有理数的乘除法乘方及科学记数法测试题及答案
初一数学有理数的加减乘除以及乘方试题答案及解析
初一数学有理数的加减乘除以及乘方试题答案及解析1.科学发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列——著名的裴波那契数列:1,1,2,3,5,8,13,21,34,55,……仔细观察以上数列,则它的第11个数应该是 .【答案】89.【解析】观察发现:从第三个数开始,后边的一个数总是前边两个数的和,则第11个数是34+55=89.试题解析:第11个数是34+55=89.【考点】规律型:数字的变化类.2.将正整数依次按下表规律排成4列,根据表中的排列规律,数2014应在( )A.第672行第1列B.第672行第4列C.第671行第1列D.第671行第4列【答案】B.【解析】每行有3列,奇数开始的从左边开始排列,偶数开始的从右边开始排列.每行的最后都是3的倍数.2014÷3=671……1,所以数2014应在第672行第4列.故选B.【考点】规律型:数字的变化类.3.已知在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克,数0.001293用科学计数法表示为__________ .【答案】.【解析】用科学记数法表示绝对值小于的数,只要将小数定向右移到第一个不为零的数后,若共移动位,则最后乘以即可,如本题中向右移了位,变为,在后乘以,最后.【考点】科学记数法.4.计算:= 。
【答案】.【解析】【考点】同底数幂的乘法.5.在一次水灾中,大约有个人无家可归,假如一顶帐篷占地100米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000米2。
要安置这些人,大约需要多少个这样的广场?(所有结果用科学计数法表示)【答案】(1);(2);(3).【解析】根据帐篷的数量=总人数÷每一个帐篷所容纳的人数;所占面积=帐篷数×一顶帐篷所占的面积,计算即可.试题解析:根据题意得2.5×107÷40=625000=顶帐篷,625000×100=6.25×107米2,6.25×107÷5000=个.考点: 整式的除法.6.明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A.90分B.75分C.91分D.81分【答案】C【解析】小明第四次测验的成绩是故选C.7.下列各组的两个数中,运算后的结果相等的是()A.和B.和C.和D.和【答案】B【解析】A.,,故本选项错误;B.,,故本选项正确;C.,,故本选项错误;D.,,故本选项错误.故选B.8.若规定“!”是一种数学运算符号,且则的值为()A.B.99!C.9 900D.2!【答案】C【解析】根据题意可得:100!=100×99×98×97×...×1,98!=98×97× (1)∴=100×99="9" 900,故选C.9.若规定,则的值为 .【答案】【解析】.10.李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):星期一二三四五六日(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?【答案】(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.【解析】分析:(1)七天的收入总和减去支出总和即可;(2)首先计算出平均一天的节余,然后乘30即可;(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得.解:(1)由题意可得:(元).(2)由题意得:14÷7×30=60(元).(3)根据题意得:10+14+13+8+10+14+15=84,84÷7×30=360(元).答:(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.11.有理数0.0050400的有效数字的个数是().A.3个B.4个C.5个D.6个【答案】C【解析】有效数字是从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:有理数0.0050400的有效数字有5、0、4、0、0这5个,故选C.【考点】近似数和有效数字点评:本题是基础应用题,只需学生熟练掌握有效数字的定义,即可完成.12.计算:;【答案】-5【解析】先根据有理数的乘方法则计算,再根据有理数的乘法法则计算,最后算加减即可.解:原式.【考点】有理数的混合运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.13.观察下列各式:31=3,32=9,33=27,34=81, 35=243,36=729…你能从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:3的个位数字是。
初一数学有理数的加减乘除以及乘方试题答案及解析
初一数学有理数的加减乘除以及乘方试题答案及解析1.小华利用计算器计算0.0000001295×0.0000001295时,发现计算器的显示屏上显示如下图的结果,对这个结果表示正确的解释应该是().A.1.677025×10—14B.1.677025×1014C.(1.677025×10)—14D.1.677025×10×(—14)【答案】A.【解析】0.0000001295×0.0000001295,=0.00000000000001677025,=1.677025×10-14.故选A.【考点】计算器—有理数.2.计算:【答案】41.【解析】针对有理数的乘方、绝对值分别进行计算,然后根据实数的运算法则求得计算结果.原式=.【考点】1.有理数的乘方;2..绝对值;3.实数的运算法则.3.人一根头发的直径大约为0.00072分米,用科学记数法表示正确的是()A.B.C.D.【答案】D.【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。
在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.00072第一个有效数字前有4个0(含小数点前的1个0),从而.故选D.【考点】科学记数法.4.中学数学中,我们知道加减运算是互逆运算,乘除运算也是互逆运算;其实乘方运算也有逆运算,如式子可写成,式子也可写成;已知式子表示为,则用表示时,=()A.6B.C.D.【答案】B.【解析】根据观察式子23=8可以变形为3=log28,2=log525也可以变形为52=25,可发现规律,根据同底数幂的乘法,可得答案.由y=log318,得3y=183x=2,32=932×3x=32+x=183y=18=32+x所以y=2+x.故选B.【考点】有理数的乘方.5.计算(1)[(x+y)2-(x-y)2]÷(2xy)(2)(3)【答案】(1)2;(2)-0.1;(3)-4.【解析】(1)原式中括号中利用完全平方公式展开,再利用多项式除以单项式法则计算即可得到结果.(2)先算积的乘方,再进行除法运算即可;(3)根据乘方、零次幂、负整数指数幂的意义进行计算即可求出答案.试题解析:(1)原式=(x2+2xy+y2-x2+2xy-y2)÷(2xy)=4xy÷(2xy)=2;(2) 原式====-0.1;(3)原式=-4+4×1-4=-4+4-4=-4【考点】1.完全平方公式;2.整式的除法;3.实数的混合运算.6.用小数表示2.014×10-3是 .【答案】0.002014.【解析】把数据2.014×10-3中2.014的小数点向左移动3位就可以得到.试题解析:2.014×10-3=0.002014.考点: 科学记数法—原数.7.已知,则=_______.【答案】-3.【解析】把变形为3-3,即可求出m的值.试题解析:∵∴m=-3.考点: 负整数指数幂.8.根据下图所示的程序计算代数式的值,若输入n的值为5,则输出的结果为()A.16B.2.5C.18.5D.13.5【答案】A【解析】由程序图可知输出的结果为3.9.明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A.90分B.75分C.91分D.81分【答案】C【解析】小明第四次测验的成绩是故选C.10.小彬从家里步行到学校需100步,他到学校的距离可能是()A.250 m B.200 m C.150 m D.50 m【答案】D【解析】0.5×100=50(m).故选D.11.计算(-2.5)×0.37×1.25×(-4)×(-8)=_________.【答案】-37【解析】原式=[(-2.5)×(-4)]×[1.25×(-8)]×0.37=10×(-10)×0.37=-37.12.比较下列各对数的大小.(1)与;(2)与;(3)与.【答案】(1)<(2)<(3)<【解析】解:(1)因为|-4+5|=1,|-4|+|5|=9,所以|-4+5|<|-4|+|5|.(2)因为,所以.(3)因为,,所以.13.务川电视台天气预报,12月20日的气温是﹣2℃~7℃,则这一天的温差是℃【答案】9【解析】用最高气温减去最低气温,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.7﹣(﹣2)=7+2=9℃.故答案为:9.【考点】有理数的减法.14.)计算:(1)(2);(3);(4).【答案】(1)-2.5;(2);(3)-15;(4)1.【解析】(1)原式==0.5+(-3)=-2.5.(2)原式==(-1)×=.(3)原式=-25+=-25+12+16-18=-15(4)原式==1【考点】有理数的运算.15.一振子从点A开始左右振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,-9,+8,-6,+7.5,-6,+8,-7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时0.22秒,则共用时多少秒?【答案】(1)5.5;(2)13.53.【解析】(1)将8次的记录相加,得到的数就是停止时所在位置距A点的距离,如果是“正”则在A点右边,如果是“负”则在A点左边;(2)将8次记录的绝对值相加就是它振运8次的距离,再乘以0.22,即可得到共用时间.试题解析:(1)+10-9+8-6+7.5-6+8-7=5.5;答:振子停止时位于A点右边5.5毫米处.(2)10+9+8+6+7.5+6+8+7=61.5,61.5×0.22=13.53(秒)答:振子共用时13.53秒.【考点】正数和负数.16.温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为万元.【答案】3.397×107【解析】科学记数法的表示方法:科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:.【考点】科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.17. (-2)4表示A.(-2)×4B.(-2)×(-2)×(-2)×(-2)C.-4×4D.(-2)+(-2)+(-2)+(-2)【答案】B【解析】有理数的乘方的定义:几个相同因数的积叫做有理数的乘方.(-2)×(-2)×(-2)×(-2),故选B.【考点】有理数的乘方点评:本题属于基础应用题,只需学生熟练掌握有理数的乘方的定义,即可完成.18.按四舍五入法则取近似值:2.096≈(精确到百分位).-0.03445≈(精确到0.001).【答案】2.10,-0.034【解析】精确到百分位即是对千分位四舍五入,精确到0.001即是对0.0001位四舍五入.按四舍五入法则取近似值:2.096≈2.10(精确到百分位).-0.03445≈-0.034(精确到0.001).【考点】近似数和有效数字点评:本题属于基础应用题,只需学生熟练掌握取近似数的方法,即可完成.19.下表是小明记录的10月份某一周内每天中午12时的气温的变化情况(气温比前一天上升记为正数,下降记为负数)星期一二三四五六日(2)本周的最高气温与最低气温相差多少摄氏度?【答案】(1)由题意得【解析】(1)根据气温比前一天上升记为正数,下降记为负数即可依次计算出各天的实际气温;(2)根据(1)中得到的结果即可计算出本周的最高气温与最低气温的差.(1)由题意得13111614131716【考点】有理数的减法法则的应用点评:解题的关键是读懂气温比前一天上升记为正数,下降记为负数,分别计算出各天的实际气温.20.研究下列算式,你会发现什么规律?……问题探究(1)请你找出规律并计算=_____________=( ).(2)用含有的式子表示上面的规律:_____________________________.问题解决(3)用找到的规律解决下面的问题:计算: =_______________.写出运算过程:【答案】(1)8(2)(3)【解析】1)=64=8(2)n(n+2)+1=(3)解:原式==【考点】找规律-数字的变化点评:解答本题的关键是仔细分析题意得到规律,再把这个规律应用于解题.21. 2008年全国人民共向四川地震灾区捐款约43681000000元,这笔款额用科学记数法表示(保留三个有效数字)正确的是()A.0.437×1011B.4.4×1010C.4.37×1010D.43.7×109【答案】C【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.43681000000,故选C.【考点】科学记数法的表示方法,近似数与有效数字点评:解题的关键是熟练掌握从左边第一个不为0的数开始到末尾数字为止,所有的数字都是这个数的有效数字,注意有效数字的个数与乘方的次数无关.22.钓鱼岛自古以来是中国的领土,岛屿周围的海域面积约170 000平方公里,相当于五个台湾本岛面积. 这里的“170 000”用科学记数法表示为 .【答案】【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【考点】本题考查的是科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.23.有理数3.645精确到百分位的近似数为A.3.6B.3.64C.3.7D.3.65【答案】D【解析】由题意精确到百分位就是对千分位四舍五入取近似值.有理数3.645精确到百分位的近似数为3.65,故选D.【考点】近似数和有效数字点评:本题属于基础应用题,只需学生熟练掌握四舍五入取近似值的方法,即可完成.24.计算:(1)(2)(3)(4)【答案】(1)0;(2)-1;(3)7;(4)6【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.(1)原式=-3+3=0;(2)原式==;(3)原式==;(4)原式==.【考点】有理数的混合运算点评:本题属于基础应用题,只需学生熟练掌握有理数的混合运算的顺序,即可完成.25.若a、b互为相反数,c、d互为倒数,∣m∣=2,求+m2-3cd的值.【答案】-2【解析】由题意可得,,,再整体代入求值即可.由题意得,,则【考点】代数式求值点评:解题的关键是熟记相反数之和为0,倒数之积为1,相反数的两个数的绝对值相等.26.计算:(1)4―-3×;(2)【答案】(1)-1;(2)【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.(1)原式=4-6+1=-1;(2) 原式=-1-=.【考点】有理数的混合运算点评:本题属于基础应用题,只需学生熟练掌握有理数的混合运算,即可完成.27.的个位数字是()A.2B.4C.6D.8【答案】C【解析】∵一个数的乘方的个位数字=这个数的个位数字的乘方的个位数字。
有理数的加减乘除乘方混合运算专题训练(带答案)
1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-21、6)12()4365127(÷-⨯+- 22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)3 31、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+- 1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯; (4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)23; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25. 4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分) 34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值. (2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里9.32 -14110.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4 五、34.(1)2000 (2)0。
有理数的乘除乘方运算(含答案)
有理数的运算(乘、除、乘方)教学目的:1、理解有理数的乘法法则;掌握异号两数的乘除运算的规律;2、会进行有理数的乘法、除法、乘方的运算,能灵活运用运算律进行简化运算。
教学重点:1、有理数的乘法、除法法则;2、熟练的进行有理数乘法、除法、乘方运算。
教学难点:若干个有理数相乘,积的符号的确定,乘方的符号确定。
有理数的乘法有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
例1:计算(1) )3()5(-⨯-(2) 4)7(⨯-(3))109()35(-⨯-例题目的:掌握有理数的乘法法则。
有理数乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定。
当负数的个数为奇数时,积为负,当负因数为偶数个时,积为正。
(2)几个数相乘,有一个因数为0,积为0。
例2:(1))4()37(21-⨯-⨯ (2) )253()5.2()94(321-⨯-⨯-⨯例题目的:会算两个以上有理数的乘法,并能判定积的符号。
有理数乘法的运算律:在有理数运算中,乘法的交换律,结合律以及乘法对加法的分配律仍然成立。
乘法交换律:两个数相乘,交换因数的位置,积不变,用式子表示为a·b =b·a 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.用式子表示成(a·b)·c =a·(b·c)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘. 用字母表示成:a(b +c)=a·b +a·c例3:计算:(1) 25.18)5.4(⨯⨯- (2) )]23()3[()2(-+-⨯-(3) )8(161571-⨯例题目的:掌握有理数乘法的运算律。
有理数的除法法则1:两个有理数相除,同号得正,异号向负,并把绝对值相除。
0除以任何非0的数都得0。
倒数与负倒数的概念:乘积为1的两个有理数互为倒数,即若a , b 互为倒数,则1=ab ;乘积为1-的两个有理数互为负倒数,即若b a ,互为负倒数,则1-=⋅b a法则2:除以一个数等于乘以这个数的倒数,即a ÷b )0(1≠⋅=b ba 例4:1. 求下列各数的倒数,负倒数。
有理数的乘、除法、乘方及科学记数法测试题及答案
华东师大版七年级数学练习卷〔四〕班级______姓名_______座号____〔有理数的乘、除法、乘方及科学记数法〕一、填空题:〔每题2 分,共24 分〕1、〔-3〕×〔+2〕的结果的符号是____。
2、3÷〔-2〕=3×〔____〕3、-的倒数是_______。
4、化简:=_____。
5、〔-2〕·〔-2〕·〔-2〕·〔-2〕写成乘方的形式为___________。
6、(-3)2 的底数是_____,指数是_____。
7、地球半径大约是6370 千米,用科学记数法表示为______米。
8、计算-32-1=_____。
9、计算:〔--+〕×12=_____。
10、假设a、b 互为倒数,那么2-3ab=_____。
11、+(y+3)2=0,那么y x=_____。
12、如果N=5.34×105,那么N 是一个_____位整数。
二、选择题:〔每题3分,共18分〕1、以下各式中,计算正确的选项是〔〕A、(-3)×(-2)=-6B、0×(-1)=1C、(-)÷=-2D、(-4)÷=-22、(-3)2表示()A、2 个-3 的积B、-3与 2 的积C、2 个-3 的和D、3 个-2 的积3、一个数和它的相反数之积是〔〕A、负数B、正数C、零D、零或负数4、用科学记录法表示3080000,正确的选项是〔〕A、308×104B、30.8×105C、3.08×106D、3.8×1065、以下各组数中相等的是〔〕A、23和32B、-32与(-3)2C、-23和(-2)3D、-32和326、-22,(-1)2,(-1)3的大小顺序是〔〕A、-22<(-1)2<(-1)3B、-22<(-1)3<(-1)2C、(-1)3<(-1)2<-22D、(-1)2<(-1)3<-22三、计算:〔每题4 分,共24 分〕1、0.8×(-1)2、(-)÷(-)3、(-4)÷〔-12〕×4、4×(-2)3-(-3)25、(-3)×(+2)÷(-3)6、(-)2·(-2)3÷(-1)5四、用简便方法计算:〔每题5分,共15分〕1、71×(-8)2、(-2)3×(-4)×1.253、(-75%)×(-21)+(-125)×-75×(-0.24)五、〔6分〕地球离太阳约有一亿五千万千米,用科学记数法怎样表示?光每秒走的路程是3×108米,那么你能否算出太阳光到达地球需要多长时间?六、〔7分〕:a 与 b 互为相反数,c 与 d 互为倒数,且(y+1)2=0,求y3+(a+b)2005-(-cd)2006的值。
有理数的加减乘除乘方混合运算专题训练(带答案)
1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-21、6)12()4365127(÷-⨯+- 22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)3 31、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+- 1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯; (4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)23; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25. 4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分) 34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值. (2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里9.32 -14110.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4 五、34.(1)2000 (2)0。
有理数的乘法和除法练习题汇总及答案
有理数的乘法和除法练习题汇总及答案一、有理数乘法练习题1、计算:(-3)×5答案:-15解析:两数相乘,异号得负,并把绝对值相乘。
所以(-3)×5 =-152、计算:4×(-6)答案:-24解析:异号相乘得负,4×(-6) =-243、计算:(-7)×(-8)答案:56解析:同号相乘得正,(-7)×(-8) = 564、计算:(-5)×0答案:0解析:任何数与 0 相乘,都得 05、计算:(-2)×(-3)×(-4)答案:-24解析:先确定符号,三个负数相乘,结果为负。
然后计算绝对值,2×3×4 = 24,所以最终结果为-246、计算:5×(-2)×(-6)答案:60解析:先确定符号,两个负数相乘得正,正数乘以正数得正。
5×2×6 = 607、计算:(-8)×(-125)答案:1000解析:同号相乘得正,8×125 = 10008、计算:(-025)×4答案:-1解析:异号相乘得负,025×4 = 1,所以(-025)×4 =-19、计算:(-3/4)×(-8/9)答案:2/3解析:同号相乘得正,分子相乘作分子,分母相乘作分母,约分可得 2/310、计算:(-6)×(-1/6)答案:1解析:互为倒数的两个数相乘得 1二、有理数除法练习题1、计算:(-18)÷6答案:-3解析:两数相除,异号得负,并把绝对值相除。
所以(-18)÷6 =-32、计算:24÷(-8)答案:-3解析:异号相除得负,24÷8 = 3,所以 24÷(-8) =-33、计算:(-36)÷(-9)答案:4解析:同号相除得正,36÷9 = 44、计算:0÷(-7)答案:0解析:0 除以任何一个不等于 0 的数,都得 05、计算:(-20)÷(-5)÷(-2)答案:-2解析:按照从左到右的顺序依次计算,(-20)÷(-5) = 4,4÷(-2) =-26、计算:(-12)÷(1/3)答案:-36解析:除以一个数等于乘以这个数的倒数,(-12)÷(1/3) =(-12)×3 =-367、计算:(-2/3)÷(-4/9)答案:3/2解析:同号相除得正,除以一个分数等于乘以这个分数的倒数,(-2/3)÷(-4/9) =(-2/3)×(-9/4) = 3/28、计算:56÷(-14/15)答案:-60解析:56÷(-14/15) = 56×(-15/14) =-609、计算:(-18)÷(-2/3)÷(-3)答案:-9解析:先将除法转化为乘法,(-18)÷(-2/3) =(-18)×(-3/2) = 27,27÷(-3) =-910、计算:(-8/9)÷(-4/27)×(-3/2)答案:-3解析:先将除法转化为乘法,(-8/9)÷(-4/27) =(-8/9)×(-27/4) = 6,6×(-3/2) =-9三、综合练习题1、计算:(-4)×6÷(-2)答案:12解析:先计算乘法,(-4)×6 =-24,再计算除法,-24÷(-2) = 122、计算:(-5/6)×(-3/10)÷(-1/2)答案:-1/2解析:先计算乘法,(-5/6)×(-3/10) = 1/4,再计算除法,1/4÷(-1/2) =-1/23、计算:(-8)×(-5)×(-0125)答案:-5解析:先确定符号,三个负数相乘,结果为负。
有理数的加减乘除乘方混合运算专题训练(带答案)【通用】.doc
1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷223 3 22231113、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-35722523、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+-1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯;(3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ].(1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯.(1)36×23121)-(; (2)12.7÷)(-1980⨯;(3)6342+)(-⨯; (4))(-43×)-+(-31328;(5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯.(1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423];(5))-(8743÷)(-87; (6))+()(-654360⨯;(7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯.(1))-(-258÷)(-5; (2)-33121)(--⨯;(3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3;(7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)423; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25.4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________.4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( )三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16)27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-200230.(3分)-)45()45(5222-÷-⨯⨯31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3)33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值.(2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里 9.32 -141 10.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C四、23.-90 24.1 25.-3 26.41 27.15 28.1 29.-2002 30.1 31.30 32.-49 33.-4 五、34.(1)2000 (2)0。
有理数的加减乘除乘方混合运算专题训练带答案
有理数的加减乘除乘方混合运算专题训练带答案1.先进行乘方,再进行乘除,最后进行加减运算。
2.同级运算从左到右进行。
3.如果有括号,先进行括号内的运算,按照小括号、中括号、大括号的顺序进行。
1.2+(-1)+3-(-1)2.(-81)/(-2.25)*(-1)/163.11+(-22)-3*(-11)4.(12)*(-1)-15*(-1)5.-3/2*(-32*(-2/3)^2-2)6.-23/(-4)^3-1/87.12/((-11/2)^2-2)8.(-2)^2*(-3)/129.(-0.5)^2-2/3*(-62)10.-22-(-2)^2-23+(-2)^311.|-14|*(-3/7)/1412.-62*(-1/2)^2-(-3)^2/(-1/2)^3*(-3)13.(-1)^(1997)-(1-0.5)/(-1/4)14.(-1)^3-(-8)+(-3)^3/((-2)^5+5)15.-10+8/(-2)^2-(-4)*(-3)16.-49+2*(-3)^2-(-6)/(-1/9)17.-14+(1-0.5)*1/3*(2*(-3)^2)18.(-2)^2-2*((-2)^2-3*4)/519.5*(-6)-(-4)^2/(-8)20.(-3/4)^2+(-2/3+1)*821.(7/12-5/6+3/4)*(-12)/622.(-5)*(-4)^2-0.25*(-5)*(-4)^2/823.(-1)^2*(-2)24.-42*((-7)/6)+(-5)^3-3/(-2)^325.6-(-12)/(-2)^226.(-48)/8-(-5)/(-12)^227.42*(-2/3)+(-3/4)/0.2528.(-81/9)/(-3)^229.-2*((-3)^2)-((-3)^3)/330.(-5)*6+(-125)/(-5)^331.-0.25*(-5)*4*(-1/25)32.-12+((21-2)/6)+(-3)^21.18 - 6 ÷ 3Simplify: 18 - 2 = 162.3 + 22 × (-2) × (-3)Simplify: 3 + 132 = 1353.(-9) × (-4) + (-60) ÷ 12Simplify: 36 + (-5) = 314.8 + (-3) × 2 × (-2)Simplify: 8 + 12 = 205.(-4) ÷ (-3/4) × (-3)Simplify: 4 × (-3) = -126.36 × (11/22 - 3/5)Simplify: 36 × (1/2 - 3/5) = 36 × (-1/10) = -3.67.(-3)2 × [-2/3 + (-5/9)]Simplify: 9 × (-1/3) = -38.100 ÷ (-2)2 - (-2) ÷ (-2/3)Simplify: 100 ÷ 4 - 3 = 229.(-1/3) ÷ (-1/2/3) - 4 × (-1/3)2Simplify: (-1/3) ÷ (-2/3) - 4 × 1/9 = 3/2 - 4/9 = 17/1810.12.7 ÷ (-8/19) × 3Simplify: 12.7 ÷ (-24/19) = -9.962511.321/2 × 3 + 6Simplify: 160.5 × 3 + 6 = 481.512.(-) (-8 + (-5))Simplify: -(-13) = 1313.-2 - 3/2Simplify: -4.514.23 ÷ [-2 - (-4) × (5/8)] ÷ (-7/8)Simplify: 23 ÷ [-2 + 10/8] ÷ (-7/8) = 23 ÷ [-1/4] ÷ (-7/8) = -6415.-72 + 2 × (-3)2 + (-6) ÷ (-1/3)2Simplify: -72 + 18 + (-6) ÷ (1/9) = -72 + 18 - 54 = -10816.8 - (-25) ÷ (-5)Simplify: 8 - 5 = 317.(-2) × 32 - (-2 × 3)2Simplify: -64 - 36 = -10018.(-60) × (35/4 + 6)Simplify: -60 × 47/4 = -70519.(-1347/6 - 20 + 5 - 12) × (-15 × 4)Simplify: (-1347/6 - 27) × (-60) =20.-13 - 2 × (-1)3Simplify: -13 + 2 = -1121.(-3/4)2 × (-2/3 + 1) Simplify: 9/16 × 1/3 = 3/1622.6 + 22 × (-3)Simplify: 6 - 66 = -6023.-10 + 8 ÷ (-2) - 4 × 3 Simplify: -10 + 4 - 12 = -1824.-15 - [(-0.4) × (-2.5)]5 Simplify: -15 - 1 = -1625.(-8) × 5 - 40Simplify: -4026.-20 ÷ 5 × 1/4 + 5 × (-3) ÷ 15 Simplify: -4 + (-1) = -527.-23 ÷ 13 × (-11)2 ÷ (12)2 Simplify: -23/156 × 121/144 = -121/4828.(-1)25 - (1 - 0.5) × 1/3Simplify: -1 + 1/6 = -5/629.(-1.2) ÷ (-1/3) - (-2)Simplify: 3.6 + 2 = 5.630.-3[-5 + (1 - 0.2 ÷ 3/5) ÷ (-2)] Simplify: -3[-5 + (1 - 2/3)] = -3[-3/3] = 331.-2/5 + (517/8 - 6 + 12) × (-2.4) Simplify: -2/5 - 31.5 = -157/10复有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分)1.3×(-2)= -6,(-6)×(-1)= 6.2.(-3)^2的底数是3,结果是9;-3^2的底数是-3,结果是-9.3.(-)÷(+14)= -955.07,-(+8)÷(-1)= 8,(+)÷(-22)= -.4.(-1)÷(+3/14)= -22/3,(-49/3)÷(+22)= -49/66,(-2)÷(+5/3)^2= -18/25.5.(-1)×(-33)= 33,(-1)×(-53)= 53.6.-1×(-2.4)×(-6/5)= 2.88.7.-32×(-5)^2÷(-2)^3= -100.8.我国省的面积约为3.6×10^5平方公里.9.+1/14的倒数是14,-2的倒数是-1/2.10.用">" "<" 填空:① 23.22② (-2) < 3③ 32.22④ (-2)3.(-2)2二、判断题(每小题1分,共5分)11.错误,任何数除以0都是未定义。
初一数学有理数的加减乘除以及乘方试题答案及解析
初一数学有理数的加减乘除以及乘方试题答案及解析1.“十二五”期间,我国将新建保障性住房36 000 000套,用于解决中低收入人群和新参加工作的大学生住房的需求,将36 000 000用科学记数法表示应是()A.B.C.D.【答案】A.【解析】科学计数法的定义:将一个数字表示成(×10的n次幂的形式),其中1≤<10,n表示整数.对于10的指数大于0的情形,数出“除了第一位以外的数位”的个数,即代表0的个数;本题中第一个数为3,3后面有7位数.故选A.【考点】科学计数法.2.若正整数使得在计算的过程中,各数位均不产生进位现象,则称为“本位数”.例如:2和30是“本位数”,而5和91不是“本位数”.在不超过100的所有本位数中,全体奇数的和为 .【答案】64.【解析】先确定出所有大于0且小于100的“本位数”,再确定奇数后,再求和.试题解析:所有大于0且小于100的“本位数”有:1、2、10、11、12、20、21、22、30、31、32共有11个,但奇数只有:1,11,21,31四个,故和为1+11+21+31=64.【考点】有理数的概念与运算.3.()A.2B.C.D.【答案】B.【解析】.故选B.考点: 1.负整数指数幂;2.积的乘方.4.如果a-3与a+1互为相反数,那么a= .【答案】1【解析】若a-3与a+1互为相反数,则a-3+a+1=0,解得a=1.5.计算(-2.5)×0.37×1.25×(-4)×(-8)=_________.【答案】-37【解析】原式=[(-2.5)×(-4)]×[1.25×(-8)]×0.37=10×(-10)×0.37=-37.6.已知:且,求的值.【答案】-125【解析】解:因为=3,所以=±3.因为=2,所以=±2.又因为,所以=-3,=±2.所以或.7.某股民上周五收盘时买进某公司股票1000股,每股27元.股票交易时间是周一到周五上午9:30-11:30,下午1:00-3:00. 下表为本周内每日股票的涨跌情况:(单价:元)星期一二三四五(1)根据上表填空:星期三收盘时,每股是元;本周内最高价是每股元,最低价是每股元;(2)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期五收盘时才将股票全部卖出,请算算他本周的收益如何.【答案】(1)34.5,35.5,28;(2)889.5元.【解析】(1)先根据题意列出式子解出结果即可;(2)先算出刚买股票后去掉手续费剩余的钱是多少,然后再算出周五卖出股票后所剩的钱,最后再减去当时的钱,剩下的钱就是所收益的.试题解析:(1)根据题意得:每股价(元);最高价(元);最低价(元).(2)∵27×1000×(1+0.15%)=27000×(1+0.15%)=27040.5(元),28×1000-28×1000×0.15%-28×1000×0.1%=28000-28000×0.15%-28000×0.1%=28000-42-28=27930(元),∴他本周的收益为27930-27040.5=889.5(元)【考点】有理数的混合运算.8.已知,,则、、按从小到大的顺序排列为()A.B.C.D.【答案】B.【解析】∵,,∴,,∴.故选B.【考点】有理数大小比较.9.如果三个有理数的积是负数,那么这三个有理数中().A.只有一个负数B.有两个负数C.三个都是负数D.有一个或三个负数【答案】D【解析】几个不相等0的数相乘,积得符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正.解:如果三个有理数的积是负数,那么这三个有理数中有一个或三个负数,故选D.【考点】有理数乘法的符号法则点评:本题属于基础应用题,只需学生熟练掌握有理数乘法的符号法则,即可完成.10.有理数0.0050400的有效数字的个数是().A.3个B.4个C.5个D.6个【答案】C【解析】有效数字是从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:有理数0.0050400的有效数字有5、0、4、0、0这5个,故选C.【考点】近似数和有效数字点评:本题是基础应用题,只需学生熟练掌握有效数字的定义,即可完成.11.计算:(1)(2)(3)【答案】(1);(2);(3)【解析】(1)先算有理数的乘方,再算加减即可;(2)先算幂的乘方、同底数幂的乘法,再合并同类项即可;(3)先根据完全平方公式、多项式乘多项式法则去括号,再合并同类项即可.(1)原式;(2)原式;(3)原式.【考点】有理数的乘方,整式的化简点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是【】美元.A.1.5×104B.1.5×105C.1.5×1012D.1.5×1013【答案】C【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.15000亿,故选C.【考点】科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.13.(1);(2)解方程:【答案】(1)101;(2)【解析】(1)有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算;(2)解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1(1);(2).【考点】有理数的混合运算,解一元一次方程点评:有理数的混合运算及解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.14.在,,,这四个数中,最大的数比最小的数要大A.13B.10C.8D.5【答案】A【解析】先根据有理数的乘方法则计算出各个数的值,再用最大的数减最小的数即可.∵=-1,=1,=-4,=9∴最大的数比最小的数要大故选A.【考点】有理数的乘方,有理数的减法点评:解题的关键是熟记正数的任何次幂均为正数,负数的奇数次幂为负,负数的偶数次幂为正.15.若x=(-4),则x=【答案】±4【解析】先计算出(-4)=16,再根据有理数的乘方法则即可求得结果.x=(-4)x=16x=±4.【考点】有理数的乘方点评:解题的关键是熟练掌握互为相反数的两个数的平方相同.16.据科学家估计,地球的年龄大约是4600000000年,这个数用科学记数法表示为A.4.6×108B.46×108C.4.6×109D.0.46×1010【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.有效数字的计算方法是:从左边第一个不是0的开始,后面所有的数都是有效数字.所以4600000000=4.6×109【考点】科学计数法点评:任何一个数都可以用科学记数法表示成a×10n(1≤|a|<10,n是整数)的形式,表示时关键要正确确定a的值以及n的值17.计算:(1)-2+6÷(-2)×;(2)(-2)3-(1-)×.【答案】(1)-;(2)-12【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.(1)原式=-2+6×(-)×=-2-=-;(2)原式=-8-×6=-8-4=-12.【考点】有理数的混合运算点评:本题属于基础应用题,只需学生熟练掌握有理数的混合运算,即可完成.18.下列式子中,正确的是A.5-|-5|=10B.(-1)99= -99C.-102 = (-10)×(-10)D.-(-22)=4【答案】D【解析】解:A中,5-|-5|=0B中,(-1)99= -1C中,-102 = -100,故不选D中,正确故选D【考点】绝对值,平方的符号点评:负数的绝对值是其相反数,正数的绝对值是其本身。
初一数学有理数的加减乘除以及乘方试题答案及解析
初一数学有理数的加减乘除以及乘方试题答案及解析1.有一种原子的直径为0.000000503米,它用科学记数法表示为____________米。
【答案】5.03×10-7【解析】解:将0.000000503用科学记数法表示为5.03×10-7;故答案为5.03×10-7【考点】科学记数法—表示较小的数2. PM2.5是指大气中直径小于或等于2.5(0.0000025)的颗粒物,含有大量有毒、有害物质,也称可入肺颗粒物.将0.0000025用科学记数法表示为A.B.C.D.【答案】D.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.所以:0.0000025表示为:.故选D.【考点】科学记数法——表示较小的数.3.计算:= .【答案】.【解析】针对负整数指数幂,零指数幂2个考点分别进行计算,然后根据实数的运算法则求得计算结果:.【考点】1.负整数指数幂;2.零指数幂.4.计算2-(-3)的结果是()A.-5B.5C.-1D.1【答案】B【解析】有理数的减法法则:减去一个数等于加上这个数的相反数本题是对有理数减法的考查,减去一个数等于加上它的相反数.解:2-(-3)=2+3=5.【考点】有理数的减法.5.已知在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克,数0.001293用科学计数法表示为__________ .【答案】.【解析】用科学记数法表示绝对值小于的数,只要将小数定向右移到第一个不为零的数后,若共移动位,则最后乘以即可,如本题中向右移了位,变为,在后乘以,最后.【考点】科学记数法.6.有一组等式:请观察它们的构成规律,用你发现的规律解答下面的问题:(1)写出第8个等式为;(2)试用含正整数的等式表示你所发现的规律;(3)说明你在(2)中所写等式成立的理由.【答案】(1)82+92+722=732;(2)(n为正整数)(3)证明见解析.【解析】(1)观察不难发现,两个连续自然数的平方和加上它们积的平方,等于比它们的积大1的数的平方,然后写出即可.(2)找到规律后,即可用含有n的等式来表示规律;(3)证明左边=右边即可.试题解析:(1)∵12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,∴第8个等式为:82+92+(8×9)2=(8×9+1)2,即82+92+722=732(2)(n为正整数)(3)理由:∵∴即:∴(2)中的等式成立.【考点】规律型:数字的变化类.7.如下数表是由从1开始的连续自然数组成,则自然数2014所在的行数是A.第45行B.第46行C.第47行D.第48行【答案】A.【解析】由数列知第n行第一个数为(n-1)2+1,第n行最后一个数为n2,而:1937<2014<2025即(45-1)2<2014<452所以:n=45.故选A.【考点】数字变化规律.8.在一次水灾中,大约有个人无家可归,假如一顶帐篷占地100米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000米2。
3.有理数的乘除与乘方(题目+答案)
第3讲:有理数的乘除与乘方有理数的乘法1.(2018•五通桥区模拟)计算(﹣2)×(﹣3)的值为()A.5B.﹣5C.6D.﹣62.(2018•昆山市二模)的结果是()A.B.2C.D.﹣23.(2018•常熟市一模)﹣9×的结果是()A.﹣3B.3C.D.4.(2017秋•蓬溪县期末)如果a+b<0,并且ab>0,那么()A.a<0,b<0B.a>0,b>0C.a<0,b>0D.a>0,b<05.(2017秋•荔湾区期末)计算=.有理数的除法1.(2018•和平区一模)计算36÷(﹣6)的结果等于()A.﹣6B.﹣9C.﹣30D.62.(2017秋•南江县校级期中)计算:的结果是()A.±2B.0C.±2或0D.23.(2017秋•忻城县期中)计算:24÷(﹣4)×(﹣3)的结果是()A.﹣18B.18C.﹣2D.24.(2017秋•越秀区校级期中)1÷(﹣)×(﹣7)的值为()A.1B.﹣1C.49D.﹣495.(2017秋•前郭县校级月考)化简:=;计算:﹣÷=.有理数的乘方1.(2018•天津)计算(﹣3)2的结果等于()A.5B.﹣5C.9D.﹣92.(2018•商水县一模)(﹣1)2018的相反数是()A.﹣1B.1C.﹣2018D.20183.(2018•山西模拟)若等式(﹣5)□5=﹣1成立,则□内的运算符号为()A.+B.﹣C.×D.÷4.(2018•鄂城区一模)下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个5.(2015•江西校级模拟)计算:(﹣2)2×7﹣(﹣3)×6﹣|﹣5|有理数的乘法答案1.(2018•五通桥区模拟)计算(﹣2)×(﹣3)的值为()A.5B.﹣5C.6D.﹣6【分析】利用有理数乘法法则求解即可.【解答】解:(﹣2)×(﹣3)=6,故选:C.【点评】本题主要考查了有理数乘法,解题的关键是熟记有理数乘法法则.2.(2018•昆山市二模)的结果是()A.B.2C.D.﹣2【分析】根据有理数的乘法法则计算可得.【解答】解:=+(3×)=,故选:A.【点评】本题主要考查有理数的乘法,解题的关键是掌握有理数的乘法法则.3.(2018•常熟市一模)﹣9×的结果是()A.﹣3B.3C.D.【分析】根据有理数的乘法法则计算可得.【解答】解:﹣9×=﹣(9×)=﹣3,故选:A.【点评】本题主要考查有理数的乘法,解题的关键是掌握有理数的乘法法则.4.(2017秋•蓬溪县期末)如果a+b<0,并且ab>0,那么()A.a<0,b<0B.a>0,b>0C.a<0,b>0D.a>0,b<0【分析】根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b小于0,即可得到a与b都为负数.【解答】解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选:A.【点评】此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.5.(2017秋•荔湾区期末)计算=﹣5.【分析】首先应用乘法分配律,把展开;然后根据有理数的乘法法则,求出算式的值是多少即可.【解答】解:=×(﹣12)﹣×(﹣12)+×(﹣12)=﹣3+6﹣8=﹣5.故答案为:﹣5.【点评】(1)此题主要考查了有理数的乘法,要熟练掌握,解答此题的关键是要明确有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.(2)解答此题的关键还要注意乘法分配律的应用.有理数的除法答案1.(2018•和平区一模)计算36÷(﹣6)的结果等于()A.﹣6B.﹣9C.﹣30D.6【分析】根据有理数的除法法则计算可得.【解答】解:36÷(﹣6)=﹣(36÷6)=﹣6,故选:A.【点评】本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.2.(2017秋•南江县校级期中)计算:的结果是()A.±2B.0C.±2或0D.2【分析】此题分成四种情况①a>0,b>0;②a>0,b<0;③a<0,b<0;④a <0,b>0分别进行计算即可.【解答】解:当a>0,b>0时,+=+=2,当a>0,b<0时,+=+=0,当a<0,b<0时,+=+=﹣2,当a<0,b>0时,+=+=0,故选:C.【点评】此题主要考查了绝对值,关键是掌握正数的绝对值等于它本身,负数的绝对值等于它的相反数.3.(2017秋•忻城县期中)计算:24÷(﹣4)×(﹣3)的结果是()A.﹣18B.18C.﹣2D.2【分析】根据乘除混合运算顺序计算可得.【解答】解:原式=﹣6×(﹣3)=18,故选:B.【点评】本题主要考查有理数的乘除混合运算,解题的关键是熟练掌握乘除混合运算顺序和运算法则.4.(2017秋•越秀区校级期中)1÷(﹣)×(﹣7)的值为()A.1B.﹣1C.49D.﹣49【分析】根据有理数的除法法则进行计算即可.【解答】解:原式=1×7×7=49,故选:C.【点评】本题考查了有理数的除法,熟练掌握运算法则是解本题的关键.5.(2017秋•前郭县校级月考)化简:=20;计算:﹣÷=﹣.【分析】两数相除,同号得正,异号得负,并把绝对值相除.【解答】解:==20;﹣÷=﹣×3=﹣,故答案为:20;﹣.【点评】本题主要考查了有理数的除法法则,解题时注意:除以一个不等于0的数,等于乘这个数的倒数.有理数的乘方答案1.(2018•天津)计算(﹣3)2的结果等于()A.5B.﹣5C.9D.﹣9【分析】根据有理数的乘方法则求出即可.【解答】解:(﹣3)2=9,故选:C.【点评】本题考查了有理数的乘方法则,能灵活运用法则进行计算是解此题的关键.2.(2018•商水县一模)(﹣1)2018的相反数是()A.﹣1B.1C.﹣2018D.2018【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:(﹣1)2018的相反数是﹣1,故选:A.【点评】此题考查了相反数,关键是根据只有符号不同的两个数互为相反数解答.3.(2018•山西模拟)若等式(﹣5)□5=﹣1成立,则□内的运算符号为()A.+B.﹣C.×D.÷【分析】根据有理数的除法可以解答本题.【解答】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,故选:D.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.4.(2018•鄂城区一模)下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个【分析】根据相反数、绝对值的意义及乘方运算法则,先化简各数,再由负数的定义判断即可.【解答】解:①﹣(﹣2)=2,②﹣|﹣2|=﹣2,③﹣22=﹣4,④﹣(﹣2)2=﹣4,所以负数有三个.故选:B.【点评】本题主要考查了相反数、绝对值、负数的定义及乘方运算法则.5.(2015•江西校级模拟)计算:(﹣2)2×7﹣(﹣3)×6﹣|﹣5|【分析】根据有理数混合运算的法则先算乘方,再算乘法,最后算加减即可.【解答】解:(﹣2)2×7﹣(﹣3)×6﹣|﹣5|,=4×7+18﹣5,=28+18﹣5,=41.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.。
初三数学有理数的加减乘除以及乘方试题答案及解析
初三数学有理数的加减乘除以及乘方试题答案及解析1.﹣2的倒数是()A.B.C.D.【答案】B.【解析】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以,的倒数为.故选B.【考点】倒数.2.用科学记数法表示927 000正确的是()A.9.27×106B.9.27×105C.9.27×104D.927×103【答案】B【解析】927 000=9.27×105.故选B.【考点】科学记数法3. -的相反数是.【答案】.【解析】求一个数的相反数就是在这个数前面添上“-”号.试题解析:根据相反数的定义,-的相反数是.【考点】相反数.4. 2的倒数是()A.B.﹣C.±D.2【答案】A.【解析】根据乘积为1的两个数互为倒数,可得一个数的倒数.即:2的倒数是.故选A.【考点】倒数.5.实数2的倒数是()A.﹣B.±C.2D.【答案】D.【解析】乘积是1的两个数叫做互为倒数.由于2×=1,所以实数2的倒数是.故选D.【考点】倒数.6.据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法表示为()A.5.78×103B.57.8×103C.0.578×104D.5.78×104【答案】D【解析】5.78万="57" 800=5.78×104.【考点】科学记数法7.如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动 28 次后该点到原点的距离不小于41【答案】28.【解析】解:由题意可得:移动1次后该点对应的数为0+1=1,到原点的距离为1;移动2次后该点对应的数为1﹣3=﹣2,到原点的距离为2;移动3次后该点对应的数为﹣2+6=4,到原点的距离为4;移动4次后该点对应的数为4﹣9=﹣5,到原点的距离为5;移动5次后该点对应的数为﹣5+12=7,到原点的距离为7;移动6次后该点对应的数为7﹣15=﹣8,到原点的距离为8;…∴移动(2n﹣1)次后该点到原点的距离为3n﹣2;移动2n次后该点到原点的距离为3n﹣1.①当3n﹣2≥41时,解得:n≥∵n是正整数,∴n最小值为15,此时移动了29次.②当3n﹣1≥41时,解得:n≥14.∵n是正整数,∴n最小值为14,此时移动了28次.纵上所述:至少移动28次后该点到原点的距离不小于41.故答案为:28.【考点】规律型:图形的变化类;数轴8.北京新机场货运量是每年3 000 000吨,将3 000 000用科学记数法表示应为()A.3×107B.3×106C.30×105D.300×104【答案】B.【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,∵3 000 000一共7位,∴3 000 000=3×106.故选B.【考点】科学记数法.9.今年清明节日期间,我市共接待游客48.16万人次,旅游总收入267000000元,将数字267000000用科学记数法表示为.【答案】2.67×108.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将267000000用科学记数法表示为2.67×108.故答案是2.67×108.【考点】科学记数法—表示较大的数.10.西部大开发战略是党中央面向21世纪的重大决策,我国西部地区面积为6 400 000平方千米,将6 400 000用科学记数法表示应为()A.B.C.D.【答案】B.【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,∵6 400 000一共7位,∴6 400 000=6.4×106. 故选B.【考点】科学记数法.11.的相反数是()A.B.C.-6D.6【答案】D.【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.因此-6的相反数是6.故选D.试题解析:【考点】12.据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数2500万用科学计数法表示为()A.2.5×108B.2.5×107C.2.5×106D.25×106【答案】B.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.∴2500万=25000000=2.5×107,故选B.【考点】科学记数法—表示较大的数.13. 2013年国家财政支出将大幅向民生倾斜,民生领域里流量最大的开销是教育,预算支出达到23 000多亿元.将23 000用科学记数法表示应为A.2.3×104B.0.23×106C.2.3×105D.23×104【答案】A.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.所以23000=2.3×104,故选A.【考点】科学记数法—表示较大的数.14.-2-(3.14-π)0=.【答案】3.【解析】分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.原式=4-1=3.【考点】负整数指数幂;零指数幂.15. 2013年12月2日凌晨,中国“嫦娥三号”探月器飞天成功.飞行了5天左右,进入与地球相距384000千米的月球轨道.数384000用科学计数法表示为.【答案】3.84×105.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将384000用科学记数法表示为:3.84×105.【考点】科学记数法—表示较大的数.16.计算1-2=A.0B.1C.-1D.-2【答案】C.【解析】根据有理数的减法运算进行计算即可得解.1-2=-1.故选C.【考点】有理数的减法.17.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在________℃范围内保存才合适.【答案】18 ℃~22 ℃【解析】温度是20 ℃±2 ℃,表示最低温度是20 ℃-2 ℃=18 ℃,最高温度是20 ℃+2 ℃=22 ℃,即18 ℃~22 ℃之间是合适温度.18.数3的倒数为 ()A.-B.C.-3D.3【答案】B【解析】因为当a≠0时,a的倒数是,所以选B.19.如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是________.【答案】2【解析】设P′表示的数为a,则|a+1|=3,∵将点P向右移动,∴a>-1,即a+1>0,∴a+1=3,解得a=2.20.-的倒数是A.3B.C.D.±3【答案】C.【解析】根据倒数的定义:若两个数的乘积是1,可知:-的倒数是-3.故选C.考点: 倒数.21.已知数轴上三点A、B、C分别表示有理数、1、-1,那么表示()(A)A、B两点的距离(B)A、C两点的距离(C)A、B两点到原点的距离之和(D)A、C两点到原点的距离之和【答案】B.【解析】∵,∴表示A点与C点之间的距离. 故选B.【考点】数轴;绝对值.22.计算:【答案】解:原式=【解析】针对负整数指数幂,零指数幂,绝对值3个考点分别进行计算,然后根据实数的运算法则求得计算结果。
初二数学有理数的加减乘除以及乘方试题答案及解析
初二数学有理数的加减乘除以及乘方试题答案及解析1.某种生物孢子的直径为0.00052米,用科学记数表示为()A.0.52×105米B.5.2×105米C.5.2×10﹣4米D.5.2×104米【答案】C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00052=5.2×10﹣4.故选C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.计算:【答案】【解析】有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左向右的顺序依次计算;有括号的先算括号里的.同时注意运算过程中可以运用运算律计算的要运用运算律简化计算.原式.【考点】有理数的混合运算点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.3.计算:.【答案】108【解析】解:原式 =3÷(-)×6=3×(-6)×6=-108【考点】实数运算点评:本题难度较低,主要考查学生对实数运算的掌握,注意去括号时符号变化。
4.刚通车不久的泰州大桥的建设创造了多项国内第一,综合体现了我国公路桥梁建设的最高水平。
据统计,其混凝土浇灌量为1149000m,保留两个有效数字为_________m【答案】【解析】科学记数法的表示形式为,其中,n为整数.从左边第一不为0的数开始到末尾数字为止,所有的数都叫这个数的有效数字,注意有效数字的个数与指数无关..【考点】科学记数法的表示方法,近似数和有效数字点评:本题是基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.5.已知3=3,3=9,3=27,3=81,3=243,3=729, 37=2187,3=6561……,请你推测3的个位数是 .【答案】1【解析】根据所给式子的变化可得个位数为3、9、7、1四个数一循环,由即可判断.∵∴3的个位数是1.【考点】找规律-数字的变化点评:解答本题的关键是读懂所给式子的规律,再根据这个规律解题即可.6.某种药品的说明书上,贴有如右所示的标签,一次服用这种药品的剂量x的范围是。
有理数乘除法及乘方经典例题和课后练习
一、有理数乘法1.有理数乘法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.例1:(1)(—3)×9 (2)(- 12)×(-2) (3)()⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⨯-4159653(4)()415465⨯⎪⎭⎫ ⎝⎛-⨯⨯- (5)(-2012)×(+8)×0×(-0.5)×(-1999)2、倒数(1)定义:乘积为1的两个有理数数互为倒数。
倒数不能独立存在。
(2)若a ≠0,则a 的倒数是1a,0没有倒数; 若a 、b 互为倒数,则ab=1;倒数为本身的数是±1.(一个数的倒数与原数的符号是一致的).例2:倒数是3的数是 ;a+b (a+b ≠0)的倒数是 .例3:a 与b 互为相反数,x 与y 互为倒数,c 的绝对值等于2,求a+b 2 +xy- 14c.3、有理数乘法法则的推广(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.再把绝对值相乘.(2)几个有理数相乘,有一个因数为0,积就为0.注意:进行有理数乘法运算时先定符号后定值;第一个因数是负数时,可省略括号.例如:判断下列算式积的符号并计算结果:(1)3×(-5)×(-2);(2)3×(-5)×(-2)×(-4);(3)-3×(-5)×(-2)×(-4)×(-3)×(-6);(4)(-2)×(-3)×0×(-4);4、有理数的乘法运算律小学学习的乘法运算律(交换律、结合律、分配律)都适用于有理数乘法.计算下列式子比较可以说明:(1)5×(-6),(-6)×5;(2)[3×(-4)]×(-5),3×[(-4)×(-5)];(3)5×[3+(-7)],5×3+5×(-7).例4.(1)4×(- 0.17)×(-25) (2) ( 13-1 6 +112)×(-24)(3) 5×(- 112)-(-6)×(- 112)-112(4)()36727199-⨯二、有理数的除法有理数的除法法则:(1)除以一个不等于0的数等于乘以这个数的倒数,即a÷b=a ×1b(b ≠0) (2)两数相除,同号得正,异号得负,并把绝对值相除.(3)0除以任何一个不为0的数,都得0.注意:1.0不能做除数;2.做有理数的除法运算时,一般的,不能整除的情况下,应用法则(1),能整除时,应用法则(2);3.有理数的除法是有理数的乘法的逆运算。
初一数学有理数的加减乘除以及乘方试题答案及解析
初一数学有理数的加减乘除以及乘方试题答案及解析1.用科学记数法表示0.000000063是【答案】6.3×10-8.【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.试题解析:0.000000063=6.3×10-8.【考点】科学记数法—表示较小的数.2.(1)(2)(3)(4)【答案】(1)-14;(2)-5;(3)-17;(4)-4.【解析】(1)利用乘法对加法的分配律,把括号展开即可求出答案;(2)根据有理数的运算法则“先算乘方,再算乘除,最后算加减,括号优先”进行计算,即可求出答案;(3)先算乘方,再算乘除,最后算加减即可求解;(4)先算出乘方,再算括号和绝对值,接着算除法和乘法,最后算加减即可求出该题的答案.试题解析:(1)原式==-30+16=-14;(2)原式=(-1)×(-5)÷(9-10)=(-1)×(-5)÷(-1)=5÷(-1)=-5;(3)原式=16×(-)-5=-12-5=-17;(4)原式=-1-÷3×|3-9|=-1-××6=-1-3=-4。
【考点】有理数的混合运算.3.在一次水灾中,大约有个人无家可归,假如一顶帐篷占地100米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000米2。
要安置这些人,大约需要多少个这样的广场?(所有结果用科学计数法表示)【答案】(1);(2);(3).【解析】根据帐篷的数量=总人数÷每一个帐篷所容纳的人数;所占面积=帐篷数×一顶帐篷所占的面积,计算即可.试题解析:根据题意得2.5×107÷40=625000=顶帐篷,625000×100=6.25×107米2,6.25×107÷5000=个.考点: 整式的除法.4.下列运算正确的是()A.B.C.D.=8【答案】B【解析】,A错;,C错;,D错.只有B是正确的.5.计算的值是()A.0B.C.D.【答案】B【解析】6.已知互为相反数,互为倒数,的绝对值是,求的值.【答案】7【解析】解:由已知可得,,,.当时,;当时,.7.计算:;【答案】【解析】先根据有理数的除法法则统一为乘,再根据有理数的乘法法则计算,最后算减即可得到结果.解:原式.【考点】有理数的混合运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.8. (-2)0=_________,=___________,(-3)-1=___________.【答案】1,2,【解析】(-2)0=1,(任何数的0次都为1)=2;(-3)-1=【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的掌握。
有理数的加减乘除及乘方(含答案)
有理数的加减乘除及乘方(含答案)第一篇:有理数的加减乘除及乘方(含答案)有理数的加减乘除及乘方(1)(-1)×(-5)÷[(-3)+2×(-5)];2(2)一1一(1—0.5)×4×[4一(一2)];3(3)4-(-4)+(-3);2(4)(-4)⨯(-)+30÷(-6);34(5)(+3)+(-5)-4-(-2);(6)2(7)((8)(-3)-2÷试卷第1页,总2页341134×(-)×÷; 561151111+-)÷(-); 6321816+(-1)2014. 72(9)-18÷(-3)⨯(-1)+1;12(10)(11)[1-(1-0.5×(12)(-3)×(-2(13)(-4)⨯(-)+30÷(-6);1⎛132⎫-+⎪÷(-);42⎝3721⎭1)]×[-10+(-3)2];351)÷(-1);6434422(14)-2+[(-4)-(1-3)×2];(15)-3-(-9)+8(16)(1-13+)⨯(-48)64试卷第2页,总2页答案有出入,请仔细对照后使用参考答案解:(1)原式=(一1)×(一5)÷〔9+(一10)〕= 一5 ;(2)原式= 一1一111××〔4一(一8)〕= 一1一×12= 一3.23634(3)原式=4+4-3=5 ;(4)原式=16⨯(-)+(-5)=-12+(-5)=-17.(5)(+3)+(-5)-4-(-2)=3-5-4+2 =-41134×(-)×÷ 5611511135=-×××561141=-81111(7)(+-)÷(-)632187=-27-16×+116(6)2=-3-6+9 =0(8)(-3)3-24÷=(16+(-1)2014 7111+-)×(-18)632111=(+-)×(-18)632=-27-7+1 =-33 =-1+1=0.132(10)原式=(-+)⨯(-42)3721132=⨯(-42)-⨯(-42)+⨯(-42)3721=-14+18-4 =0.111(11)原式=[1-(1-)]×(-10+9)=×(-1)=-.66654(12)原式=-(3×´)=-2.65(9)原式=-18⨯(-)⨯(-)+1答案第1页,总2页 19答案有出入,请仔细对照后使用(13)原式=30+(-11)+(-10)+12=21.(14)原式=4+4-3=5(15)原式=16⨯(-)+(-5)=-12+(-5)=-17(16)原式=-16+[16-(1-9)×2]=-16+[16-(-16)]=-16+32=16 34答案第2页,总2页第二篇:有理数加减乘除法则(1)有理数的加法法则:① 同号两数相加,取相同的符号,并把绝对值相加;② 绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;③ 互为相反的两个数相加得0;④ 一个数同0相加,仍得这个数.(2)有理数加法的运算律:加法的交换律:a+b=b+a;加法的结合律:(a+b)+c = a +(b +c)用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加.2、有理数的减法(1)有理数减法法则:减去一个数等于加上这个数的相反数.(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数.(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;3、有理数的乘法(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac.(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.4、有理数的除法有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.5、有理数的乘法(1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“n a”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂.(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数6、有理数的混合运算(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算.(2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力.第三篇:有理数加减乘除混合运算基础试题(含答案)数学练习(一)〔有理数加减法运算练习〕一、加减法法则、运算律的复习。
初一数学有理数的加减乘除以及乘方试题答案及解析
初一数学有理数的加减乘除以及乘方试题答案及解析1.用科学记数法表示为 ( )A.B.C.D.【答案】A.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.所以:0.00813=8.13×10-3.故选A.【考点】科学记数法—表示较小的数.2.若家用电冰箱冷藏室的温度是4℃,冷冻室比冷藏室的温度低22℃,则冷冻室的温度为()A.-18℃B.18℃C.-26℃D.26℃【答案】A【解析】此题比较简单,直接就可以列出算式,然后根据有理数减法就可以求出结果.根据题意可以列出算式:4-22,根据算式结果就可以知道冷冻室的温度.解:∵4-22=-18,∴冷冻室的温度为-18℃..【考点】有理数的减法.3.为了传承和弘扬港口文化,我市将投入6000万元建设一座港口博物馆,其中“6000万”用科学记数法表示为()A.0.6×108B.6×108C.6×107D.60×106【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将6000万用科学记数法表示为:6×107.故选:C.4.下列运算结果为负数的是()A.-11×(-2)B.0×(-1)×7C.(-6)-(-4)D.(-7)+18【答案】C【解析】A结果为22,B结果为0,C结果为-2,D结果为11,所以结果为负数的是C.5.根据下图所示的程序计算代数式的值,若输入n的值为5,则输出的结果为()A.16B.2.5C.18.5D.13.5【答案】A【解析】由程序图可知输出的结果为3.6.计算:_________.【答案】-37【解析】.7.某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是 .【答案】78分【解析】(分)8.在有理数中,一个数的立方等于这个数本身,这种数的个数为()A.1B.2C.3D.无数个【答案】C【解析】个数一的立方等于本身的数有1,,0,共3个.9.小明近期几次数学测试成绩如下:第一次分,第二次比第一次高分,第三次比第二次低分,第四次又比第三次高分.那么小明第四次测验的成绩是()A.90分B.75分C.91分D.81分【答案】C【解析】小明第四次测验的成绩是故选C.10.把(-2)-(-10)+(-6)-(+5)写成省略加号和的形式为A.-2+10-6-5B.-2-10-6+5C.-2+10-6+5D.2+10-6-5【答案】A【解析】先根据有理数的减法法则统一为加,即可写成省略加号和的形式.(-2)-(-10)+(-6)-(+5)=(-2)+10+(-6)+(-5)=-2+10-6-5,故选A.【考点】有理数的加法点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.11. (2×102) 3 = ( ).A.2×106B.5×106C.8×106D.8×102【答案】C【解析】积的乘方法则:积的乘方,把每个因式分别乘方,再把所得的幂相乘.,故选C.【考点】积的乘方点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.计算【答案】(1) -4 (2) -13【解析】【考点】实数运算点评:本题难度较低,主要考查学生对实数运算的掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘除法乘方及科
学记数法测试题及答案 Revised by BLUE on the afternoon of December 12,2020.
华东师大版七年级数学练习卷(四)班级______姓名_______座号____
一、填空题:(每题 2 分,共 24 分)
1、(-3)×(+2)的结果的符号是____。
2、3÷(-2)=3×(____)
3、-的倒数是_______。
4、化简:=_____。
5、(-2)·(-2)·(-2)·(-2)写成乘方的形式为___________。
6、(-3)2 的底数是_____,指数是_____。
7、地球半径大约是 6370 千米,用科学记数法表示为______米。
8、计算-32-1=_____。
9、计算:(--+)×12=_____。
10、若 a、b 互为倒数,则 2-3ab=_____。
11、已知+(y+3)2=0,则 y x=_____。
12、如果 N=×105,那么 N 是一个_____位整数。
二、选择题:(每题3分,共18分)
1、下列各式中,计算正确的是()
A、(-3)×(-2)=-6
B、0×(-1)=1
C、(-)÷=-2
D、(-4)÷=-2
2、(-3)2表示( )
A、2 个-3 的积
B、-3与 2 的积
C、2 个-3 的和
D、3
个-2 的积
3、一个数和它的相反数之积是()
A、负数
B、正数
C、零
D、零或负数
4、用科学记录法表示 3080000,正确的是()
A、308×104
B、×105
C、×106
D、×1065、下列各组数中相等的是()
A、23和 32
B、-32与 (-3)2
C、-23和 (-2)3
D、-32和326、-22,(-1)2,(-1)3的大小顺序是()
A、-22<(-1)2<(-1)3
B、-22<(-1)3<(-1)2
C、(-1)3<(-1)2<-22
D、(-1)2<(-1)3<-22
三、计算:(每题 4 分,共 24 分)
1、×(-1) 2、
3、(-4)÷(-12)×4、4×(-2)3-(-3)25、(-3)×(+2)÷(-3) 6、
四、用简便方法计算:(每题5分,共15分)
1、71×(-8)
2、(-2)3×(-4)×
3、(-75%)×(-21)+(-125)×-75×(-
五、(6分)地球离太阳约有一亿五千万千米,用科学记数法怎样表示已知光
每秒走的路程是3×108米,那么你能否算出太阳光到达地球需要多长时间
六、(7分)已知:a 与 b 互为相反数,c 与 d 互为倒数,且 (y+1)2=0,
求 y3+(a+b)2005-(-cd)2006的值。
(四)
一、1、-2、-3、-3 4、-3 5、(-2)4 6、-3,2
7、×1068、-10
9、-7 10、-1 11、9 12、6
二、1、C 2、A 3、D 4、C 5、C 6、B
三、1、解:原式=×(-) =-2、解:原式=×=
3、解:原式=-=
4、解:原式=4×(-8)-9 =-32-9
=-41
5、解:原式=××=
6、解:原式=·(-8)×(-1) =2
四、1、解:原式=(72-)×(-8) =72×(-8)-×(-8) =-736+=-735
2、解:原式=(-8)×(-4)×=10×4=40
3、解:原式=×21-125×+24×=×(21-125+24)=
×(-80) =-60
五、解:×108千米=×103=500秒答:大约500秒
六、解:∵a+b=0 cd=1 y=-1 ∴y3+(a+b)2005-(-cd)2006 =(-1)3+0-(-1)2006 =-1+0-1 =-2。