引发锻件缺陷的主要原因
锻件缺陷
可用半径样板或外半径、内半径极限样板测量。
5.锻件上角度的检验 锻件上的倾斜角度,可用测角器来测量。 6.锻件孔径检测 (1)如果孔没有斜度,则用游标尺测量,也可用卡钳来测量。 (2)如果孔有斜度,生产批量又大,则可用极限塞规测量。 (3)如果孔径很大,则可用大刻度的游标卡尺,或用样板检验。 7.锻件错位检验 (1)如果锻件上端面高出分模面且有 7-10 度的出模斜度,或者分模面的位置在锻件本体 中间,即可在切边前观察到锻件是否有错位。 (2)如错位不易观察到,则可将锻件下半部固定,对上半部进行划线检验,或者用专用 样板检验。 (3)横截面为圆形的锻件,可用游标卡尺测量分模线的直径误差。 8.锻件挠度直径检验 (1)对于等截面的长轴类锻件,在平板上,慢漫地反复旋转锻件。即可测出轴线的最大 挠度。 (2)将锻件两端支放在专门数据的 V 形块或滚棒上,旋转锻件,通过仪表即可测出锻件 两支点间的最大挠度值。
质量检验内容包括两部分: 1.锻件等级及检验项目(见表 1)。 2.试验方法标准(见表 2)。
表1
锻件几何形状与尺寸的检验 1. 锻件长度尺寸检验
可用直尺、卡钳、卡尺或游标卡尺等通用量具进行测量。 2. 锻件高度(或横向尺寸)与直径检验
一般情况用卡钳或游标卡尺测量,如批量大,可用专用极限卡板测量。 3. 锻件厚度检验
金钢和中合金钢的质量,一般不用于高合金钢。 3.高倍检验 锻件的高倍检验,就是在各种显微镜下检验锻件内部(或断口上)组织状态与微观缺陷。高 倍检验应用的显微镜有以下三种: (1)普通金相显微镜其有效放大倍率一般在 2000 倍以下,分辨极限最小为 2000A。 (2)透射式电子显微镜分辨率可达 0.4-0.8nm,放大倍率可达几十万位。 (3)扫描电子显微镜放大倍数可以从几低倍到高倍(由二十几倍到十几万倍)连续变化,分 辨率一般为 20nm,好一些的可达 10nm。 试样切取后,按顺序极限粗磨-细磨一抛光-浸蚀,最后在显微镜下检查。
锻件的常见缺陷及原因分析
锻件的常见缺陷及原因分析(2007/07/05 10:58)锻件的缺陷很多,产生的原因也多种多样,有锻造工艺不良造成的,有原材料的原因,有模具设计不合理所致等等。
尤其是少无切削加工的精密锻件,更是难以做到完全控制。
1.大晶粒大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。
铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。
2.晶粒不均匀晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。
产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。
耐热钢及高温合金对晶粒不均匀特别敏感。
晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。
3.冷硬现象变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。
这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。
严重的冷硬现象可能引起锻裂。
4.裂纹裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。
裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。
如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在镦粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。
5.龟裂龟裂是在锻件表面呈现较浅的龟状裂纹。
在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。
引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。
②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。
③燃料含硫量过高,有硫渗人钢料表面。
引发锻件缺陷的主要原因
脱碳是指金属在高温下表层的碳被氧化,使得表层的含碳量较内部有明显降低的现象。
脱碳层的深度与钢的成分、炉气的成分、温度和在此温度下的保温时间有关。采用氧化性气氛加热易发生脱碳,高碳钢易脱碳,含硅量多的钢也易脱碳。
脱碳使零件的强度和疲劳性能下降,磨损抗力减弱。
一般过热的结构钢经过正常热处理(正火、淬火)之后,组织可以改善,性能也随之恢复,这种过热常被称之为不稳定过热;而合金结构钢的严重过热经一般的正火(包括高温正火)、退火或淬火处理后,过热组织不能完全消除,这种过热常被称之为稳定过热。
4.过烧
过烧是指金属坯料的加热温度过高或在高温加热区停留时间过长,炉中的氧及其它氧化性气体渗透到金属晶粒间的空隙,并与铁、硫、碳等氧化,形成了易熔的氧化物的共晶体,破坏了晶粒间的联系,使材料的塑性急剧降低。过烧严重的金属,撤粗时轻轻一击就裂,拔长时将在过烧处出现横向裂纹。
过烧与过热没有严格的温度界线。一般以晶粒出现氧化及熔化为特征来判断过烧。对碳钢来说,过烧时晶界熔化、严重氧化工模具钢(高速钢、Cr12型钢等)过烧时,晶界因熔化而出现鱼骨状莱氏体。铝合金过烧时出现晶界熔化三角区和复熔球等。锻件过烧后,往往无法挽救,只好报废。
5.加热裂纹
在加热截面尺寸大的大钢锭和导热性差的高合金钢和高温合金坯料时,如果低温阶段加热速度过快,则坯料因内外温差较大而产生很大的热应力。加之此时坯料由于温度低而塑性较差,若热应力的数值超过坯料的强度极限,就会产生由中心向四周呈辐射状的加热裂纹,使整个断面裂开。
锻件裂纹。
2.折叠
折叠形成的原因是当金属坯料在轧制过程中,由于轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,形成和材料表面成一定倾角的折缝。对钢材,折缝内有氧化铁夹杂,四周有脱碳。折叠若在锻造前不去掉,可能引起锻件折叠或开裂(见实例4)。
锻件常见表面缺陷原因及注意事项
序号
缺陷种类产生原因防来自措施1折叠1.镦粗时弯曲
2.压下量太大
3.进砧太满
4.砧子圆角太小
1.镦粗时要放正
2.拔长压下量25%
3.砧宽比选择0.5~0.8
4.平砧要有圆角
2
端部凹心
1.坯料未烧透
2.砧宽比太小
1.加热要烧匀烧透
2.注意砧宽比和调整
成形顺序
3
棱角裂纹
1.锻造温度太低
2.进砧太宽太满
1.控制成形温度
2.修棱角时窄进砧
4
表面凹坑
氧化皮清理不及时
及时清理锻件、砧面
和转台上的氧化皮
5
过烧
加热温度太高及
时间太长
不允许超过工艺规定
的温度急烧
6
龟裂
加热温度过高
1.装炉温度不能太高
2.升温速度不能太快
3.不准超过温度上限
7
表面脱碳
加热时间太长
因故障维修等待时间
太长时要降温
8
气割补焊裂纹
1.气割工艺不当
2.焊后冷却太快
1.高碳、合金钢预热割
2.补焊后及时退火
9
表面氢脆开裂
1.锻后冷却太快
2.热处理不及时
1.大锻件不能急冷
2.锻后及时正回火
10
短尺亏肉
1.懒于测量尺寸
2.锻造操作不当
1.及时测量尺寸
2.锻造时精心操作
锻件缺陷的主要原因
锻件缺陷的主要原因一、原材料的主要缺陷及其引起的锻件缺陷锻造用的原材料为铸锭、轧材、挤材及锻坯。
而轧材、挤材及锻坯分别是铸锭经轧制、挤压及锻造加工成的半成品。
一般情况下,铸锭的内部缺陷或表面缺陷的出现有时是不可避免的。
例如,内部的成分与组织偏析等。
原材料存在的各种缺陷,不仅会影响锻件的成形,而且将影响锻件的最终质量。
根据不完全的统计,在航空工业系统中,导致航空锻件报废的诸多原因中,由于原材料固有缺陷引起的约占一半左右。
因此,千万不可忽视原材料的质量控制工作。
由于原材料的缺陷造成的锻件缺陷通常有:1.表面裂纹表面裂纹多发生在轧制棒材和锻制棒材上,一般呈直线形状,和轧制或锻造的主变形方向一致。
造成这种缺陷的原因很多,例如钢锭内的皮下气泡在轧制时一面沿变形方向伸长,一面暴露到表面上和向内部深处发展。
又如在轧制时,坯料的表面如被划伤,冷却时将造成应力集中,从而可能沿划痕开裂等等。
这种裂纹若在锻造前不去掉,锻造时便可能扩展引起锻件裂纹。
2.折叠折叠形成的原因是当金属坯料在轧制过程中,由于轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,形成和材料表面成一定倾角的折缝。
对钢材,折缝内有氧化铁夹杂,四周有脱碳。
折叠若在锻造前不去掉,可能引起锻件折叠或开裂。
3.结疤结疤是在轧材表面局部区域的一层可剥落的薄膜。
结疤的形成是由于浇铸时钢液飞溅而凝结在钢锭表面,轧制时被压成薄膜,贴附在轧材的表面,即为结疤。
锻后锻件经酸洗清理,薄膜将会剥落而成为锻件表面缺陷。
4.层状断口层状断口的特征是其断口或断面与折断了的石板、树皮很相似。
层状断口多发生在合金钢(铬镍钢、铬镍钨钢等),碳钢中也有发现。
这种缺陷的产生是由于钢中存在的非金属夹杂物、枝晶偏析以及气孔疏松等缺陷,在锻、轧过程中沿轧制方向被拉长,使钢材呈片层状。
如果杂质过多,锻造就有分层破裂的危险。
层状断口越严重,钢的塑性、韧性越差,尤其是横向力学性能很低,所以钢材如具有明显的层片状缺陷是不合格的。
锻件常见缺陷裂纹的原因
锻件常见缺陷裂纹的原因锻件常见缺陷裂纹的原因有很多,主要包括以下几个方面:1. 锻造前材料的缺陷:锻造前原材料中可能存在着各种缺陷,如夹杂物、气孔、夹渣等。
这些缺陷会在锻造过程中被拉长、扭曲或剪切,最终导致锻件出现裂纹。
2. 异常冷却方式:锻件在冷却过程中,如果冷却速度过快或不均匀,会导致锻件内部产生应力集中,从而引发裂纹。
尤其是在大尺寸、复杂形状的锻件中,由于其冷却速度不均匀,容易出现内部裂纹。
3. 冷、热变形不均匀:锻造过程中,如果材料的冷、热变形不均匀,会导致锻件内部应力分布不均匀,从而引发裂纹的产生。
尤其是在复杂形状、壁厚不一的锻件中,易出现材料贫化、过冷区和高应力区,容易引发裂纹。
4. 锻造温度过低或过高:锻造温度是影响锻件质量的关键因素之一。
如果温度过低,会导致材料的硬化能力不足,易发生塑性变形困难,从而引发裂纹;而温度过高,则会导致材料的焊接性能下降,也容易引发裂纹。
5. 压力不均匀:锻造过程中,如果锻压力不均匀,会使锻件中的应力分布不均匀,从而容易产生应力集中和裂纹。
尤其是在薄壁锻件中,容易出现锻压力不均匀的问题,导致裂纹的发生。
6. 锻件设计不合理:锻件的设计是影响锻件质量的重要因素之一。
如果锻件的形状、结构设计不合理,容易导致应力集中,从而引发裂纹的产生。
尤其是在复杂形状、尺寸大的锻件中,设计不合理会增加裂纹发生的概率。
7. 热处理不当:热处理是锻件制造过程中的关键环节,如果热处理不当,会导致锻件中的应力不释放或释放不充分,从而引发裂纹。
此外,热处理时的温度、时间等参数也需要合适,否则也可能导致裂纹的产生。
这些都是导致锻件常见缺陷裂纹的主要原因。
为了降低或避免裂纹的产生,需要从原材料选用、工艺控制、设备维护等方面做好控制和管理。
同时,制定合理的锻造工艺和热处理工艺,合理设计锻件形状和结构,对裂纹的产生起到有力的控制和避免作用。
还需要加强工作人员的培训和技能提升,提高他们的专业水平和质量意识,从而减少裂纹缺陷的发生,提高锻件的质量。
自由锻件主要缺陷产生原因
自由锻件主要缺陷产生原因自由锻件主要缺陷产生原因一、横向裂纹:1、表面横向裂纹缺陷现象:锻造时坯料表面出现较浅(约10mm深)的横向裂纹或较深的横向裂纹。
产生原因:较浅裂纹是钢锭皮下气泡未焊合形成的,较深裂纹是由钢锭浇注受锭模内壁质量,钢水摆动和钢锭与锭模铸合等因素形成的。
2、内部横向裂纹缺陷现象:在锻件内部产生横向裂纹。
产生原因:冷钢锭在低温区加热过快或中心引起较大拉力造成,高碳钢和高合金钢塑性较差,在锻造操作相对送进量过小造成的。
二、纵向裂纹1、表面纵向裂纹A缺陷现象:经常在第一次拔长或镦粗时出现。
产生原因:锭模内壁缺陷和新锭模未很好退火,操作不当,高温高速浇注,钢锭脱模冷却不当或脱模过早,倒棱时压下量过大,轧制钢锭时产生纵向划痕等。
B缺陷现象:在坯料近帽口中心出现。
产生原因:由于钢锭冷却时缩孔未集中于帽口部分,锻造帽口端切头量过少,使坯料近帽口端存在二次缩孔或残余缩孔,锻造时引起纵向裂纹。
2、内部纵向裂纹A缺陷现象:坯料内部出现的纵向裂纹。
产生原因:这是利用拔长圆截面坯料,金属中心部分受拉力作用所致,或者因坯料未加热透彻,内部温度过低,拔长时内部沿纵向开裂等。
B缺陷现象:坯料内部出现的纵向十字裂纹,一般出现于高合金钢中。
产生原因:这是由于拔长时送进量过大或在同一部位反复多次锻造。
三、炸裂:缺陷现象:一般在坯料锻造前加热时或锻件冷却热处理后,在表面或内部炸开而形成的裂纹。
产生原因:因为坯料具有较高的残余应力,在未予清除的情况下,错误的采用快速加热或不适当的冷却引起裂纹。
四、自行开裂缺陷现象:常常在锻件锻造后、热处理后或锻制拔长后发生。
产生原因:坯料在锻造过程中已经形成微小裂纹,冷却或热处理中使之加剧或由于锻件内部有较大残余应力所致。
五、龟裂缺陷现象:锻件在锻造时表面出现的龟甲状或裂纹,钢料表面较浅的龟裂应清除后再锻造。
产生原因:由于钢中Cu、Sn、As、S的含量较多,或者在加热炉中铜料渗入,熔化的铜渗入钢料晶界,造成钢料热脆或者由于坯料开始锻温度过高,开始锻造时锤击过重等原因造成。
锻件的瑕疵原因及检验方法
锻件的瑕疵原因及检验方法1锻件的瑕疵类别把锻件瑕疵分类,可分为:原料切料时的、加热时的、锻造时的、热处理时的、清除氧化锈皮时的、切削加工时的等许多种类。
每种类又可分为一些小的类别。
但锻件常见的瑕疵和产生瑕疵的原因叙述如下:1)不用模型锻造生产大批锻件,虽然是由同一锻模制造,但有时却还有不准确和尺寸不相同的锻件出现,这是因锻模被磨损的结果。
2)锻模在分模面上错移3)锻件没有锻透4)锻件上有压痕和皱折,这是因金属在模槽中的形状不合适引起每一部分材料堆聚,或者是前面工序锤击过重所形成了卷边后道工序将氧化皮夹在里面,因此产生了夹层。
5)锻件表面上形成斑疤是因为锻件上或锻模槽内氧化锈皮没有清除的结果。
2锻件几何外观质量检验几何尺寸的检查法要点如下:1)检查高度和直径:抽查时用普通卡尺,全查时用极限量规。
2)检查,抽查时用带千分表的卡,全查时用极限卡钳。
3)孔径:用极限量规。
4)检查大孔径,用样板测量。
5)检查长度:如只测量一个尺寸,可用杆状样板以槽宽的公差检查,如同时测量几个尺寸,可用成形样板检查。
6)检查弯曲度:将锻件放置在元宝铁或磙子上旋转,检查脉动,如大量检查曲轴或其他截面有变化的件,可同时检查几处脉动。
7)检查表面翘曲度:将大面积锻件放置在三个支点上,用深度仪检查。
8)检查表面平行度:将锻件放置在基准面上,用深度仪检查。
9)检查表面垂直度:将锻件放置在元宝铁上,用深度仪检查,大量检查时,用电接触仪,尺寸误差超过公差,红灯就亮,合格的锻件,绿灯就亮。
10)检查角度:用量角器或专门的量角仪。
3锻件表面质量检验1)目视检查这是检验锻件表面质量最普遍、最常用的方法,凭肉眼观察锻件表面是否有折叠、裂纹、压伤、疤痕、表面过烧等缺陷。
锻件表面隐藏较深的缺陷,常在酸洗、喷沙或滚筒清除表面氧化皮后进行目视检查。
3)磁力探伤也称磁粉探伤或磁粉检验,可用来发现锻件肉眼不能检查出的表面层中微小缺陷,如微小裂纹、折纹、夹杂等。
锻件的常见缺陷及原因分析
锻件的常见缺陷及原因分析(2007/07/05 10:58)锻件的缺陷很多,产生的原因也多种多样,有锻造工艺不良造成的,有原材料的原因,有模具设计不合理所致等等。
尤其是少无切削加工的精密锻件,更是难以做到完全控制。
1.大晶粒大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。
铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。
2.晶粒不均匀晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。
产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。
耐热钢及高温合金对晶粒不均匀特别敏感。
晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。
3.冷硬现象变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。
这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。
严重的冷硬现象可能引起锻裂。
4.裂纹裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。
裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。
如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在镦粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。
5.龟裂龟裂是在锻件表面呈现较浅的龟状裂纹。
在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。
引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。
②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。
③燃料含硫量过高,有硫渗人钢料表面。
(完整)引发锻件缺陷的主要原因
引发锻件缺陷的主要原因一、备料不当产生的缺陷及其对锻件的影响备料不当产生的缺陷有以下几种。
1.切斜切斜是在锯床或冲床上下料时,由于未将棒料压紧,致使坯料端面相对于纵轴线的倾斜量超过了规定的许可值.严重的切斜,可能在锻造过程中形成折叠。
2。
坯料端部弯曲并带毛刺在剪断机或冲床上下料时,由于剪刀片或切断模刃口之间的间隙过大或由于刃口不锐利,使坯料在被切断之前已有弯曲,结果部分金属被挤人刀片或模具的间隙中,形成端部下垂毛刺。
有毛刺的坯料,加热时易引起局部过热、过烧,锻造时易产生折叠和开裂.3.坯料端面凹陷在剪床上下料时,由于剪刀片之间的间隙太小,金属断面上、下裂纹不重合,产生二次剪切,结果部分端部金属被拉掉,端面成凹陷状。
这样的坯料锻造时易产生折叠和开裂.4.端部裂纹在冷态剪切大断面合金钢和高碳钢棒料时,常常在剪切后3~4h发现端部出现裂纹。
主要是由于刀片的单位压力太大,使圆形断面的坯料压扁成椭圆形,这时材料中产生了很大的内应力。
而压扁的端面力求恢复原来的形状,在内应力的作用下则常在切料后的几小时内出现裂纹。
材料硬度过高、硬度不均和材料偏析较严重时也易产生剪切裂纹.有端部裂纹的坯料,锻造时裂纹将进一步扩展.5.气割裂纹气割裂纹一般位于坯料端部,是由于气割前原材料没有预热,气割时产生组织应力和热应力引起的。
有气割裂纹的坯料,锻造时裂纹将进一步扩展。
因此锻前应予以预先清除。
6。
凸芯开裂车床下料时,在棒料端面的中心部位往往留有凸芯.锻造过程中,由于凸芯的断面很小,冷却很快,因而其塑性较低,但坯料基体部分断面大,冷却慢,塑性高.因此,在断面突变交接处成为应力集中的部位,加之两部分塑性差异较大,故在锤击力的作用下,凸芯的周围容易造成开裂。
二、加热工艺不当常产生的缺陷加热不当所产生的缺陷可分为:①由于介质影响使坯料外层组织化学状态变化而引起的缺陷,如氧化、脱碳、增碳和渗硫、渗铜等。
②由内部组织结构的异常变化引起的缺陷,如过热、过烧和未热透等。
锻件缺陷的主要特征及产生的原因
绪论国家的装备制造能力的整体能力和发展水平决定着国家的经济实力、国防实力、综合国力和全球经济形势的竞争力与合作能力,决定着国家实现现代化和民族复兴的过程。
制造业是国民经济建设的基础,锻造在现代制造业中占有举足轻重的地位。
锻造在机床、重型机械、矿山机械、石油机械、水电设备、汽车、航空航天、核能及军工产品中占有比较大的比重。
由于锻压生产具有生产效率高、材料利用率和改善制件的内部组织及机械性能等显著特点,因此采用锻压生产零件的制造方法在各行各业中所占的比例很大。
随着精密成型、少无切削技术的发展,降低生产成本、减少产品质量、提高产品性能和质量要求的不断提高,锻压生产在工业、国防、航空航天以及其他各种装备制造业中的作用会越来越大。
锻件缺陷的主要特征及产生的原因制造业是国民经济建设的基础,锻造在现代制造业中占有举足轻重的地位。
锻造在机床、重型机械、矿山机械、石油机械、水电设备、汽车、航空、核能及军工产品中占有比较大的比重。
国家的装备制造能力的整体能力和发展水平决定着国家的经济实力、国防实力、综合国力和全球经济形势的竞争力与合作能力,决定着国家实现现代化和民族复兴的过程。
由于锻压生产具有生产效率高、材料利用率和改善制件的内部组织及机械性能等显著特点,因此采用锻压生产零件的制造方法在各行各业中所占的比例很大。
随着精密成型、少无切削技术的发展,降低生产成本、减少产品质量、提高产品性能和质量要求的不断提高,锻压生产在工业、国防、航空航天以及其他各种装备制造业中的作用会越来越大。
一锻造概述锻造利用冲击力或静压力使加热后的坯料在锻压设备上、下砧之间产生塑性变形,以获得所需尺寸、形状和质量的锻件加工方法称为锻造。
常用的锻造方法为自由锻、模锻及胎模锻。
自由锻利用冲击力或静压力使经过加热的金属在锻压设备的上、下砧间向四周自由流动产生塑性变形,获得所需锻件的加工方法称为自由锻。
自由锻分为手工锻造和机器锻造两种。
手工锻造只能生产小型锻件,机器锻造是自由锻锻造特点自由锻造所用工具和设备简单,通用性好,成本低。
锻造常见的缺陷与产生原因
锻造常见的缺陷与产生原因锻造是一种将金属材料加热至一定温度,然后在受力的作用下使其产生塑性变形的加工过程。
锻造是一种高效且经济的金属加工方法,但在实际加工过程中,锻造件有可能会出现一些缺陷。
这些缺陷主要包括:夹杂、气孔、脱合、表面裂纹等。
一、夹杂夹杂是指金属中出现的异物,这些异物可以是氧化物、硫化物和化合物等。
夹杂会影响锻件的使用性能,尤其是在高温和高压力下容易引起损坏。
因此,在生产过程中应尽量减少夹杂产生的机会。
夹杂的产生原因主要有以下几个方面:1、原材料中的夹杂。
原材料中的夹杂主要来自矿物中的杂质和在熔融状态下未熔化的粒子。
2、熔池中的夹杂。
熔池中的夹杂主要来自熔融过程中的氧化和化学反应等。
3、操作不当。
加工过程中的不当操作也可能造成夹杂的产生。
例如,在操作过程中未能清除材料的表面杂质和附着物等。
二、气孔气孔是指金属内部或表面上的空气或气体集聚。
气孔可以降低金属的强度和韧性,因此在实际生产中要尽量减少气孔的产生。
气孔的产生原因主要有以下几个方面:1、原材料中的气孔。
原材料中的气孔主要来自于矿物中的吸附气体和在熔融状态下的蒸汽等。
2、熔池中的气孔。
熔池中的气孔主要来自于熔融状态下的吸入空气和氧化反应等。
3、操作不当。
加工过程中的操作不当可能导致气孔的产生。
例如,在操作过程中未能及时清除材料表面的杂质,或在锻造过程中未能及时捕捉和清除金属表面的气体等。
三、脱合脱合是指金属加工过程中出现的脱粘或分层现象。
脱合会降低金属材料的强度和韧性,因此在生产过程中要尽量避免脱合现象。
脱合的产生原因主要有以下几个方面:1、金属材料的不均匀变形。
在加工和锻造过程中,金属材料可能会出现不均匀的变形,从而导致脱合现象。
2、材料的微观组织不均。
金属材料的微观组织不均可能会导致脱合现象的发生。
例如,过度冷却或退火不够充分等。
3、操作不当。
加工过程中操作不当也可能导致脱合现象的发生。
例如,加热过程中温度控制不当,以及在锻造过程中对锻造参数的控制不够严格等。
大型锻件中常见的缺陷与对策大全
大型锻件中常见的缺陷与对策大全(实用版)目录1.大型锻件概述2.大型锻件中常见的缺陷2.1 偏析2.2 疏松2.3 密集性夹杂物2.4 发纹2.5 白点3.缺陷产生的原因3.1 温度变化和分布不均匀3.2 金属塑性流动差别大3.3 钢锭冶金缺陷多4.缺陷的检测方法4.1 无损检测技术4.2 表面检测5.缺陷的对策5.1 优化锻造工艺5.2 改进材料质量5.3 提高设备性能5.4 强化生产管理正文一、大型锻件概述大型锻件是指尺寸大、重量重的锻件,通常用于制造大型机械设备、船舶、电力设备等。
由于其尺寸和重量的特性,大型锻件在制造过程中容易产生各种缺陷,严重影响设备的性能和安全。
因此,研究大型锻件中常见的缺陷及其对策是十分必要的。
二、大型锻件中常见的缺陷1.偏析偏析是指合金中成分分布不均匀的现象,可能导致锻件的力学性能不稳定。
2.疏松疏松是指锻件中存在许多孔隙,容易降低锻件的强度和韧性。
3.密集性夹杂物密集性夹杂物是指锻件中存在的大量微小夹杂物,会影响锻件的性能。
4.发纹发纹是指锻件表面出现的细小纹路,可能引起疲劳裂纹,影响锻件的使用寿命。
5.白点白点是指锻件中出现的白色斑点,通常是由于锻件冷却过快引起的,可能影响锻件的性能。
三、缺陷产生的原因1.温度变化和分布不均匀大型锻件在加热和冷却过程中,由于截面尺寸大、热传导不均匀,导致温度变化和分布不均匀,从而引发缺陷。
2.金属塑性流动差别大在锻造过程中,金属的塑性流动差别大,可能导致部分区域变形不足,产生缺陷。
3.钢锭冶金缺陷多钢锭中的冶金缺陷,如夹杂物、气孔等,在锻造过程中可能被放大,导致锻件缺陷。
四、缺陷的检测方法1.无损检测技术无损检测技术可以检测锻件内部的缺陷,如射线探伤、超声波探伤等。
2.表面检测表面检测可以观察锻件表面的缺陷,如磁粉探伤、渗透探伤等。
五、缺陷的对策1.优化锻造工艺通过调整加热温度、保温时间、锻造顺序等,优化锻造工艺,减少缺陷产生。
浅析造成锻件质量缺陷的因素
2018·6(下) 军民两用技术与产品177文章编号:1009-8119(2018)06(2)-0177-02锻件在锻造加工过程中,影响锻件质量的因素很多,本文从锻件的钢锭原材料、备料、热处理、锻造加工工艺等各方面分析形成锻件质量问题的因素,已供大家借鉴。
1 原材料的主要缺陷及其引起的锻件缺陷锻造用的原材料为铸锭、轧材、挤材及锻坯。
而轧材、挤材及锻坯分别是铸锭经轧制、挤压及锻造加工成的半成品。
一般情况下,铸锭的内部缺陷或表面缺陷的出现有时是不可避免的,例如,内部的成分与组织偏析等。
原材料存在的各种缺陷,不仅会影响锻件的成形,而且将影响锻件的最终质量。
由原材料的缺陷造成的锻件缺陷通常有:1.1 表面裂纹表面裂纹多发生在轧制棒材和锻制棒材上,一般呈直线形状,和轧制或锻造的主变形方向一致。
造成这种缺陷的原因很多,例如钢锭内的皮下气泡在轧制时一面沿变形方向伸长,一面暴露到表面上和向内部深处发展。
又如在轧制时,坯料的表面如被划伤,冷却时将造成应力集中,从而可能沿划痕开裂等等。
这种裂纹若在锻造前不去掉,锻造时便可能扩展引起锻件裂纹。
一般表现更多为轴向裂纹。
1.2 折叠折叠形成的原因是当金属坯料在轧制过程中,由于轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,形成和材料表面成一定倾角的折缝。
折缝内有氧化铁夹杂,四周有脱碳。
折叠若在锻造前不去掉,可能引起锻件折叠或开裂。
1.3 层状断口层状断口的特征是其断口或断面与折断了的石板、树皮很相似。
层状断口多发生在合金钢(铬镍钢、铬镍钨钢等),碳钢中也有发现。
这种缺陷的产生是由于钢中存在的非金属夹杂物、枝晶偏析以及气孔疏松等缺陷,在锻、轧过程中沿轧制方向被拉长,使钢材呈片层状。
如果杂质过多,锻造就有分层破裂的危险。
层状断口越严重,钢的塑性、韧性越差,尤其是横向力学性能很低,所以钢材如具有明显的层片状缺陷是不合格的。
1.4 亮线亮线是在纵向断口上呈现结晶发亮的有反射能力的细条线,多数贯穿整个断口,大多数产生在轴心部分。
常用锻件的缺陷及排除措施
错移
局部充 填不足
过烧
锻件缺陷 欠压
表现特证 产生原因 垂直于分模面方向的尺寸 1、锻造温度过低 普遍增大 2、设备锤击力不足 1、滑块与导轨之间间隙过大 锻件沿要模面的上半部相 2、锻模定位止口或锁扣(导柱) 对于下半部产生位移 间隙过大 3、模具安装不良 1、锻造温度过低,金属流动性差 主要发生在筋肋、凸角、 2、设备锤击力不足 转角、圆角部位 3、制坯尺寸不合理 材料塑性急剧降低,过烧 1、加热温度过高或在高温加热区 处晶粒出现氧化及熔化, 停留时间过长 产生裂纹
锻件中的常见缺陷及产生的原因
锻件中的常见缺陷及产生的原因锻件中的常见缺陷及产生的原因:锻件中的缺陷主要来源于两个方面:一种是由铸锭中缺陷引起的缺陷;另一种是锻造过程及热处理中产生的缺陷。
锻件中常见的缺陷类型有:1.1.1缩孔;1.1.2缩松;1.1.3夹杂物;1.1.4裂纹;1.1.5折叠;1.1.6白点。
锻件中常见缺陷产生的原因及常出现的部位:1.2.1缩孔:它是铸锭冷却收缩时在头部形成的缺陷,锻造时因切头量不足而残留下来,多见于轴类锻件的头部, 具有较大的体积,并位于横截面中心, 在轴向具有较大的延伸长度。
1.2.2缩松:它是在铸造凝固收缩时形成的孔隙和孔穴, 在锻造过程中因变形量不足而未被消除, 缩松缺陷多出现在大型锻件中。
1.2.3夹杂物: 根据其来源或性质夹杂物又可分为: 内在非金属夹杂物、外来非金属夹杂物、金属夹杂物。
内在非金属夹杂物是铸锭中包含的脱氧剂、金属元素等与气体的反产物,尺寸较小,常被熔液漂浮,挤至最后凝固的铸锭中心及头部。
外来非金属夹杂物是冶炼、浇注过程中混入的耐火材料或杂质,故常混杂于铸锭下部,偶然落入的非金属夹杂则无确定位置。
金属夹杂物是冶炼时加入合金较多且尺寸较大,或者浇注时飞溅小粒或异种金属落入后又未被全部熔化而形成的缺陷。
1.2.4裂纹:锻件中裂纹形成的原因很多,按形成的原因,裂纹的种类可大致分为以下几种:1.2.4.1因冶炼缺陷(如缩孔残余)在锻造时扩大形成的裂纹。
1.2.4.2锻件工艺不当(如加热、加热速度过快、变行不均匀、变行过大、冷却速度过快等)而形成的裂纹。
11.2.4.3热处理过程中形成的裂纹:如淬火时加热温度较高,使锻件组织粗大淬火时可能产生裂纹;冷却不当引起的开裂,回火不及时或不当,由锻件内部残余力引起的裂纹。
1.2.5折叠:热金属的凸出部位被压折并嵌入锻件表面形成的缺陷,多发生在锻件的内圆角和尖角处。
折叠表面是氧化层,能使该部位的金属无法连接。
1.2.6白点:锻件中由于氢的存在所产生的小裂纹称为白点。
锻造常见缺陷及原因
锻造常见缺陷及原因锻造是一种常用的金属加工方法,通过加热金属材料使其软化,然后施加压力改变其形状和结构。
然而,在锻造过程中,常常会出现一些缺陷,这些缺陷可能会影响产品的质量和性能。
下面将介绍一些常见的锻造缺陷及其原因。
1.铸造夹杂物:夹杂物是指在锻造过程中由于材料的不纯或杂质的存在而产生的非金属颗粒。
夹杂物可能会损害锻件的力学性能,并在应力作用下起到裂纹的起始点。
夹杂物的常见原因包括原料不纯、金属液处理不当和冶炼技术不合理等。
2.表面皱纹:在锻造过程中,金属材料可能会产生表面皱纹,这些皱纹可能会降低产品的表面质量和耐蚀性。
表面皱纹的原因可能包括锻件的温度不合适、锻造速度过快、模具的设计不合理等因素。
3.裂纹:裂纹是指在锻造过程中产生的金属材料的断裂缺陷。
裂纹可能会导致锻件的断裂和失效。
裂纹的原因可能包括金属材料的内部应力过大、锻造过程中的温度和应变不均匀、模具的设计不合理等。
4.气孔:气孔是指锻件中的气体聚集在一起形成的孔洞。
气孔可能会降低锻件的力学性能并导致金属材料的脆性增加。
气孔的原因可能包括金属液中的气体溶解度高、金属液的排气不彻底、金属材料的氢含量高等。
5.凸缘:凸缘是指锻件表面的凹陷,通常是由于模具的设计不合理或者锻造过程中的卡位不良而引起的。
凸缘会降低锻造件的密封性和耐蚀性。
6.尺寸偏差:尺寸偏差是指锻造件的实际尺寸与设计尺寸之间的差异。
尺寸偏差可能会影响锻件的装配和使用,降低产品的功能性。
尺寸偏差的原因可能包括模具的磨损、材料的收缩率不均匀、锻造机床的精度不高等。
以上是一些常见的锻造缺陷及其原因。
为了避免这些缺陷的出现,可以通过优化锻造过程,提高金属材料的质量,改进模具设计和锻造工艺等手段来减少缺陷的发生。
同时,对于已经出现的缺陷,可以通过修复和加工的方法来消除或者修复。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引发锻件缺陷的主要原因一、原材料的主要缺陷及其引起的锻件缺陷锻造用的原材料为铸锭、轧材、挤材及锻坯。
而轧材、挤材及锻坯分别是铸锭经轧制、挤压及锻造加工成的半成品。
一般情况下,铸锭的内部缺陷或表面缺陷的出现有时是不可避免的。
例如,内部的成分与组织偏析等。
原材料存在的各种缺陷,不仅会影响锻件的成形,而且将影响锻件的最终质量。
根据不完全的统计,在航空工业系统中,导致航空锻件报废的诸多原因中,由于原材料固有缺陷引起的约占一半左右。
因此,千万不可忽视原材料的质量控制工作。
由于原材料的缺陷造成的锻件缺陷通常有:1.表面裂纹表面裂纹多发生在轧制棒材和锻制棒材上,一般呈直线形状,和轧制或锻造的主变形方向一致。
造成这种缺陷的原因很多,例如钢锭内的皮下气泡在轧制时一面沿变形方向伸长,一面暴露到表面上和向内部深处发展。
又如在轧制时,坯料的表面如被划伤,冷却时将造成应力集中,从而可能沿划痕开裂等等。
这种裂纹若在锻造前不去掉,锻造时便可能扩展引起锻件裂纹。
2.折叠折叠形成的原因是当金属坯料在轧制过程中,由于轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,形成和材料表面成一定倾角的折缝。
对钢材,折缝内有氧化铁夹杂,四周有脱碳。
折叠若在锻造前不去掉,可能引起锻件折叠或开裂(见实例4)。
3.结疤结疤是在轧材表面局部区域的一层可剥落的薄膜。
结疤的形成是由于浇铸时钢液飞溅而凝结在钢锭表面,轧制时被压成薄膜,贴附在轧材的表面,即为结疤。
锻后锻件经酸洗清理,薄膜将会剥落而成为锻件表面缺陷。
4.层状断口层状断口的特征是其断口或断面与折断了的石板、树皮很相似。
层状断口多发生在合金钢(铬镍钢、铬镍钨钢等),碳钢中也有发现。
这种缺陷的产生是由于钢中存在的非金属夹杂物、枝晶偏析以及气孔疏松等缺陷,在锻、轧过程中沿轧制方向被拉长,使钢材呈片层状。
如果杂质过多,锻造就有分层破裂的危险。
层状断口越严重,钢的塑性、韧性越差,尤其是横向力学性能很低,所以钢材如具有明显的层片状缺陷是不合格的,见实例46。
5.亮线(亮区)亮线是在纵向断口上呈现结晶发亮的有反射能力的细条线,多数贯穿整个断口,大多数产生在轴心部分。
亮线主要是由于合金偏析造成的,见实例86。
轻微的亮线对力学性能影响不大,严重的亮线将明显降低材料的塑性和韧性。
6.非金属夹杂非金属夹杂物主要是熔炼或浇铸的钢水冷却过程中由于成分之间或金属与炉气、容器之间的化学反应形成的。
另外,在金属熔炼和浇铸时,由于耐火材料落入钢液中,也能形成夹杂物,这种夹杂物统称夹渣。
在锻件的横断面上,非金属夹杂可以呈点状、片状、链状或团块状分布。
严重的夹杂物容易引起锻件开裂或降低材料的使用性能,见实例47。
7.碳化物偏析碳化物偏析经常在含碳高的合金钢中出现。
其特征是在局部区域有较多的碳化物聚集。
它主要是钢中的莱氏体共晶碳化物和二次网状碳化物,在开坯和轧制时未被打碎和均匀分布造成的。
碳化物偏析将降低钢的锻造变形性能,易引起锻件开裂。
锻件热处理淬火时容易局部过热、过烧和淬裂。
制成的刀具使用时刃口易崩裂,见实例37、38。
8.铝合金氧化膜铝合金氧化膜一般多位于模锻件的腹板上和分模面附近。
在低倍组织上呈微细的裂口,在高倍组织上呈涡纹状,在断口上的特征可分两类:其一,呈平整的片状,颜色从银灰色、浅黄色直至褐色、暗褐色;其二,呈细小密集而带闪光的点状物。
铝合金氧化膜是熔铸过程中敞露的熔体液面与大气中的水蒸气或其它金属氧化物相互作用时所形成的氧化膜在转铸过程中被卷人液体金属的内部形成的。
锻件和模锻件中的氧化膜对纵向力学性能无明显影响,但对高度方向力学性能影响较大,它降低了高度方向强度性能,特别是高度方向的伸长率、冲击韧度和高度方向抗腐蚀性能。
9.白点白点的主要特征是在钢坯的纵向断口上呈圆形或椭圆形的银白色斑点,在横向断口上呈细小的裂纹。
白点的大小不一,长度由1~20mm或更长。
白点在镍铬钢、镍铬钼钢等合金钢中常见,普通碳钢中也有发现,是隐藏在内部的缺陷。
白点是在氢和相变时的组织应力以及热应力的共同作用下产生的,当钢中含氢量较多和热压力加工后冷却(或锻后热处理)太快时较易产生。
用带有白点的钢锻造出来的锻件,在热处理时(淬火)易发生龟裂,有时甚至成块掉下。
白点降低钢的塑性和零件的强度,是应力集中点,它像尖锐的切刀一样,在交变载荷的作用下,很容易变成疲劳裂纹而导致疲劳破坏。
所以锻造原材料中绝对不允许有白点。
关于白点的详细介绍请见第三章第七节和实例97。
10.粗晶环粗晶环常常是铝合金或镁合金挤压棒材上存在的缺陷。
经热处理后供应的铝、镁合金的挤压棒材,在其圆断面的外层常常有粗晶环。
粗晶环的厚度,由挤压时的始端到末端是逐渐增加的。
若挤压时的润滑条件良好,则在热处理后可以减小或避免粗晶环。
反之,环的厚度会增加。
粗晶环的产生原因与很多因素有关。
但主要因素是由于挤压过程中金属与挤压筒之间产生的摩擦。
这种摩擦致使挤出来的棒材横断面的外表层晶粒要比棒材中心处晶粒的破碎程度大得多。
但是由于筒壁的影响,此区温度低,挤压时未能完全再结晶,淬火加热时未再结晶的晶粒再结晶并长大吞并已经再结晶的晶粒,于是在表层形成了粗晶环。
有粗晶环的坯料锻造时容易开裂,如粗晶环保留在锻件表层,则将降低零件的性能,见实例76。
有粗晶环缺陷的坯料,在锻造前必需将粗晶环车去。
11.缩管残余缩管残余一般是由于钢锭冒口部分产生的集中缩孔未切除干净,开坯和轧制时残留在钢材内部而产生的。
缩管残余附近区域一般会出现密集的夹杂物、疏松或偏析。
在横向低倍中呈不规则的皱折的缝隙。
锻造时或热处理时易引起锻件开裂,见实例5。
二、备料不当产生的缺陷及其对锻件的影响备料不当产生的缺陷有以下几种。
1.切斜切斜是在锯床或冲床上下料时,由于未将棒料压紧,致使坯料端面相对于纵轴线的倾斜量超过了规定的许可值。
严重的切斜,可能在锻造过程中形成折叠。
2.坯料端部弯曲并带毛刺在剪断机或冲床上下料时,由于剪刀片或切断模刃口之间的间隙过大或由于刃口不锐利,使坯料在被切断之前已有弯曲,结果部分金属被挤人刀片或模具的间隙中,形成端部下垂毛刺。
有毛刺的坯料,加热时易引起局部过热、过烧,锻造时易产生折叠和开裂。
3.坯料端面凹陷在剪床上下料时,由于剪刀片之间的间隙太小,金属断面上、下裂纹不重合,产生二次剪切,结果部分端部金属被拉掉,端面成凹陷状。
这样的坯料锻造时易产生折叠和开裂。
4.端部裂纹在冷态剪切大断面合金钢和高碳钢棒料时,常常在剪切后3~4h发现端部出现裂纹。
主要是由于刀片的单位压力太大,使圆形断面的坯料压扁成椭圆形,这时材料中产生了很大的内应力。
而压扁的端面力求恢复原来的形状,在内应力的作用下则常在切料后的几小时内出现裂纹。
材料硬度过高、硬度不均和材料偏析较严重时也易产生剪切裂纹。
有端部裂纹的坯料,锻造时裂纹将进一步扩展。
5.气割裂纹气割裂纹一般位于坯料端部,是由于气割前原材料没有预热,气割时产生组织应力和热应力引起的。
有气割裂纹的坯料,锻造时裂纹将进一步扩展。
因此锻前应予以预先清除。
6.凸芯开裂车床下料时,在棒料端面的中心部位往往留有凸芯。
锻造过程中,由于凸芯的断面很小,冷却很快,因而其塑性较低,但坯料基体部分断面大,冷却慢,塑性高。
因此,在断面突变交接处成为应力集中的部位,加之两部分塑性差异较大,故在锤击力的作用下,凸芯的周围容易造成开裂。
三、加热工艺不当常产生的缺陷加热不当所产生的缺陷可分为:①由于介质影响使坯料外层组织化学状态变化而引起的缺陷,如氧化、脱碳、增碳和渗硫、渗铜等。
②由内部组织结构的异常变化引起的缺陷,如过热、过烧和未热透等。
③由于温度在坯料内部分布不均,引起内应力(如温度应力、组织应力)过大而产生的坯料开裂等。
下面介绍其中几种常见的缺陷,其余的可见有关的实例。
1.脱碳脱碳是指金属在高温下表层的碳被氧化,使得表层的含碳量较内部有明显降低的现象。
脱碳层的深度与钢的成分、炉气的成分、温度和在此温度下的保温时间有关。
采用氧化性气氛加热易发生脱碳,高碳钢易脱碳,含硅量多的钢也易脱碳。
脱碳使零件的强度和疲劳性能下降,磨损抗力减弱。
2.增碳经油炉加热的锻件,常常在表面或部分表面发生增碳现象。
有时增碳层厚度达1.5~1.6mm,增碳层的含碳量达1%(质量分数)左右,局部点含碳量甚至超过2%(质量分数),出现莱氏体组织。
这主要是在油炉加热的情况下,当坯料的位置靠近油炉喷嘴或者就在两个喷嘴交叉喷射燃油的区域内时,由于油和空气混合得不太好,因而燃烧不完全,结果在坯料的表面形成还原性的渗碳气氛,从而产生表面增碳的效果。
增碳使锻件的机械加工性能变坏,切削时易打刀。
3.过热过热是指金属坯料的加热温度过高,或在规定的锻造与热处理温度范围内停留时间太长,或由于热效应使温升过高而引起的晶粒粗大现象。
碳钢(亚共析或过共析钢)过热之后往往出现魏氏组织。
马氏体钢过热之后,往往出现晶内织构,工模具钢往往以一次碳化物角状化为特征判定过热组织。
钛合金过热后,出现明显的β相晶界和平直细长的魏氏组织。
合金钢过热后的断口会出现石状断口或条状断口。
过热组织,由于晶粒粗大,将引起力学性能降低,尤其是冲击韧度。
一般过热的结构钢经过正常热处理(正火、淬火)之后,组织可以改善,性能也随之恢复,这种过热常被称之为不稳定过热;而合金结构钢的严重过热经一般的正火(包括高温正火)、退火或淬火处理后,过热组织不能完全消除,这种过热常被称之为稳定过热。
4.过烧过烧是指金属坯料的加热温度过高或在高温加热区停留时间过长,炉中的氧及其它氧化性气体渗透到金属晶粒间的空隙,并与铁、硫、碳等氧化,形成了易熔的氧化物的共晶体,破坏了晶粒间的联系,使材料的塑性急剧降低。
过烧严重的金属,撤粗时轻轻一击就裂,拔长时将在过烧处出现横向裂纹。
过烧与过热没有严格的温度界线。
一般以晶粒出现氧化及熔化为特征来判断过烧。
对碳钢来说,过烧时晶界熔化、严重氧化工模具钢(高速钢、Cr12型钢等)过烧时,晶界因熔化而出现鱼骨状莱氏体。
铝合金过烧时出现晶界熔化三角区和复熔球等。
锻件过烧后,往往无法挽救,只好报废。
5.加热裂纹在加热截面尺寸大的大钢锭和导热性差的高合金钢和高温合金坯料时,如果低温阶段加热速度过快,则坯料因内外温差较大而产生很大的热应力。
加之此时坯料由于温度低而塑性较差,若热应力的数值超过坯料的强度极限,就会产生由中心向四周呈辐射状的加热裂纹,使整个断面裂开。
6.铜脆铜脆在锻件表面上呈龟裂状。
高倍观察时,有淡黄色的铜(或铜的固溶体)沿晶界分布。
坯料加热时,如炉内残存氧化铜屑,在高温下氧化钢还原为自由铜,熔融的钢原子沿奥氏体晶界扩展,削弱了晶粒间的联系。
另外,钢中含铜量较高[>2%(质量分数)]时,如在氧化性气氛中加热,在氧化铁皮下形成富铜层,也引起钢脆。