氏空间.证明:)(i 对V 中任意两不同单位向量βα,,存在一个镜面反射τ,使得βατ=)(. )(ii V 中每一正交变换σ都可以表成若干个镜面反射的乘积.[提示:为了证明)(ii ,利用)(i 和习题6.]8.证明:每一个n 阶非奇异实矩阵A 都可以唯一地表示成UT A =的形式,这里U 是一个正交矩阵,T 是一个上三角形实矩阵,且主对角线上元素都是正数.[提示:非奇异矩阵A 的列向量n ααα,,,21 作成n 维列空间n R 的一个基.对这个基施行正交化,得出n R 的一个规范正交基},,,{21n γγγ ,以这个规范正交基为列的矩阵U 是一个正交矩阵,写出},,,{21n γγγ 由},,,{21n ααα 的表示式,就可以得出矩阵T.证明唯一性时,注意8.2习题12.] §8.4 对称变换和对称矩阵1.设σ是n 维欧氏空间V 的一个线性变换.证明,如果σ满足下列三个条件的任意两个,那么它必然满足第三个:)(i σ是正交变换;)(ii σ是对称变换;)(iii ισ=2是单位变换.2.设σ是n 维欧氏空间V 的一个对称变换,且σσ=2.证明,存在V 的一个规范正交基,使得σ关于这个基的矩阵有形状⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001013.证明:两个对称变换的和还是一个对称变换.两个对称变换的乘积是不是对称变换?找出两个对称变换的乘积是对称变换的一个充要条件.4.n 维欧氏空间V 的一个线性变换σ说是斜对称的,如果对于任意向量V ∈βα,,)(,),(βσβασ-=.证明:)(i 斜对称变换关于V 的任意规范正交基的矩阵都是斜对称的实矩阵(满足条件A A -='的矩阵叫做斜对称矩阵))(ii 反之,如果线性变换σ关于V 的某一规范正交基的矩阵是斜对称的,那么σ一定是斜对称线性变换.)(iii 斜对称实矩阵的特征根或者是零,或者是纯虚数.5.令A 是一个斜对称实矩阵.证明,A I +可逆,并且1))((-+-=A I A I U 是一个正交矩阵.6.对于下列对称矩阵A,各求出一个正交矩阵U,使得AU U '是对角形式:)(i ⎪⎪⎪⎭⎫ ⎝⎛--=510810228211A ; )(ii ⎪⎪⎪⎭⎫⎝⎛----=114441784817A。

欧氏空间

欧氏空间

第八章 欧式空间基础训练题1. 证明,在一个欧氏空间里,对任意的向量α,β,以下等式成立: (1) 222222βαβαβα+=-++;(2) 〈α,β 〉=224141βαβα--+.[提示:根据向量内积的定义及向量模的定义易证.]2. 在欧氏空间R 4中,求一个单位向量与 α1=(1, 1, 0, 0),α2=(1, 1, -1, -1),α3=(1, -1, 1, -1)都正交.解:ε=⎪⎭⎫ ⎝⎛21,21,21,21--.3. 设a 1, a 2, …, a n 是n 个实数,证明: )(222211n n i i a a a n a +++ ≤∑=.证明: 令α=(1,1, …,1), β=(|a 1|,|a 2|,…, |a n |)〈α , β〉=∑=ni i a 1≤|α|·|β |=)(22221n a a a n +++ . 4. 试证,欧氏空间中两个向量α, β正交的充分必要条件是:对任意的实数t ,都有|α+t β| ≥ |α|.证明: 〈α +t β,α +t β〉=〈α , α〉+2t 〈α , β〉+t 2〈β , β〉必要性: 设α与β正交, 对任意的实数t ,则〈α +t β,α +t β〉=〈α , α〉+t 2〈β , β〉≥〈α , α〉所以 |α+t β| ≥ |α|.充分性: 当β=0时,结论成立.当β≠0时,取t 0=2,ββα〉〈-,则〈α +t 0β,α +t 0β〉=〈α , α〉22,ββα〉〈-. 由已知〈α +t 0β,α +t 0β〉≥〈α , α〉故 22,ββα〉〈=0, 所以〈α , β〉= 0. 即α , β正交.5. 在欧氏空间R 4中,求基{α1, α2, α3, α4}的度量矩阵,其中α1=(1, 1, 1, 1), α2=(1, 1, 1, 0), α3=(1, 1, 0, 0), α4=(1, 0, 0, 0) .解: 度量矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1111122212331234. 6. 在欧氏空间R 3中,已知基α1=(1, 1, 1), α2=(1, 1, 0), α3=(1, 0, 0)的度量矩阵为B =⎪⎪⎪⎭⎫ ⎝⎛--321210102求基ε1=(1, 0, 0), ε2=(0, 1, 0), ε3=(0, 0, 1)的度量矩阵.解: 度量矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛----343485353.7. 证明α1=⎪⎭⎫ ⎝⎛21,21,21,21, α2=⎪⎭⎫ ⎝⎛21,21,21,21--α3=⎪⎭⎫ ⎝⎛21,21,21,21--,α4=⎪⎭⎫ ⎝⎛-21,21,21,21- 是欧氏空间R 4的一个规范正交基.[提示:令u =(α1, α2, α3, α4),计算uu T 即可.]8. 设{ε1, ε2, ε3}是欧氏空间V 的一个基, α1=ε1+ε2, 且基{ε1, ε2, ε3}的度量矩阵是A =⎪⎪⎪⎭⎫ ⎝⎛----612121211.(1)证明α1是一个单位向量;(2)求k ,使α1与β1=ε1+ε2+k ε3正交.证明: (1) 〈ε1 , ε1〉=1, 〈ε1 , ε2〉=1-, 〈ε2 , ε2〉=2〈α1 , α1〉=〈ε1 , ε1〉+2〈ε1 , ε2〉+〈ε2 , ε2〉=1所以α1一个单位向量.(2)k =1-.9. 证明,如果{ε1, ε2,…,εn }是欧氏空间V 的一个规范正交基,n 阶实方阵A =(a ij )是正交矩阵,令(η1, η2,…,ηn )=(ε1, ε2,…,εn )A ,那么{η1, η2,…,ηn }是V 的规范正交基.证明: 〈 ηi ,ηj 〉=kj nk ki a a ∑=1=⎩⎨⎧≠=时当时当j i j i ,0,1 . 10. 设A 是n 阶正交矩阵,证明:(1)若det A =1,则-1是的一个特征根;(2)若n 是奇数,且det A =1,则1是A 的一个特征根.证明:(1)det(-I -A ) = det(-A A T -A )= det A ·det(-A T -A )= det A ·det(-I -A )=-det(-I -A )所以det(-I -A )=0,即-1是的一个特征根.(2)= det(A A T -A )= det A ·det(A T -A )= det A ·(-1)n·det(I -A ) =-det(I -A )所以det(I -A )=0, 即1是A 的一个特征根.10. 证明,n 维欧氏空间V 的两个正交变换的乘积是一个正交变换;一个正交变换的逆变换还是一个正交变换.[提示: 根据正交矩阵的乘积是正交矩阵, 正交矩阵的逆矩阵是正交矩阵,结论易证.]11. 证明,两个对称变换的和还是对称变换. 两个对称变换的乘积是不是对称变换?找出两个对称变换的乘积是对称变换的一个充要条件.证明: 两个对称变换的和还是对称变换易证. 两个对称变换的乘积不一定是.例如:令ε1 , ε2是R 2的一个规范正交基,分别取R 2 的两个对称线性变换τσ,,使得),(21εεσ=(ε1 , ε2)⎪⎪⎭⎫ ⎝⎛0001 , ),(21εετ=(ε1 , ε2)⎪⎪⎭⎫ ⎝⎛0110 , 可以验证στ不是对称变换.两个对称变换的乘积是对称变换的一个充要条件是它们可换.12. 设是n 维欧氏空间V 的一个线性变换,证明,如果σ满足下列三个条件中的任意两个,那么它必然满足第三个:(1)σ是正交变换;(2)σ是变换;(3)σ2=ι(ι是恒等变换).[提示:根据σ是正交变换当且仅当σ在一个规范正交基下的矩阵是正交矩阵, σ是对称变换当且仅当σ在一个规范正交基下的矩阵是对称矩阵, 结论易证.]13. 设σ是n 维欧氏空间V 的线性变换,若对于任意α, β∈V , 有〈σ(α), β〉=-〈α, σ(β)〉,则说σ是斜对称的. 证明(1) 斜对称变换关于V 的任意规范正交基的矩阵都是斜对称实矩阵;(2) 若线性变换σ关于V 的某一规范正交基的矩阵是斜对称的,则σ是斜对称线性变换.[提示:证明过程与第八章第三节定理8.3.2(p.349)的证明过程完全类似.]14. 设σ是欧氏空间V 到V '的一个同构映射,证明,如果{ε1, ε2, …, εn }是V 的一个规范正交基,则{σ(ε1), σ(ε2), …, σ(εn )}是V '的一个规范正交基.证明:由(p.253) 定理5.5.3可知, {σ(ε1), σ(ε2), …, σ(εn )}是V '的一个基. 由欧氏空间同构映射的定义可知,〈σ(εi ), σ(εj )〉= 〈εi , εj 〉=⎩⎨⎧≠=时当时当j i j i ,0,1 , 所以结论成立.15. 设σ是n 维欧氏空间V 的一个正交变换. 证明,如果V 的一个子空间W 在σ之下不变,那么W 的正交补⊥W 也在σ之下不变.证明:因为正交变换是可逆线性变换,由(p.331)习题七的第13题的结论得: V = )()(⊥⊕w w σσ.因为⊥⊥w w ,且σ是正交变换,所以)()(⊥⊥w w σσ.由已知条件知,)(w σw ⊆,且σ可逆,因而)(w σw =从而 )(⊥⊥w w σ,即)(⊥w σ⊆⊥w .16. 设{ε1,ε2,ε3,ε4}是欧氏空间V 的一个规范正交基,W =L (α1, α2),其中α1=ε1+ε3,α2=2ε1-ε2+ε4.(1)求W 的一个规范正交基;(2)求W ⊥的一个规范正交基.解:取α3=ε2, α4=ε3,将α1, α2,α3,α4先正交化,然后规范化后得V 的一个规范正交基:β1=312121εε+ β2=432121212121εεεε+-- β3=4321321321323321εεεε+-+β4=431366161εεε++- 则{β1,β2}和{β3,β4}分别是W 与W ⊥的一个规范正交基.17. 求齐次线性方程组⎩⎨⎧0023214321=-+=+-+x x x x x x x . 的解空间W 的一个规范正交基,并求W ⊥.解: 经计算,得空间W 的一个基础解系为α1=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1011,α2=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1101 将α1, α2扩充为R 4的一个基α1, α2, α3=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0100,α4=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1000 将α1, α2,. α3, α4规范正交化后得W 的一个规范正交基β1 =⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-3103131, β2 =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-151153152151, β3=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--101102102101, β4 =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-210021 那么{β1,β2}和{β3,β4}分别是W 与W ⊥的一个规范正交基且W ⊥=£(β3,β4).18. 已知R 4的子空间W 的一个基α1=(1, -1, 1, -1),α2=(0, 1, 1, 0)求向量α=(1, -3, 1, -3)在W 上的内射影.解:易求得W ⊥的一个基α3=(1,0,0,1), α4=(-2, -1,1,0)则α1, α2, α3, α4是R 4的一个基.α=(2α1-α2) +(-3α3+0α4)所以α在W 上的内射映为2α1-α2 .19. 对于下列对称矩阵A ,各求出一个正交矩阵U ,使得U T AU 是对角形式:(1) A =⎪⎪⎪⎭⎫ ⎝⎛--510810228211,(2) A =⎪⎪⎪⎭⎫ ⎝⎛----114441784817.解:(1)⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=9189,323231323132313232AU U U T (2)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=2799,31184032181213218121AU U U T。

第八章欧氏空间欧氏空间的定义及基本性质.doc

第八章欧氏空间欧氏空间的定义及基本性质.doc

第八章欧氏空间计划课时:22学时 (P335—360)§8.1 欧氏空间的定义及基本性质(4学时)教学目的及要求:理解内积、长度、夹角、正交、距离的定义,掌握柯西一施瓦兹不等式。

通过本节的学习,使学生逐步掌握由特殊的例子抽象出一般概念的方法。

教学重点、难点:内积的定义、柯西一施瓦兹不等式本节内容分为下面四个问题讲授:一.内积及欧氏空间的定义1. 内积及欧氏空间的定义定义1(内积及欧氏空间的定义P336)注意:(1) .通过这个定义让学生逐步学会从具体例子抽象出一般概念的方法。

(2). 让学生体会公理化定义的特点。

(3). 内积的定义是本章的难点之一。

例1 (P336)例2 (P336)例3 (P336)例4 (P336)2. 向量的长度定义2(向量的长度P337)例5 (P336)例6 (P336)例7 (P336)长度的性质: | kα|=|k||α|.单位向量二. 柯西一施瓦兹不等式定理8.1.1注意:Cauchy不等式与Schwarz不等式这两个看似完全不同的不等式在高等代数课程中达到了高度的统一。

例8 (P338)例9(P338)三. 两向量的夹角、正交、距离定义3(P338-339)定义4 (P339)作业: P356-P357习题八 1(1),2,3,4,5.§8.2 度量矩阵与正交基(4学时)教学目的及要求:理解度量矩阵、规范正交基、正交矩阵的定义及相应的理论,掌握在规范正交基下内积的算法与正交化方法教学重点、难点:正交化方法本节内容分为下面三个问题讲授:一. 度量矩阵(1). 内积的计算(2).度量矩阵定理8.2.1 (P 309)例1 (P 341)二. 规范正交基(1). 规范正交基的定义注意:一个基为规范正交基的充分必要条件是它的度量矩阵是单位矩阵.(2). 在规范正交基下内积、坐标的算法(3). 规范正交基的求法—正交化过程.定理8.2.3注意:1.Schmidt 正交化方法肯定了)1(≥n n 维欧氏空间的规范正交基的存在性。

第8章 欧氏空间

第8章 欧氏空间

例2 在欧氏空间 C[0, 2] 中, 函数组 1, cosx, sinx, … , cosnx, sinnx, … 构成 C[0, 2] 的一个正交组. 这是因为:

2 0
2
0
1dx = 2 , , m = n sin mx sin nxdx = 0, m n
2
<x, h>2 ≤ <x, x> <h, h>
当且仅当 x 与 h 线性相关时上式等号才成立.
本节首页
退出本节
证明 1) 若x 与 h 线性相关,则或h = 0 或 h = ax , 都有
<x, h>2 = <x, x> <h, h>,
2) 若x 与 h 线性无关,则 t R, tx +h 0, 所以
2 n
x V, a R, 有
| ax |= < ax , ax > = a < x , x > =| a || x |
2
把长度为1的向量叫做单位向量. 所以向量 x 的 长度为: x/|x | .
本节首页 退出本节
柯西施瓦兹不等式、向量的夹角
定理8.1.1 在欧氏空间里, 对任意向量x, h , 有
本节首页
退出本节
例2 在Rn里对于任意两个向量 x = (x1, x2, ... , xn) , h = (y1, y2, ... , yn) , 规定 < x , h > = 1x1 y1 + 2x2 y2 + ... + nxn yn 容易验证 Rn 对此内积也构成一个欧氏空间.
内积可以构成不同的欧氏空间.
例1, 例2说明在同一向量空间中引入不同的

第八章欧氏空间欧氏空间的定义及基本性质.doc

第八章欧氏空间欧氏空间的定义及基本性质.doc

第八章欧氏空间计划课时:22学时 (P335—360)§8.1 欧氏空间的定义及基本性质(4学时)教学目的及要求:理解内积、长度、夹角、正交、距离的定义,掌握柯西一施瓦兹不等式。

通过本节的学习,使学生逐步掌握由特殊的例子抽象出一般概念的方法。

教学重点、难点:内积的定义、柯西一施瓦兹不等式本节内容分为下面四个问题讲授:一.内积及欧氏空间的定义1. 内积及欧氏空间的定义定义1(内积及欧氏空间的定义P336)注意:(1) .通过这个定义让学生逐步学会从具体例子抽象出一般概念的方法。

(2). 让学生体会公理化定义的特点。

(3). 内积的定义是本章的难点之一。

例1 (P336)例2 (P336)例3 (P336)例4 (P336)2. 向量的长度定义2(向量的长度P337)例5 (P336)例6 (P336)例7 (P336)长度的性质: | kα|=|k||α|.单位向量二. 柯西一施瓦兹不等式定理8.1.1注意:Cauchy不等式与Schwarz不等式这两个看似完全不同的不等式在高等代数课程中达到了高度的统一。

例8 (P338)例9(P338)三. 两向量的夹角、正交、距离定义3(P338-339)定义4 (P339)作业:P356-P357习题八1(1),2,3,4,5.§8.2 度量矩阵与正交基(4学时)教学目的及要求:理解度量矩阵、规范正交基、正交矩阵的定义及相应的理论,掌握在规范正交基下内积的算法与正交化方法教学重点、难点:正交化方法本节内容分为下面三个问题讲授:一. 度量矩阵(1). 内积的计算(2).度量矩阵定理8.2.1 (P 309)例1 (P 341)二. 规范正交基(1). 规范正交基的定义注意:一个基为规范正交基的充分必要条件是它的度量矩阵是单位矩阵.(2). 在规范正交基下内积、坐标的算法(3). 规范正交基的求法—正交化过程.定理8.2.3注意:1.Schmidt 正交化方法肯定了)1(≥n n 维欧氏空间的规范正交基的存在性。

欧式空间

欧式空间

欧式空间————————————————————————————————作者:————————————————————————————————日期:第八章 欧氏空间向量空间可以看成是通常几何空间概念的推广,然而几何空间里有向量的长度和夹角的概念,而一般的向量空间里却没有得到反映。

这一章我们将在实数域上的向量空间里引入欧氏内积的概念,从而可以合理的定义有向量的长度和夹角,这样的向量空间称为欧氏空间,在许多领域里有广泛的应用。

学习中还要注意学习具体到抽象,再从抽象到具体的辩证的思想方法。

§1 定义和性质几何空间3V 里向量的内积是通过向量的长度和夹角来定义的,即||||cos ξηξηθ⋅=⋅,||ξ表示ξ的长度,θ表示ξ与η的夹角。

我们不能直接按上面方式定义内积,因为还没有定义长度和夹角。

我们要根据几何内积所满足的性质来定义,回想到在第四章第8节在n R 定义内积就是根据几何内积所满足的性质来定义的。

所以在抽象的讨论中,我们取内积作为基本的概念。

定义1 设V 是实数域R 上的一个向量空间,有一个V V ⨯到R 的二元实函数,记作(,)αβ,具有以卡性质:,,V αβγ∀∈,k R ∀∈1) (,)(,)αββα=;2) (,)(,)(,)αβγαβαγ+=+; 3) (,)(,)k k αβαβ=;4) (,)0αα≥, 等号成立当且仅当0α=(,)αβ叫做向量α与β的内积,V 叫做对这个内积来说的欧氏空间。

在需要和其它的内积区别的时候,我们也把满足这4条性质的内积叫做欧氏内积。

在欧氏空间的定义中,对向量空间的维数并无要求,可以是有限维的,也可以是无限维的。

几何空闻中向量的内积显然适合定义中列举的性质,所以几何空间中向置的全体构成一个欧氏空间。

例1 1212(,,,)',(,,,)'n n n a a a b b b R αβ∀==∈,规定α与β的内积为1122(,)'n n a b a b a b αβαβ=+++=,则n R 作成一个欧氏空间。

欧式空间

欧式空间

欧式空间————————————————————————————————作者:————————————————————————————————日期:1249第八章 欧氏空间向量空间可以看成是通常几何空间概念的推广,然而几何空间里有向量的长度和夹角的概念,而一般的向量空间里却没有得到反映。

这一章我们将在实数域上的向量空间里引入欧氏内积的概念,从而可以合理的定义有向量的长度和夹角,这样的向量空间称为欧氏空间,在许多领域里有广泛的应用。

学习中还要注意学习具体到抽象,再从抽象到具体的辩证的思想方法。

§1 定义和性质几何空间3V 里向量的内积是通过向量的长度和夹角来定义的,即||||cos ξηξηθ⋅=⋅,||ξ表示ξ的长度,θ表示ξ与η的夹角。

我们不能直接按上面方式定义内积,因为还没有定义长度和夹角。

我们要根据几何内积所满足的性质来定义,回想到在第四章第8节在n R 定义内积就是根据几何内积所满足的性质来定义的。

所以在抽象的讨论中,我们取内积作为基本的概念。

定义1 设V 是实数域R 上的一个向量空间,有一个V V ⨯到R 的二元实函数,记作(,)αβ,具有以卡性质:,,V αβγ∀∈,k R ∀∈1) (,)(,)αββα=;2) (,)(,)(,)αβγαβαγ+=+; 3) (,)(,)k k αβαβ=;4) (,)0αα≥, 等号成立当且仅当0α=(,)αβ叫做向量α与β的内积,V 叫做对这个内积来说的欧氏空间。

在需要和其它的内积区别的时候,我们也把满足这4条性质的内积叫做欧氏内积。

在欧氏空间的定义中,对向量空间的维数并无要求,可以是有限维的,也可以是无限维的。

几何空闻中向量的内积显然适合定义中列举的性质,所以几何空间中向置的全体构成一个欧氏空间。

249 例1 1212(,,,)',(,,,)'n n n a a a b b b R αβ∀==∈,规定α与β的内积为1122(,)'n n a b a b a b αβαβ=+++=,则n R 作成一个欧氏空间。

《高等代数》第八章 欧氏空间

《高等代数》第八章  欧氏空间
ai 1 () = a11() () . 对 A() 作下述初等行变换:
a11()
A(
)


ai1

(

)

a1 j ()

aij ()


a11()


0

a1 j ()



aij () a1 j () ()
的多项式,且
di() | di+1() ( i = 1, 2, … , r-1 ) .
证明 经过行列调动之后,可以使得 A() 的
左上角元素 a11() 0,如果 a11() 不能除尽 A()
的全部元素, 由引理 设可以- 矩找阵到A与(A)(的)左等上价角的元素
B1() ,它的并左且上角A(元)素中b至1(少)有 0一,个并元且素次不数能比被它除
们的乘积是 1 可以推知,它们都是零次多项式, 也就是非零的数 .
证毕
二、举例
例 1 求下列 - 矩阵的秩
2 1
(1) 1

2


1 2 2 1 2 3 2
2 1
1 ;


2

1
(2) 2


1
1
引理 设 - 矩阵A() 的左上角元素 a11() 0
并且 A() 中至少有一个元素不能被它除尽,那么 一定可以找到一个与 A() 等价的矩阵 B() ,它的 左上角元素也不为零, 但是次数比 a11() 的次数低.
证明 根据 A() 中不能被 a11() 除尽的元素
所在的位置,分三种情况来讨论:
如此下去,A() 最后就化成了所要求的形式.

第八章 欧氏空间教学内容

第八章 欧氏空间教学内容

第八章欧氏空间第八章 欧式空间基础训练题1. 证明,在一个欧氏空间里,对任意的向量α,β,以下等式成立: (1) 222222βαβαβα+=-++; (2) 〈α,β 〉=224141βαβα--+.[提示:根据向量内积的定义及向量模的定义易证.] 2. 在欧氏空间R 4中,求一个单位向量与α1=(1, 1, 0, 0),α2=(1, 1, -1, -1),α3=(1, -1, 1, -1)都正交.解:ε=⎪⎭⎫ ⎝⎛21,21,21,21--.3. 设a 1, a 2, …, a n 是n 个实数,证明:)(222211n ni i a a a n a +++ ≤∑=.证明: 令α=(1,1, …,1), β=(|a 1|,|a 2|,…, |a n |)〈α , β〉=∑=ni i a 1≤|α|·|β |=)(22221n a a a n +++ .4. 试证,欧氏空间中两个向量α, β正交的充分必要条件是:对任意的实数t ,都有|α+t β| ≥ |α|.证明: 〈α +t β,α +t β〉=〈α , α〉+2t 〈α , β〉+t 2〈β , β〉 必要性: 设α与β正交, 对任意的实数t ,则〈α +t β,α +t β〉=〈α , α〉+t 2〈β , β〉≥〈α , α〉所以 |α+t β| ≥ |α|.充分性: 当β=0时,结论成立. 当β≠0时,取t 0=2,ββα〉〈-,则〈α +t 0β,α +t 0β〉=〈α , α〉22,ββα〉〈-. 由已知〈α +t 0β,α +t 0β〉≥〈α , α〉 故22,ββα〉〈=0, 所以〈α , β〉= 0. 即α , β正交.5. 在欧氏空间R 4中,求基{α1, α2, α3, α4}的度量矩阵,其中α1=(1, 1, 1, 1), α2=(1, 1, 1, 0), α3=(1, 1, 0, 0), α4=(1, 0, 0, 0) .解: 度量矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛1111122212331234.6. 在欧氏空间R 3中,已知基α1=(1, 1, 1), α2=(1, 1, 0), α3=(1, 0, 0)的度量矩阵为B =⎪⎪⎪⎭⎫ ⎝⎛--321210102求基ε1=(1, 0, 0), ε2=(0, 1, 0), ε3=(0, 0, 1)的度量矩阵.解: 度量矩阵为 ⎪⎪⎪⎭⎫⎝⎛----343485353.7. 证明α1=⎪⎭⎫ ⎝⎛21,21,21,21, α2=⎪⎭⎫ ⎝⎛21,21,21,21-- α3=⎪⎭⎫ ⎝⎛21,21,21,21--,α4=⎪⎭⎫ ⎝⎛-21,21,21,21-是欧氏空间R 4的一个规范正交基.[提示:令u =(α1, α2, α3, α4),计算uu T 即可.]8. 设{ε1, ε2, ε3}是欧氏空间V 的一个基, α1=ε1+ε2, 且基{ε1, ε2, ε3}的度量矩阵是A =⎪⎪⎪⎭⎫ ⎝⎛----612121211.(1)证明α1是一个单位向量; (2)求k ,使α1与β1=ε1+ε2+k ε3正交.证明: (1) 〈ε1 , ε1〉=1, 〈ε1 , ε2〉=1-, 〈ε2 , ε2〉=2〈α1 , α1〉=〈ε1 , ε1〉+2〈ε1 , ε2〉+〈ε2 , ε2〉=1所以α1一个单位向量. (2)k =1-.9. 证明,如果{ε1, ε2,…,εn }是欧氏空间V 的一个规范正交基,n 阶实方阵A =(a ij )是正交矩阵,令(η1, η2,…,ηn )=(ε1, ε2,…,εn )A ,那么{η1, η2,…,ηn }是V 的规范正交基.证明: 〈 ηi ,ηj 〉=kj nk ki a a ∑=1=⎩⎨⎧≠=时当时当j i j i ,0,1 .10. 设A 是n 阶正交矩阵,证明:(1)若det A =1,则-1是的一个特征根;(2)若n 是奇数,且det A =1,则1是A 的一个特征根. 证明:(1)det(-I -A ) = det(-A A T -A )= det A ·det(-A T -A ) = det A ·det(-I -A ) =-det(-I -A )所以det(-I -A )=0,即-1是的一个特征根. (2)= det(A A T -A )= det A ·det(A T -A ) = det A ·(-1)n ·det(I -A ) =-det(I -A )所以det(I -A )=0, 即1是A 的一个特征根.10. 证明,n 维欧氏空间V 的两个正交变换的乘积是一个正交变换;一个正交变换的逆变换还是一个正交变换.[提示: 根据正交矩阵的乘积是正交矩阵, 正交矩阵 的逆矩阵是正交矩阵,结论易证.]11. 证明,两个对称变换的和还是对称变换. 两个对称变换的乘积是不是对称变换?找出两个对称变换的乘积是对称变换的一个充要条件.证明: 两个对称变换的和还是对称变换易证. 两个对称变换的乘积不一定是.例如:令ε1 , ε2是R 2的一个规范正交基,分别取R 2 的两个对称线性变换τσ,,使得),(21εεσ=(ε1 , ε2)⎪⎪⎭⎫⎝⎛0001 ,),(21εετ=(ε1 , ε2)⎪⎪⎭⎫⎝⎛0110 ,可以验证στ不是对称变换.两个对称变换的乘积是对称变换的一个充要条件是它们可换.12. 设是n 维欧氏空间V 的一个线性变换,证明,如果σ满足下列三个条件中的任意两个,那么它必然满足第三个:(1)σ是正交变换;(2)σ是变换;(3)σ2=ι(ι是恒等变换).[提示:根据σ是正交变换当且仅当σ在一个规范正交基下的矩阵是正交矩阵, σ是对称变换当且仅当σ在一个规范正交基下的矩阵是对称矩阵, 结论易证.]13. 设σ是n 维欧氏空间V 的线性变换,若对于任意α, β∈V , 有〈σ(α), β〉=-〈α, σ(β)〉,则说σ是斜对称的. 证明(1) 斜对称变换关于V 的任意规范正交基的矩阵都是斜对称实矩阵; (2) 若线性变换σ关于V 的某一规范正交基的矩阵是斜对称的,则σ是斜对称线性变换.[提示:证明过程与第八章第三节定理8.3.2(p.349)的证明过程完全类似.] 14. 设σ是欧氏空间V 到V '的一个同构映射,证明,如果{ε1, ε2, …, εn }是V 的一个规范正交基,则{σ(ε1), σ(ε2), …, σ(εn )}是V '的一个规范正交基.证明:由(p.253) 定理5.5.3可知, {σ(ε1), σ(ε2), …, σ(εn )}是V '的一个基. 由欧氏空间同构映射的定义可知,〈σ(εi ), σ(εj )〉= 〈εi , εj 〉=⎩⎨⎧≠=时当时当j i j i ,0,1 , 所以结论成立.15. 设σ是n 维欧氏空间V 的一个正交变换. 证明,如果V 的一个子空间W 在σ之下不变,那么W 的正交补⊥W 也在σ之下不变.证明:因为正交变换是可逆线性变换,由(p.331)习题七的第13题的结论得: V = )()(⊥⊕w w σσ.因为⊥⊥w w ,且σ是正交变换,所以)()(⊥⊥w w σσ.由已知条件知,)(w σw ⊆,且σ可逆,因而)(w σw = 从而 )(⊥⊥w w σ,即)(⊥w σ⊆⊥w .16. 设{ε1,ε2,ε3,ε4}是欧氏空间V 的一个规范正交基,W =L (α1, α2),其中α1=ε1+ε3,α2=2ε1-ε2+ε4.(1)求W 的一个规范正交基; (2)求W ⊥的一个规范正交基.解:取α3=ε2, α4=ε3,将α1, α2,α3,α4先正交化,然后规范化后得V 的一个规范正交基:β1=312121εε+ β2=432121212121εεεε+--β3=4321321321323321εεεε+-+ β4=431366161εεε++-则{β1,β2}和{β3,β4}分别是W 与W ⊥的一个规范正交基.17. 求齐次线性方程组⎩⎨⎧0023214321=-+=+-+x x x x x x x . 的解空间W 的一个规范正交基,并求W ⊥.解: 经计算,得空间W 的一个基础解系为α1=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1011,α2=⎪⎪⎪⎪⎪⎭⎫⎝⎛-1101将α1, α2扩充为R 4的一个基α1, α2, α3=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0100,α4=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1000将α1, α2,. α3, α4规范正交化后得W 的一个规范正交基β1 =⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-3103131, β2 =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-151153152151, β3=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--101102102101, β4 =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-210021 那么{β1,β2}和{β3,β4}分别是W 与W ⊥的一个规范正交基且W ⊥=£(β3,β4).18. 已知R 4的子空间W 的一个基α1=(1, -1, 1, -1),α2=(0, 1, 1, 0)求向量α=(1, -3, 1, -3)在W 上的内射影.解:易求得W ⊥的一个基α3=(1,0,0,1), α4=(-2, -1,1,0)则α1, α2, α3, α4是R 4的一个基.α=(2α1-α2) +(-3α3+0α4)所以α在W 上的内射映为2α1-α2 .19. 对于下列对称矩阵A ,各求出一个正交矩阵U ,使得U T AU 是对角形式:(1) A =⎪⎪⎪⎭⎫ ⎝⎛--510810228211,(2) A =⎪⎪⎪⎭⎫ ⎝⎛----114441784817.解:(1)⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=9189,323231323132313232AU U U T (2)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=2799,31184032181213218121AU U U T。

第八章欧氏空间与酉空间

第八章欧氏空间与酉空间
定理8.1.2 与 在一个欧氏空间里,如果向量ξ
1, 2,,r 中每一个正交,那么ξ与 1, 2,,r 的任意一个线性组合也正交.
证 令
a 是 1,2 ,
i 1 i i
r
,r 的一个线性组合,因为
,i 0, i 1,2, , r, 所以
, aii ai ,i 0
2
注:一个实数a与一个向量ξ的乘积的长度 等于a的绝对值与ξ的长度的乘积.
定理8.1.1 在一个欧氏空间里,对于任意向量 , . 有不等式
, 2 , ,

(6)
当且仅当ξ与η线性相关时,上式才取等号.
如果 与 线性相关,那么或者 0 ,或者
例7 考虑例3的欧氏空间C[a,b],由不等式(6) 推出,对于定义在[a,b]上的任意连续函数
f ( x), g ( x),
b
有不等式
b 2
a f ( x) g ( x)dx a f
( x)dx
g a
b
2
( x)dx .
(8)
(8)式称为施瓦兹(Schwarz)不等式.
(7)和(8)在欧氏空间的不等式(6)里被 统一起来. 因此通常把(6)式称为柯西-施瓦兹 不等式.即 (6) , 2 , ,
容易验证,关于内积的公理被满足,因而 R n 对于这样定义的内积来说作成一个欧氏空间. 例2 在 R n 里,对于任意向量
( x1, x2 ,..., xn ), ( y1 , y 2 ,..., y n )
规定 , x1 y1 2 x2 y2 ... nxn yn n 也作成一个欧氏空间. R 不难验证,

第八章 欧氏空间

第八章 欧氏空间

MATLAB 软件应用第八章 欧氏空间例1:判断向量()2,1,4α=-和()4,4,1β=--是否正交.解:建立m 文件i1.m 如下clca=[2 -1 4];b=[-4 -4 1];c=dot(a,b) %求向量a ,b 的内积 运行结果如下:c =a 与b 内积为0,则a 和b 正交.例2:将向量组()1,0,1α=,()1,0,1β=-规范正交化解:建立m 文件i2.m 如下clcA=[1 1;0 0;1 -1];B=sym(orth(A)) %将A 的列向量组正交规范化,%并以符号的形式输出B'*B %可以验证两个向量是否规范正交化 运行结果如下B =[ -sqrt(1/2), -sqrt(1/2)][ 0, 0][ -sqrt(1/2), sqrt(1/2)]ans =[ 1, 0][ 0, 1]例3 将矩阵400031013A ⎛⎫ ⎪= ⎪ ⎪⎝⎭规范正交化。

解:建立m 文件i3.m 如下clcA=[4 0 0; 0 3 1; 0 1 3];B=orth(A)Q=B'*B运行结果如下:B =0 1 0 -985/1393 0 -985/1393 -985/1393 0 985/1393 Q =1 0 * 0 1 0 * 0 1例4:对实对称矩阵222254245A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,求正交矩阵U , 使得T U AU 为对角矩阵解:建立m 文件i4.m 如下clcA=[2 2 -2;2 5 -4;-2 -4 5]; %实对称矩阵A[V,D]=eig(A) %矩阵A 的对角化 V'*V %验证V 是正交阵 运行结果如下:V =-963/3230 2584/2889 1/3 -963/1615 -1292/2889 2/3 -963/1292 0 -2/3D =1 0 0 0 1 0 0 0 10 ans =1 * * * 1 0 * 0 1例5:求向量()2,1,4α=-的模长解:建立m 文件i5.m 如下clca=[2 -1 4]b=norm(a)运行结果如下:a =2 -1 4b =3524/769【练习与思考】1、判别下列矩阵是否正交矩阵(1)111231112211132A⎛⎫-⎪⎪⎪=-⎪⎪⎪-⎪⎝⎭(2)184999814999447999A⎛⎫--⎪⎪⎪=--⎪⎪⎪--⎪⎝⎭2、将下列向量组规范正交化(1)、()123111 124 139ααα⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)、()123111 011 101 110ααα-⎛⎫ ⎪-⎪=⎪-⎪⎝⎭。

第八章 欧氏空间

第八章 欧氏空间

第八章欧式空间基础训练题1、证明,在一个欧氏空间里,对任意得向量α,β,以下等式成立:(1) ;(2) 〈α,β〉=、[提示:根据向量内积得定义及向量模得定义易证、]2、在欧氏空间R4中,求一个单位向量与α1=(1, 1, 0, 0),α2=(1, 1, -1, -1),α3=(1, -1, 1, -1)都正交、解:=、3、设a1, a2, …, a n就是n个实数,证明:、证明: 令α=(1,1, …,1),β=(|a1|,|a2|,…, |a n|)α,β=|α|·|β |=、4、试证,欧氏空间中两个向量α, β正交得充分必要条件就是:对任意得实数t,都有|α+tβ| ≥ |α|、证明: α+tβ,α+tβ=α,α+2tα,β+t2β,β必要性: 设α与β正交, 对任意得实数t ,则α+tβ,α+tβ=α,α+t2β,β≥α,α所以|α+tβ| ≥ |α|、充分性: 当β=0时,结论成立、当β≠0时,取t0=,则α+t0β,α+t0β=α,α、由已知α+t0β,α+t0β≥α,α故=0, 所以α,β= 0、即α,β正交、5、在欧氏空间R4中,求基{α1, α2, α3, α4}得度量矩阵,其中α1=(1, 1, 1, 1), α2=(1, 1, 1, 0), α3=(1, 1, 0, 0), α4=(1, 0, 0, 0) 、解: 度量矩阵为、6、在欧氏空间R3中,已知基α1=(1, 1, 1), α2=(1, 1, 0), α3=(1, 0, 0)得度量矩阵为B=求基ε1=(1, 0, 0), ε2=(0, 1, 0), ε3=(0, 0, 1)得度量矩阵、解: 度量矩阵为、7、证明α1=, α2=α3=,α4=就是欧氏空间R4得一个规范正交基、[提示:令u=(α1, α2, α3, α4),计算uu T即可、]8、设{ε1, ε2, ε3}就是欧氏空间V得一个基, α1=ε1+ε2, 且基{ε1, ε2, ε3}得度量矩阵就是A=、(1)证明α1就是一个单位向量;(2)求k,使α1与β1=ε1+ε2+kε3正交、证明: (1) ε1 ,ε1=1, ε1 ,ε2=, ε2 ,ε2=2α1 ,α1=ε1 ,ε1+2ε1 ,ε2+ε2 ,ε2=1所以α1一个单位向量、(2)k=、9、证明,如果{ε1, ε2,…,εn}就是欧氏空间V得一个规范正交基,n阶实方阵A =(a ij)就是正交矩阵,令(η1, η2,…,ηn)=(ε1, ε2,…,εn)A,那么{η1, η2,…,ηn}就是V得规范正交基、证明:ηi,ηj== 、10、设A就是n阶正交矩阵,证明:(1)若det A=1,则-1就是得一个特征根;(2)若n就是奇数,且det A=1,则1就是A得一个特征根、证明:(1)det(-I-A) = det(-A A T-A)= det A·det(-A T-A)= det A·det(-I-A)=-det(-I-A)所以det(-I-A)=0,即-1就是得一个特征根、(2)= det(A A T-A)= det A·det(A T-A)= det A·(1)n·det(I-A)=-det(I-A)所以det(I-A)=0, 即1就是A得一个特征根、10、证明,n维欧氏空间V得两个正交变换得乘积就是一个正交变换;一个正交变换得逆变换还就是一个正交变换、[提示: 根据正交矩阵得乘积就是正交矩阵, 正交矩阵得逆矩阵就是正交矩阵,结论易证、]11、证明,两个对称变换得与还就是对称变换、两个对称变换得乘积就是不就是对称变换?找出两个对称变换得乘积就是对称变换得一个充要条件、证明: 两个对称变换得与还就是对称变换易证、两个对称变换得乘积不一定就是、例如:令ε1 ,ε2就是R2得一个规范正交基,分别取R2得两个对称线性变换,使得=(ε1 ,ε2) ,=(ε1 ,ε2) ,可以验证不就是对称变换、两个对称变换得乘积就是对称变换得一个充要条件就是它们可换、12、设就是n维欧氏空间V得一个线性变换,证明,如果σ满足下列三个条件中得任意两个,那么它必然满足第三个:(1)σ就是正交变换;(2)σ就是变换;(3)σ2=ι(ι就是恒等变换)、[提示:根据σ就是正交变换当且仅当σ在一个规范正交基下得矩阵就是正交矩阵,σ就是对称变换当且仅当σ在一个规范正交基下得矩阵就是对称矩阵, 结论易证、]13、设σ就是n维欧氏空间V得线性变换,若对于任意α,β∈V, 有〈σ(α),β〉=-〈α,σ(β)〉,则说σ就是斜对称得、证明(1) 斜对称变换关于V得任意规范正交基得矩阵都就是斜对称实矩阵;(2) 若线性变换σ关于V得某一规范正交基得矩阵就是斜对称得,则σ就是斜对称线性变换、[提示:证明过程与第八章第三节定理8、3、2(p、349)得证明过程完全类似、]14、设σ就是欧氏空间V到V '得一个同构映射,证明,如果{ε1, ε2, …, εn}就是V得一个规范正交基,则{σ(ε1), σ(ε2), …, σ(εn)}就是V '得一个规范正交基、证明:由(p、253) 定理5、5、3可知, {σ(ε1), σ(ε2), …, σ(εn)}就是V '得一个基、由欧氏空间同构映射得定义可知,σ(εi), σ(εj)=εi, εj= ,所以结论成立、15、设σ就是n维欧氏空间V得一个正交变换、证明,如果V得一个子空间W在σ之下不变,那么W得正交补也在σ之下不变、证明:因为正交变换就是可逆线性变换,由(p、331)习题七得第13题得结论得: V= 、因为,且σ就是正交变换,所以、由已知条件知,,且σ可逆,因而从而,即、16、设{ε1,ε2,ε3,ε4}就是欧氏空间V得一个规范正交基,W=L(α1, α2),其中α1=ε1+ε3,α2=2ε1-ε2+ε4、(1)求W得一个规范正交基;(2)求W⊥得一个规范正交基、解:取α3=ε2,α4=ε3,将α1, α2,α3,α4先正交化,然后规范化后得V得一个规范正交基:β1=β2=β3=β4=则{β1,β2}与{β3,β4}分别就是W与W⊥得一个规范正交基、17、求齐次线性方程组、得解空间W得一个规范正交基,并求W⊥、解: 经计算,得空间W得一个基础解系为α1=,α2=将α1, α2扩充为R4得一个基α1, α2, α3=,α4=将α1,α2,、α3,α4规范正交化后得W得一个规范正交基β1 =, β2 =, β3=, β4 =那么{β1,β2}与{β3,β4}分别就是W与W⊥得一个规范正交基且W⊥=£(β3,β4)、18、已知R4得子空间W得一个基α1=(1, -1, 1, -1),α2=(0, 1, 1, 0)求向量α=(1, -3, 1, -3)在W上得内射影、解:易求得W⊥得一个基α3=(1,0,0,1),α4=(-2, -1,1,0)则α1,α2,α3,α4就是R4得一个基、α=(2α1-α2) +(-3α3+0α4)所以α在W上得内射映为2α1-α2、19、对于下列对称矩阵A,各求出一个正交矩阵U,使得U T AU就是对角形式:(1) A=,(2) A=、解:(1)(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3 在R3中,向量 (1, 0, 0), (1, 1, 0) 求 , 的夹角。
欧氏空间
§1 欧氏空间的定义和性质
三、向量的正交
定义4 对欧氏空间V中的两个向量 , , 若内积 ( , ) 0, 则称
与 正交或垂直,记为:
注意: 零向量与任一向量正交。 例4 在R4中求一单位与下面三个向量
例1 设 (1 , 2 ), (1 , 2 ) 为二维实空间R2中的任意两个 向量,问:R2对以下规定的内积是否构成欧氏空间?
(1) ( , ) 1 2 2 1
(2) ( , ) (1 2 )1 (1 2 2 ) 2
正交向量组。
如果一个正交组的每一个向量都是单位向量,则这样的向 量组称为标准正交向量组。 性质1 欧氏空间V中的正交向量组必定线性无关。 注: (1) 单个非零向量也称为一个正交向量组。 (2) 线性无关的向量组不一定是正交向量组。
欧氏空间
§2 标准正交基
定义2 在n维欧氏空间中,由n个向量组成的正交向量组称为 正交基,由n个标准正交向量组成的正交基称为标准正交基。 性质2 设 1 , 2 , , n 是n维欧氏空间V中的一组标准正交基,则
(3) ( , ) ( , ) ( , ) (4) ( , ) 0,当且仅当 0 时有 ( , ) 0 这里 , , 是V中任意的向量,k为实数,这样的线性空间V
称为欧几里得空间,简称为欧氏空间。
欧氏空间
§1 欧氏空间的定义和性质
i 1 i 1 i 1 i 1n n n
n
(4) 一组基为标准正交基的充要条件是它的度量矩阵为 单位矩阵。
欧氏空间
§2 标准正交基
二、标准正交基的求法
定理1 n维欧氏空间V中任一个正交向量组都可以扩充为一组 正交基。 定理2 对于n维欧氏空间V中任意一组基 1 , 2 , , n 都可以找 一组标准正交基 1 ,2 ,,n , 使得
1
1
求R[x]4的一组标准正交基。
定义3 n阶实矩阵 A 满足 A'A=E,则称 A 为正交矩阵。
定理3 在欧氏空间V中,标准正交基到标准正交基的过渡矩阵 是正交矩阵。反之,若第一组是标准正交基,过渡矩阵是正
交矩阵,则第二组基也是标准正交基。
欧氏空间
§2 标准正交基
定理4 设A=(aij)是n阶实矩阵,则下列几个结论等价: (1) A是正交矩阵,即 A'A=E; (2) AA'=E; (3) A的列向量组是标准正交向量组; (4) A的行向量组是标准正交向量组; (5) A-1=A。
(4) 不同基的度量矩阵是合同的。
欧氏空间
§1 欧氏空间的定义和性质
例5 设 1 , 2 ,, m 是n维欧氏空间V中的一组向量,令
(1 , 1 ) (1 , 2 ) ( 2 , 1 ) ( 2 , 2 ) ( , ) ( , ) m 2 m 1
k1 , k2 ,, kn , l1 , l2 ,, ln R

( ki i , l j j ) ki l j ( i , j )
i 1 i 1 i 1 j 1
n
n
n
n
欧氏空间
§1 欧氏空间的定义和性质
二、向量的长度与夹角
| 定义2 对 V , 向量 的长度定义为: | ( , )
子空间正交的性质 性质1 与自己正交的向量只能是零向量。 性质2 若两个子空间V1与V2正交,则V1+V2为直和。
性质3 若子空间V1,…,Vs两两正交,则V1+…+Vs为直和。
欧氏空间
§5 子空间
§5 子空间
一、子空间正交的定义和性质
定义1 设V1,V2是欧氏空间 V 的两个子空间,若对 V1 ,
V2 恒有 ( , ) 0, 则称V1与V2正交,记为 V1 V2 .
若向量 , 对 V1 , 恒有 ( , ) 0, 则称 与子空间V1正交, 记为 V1.
(1, 1, 1, 1), (1, 1, 1, 1), (2, 1, 1, 3)
正交。
欧氏空间
§1 欧氏空间的定义和性质
四、度量矩阵
矩阵
A (aij ) nn
(1 , 1 ) (1 , 2 ) ( 2 , 1 ) ( 2 , 2 ) ( , ) ( , ) n 2 n 1
W L(1 , 2 , 3 )
其中
1 1 5 , 2 1 2 4 , 3 21 2 3
求W的一组标准正交基。
欧氏空间 例3 在R[x]4中定义内积为:
§2 标准正交基
( f , g ) f ( x) g ( x)dx
欧氏空间 例4 正交矩阵的特征值为± 1。
§2 标准正交基
例5 奇数阶的正交矩阵A满足|A|>0,则A一定有特征值1。
例6 证明上三角矩阵A必为对角设A为n阶实非奇异矩阵,证明:A可以分解为A=QR, 其中Q为正交矩阵,R为对角线上全为正实数的上三角矩阵, 并且这种分解是唯一的。
则 A'GA=G 。
的一组基,此基下的Gram矩阵为G,A 在这组基下的矩阵是 A,
欧氏空间
§4 正交变换
例4 设 是欧氏空间V中的一个单位向量,定义变换: A 2( , ) 证明:1) A 是正交变换(这样的正交变换称为镜面反射);
2) 当V是有限维空间时,A 是第二类的;
欧氏空间 正交变换的性质: (1) 正交变换保持向量夹角不变;
§4 正交变换
(2) 正交变换是欧氏空间到自身的一个同构映射; (3) 正交变换的乘积仍是正交变换;
(4) 正交变换是可逆的,其逆变换仍是正交变换;
欧氏空间
§4 正交变换
二、正交变换的分类
行列式等于1的正交变换称为第一类正交变换或旋转变换;
3) 设V为n维欧氏空间,正交变换 A 有特征值1,且属于特征 值1的特征子空间V1的维数为n-1,则 A 为镜面反射。 例5 1) 设 , 是欧氏空间V中的两个不同的单位向量,证明: 存在一个镜面反射 A 使得 A 2) 证明:n维欧氏空间V中任一正交变换都可以表示为一系列
镜面反射的乘积。
(3) ( , ) 11 2 2 1 (4) ( , ) 11 2 2 (5) ( , ) 311 5 2 2
例2 设 ( x1 , x2 ,, xn ), ( y1 , y2 ,, yn )为Rn中的任意两个
那么称线性变换 A 为正交变换。
例如:
( x, y, z ) R3 , A ( x, y, z ) ( x, y, z )
是R3上的一个正交变换。
欧氏空间
§4 正交变换
定理1 设 A 是n维欧氏空间 V 中的一个线性变换,则下面 四个命题等价: (1) A 是正交变换; (2) A 保持向量的长度不变; (3) 如果 1 , 2 , , n 是标准正交基,那么 A1 , A 2 , , A n 也是标准正交基; (4) A 在任一组标准正交基下的矩阵是正交矩阵。
(1 , n ) ( 2 , n ) ( n , n )
称为基 1 , 2 , , n 的过渡矩阵(Gram矩阵)。 注: (1) 度量矩阵A是实对称矩阵。 (2) 度量矩阵A是正定矩阵。
(3) 确定一组基后,向量的内积可由度量矩阵A完全确定。
同构。
欧氏空间 定理1 同构是欧氏空间之间的等价关系。
§3 同构
定理2 两个有限维欧氏空间同构的充要条件是它们的维数相等。 推论 任意 n 维欧氏空间均与 Rn 同构。
例1 设1 , 2 ,, m 与 1 , 2 ,, m 为欧氏空间V的两组向量,
如果
( i , j ) ( i , j ), i, j 1, 2,, m
(1 , m ) ( 2 , m ) ( m , m )
证明:当且仅当 | | 0 时, 1 , 2 ,, m 线性无关。
欧氏空间
§2 标准正交基
§2 标准正交基
一、标准正交基的定义与性质
定义1 欧氏空间V中一组两两正交的非零向量称为V的一个
定理1 对于欧氏空间V中的任意向量 , 恒有
| ( , ) || | | |
当且仅当 , 线性相关时,等号成立。
定义3 设 , 是欧氏空间的两个非零向量, , 的夹角为:
( , ) arccos , 0 | || |
欧氏空间
第八章
欧氏空间
欧氏空间
§1 欧氏空间的定义和性质
§1 欧氏空间的定义和性质
一、欧氏空间的定义
定义1 设V实数域R上的线性空间,在V上定义一个二元函数, ( 称为内积,记为: , ) 它满足以下四个条件:
(1) ( , ) ( , ) (2) (k , ) k ( , )
则子空间V1 L(1 , 2 ,, m )与 V2 L( 1 , 2 ,, m ) 同构。
欧氏空间
§4 正交变换
§4 正交变换
一、正交变换的定义与性质
定义1 设 A 是欧氏空间 V 中的线性变换,如果它保持向量的
内积不变,即对 , V , 都有
(A , A ) ( , )
( 向量,A=(aij)为n阶实矩阵。证明: , ) A 为Rn的内积
的充要条件是A为正定矩阵。
欧氏空间
§1 欧氏空间的定义和性质
内积的简单性质
相关文档
最新文档