江苏省常州市中考数学试题--解析版
2020年江苏省常州市中考数学试题及参考答案(word解析版)
常州市二〇二〇年初中学业水平考试数学试题(全卷满分120分,考试时间120分钟)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.2的相反数是()A.﹣2 B.﹣C.D.22.计算m6÷m2的结果是()A.m3B.m4C.m8D.m123.如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥4.8的立方根为()A.B.C.2 D.±25.如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1 D.x+1>y+16.如图,直线a、b被直线c所截,a∥b,∠1=140°,则∠2的度数是()A.30°B.40°C.50°D.60°7.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3 B.4 C.5 D.68.如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=,∠ADB=135°,S△ABD=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是()A.2B.4 C.3D.6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把笞案直接填写在相应位置上)9.计算:|﹣2|+(π﹣1)0=.10.若代数式有意义,则实数x的取值范围是.11.地球的半径大约为6400km.数据6400用科学记数法表示为.12.分解因式:x3﹣x=.13.若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是.14.若关于x的方程x2+ax﹣2=0有一个根是1,则a=.15.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=°.16.数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是.17.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=.18.如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6分)先化简,再求值:(x+1)2﹣x(x+1),其中x=2.20.(8分)解方程和不等式组:(1)+=2;(2).21.(8分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.22.(8分)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.23.(8分)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.24.(8分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?25.(8分)如图,正比例函数y=kx的图象与反比例函数y=(x>0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.26.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.27.(10分)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ•PH的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为;②若直线n的函数表达式为y=x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,为半径作⊙F.若⊙F与直线1相离,点N(﹣1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4,求直线l的函数表达式.28.(10分)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.答案与解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.2的相反数是()A.﹣2 B.﹣C.D.2【知识考点】相反数.【思路分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解题过程】解:2的相反数是﹣2.故选:A.【总结归纳】此题主要考查了相反数的概念,正确把握定义是解题关键.2.计算m6÷m2的结果是()A.m3B.m4C.m8D.m12【知识考点】同底数幂的除法.【思路分析】利用同底数幂的除法运算法则计算得出答案.【解题过程】解:m6÷m2=m6﹣2=m4.故选:B.【总结归纳】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.3.如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥【知识考点】由三视图判断几何体.【思路分析】该几何体的主视图与左视图均为矩形,俯视图为正方形,易得出该几何体的形状.【解题过程】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C.【总结归纳】主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.4.8的立方根为()A.B.C.2 D.±2【知识考点】立方根.【思路分析】根据立方根的定义求出的值,即可得出答案.【解题过程】解:8的立方根是==2,故选:C.【总结归纳】本题考查了对立方根的定义的理解和运用,注意:a的立方根是.5.如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1 D.x+1>y+1【知识考点】不等式的性质.【思路分析】根据不等式的性质逐个判断即可.【解题过程】解:A、∵x<y,∴2x<2y,故本选项符合题意;B、∵x<y,∴﹣2x>﹣2y,故本选项不符合题意;C、∵x<y,∴x﹣1<y﹣1,故本选项不符合题意;D、∵x<y,∴x+1<y+1,故本选项不符合题意;故选:A.【总结归纳】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.6.如图,直线a、b被直线c所截,a∥b,∠1=140°,则∠2的度数是()A.30°B.40°C.50°D.60°【知识考点】平行线的性质.【思路分析】先根据邻补角互补求得∠3,然后再根据两直线平行、内错角相等即可解答.【解题过程】解:∵∠1+∠3=180°,∠1=140°,∴∠3=180°﹣∠1=180°﹣140°=40°∵a∥b,∴∠2=∠3=40°.故选:B.【总结归纳】本题考查了平行线的性质,掌握“两直线平行、内错角相等”是解答本题的关键.7.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3 B.4 C.5 D.6【知识考点】直角三角形斜边上的中线.【思路分析】根据直角三角形斜边中线的性质以及直径是圆中最大的弦,即可求得MH的最大值是3.【解题过程】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.【总结归纳】本题考查了直角三角形斜边中线的性质,明确BC的最大值为⊙O的直径的长是解题的关键.8.如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=,∠ADB=135°,S△ABD=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是()A.2B.4 C.3D.6【知识考点】反比例函数图象上点的坐标特征;平行四边形的性质.【思路分析】根据三角形面积公式求得AE=2,易证得△AOM≌△CBD(AAS),得出OM =BD=,根据题意得出△ADE是等腰直角三角形,得出DE=AE=2,设A(m,),则D(m﹣2,3),根据反比例函数的定义得出关于m的方程,解方程求得m=3,进一步求得k=6.【解题过程】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=,∵S△ABD==2,BD=,∴AE=2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2,∴D的纵坐标为3,设A(m,),则D(m﹣2,3),∵反比例函数y=(x>0)的图象经过A、D两点,∴k=m=(m﹣2)×3,解得m=3,∴k=m=6.故选:D.【总结归纳】本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,等腰直角三角形的判定和性质,三角形的面积等,表示出A、D的坐标是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把笞案直接填写在相应位置上)9.计算:|﹣2|+(π﹣1)0=.【知识考点】实数的运算;零指数幂.【思路分析】首先计算乘方和绝对值,然后计算加法,求出算式的值是多少即可.【解题过程】解:|﹣2|+(π﹣1)0=2+1=3,故答案为:3.【总结归纳】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.10.若代数式有意义,则实数x的取值范围是.【知识考点】分式有意义的条件.【思路分析】分式有意义时,分母x﹣1≠0,据此求得x的取值范围.【解题过程】解:依题意得:x﹣1≠0,解得x≠1,故答案为:x≠1.【总结归纳】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.11.地球的半径大约为6400km.数据6400用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:将6400用科学记数法表示为6.4×103.故答案为:6.4×103.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.分解因式:x3﹣x=.【知识考点】提公因式法与公式法的综合运用.【思路分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解题过程】解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【总结归纳】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.13.若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是.【知识考点】一次函数图象与系数的关系.【思路分析】根据一次函数的性质,如果y随x的增大而增大,则一次项的系数大于0,据此求出k的取值范围.【解题过程】解:∵一次函数y=kx+2,函数值y随x的值增大而增大,∴k>0.故答案为:k>0.【总结归纳】本题考查的是一次函数的性质,解答本题要注意:在一次函数y=kx+b(k≠0)中,当k>0时y随x的增大而增大.14.若关于x的方程x2+ax﹣2=0有一个根是1,则a=1.【知识考点】一元二次方程的解.【思路分析】把x=1代入方程得出1+a﹣2=0,求出方程的解即可.【解题过程】解:∵关于x的方程x2+ax﹣2=0有一个根是1,∴把x=1代入方程得:1+a﹣2=0,解得:a=1,故答案为:1.【总结归纳】本题考查了一元二次方程的解和解一元一次方程,能得出关于a的一元一次方程是解此题的关键.15.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=°.【知识考点】线段垂直平分线的性质;等边三角形的性质.【思路分析】根据垂直平分线的性质得到∠B=∠BCF,再利用等边三角形的性质得到∠AFC=60°,从而可得∠B的度数.【解题过程】解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.【总结归纳】本题考查了垂直平分线的性质,等边三角形的性质,三角形外角的性质,解题的关键是利用垂直平分线的性质得到∠B=∠BCF.16.数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是.【知识考点】数学常识;坐标与图形性质;等边三角形的判定与性质;菱形的性质.【思路分析】根据直角三角形的性质可得OA和OD的长,根据菱形的性质和坐标与图形的性质可得答案.【解题过程】解:∵四边形ABCD是菱形,且AB=2,∴CD=AD=AB=2,∵∠DAB=120°,∴∠OAD=60°,Rt△AOD中,∠ADO=30°,∴OA=AD==1,OD==,∴C(2,),故答案为:(2,).【总结归纳】此题主要考查了含30度角的直角三角形的性质,菱形的性质,坐标与图形的性质等知识,解题的关键是确定OD的长.17.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=.【知识考点】全等三角形的判定与性质;正方形的性质;解直角三角形.【思路分析】根据正方形的性质以及锐角三角函数的定义即可求出答案.【解题过程】解:连接CG,在正方形ACDE、BCFG中,∠ECA=∠GCB=45°,∴∠ECG=90°,∵AC=2BC,∴设AC=2a,BC=a,∴CE=2a,CG=a,∴tan∠CEG==,故答案为:.【总结归纳】本题考查正方形,解题的关键是熟练运用正方形的性质以及锐角三角函数的定义,本题属于基础题型.18.如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为.【知识考点】三角形中位线定理;解直角三角形.【思路分析】如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H,证明四边形DGBT是平行四边形,求出DH,TH即可解决问题.【解题过程】解:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H.∵DG⊥BF,BT⊥BF,∴DG∥BT,∵AD=DB,AE=EC,∴DE∥BC,∴四边形DGBT是平行四边形,∴BG=DT,DG=BT,∠BDH=∠ABC=45°,∵AD=DB=3,∴BH=DH=3,∵∠TBF=∠BHF=90°,∴∠TBH+∠FBH=90°,∠FBH+∠F=90°,∴∠TBH=∠F,∴tan∠F=tan∠TBH===,∴=,∴TH=1,∴DT=TH+DH=1+3=4,∴BG=4.当点F在ED的延长线上时,同法可得DT=BG=3﹣1=2.故答案为4或2.【总结归纳】本题考查三角函数定义,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6分)先化简,再求值:(x+1)2﹣x(x+1),其中x=2.【知识考点】整式的混合运算—化简求值.【思路分析】先根据完全平方公式和单项式乘以多项式法则算乘法,再合并同类项,最后代入求出即可.【解题过程】解:(x+1)2﹣x(x+1)=x2+2x+1﹣x2﹣x=x+1,当x=2时,原式=2+1=3.【总结归纳】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.20.(8分)解方程和不等式组:(1)+=2;(2).【知识考点】解分式方程;解一元一次不等式组.【思路分析】(1)方程两边都乘以x﹣1得出方程x﹣2=2(x﹣1),求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解题过程】解:(1)方程两边都乘以x﹣1得:x﹣2=2(x﹣1),解得:x=0,检验:把x=0代入x﹣1得:x﹣1≠0,所以x=0是原方程的解,即原方程的解是:x=0;(2),∵解不等式①得:x<3,解不等式②得:x≥﹣2,∴不等式组的解集是:﹣2≤x<3.【总结归纳】本题考查了解分式方程和解一元一次不等式组,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.21.(8分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.【知识考点】总体、个体、样本、样本容量;用样本估计总体;条形统计图.【思路分析】(1)根据打排球的人数和所占的百分比即可求出样本容量;(2)用总人数乘以打乒乓球的人数所占的百分比求出打乒乓球的人数,再用总人数减去其他项目的人数求出踢足球的人数,从而补全统计图;(3)用该校的总人数乘以“打篮球”的人数所占的百分比即可.【解题过程】解:(1)本次抽样调查的总人数是:25÷25%=100(人),则样本容量是100;故答案为:100;(2)打乒乓球的人数有:100×35%=35(人),踢足球的人数有:100﹣25﹣35﹣15=25(人),补全统计图如下:(3)根据题意得:2000×=300(人),答:估计该校最喜爱“打篮球”的学生人数有300人.【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.【知识考点】概率公式;列表法与树状图法.【思路分析】(1)共有3种可能出现的结果,其中“抽到1号”的有1种,可求出概率;(2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.【解题过程】解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有6种可能出现的结果,其中“和为奇数”的有4种,∴P(和为奇数)==.【总结归纳】本题考查列表法和树状图求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的关键.23.(8分)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.【知识考点】全等三角形的判定与性质.【思路分析】(1)首先利用平行线的性质得出,∠A=∠FBD,根据AB=CD即可得出AC=BD,进而得出△EAC≌△FBD解答即可;(2)根据全等三角形的性质和三角形内角和解答即可.【解题过程】证明:(1)∵EA∥FB,∴∠A=∠FBD,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△EAC与△FBD中,,∴△EAC≌△FBD(SAS),∴∠E=∠F;(2)∵△EAC≌△FBD,∴∠ECA=∠D=80°,∵∠A=40°,∴∠E=180°﹣40°﹣80°=60°,答:∠E的度数为60°.【总结归纳】此题主要考查了全等三角形的判定与性质等知识,解题时注意:两边及其夹角分别对应相等的两个三角形全等.根据已知得出△EAC≌△FBD是解题关键.24.(8分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?【知识考点】二元一次方程组的应用;一元一次不等式的应用.【思路分析】(1)设每千克苹果的售价为x元,每千克梨的售价为y元,根据“购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m千克苹果,则购买(15﹣m)千克梨,根据总价=单价×数量结合总价不超过100元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.【解题过程】解:(1)设每千克苹果的售价为x元,每千克梨的售价为y元,依题意,得:,解得:.答:每千克苹果的售价为8元,每千克梨的售价为6元.(2)设购买m千克苹果,则购买(15﹣m)千克梨,依题意,得:8m+6(15﹣m)≤100,解得:m≤5.答:最多购买5千克苹果.【总结归纳】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.(8分)如图,正比例函数y=kx的图象与反比例函数y=(x>0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)把点A(a,4)代入反比例函数关系式可求出a的值,确定点A的坐标,进而求出正比例函数的关系式;(2)根据BD=10,求出点B的横坐标,求出OB,代入求出BC,根据三角形的面积公式进行计算即可.【解题过程】解:(1)把点A(a,4)代入反比例函数y=(x>0)得,a==2,∴点A(2,4),代入y=kx得,k=2,∴正比例函数的关系式为y=2x;(2)当BD=10=y时,代入y=2x得,x=5,∴OB=5,当x=5代入y=得,y=,即BC=,∴CD=BD﹣BC=10﹣=,∴S△ACD=××(5﹣2)=12.6,【总结归纳】本题考查反比例函数、一次函数图象上点的坐标特征,把点的坐标代入是常用方法.26.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.【知识考点】全等三角形的性质;含30度角的直角三角形;作图﹣旋转变换.【思路分析】(1)如图1中,作FD⊥AC于D.证明△ABC≌△CDF(AAS)可得结论.(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.根据S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF计算即可.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt△EOH中,利用勾股定理构建方程求解即可.【解题过程】解:(1)如图1中,作FD⊥AC于D,∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.∴∠ACB=60°,∠FCE=∠BAC=30°,AC=CF,∴∠ACF=30°,∴∠BAC=∠FCD,在△ABC和△CDF中,,∴△ABC≌△CDF(AAS),∴FD=BC=1,故答案为1;(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF﹣S扇形ECH=﹣=.故答案为.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt△ECF中,∵EF=1,∠ECF=30°,EH⊥CF,∴EC=EF=,EH=,CH=EH=,在Rt△BOC中,OC==,∴OH=CH﹣OC=﹣,在Rt△EOH中,则有x2=()2+(﹣)2,解得x=或﹣(不合题意舍弃),∴OC==,∵CF=2EF=2,∴OF=CF﹣OC=2﹣=.【总结归纳】本题考查作图﹣旋转变换,解直角三角形,全等三角形的性质,扇形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27.(10分)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ•PH的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为;②若直线n的函数表达式为y=x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,为半径作⊙F.若⊙F与直线1相离,点N(﹣1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4,求直线l的函数表达式.【知识考点】圆的综合题.【思路分析】(1)①根据远点,特征数的定义判断即可.②如图1﹣1中,过点O作OH⊥直线n于H,交⊙O于Q,P.解直角三角形求出PH,PQ的长即可解决问题.(2)如图2﹣1中,设直线l的解析式为y=kx+b.分两种情形k>0或k<0,分别求解即可解决问题.【解题过程】解:(1)①由题意,点D是⊙O关于直线m的“远点”,⊙O关于直线m的特征数=DB•DE=2×5=10,故答案为:D,10.②如图1﹣1中,过点O作OH⊥直线n于H,交⊙O于Q,P.设直线y=x+4交x轴于F(﹣,0),交y轴于E(0,4),∴OE=4,OF=∴tan∠FEO==,∴∠FEO=30°,∴OH=OE=2,∴PH=OH+OP=3,∴⊙O关于直线n的“特征数”=PQ•PH=2×3=6.(2)如图2中,设直线l的解析式为y=kx+b.当k>0时,过点F作FH⊥直线l于H,交⊙F于E,N.由题意,EN=2,EN•NH=4,∴NH=,∵N(﹣1,0),M(1,4),∴MN==2,∴HM===,∴△MNH是等腰直角三角形,∵MN的中点K(0,2),∴KN=HK=KM=,∴H(﹣2,3),把H(﹣2,3),M(1,4)代入y=kx+b,则有,解得,∴直线l的解析式为y=x+,当k<0时,同法可知直线l′经过H′(2,1),可得直线l′的解析式为y=﹣3x+7.综上所述,满足条件的直线l的解析式为y=x+或y=﹣3x+7.【总结归纳】本题属于圆综合题,考查了一次函数的性质,解直角三角形,远点,特征数的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.28.(10分)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.【知识考点】二次函数综合题.【思路分析】(1)将点C坐标代入解析式可求解;(2)分两种情况讨论,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,可得点E(1,3),CE=BE=3,AE=1,可得∠EBC=∠ECB=45°,tan∠ACE=,∠BCF=45°,由勾股定理逆定理可得∠BCD=90°,可求∠ACE=∠DBC,可得∠ACB=∠CFD,可得点F与点Q重合,即可求点P坐标;当点Q在点D下方时,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ 交抛物线于点P,先求直线BD解析式,点F坐标,由中点坐标公式可求点Q坐标,求出CQ解析式,联立方程组,可求点P坐标;(3)设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,先求出∠CNH=45°,由轴对称的性质可得EN=NF,∠ENB=∠FNB=45°,由“AAS”可证△EMN≌△NKF,可得EM=NK=,MN=KF,可求CF=6,由轴对称的性质可得点G坐标,即可求解.【解题过程】解:(1)∵抛物线y=x2+bx+3的图象过点C(1,0),∴0=1+b+3,∴b=﹣4,故答案为:﹣4;。
2020年江苏省常州市中考数学试卷(含解析版)
2020年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2分)2的相反数是()A.﹣2B.﹣C.D.22.(2分)计算m6÷m2的结果是()A.m3B.m4C.m8D.m123.(2分)如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥4.(2分)8的立方根为()A.B.C.2D.±25.(2分)如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1D.x+1>y+16.(2分)如图,直线a、b被直线c所截,a∥b,∠1=140°,则∠2的度数是()A.30°B.40°C.50°D.60°7.(2分)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.68.(2分)如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=,∠ADB=135°,S△ABD=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是()A.2B.4C.3D.6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把笞案直接填写在答题卡相应位置上)9.(2分)计算:|﹣2|+(π﹣1)0=.10.(2分)若代数式有意义,则实数x的取值范围是.11.(2分)地球的半径大约为6400km.数据6400用科学记数法表示为.12.(2分)分解因式:x3﹣x=.13.(2分)若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是.14.(2分)若关于x的方程x2+ax﹣2=0有一个根是1,则a=.15.(2分)如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=°.16.(2分)数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是.17.(2分)如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=.18.(2分)如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6分)先化简,再求值:(x+1)2﹣x(x+1),其中x=2.20.(8分)解方程和不等式组:(1)+=2;(2).21.(8分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.22.(8分)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.23.(8分)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.24.(8分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?25.(8分)如图,正比例函数y=kx的图象与反比例函数y=(x>0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.26.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.27.(10分)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ•PH 的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为;②若直线n的函数表达式为y=x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,为半径作⊙F.若⊙F与直线1相离,点N(﹣1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4,求直线l的函数表达式.28.(10分)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD =∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.2020年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2分)2的相反数是()A.﹣2B.﹣C.D.2【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2的相反数是﹣2.故选:A.【点评】此题主要考查了相反数的概念,正确把握定义是解题关键.2.(2分)计算m6÷m2的结果是()A.m3B.m4C.m8D.m12【分析】利用同底数幂的除法运算法则计算得出答案.【解答】解:m6÷m2=m6﹣2=m4.故选:B.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.3.(2分)如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥【分析】该几何体的主视图与左视图均为矩形,俯视图为正方形,易得出该几何体的形状.【解答】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C.【点评】主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.4.(2分)8的立方根为()A.B.C.2D.±2【分析】根据立方根的定义求出的值,即可得出答案.【解答】解:8的立方根是==2,故选:C.【点评】本题考查了对立方根的定义的理解和运用,注意:a的立方根是.5.(2分)如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1D.x+1>y+1【分析】根据不等式的性质逐个判断即可.【解答】解:A、∵x<y,∴2x<2y,故本选项符合题意;B、∵x<y,∴﹣2x>﹣2y,故本选项不符合题意;C、∵x<y,∴x﹣1<y﹣1,故本选项不符合题意;D、∵x<y,∴x+1<y+1,故本选项不符合题意;故选:A.【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.6.(2分)如图,直线a、b被直线c所截,a∥b,∠1=140°,则∠2的度数是()A.30°B.40°C.50°D.60°【分析】先根据邻补角互补求得∠3,然后再根据两直线平行、内错角相等即可解答.【解答】解:∵∠1+∠3=180°,∠1=40°,∴∠3=180°﹣∠1=180°﹣140°=40°∵a∥b,∴∠2=∠3=40°.故选:B.【点评】本题考查了平行线的性质,掌握“两直线平行、内错角相等”是解答本题的关键.7.(2分)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【分析】根据直角三角形斜边中线的性质以及直径是圆中最大的弦,即可求得MH的最大值是3.【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.【点评】本题考查了直角三角形斜边中线的性质,明确BC的最大值为⊙O的直径的长是解题的关键.8.(2分)如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=,∠ADB=135°,S△ABD=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是()A.2B.4C.3D.6【分析】根据三角形面积公式求得AE=2,易证得△AOM≌△CBD(AAS),得出OM =BD=,根据题意得出△ADE是等腰直角三角形,得出DE=AE=2,设A(m,),则D(m﹣2,3),根据反比例函数系数k的几何意义得出关于m的方程,解方程求得m=3,进一步求得k=6.【解答】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=,∵S△ABD==2,BD=,∴AE=2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2,∴D的纵坐标为3,设A(m,),则D(m﹣2,3),∵反比例函数y=(x>0)的图象经过A、D两点,∴k=m=(m﹣2)×3,解得m=3,∴k=m=6.故选:D.【点评】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,平行四边形的性质,等腰直角三角形的判定和性质,三角形的面积等,表示出A、D的坐标是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把笞案直接填写在答题卡相应位置上)9.(2分)计算:|﹣2|+(π﹣1)0=3.【分析】首先计算乘方和绝对值,然后计算加法,求出算式的值是多少即可.【解答】解:|﹣2|+(π﹣1)0=2+1=3,故答案为:3.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.10.(2分)若代数式有意义,则实数x的取值范围是x≠1.【分析】分式有意义时,分母x﹣1≠0,据此求得x的取值范围.【解答】解:依题意得:x﹣1≠0,解得x≠1,故答案为:x≠1.【点评】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.11.(2分)地球的半径大约为6400km.数据6400用科学记数法表示为 6.4×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6400用科学记数法表示为6.4×103.故答案为:6.4×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2分)分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.13.(2分)若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是k>0.【分析】根据一次函数的性质,如果y随x的增大而增大,则一次项的系数大于0,据此求出k的取值范围.【解答】解:∵一次函数y=kx+2,函数值y随x的值增大而增大,∴k>0.故答案为:k>0.【点评】本题考查的是一次函数的性质,解答本题要注意:在一次函数y=kx+b(k≠0)中,当k>0时y随x的增大而增大.14.(2分)若关于x的方程x2+ax﹣2=0有一个根是1,则a=1.【分析】把x=1代入方程得出1+a﹣2=0,求出方程的解即可.【解答】解:∵关于x的方程x2+ax﹣2=0有一个根是1,∴把x=1代入方程得:1+a﹣2=0,解得:a=1,故答案为:1.【点评】本题考查了一元二次方程的解和解一元一次方程,能得出关于a的一元一次方程是解此题的关键.15.(2分)如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=30°.【分析】根据垂直平分线的性质得到∠B=∠BCF,再利用等边三角形的性质得到∠AFC =60°,从而可得∠B的度数.【解答】解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.【点评】本题考查了垂直平分线的性质,等边三角形的性质,三角形外角的性质,解题的关键是利用垂直平分线的性质得到∠B=∠BCF.16.(2分)数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是(2,).【分析】根据直角三角形的性质可得OA和OD的长,根据菱形的性质和坐标与图形的性质可得答案.【解答】解:∵四边形ABCD是菱形,且AB=2,∴CD=AD=AB=2,∵∠DAB=120°,∴∠OAD=60°,Rt△AOD中,∠ADO=30°,∴OA=AD==1,OD==,∴C(2,),故答案为:(2,).【点评】此题主要考查了含30度角的直角三角形的性质,菱形的性质,坐标与图形的性质等知识,解题的关键是确定OD的长.17.(2分)如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=.【分析】根据正方形的性质以及锐角三角函数的定义即可求出答案.【解答】解:连接CG,在正方形ACDE、BCFG中,∠ECA=∠GCB=45°,∴∠ECG=90°,设AC=2,BC=1,∴CE=2,CG=,∴tan∠GEC==,故答案为:.【点评】本题考查正方形,解题的关键是熟练运用正方形的性质以及锐角三角函数的定义,本题属于基础题型.18.(2分)如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为4或2.【分析】如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H,证明四边形DGBT是平行四边形,求出DH,TH即可解决问题.【解答】解:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H.∵DG⊥BF,BT⊥BF,∴DG∥BT,∵AD=DB,AE=EC,∴DE∥BC,∴四边形DGBT是平行四边形,∴BG=DT,DG=BT,∠BDH=∠ABC=45°,∵AD=DB=3,∴BH=DH=3,∵∠TBF=∠BHF=90°,∴∠TBH+∠FBH=90°,∠FBH+∠F=90°,∴∠TBH=∠F,∴tan∠F=tan∠TBH===,∴=,∴TH=1,∴DT=TH+DH=1+3=4,∴BG=4.当点F在ED的延长线上时,同法可得DT=BG=3﹣1=2.故答案为4或2.【点评】本题考查相似三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6分)先化简,再求值:(x+1)2﹣x(x+1),其中x=2.【分析】先根据完全平方公式和单项式乘以多项式法则算乘法,再合并同类项,最后代入求出即可.【解答】解:(x+1)2﹣x(x+1)=x2+2x+1﹣x2﹣x=x+1,当x=2时,原式=2+1=3.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.20.(8分)解方程和不等式组:(1)+=2;(2).【分析】(1)方程两边都乘以x﹣1得出方程x﹣2=2(x﹣1),求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)方程两边都乘以x﹣1得:x﹣2=2(x﹣1),解得:x=0,检验:把x=0代入x﹣1得:x﹣1≠0,所以x=0是原方程的解,即原方程的解是:x=0;(2),∵解不等式①得:x<3,解不等式②得:x≥﹣2,∴不等式组的解集是:﹣2≤x<3.【点评】本题考查了解分式方程和解一元一次不等式组,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.21.(8分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是100;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.【分析】(1)根据打排球的人数和所占的百分比即可求出样本容量;(2)用总人数乘以打乒乓球的人数所占的百分比求出打乒乓球的人数,再用总人数减去其他项目的人数求出踢足球的人数,从而补全统计图;(3)用该校的总人数乘以“打篮球”的人数所占的百分比即可.【解答】解:(1)本次抽样调查的总人数是:25÷25%=100(人),则样本容量是100;故答案为:100;(2)打乒乓球的人数有:100×35%=35(人),踢足球的人数有:100﹣25﹣35﹣15=25(人),补全统计图如下:(3)根据题意得:2000×=300(人),答:估计该校最喜爱“打篮球”的学生人数有300人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.【分析】(1)共有3种可能出现的结果,其中“抽到1号”的有1种,可求出概率;(2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.【解答】解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有6种可能出现的结果,其中“和为奇数”的有4种,∴P(和为奇数)==.【点评】本题考查列表法和树状图求随机事件发生的概率,列举出所有可能出现的结果情况,是正确解答的关键.23.(8分)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.【分析】(1)首先利用平行线的性质得出,∠A=∠FBD,根据AB=CD即可得出AC=BD,进而得出△EAC≌△FBD解答即可;(2)根据全等三角形的性质和三角形内角和解答即可.【解答】证明:(1)∵EA∥FB,∴∠A=∠FBD,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△EAC与△FBD中,,∴△EAC≌△FBD(SAS),∴∠E=∠F;(2)∵△EAC≌△FBD,∴∠ECA=∠D=80°,∵∠A=40°,∴∠E=180°﹣40°﹣80°=60°,答:∠E的度数为60°.【点评】此题主要考查了全等三角形的判定与性质等知识,解题时注意:两边及其夹角分别对应相等的两个三角形全等.根据已知得出△EAC≌△FBD是解题关键.24.(8分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?【分析】(1)设每千克苹果的售价为x元,每千克梨的售价为y元,根据“购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m千克苹果,则购买(15﹣m)千克梨,根据总价=单价×数量结合总价不超过100元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.【解答】解:(1)设每千克苹果的售价为x元,每千克梨的售价为y元,依题意,得:,解得:.答:每千克苹果的售价为8元,每千克梨的售价为6元.(2)设购买m千克苹果,则购买(15﹣m)千克梨,依题意,得:8m+6(15﹣m)≤100,解得:m≤5.答:最多购买5千克苹果.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.(8分)如图,正比例函数y=kx的图象与反比例函数y=(x>0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.【分析】(1)把把点A(a,4)代入反比例函数关系式可求出a的值,确定点A的坐标,进而求出正比例函数的关系式;(2)根据BD=10,求出点B的横坐标,求出OB,代入求出BC,根据三角形的面积公式进行计算即可.【解答】解:(1)把点A(a,4)代入反比例函数y=(x>0)得,a==2,∴点A(2,4),代入y=kx得,k=2,∴正比例函数的关系式为y=2x,答:a=2,正比例函数的关系式为y=2x;(2)当BD=10=y时,代入y=2x得,x=5,∴OB=5,当x=5代入y=得,y=,即BC=,∴CD=BD﹣BC=10﹣=,∴S△ACD=××(5﹣2)=12.6,【点评】本题考查反比例函数、一次函数图象上点的坐标特征,把点的坐标代入是常用方法.26.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是1;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.【分析】(1)如图1中,作FD⊥AC于D.证明△ABC≌△CDF(AAS)可得结论.(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.根据S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF计算即可.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt△EOH中,利用勾股定理构建方程求解即可.【解答】解:(1)如图1中,作FD⊥AC于D,∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.∴∠ACB=60°,∠FCE=∠BAC=30°,AC=CF,∴∠ACF=30°,∴∠BAC=∠FCD,在△ABC和△CDF中,,∴△ABC≌△CDF(AAS),∴FD=BC=1,故答案为1;(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF﹣S扇形ECH=﹣=.故答案为.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt△ECF中,∵EF=1,∠ECF=30°,EH⊥CF,∴EC=EF=,EH=,CH=EH=,在Rt△BOC中,OC==,∴OH=CH﹣OC=﹣,在Rt△EOH中,则有x2=()2+(﹣)2,解得x=或﹣(不合题意舍弃),∴OC==,∵CF=2EF=2,∴OF=CF﹣OC=2﹣=.【点评】本题考查作图﹣旋转变换,解直角三角形,全等三角形的性质,扇形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27.(10分)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ•PH 的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点D(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为6;②若直线n的函数表达式为y=x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,为半径作⊙F.若⊙F与直线1相离,点N(﹣1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4,求直线l的函数表达式.【分析】(1)①根据远点,特征数的定义判断即可.②如图1﹣1中,过点O作OH⊥直线n于H,交⊙O于Q,P.解直角三角形求出PH,PQ的长即可解决问题.(2)如图2﹣1中,设直线l的解析式为y=kx+b.分两种情形k>0或k<0,分别求解即可解决问题.【解答】解:(1)①由题意,点D是⊙O关于直线m的“远点”,⊙O关于直线m的特征数=DB•DE=2×5=20,故答案为D,20.②如图1﹣1中,过点O作OH⊥直线n于H,交⊙O于Q,P.设直线y=x+4交x轴于F(﹣,0),交y轴于E(0,4),∴OE=4,OF=∴tan∠FEO==,∴∠FEO=30°,∴OH=OE=2,∴PH=OH+OP=3,∴⊙O关于直线n的“特征数”=PQ•PH=2×3=6.(2)如图2﹣1中,设直线l的解析式为y=kx+b.当k>0时,过点F作FH⊥直线l于H,交⊙F于E,N.由题意,EN=2,EN•NH=4,∴NH=,∵N(﹣1,0),M(1,4),∴MN==2,∴HM===,∴△MNH是等腰直角三角形,∵MN的中点K(0,2),∴KN=HK=KM=,∴H(﹣2,3),把H(﹣2,3),M(1,4)代入y=kx+b,则有,解得,∴直线l的解析式为y=x+,当k<0时,同法可知直线i经过H′(2,1),可得直线l的解析式为y=﹣3x+7.综上所述,满足条件的直线l的解析式为y=x+或y=﹣3x+7.【点评】本题属于圆综合题,考查了一次函数的性质,解直角三角形,远点,特征数的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.28.(10分)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=﹣4;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD =∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.【分析】(1)将点C坐标代入解析式可求解;(2)分两种情况讨论,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,可得点E(1,3),CE=BE=3,AE=1,可得∠EBC=∠ECB=45°,tan∠ACE =,∠BCF=45°,由勾股定理逆定理可得∠BCD=90°,可求∠ACE=∠DBC,可得∠ACB=∠CFD,可得点F与点Q重合,即可求点P坐标;当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,先求直线BD解析式,点F坐标,由中点坐标公式可求点Q 坐标,求出CQ解析式,联立方程组,可求点P坐标;(3)设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,先求出∠CNH=45°,由轴对称的性质可得EN=NF,∠ENB =∠FNB=45°,由“AAS”可证△EMN≌△NKF,可得EM=NK=,MN=KF,可求CF=6,由轴对称的性质可得点G坐标,即可求解.【解答】解:(1)∵抛物线y=x2+bx+3的图象过点C(1,0),∴0=1+b+3,∴b=﹣4,故答案为:﹣4;(2)∵b=4,∴抛物线解析式为y=x2﹣4x+3∵抛物线y=x2﹣4x+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,∴点A(0,3),3=x2﹣4x,∴x1=0(舍去),x2=4,∴点B(4,3),∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点D坐标(2,﹣1),如图1,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,∵点A(0,3),点B(4,3),点C(1,0),CE⊥AB,∴点E(1,3),CE=BE=3,AE=1,∴∠EBC=∠ECB=45°,tan∠ACE=,∴∠BCF=45°,∵点B(4,3),点C(1,0),点D(2,﹣1),∴BC==3,CD==,BD==2,∵BC2+CD2=20=BD2,∴∠BCD=90°,∴tan∠DBC====tan∠ACE,∴∠ACE=∠DBC,∴∠ACE+∠ECB=∠DBC+∠BCF,∴∠ACB=∠CFD,又∵∠CQD=∠ACB,∴点F与点Q重合,∴点P是直线CF与抛物线的交点,∴0=x2﹣4x+3,∴x1=1,x2=3,∴点P(3,0);当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,∵CH⊥DB,HF=QH,∴CF=CQ,∴∠CFD=∠CQD,∴∠CQD=∠ACB,∵CH⊥BD,∵点B(4,3),点D(2,﹣1),∴直线BD解析式为:y=2x﹣5,∴点F(,0),∴直线CH解析式为:y=﹣x+,∴,解得,∴点H坐标为(,﹣),∵FH=QH,∴点Q(,﹣),∴直线CQ解析式为:y=﹣x+,联立方程组,解得:或,∴点P(,﹣);综上所述:点P的坐标为(3,0)或(,﹣);(3)如图,设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,。
2022年江苏省常州市中考数学试卷(解析版)
2022年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2分)(2022•常州)2022的相反数是()A.2022B.﹣2022C.D.2.(2分)(2022•常州)若二次根式有意义,则实数x的取值范围是()A.x≥1B.x>1C.x≥0D.x>03.(2分)(2022•常州)下列图形中,为圆柱的侧面展开图的是()A.B.C.D.4.(2分)(2022•常州)如图,在△ABC中,D、E分别是AB、AC的中点.若DE=2,则BC的长是()A.3B.4C.5D.65.(2分)(2022•常州)某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y平方米,则y与x之间的函数表达式为()A.y=x+50B.y=50x C.y=D.y=6.(2分)(2022•常州)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行7.(2分)(2022•常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)8.(2分)(2022•常州)某汽车评测机构对市面上多款新能源汽车的0~100km/h的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100km/h的加速时间的中位数是ms,满电续航里程的中位数是nkm,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在()A.区域①、②B.区域①、③C.区域①、④D.区域③、④二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2分)(2022•常州)化简:=.10.(2分)(2022•常州)计算:m4÷m2=.11.(2分)(2022•常州)分解因式:x2y+xy2=.12.(2分)(2022•常州)2022年5月22日,中国科学院生物多样性委员会发布《中国生物物种名录》2022版,共收录物种及种下单元约138000个.数据138000用科学记数法表示为.13.(2分)(2022•常州)如图,数轴上的点A、B分别表示实数a、b,则(填“>”、“=”或“<”).14.(2分)(2022•常州)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是.15.(2分)(2022•常州)如图,将一个边长为20cm的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若∠BAD =60°,则橡皮筋AC断裂(填“会”或“不会”,参考数据:≈1.732).16.(2分)(2022•常州)如图,△ABC是⊙O的内接三角形.若∠ABC=45°,AC=,则⊙O的半径是.17.(2分)(2022•常州)如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin∠ABD=.18.(2分)(2022•常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF 中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(8分)(2022•常州)计算:(1)()2﹣(π﹣3)0+3﹣1;(2)(x+1)2﹣(x﹣1)(x+1).20.(6分)(2022•常州)解不等式组,并把解集在数轴上表示出来.21.(8分)(2022•常州)为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.(1)本次调查的样本容量是,请补全条形统计图;(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.22.(8分)(2022•常州)在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图像关于原点对称;④函数的图像关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A 中搅匀,③、④、⑤放在不透明的盒子B中搅匀.(1)从盒子A中任意抽出1支签,抽到①的概率是;(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.23.(8分)(2022•常州)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像分别与x轴、y轴交于点A、B,与反比例函数y=(x>0)的图像交于点C,连接OC.已知点B(0,4),△BOC的面积是2.(1)求b、k的值;(2)求△AOC的面积.24.(8分)(2022•常州)如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为;(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.25.(8分)(2022•常州)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME ﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.26.(10分)(2022•常州)在四边形ABCD中,O是边BC上的一点.若△OAB≌△OCD,则点O叫做该四边形的“等形点”.(1)正方形“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD中,边BC上的点O是四边形ABCD的“等形点”.已知CD =4,OA=5,BC=12,连接AC,求AC的长;(3)在四边形EFGH中,EH∥FG.若边FG上的点O是四边形EFGH的“等形点”,求的值.27.(10分)(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:x…﹣10123…y…430﹣5﹣12…(1)求二次函数y=ax2+bx+3的表达式;(2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y=,实数k的取值范围是;(3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.28.(10分)(2022•常州)现有若干张相同的半圆形纸片,点O是圆心,直径AB的长是12cm,C是半圆弧上的一点(点C与点A、B不重合),连接AC、BC.(1)沿AC、BC剪下△ABC,则△ABC是三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点E、F和直径AB上的点G、H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点M、线段BC上的点N和直径AB上的点P、Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm的菱形.小明的猜想是否正确?请说明理由.2022年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2分)(2022•常州)2022的相反数是()A.2022B.﹣2022C.D.【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:2022的相反数是﹣2022,故选:B.【点评】本题考查了相反数,掌握相反数的定义是解答本题的关键.2.(2分)(2022•常州)若二次根式有意义,则实数x的取值范围是()A.x≥1B.x>1C.x≥0D.x>0【分析】根据二次根式有意义的条件,可得:x﹣1≥0,据此求出实数x的取值范围即可.【解答】解:∵二次根式有意义,∴x﹣1≥0,解得:x≥1.故选:A.【点评】此题主要考查了二次根式有意义的条件,解答此题的关键是要明确:二次根式中的被开方数是非负数.3.(2分)(2022•常州)下列图形中,为圆柱的侧面展开图的是()A.B.C.D.【分析】从圆柱的侧面沿它的一条母线剪开,可以得到圆柱的侧面展开图的是长方形.【解答】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是长方形.故选:D.【点评】本题考查了几何体的展开图.解题的关键是明确圆柱的侧面展开图是长方形.4.(2分)(2022•常州)如图,在△ABC中,D、E分别是AB、AC的中点.若DE=2,则BC的长是()A.3B.4C.5D.6【分析】根据三角形中位线定理解答即可.【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵DE=2,∴BC=4,故选:B.【点评】本题考查的是三角形中位线定理,掌握三角形中位线等于第三边的一半是解题的关键.5.(2分)(2022•常州)某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y平方米,则y与x之间的函数表达式为()A.y=x+50B.y=50x C.y=D.y=【分析】根据题意列出函数关系式即可得出答案.【解答】解:由城市市区人口x万人,市区绿地面积50万平方米,则平均每人拥有绿地y=.故选:C.【点评】本题主要考查了函数关系式,根据题意列出函数关系式进行求解是解决本题的关键.6.(2分)(2022•常州)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【分析】根据生活经验结合数学原理解答即可.【解答】解:小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是垂线段最短,故选:A.【点评】本题主要考查了垂线段最短的性质,熟练掌握数学和生活密不可分的关系是解答本题的关键.7.(2分)(2022•常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.【解答】解:∵点A与点A1关于x轴对称,已知点A1(1,2),∴点A的坐标为(1,﹣2),∵点A与点A2关于y轴对称,∴点A2的坐标为(﹣1,﹣2),故选:D.【点评】此题主要考查了关于x轴、y轴对称的点的坐标规律,关键是熟练掌握点的变化规律,不要混淆.8.(2分)(2022•常州)某汽车评测机构对市面上多款新能源汽车的0~100km/h的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100km/h的加速时间的中位数是ms,满电续航里程的中位数是nkm,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在()A.区域①、②B.区域①、③C.区域①、④D.区域③、④【分析】根据中位数定义,逐项判断.【解答】解:最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若这两个点分别落在区域①、②,则0~100km/h的加速时间的中位数将变小,故A不符合题意;若这两个点分别落在区域①、③,则两组数据的中位数可能均保持不变,故B符合题意;若这两个点分别落在区域①,④,则满电续航里程的中位数将变小,故C不符合题意;若这两个点分别落在区域③,④,则0~100km/h的加速时间的中位数将变大,故D不符合题意;故选:B.【点评】本题考查数据的中位数,解题的关键是掌握中位数的概念:一组数据中,正中间的数或中间两个数的平均数是这种数据的中位数..二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2分)(2022•常州)化简:=2.【分析】直接利用立方根的定义即可求解.【解答】解:∵23=8∴=2.故填2.【点评】本题主要考查立方根的概念,如果一个数x的立方等于a,那么x是a的立方根.10.(2分)(2022•常州)计算:m4÷m2=m2.【分析】利用同底数幂的除法的法则进行运算即可.【解答】解:m4÷m2=m4﹣2=m2.故答案为:m2.【点评】本题主要考查同底数幂的除法,解答的关键是熟记同底数幂的除法的法则:底数不变,指数相减.11.(2分)(2022•常州)分解因式:x2y+xy2=xy(x+y).【分析】直接提取公因式xy,进而分解因式得出答案.【解答】解:x2y+xy2=xy(x+y).故答案为:xy(x+y).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(2分)(2022•常州)2022年5月22日,中国科学院生物多样性委员会发布《中国生物物种名录》2022版,共收录物种及种下单元约138000个.数据138000用科学记数法表示为 1.38×105.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:138000=1.38×105.故答案为:1.38×105.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.13.(2分)(2022•常州)如图,数轴上的点A、B分别表示实数a、b,则>(填“>”、“=”或“<”).【分析】比较两个正有理数,数大的倒数反而小.也可以利用特殊值代入法求解.【解答】解:令a=,b=.则:=,=;∵>;∴>.故答案是:>.【点评】本题考查两个有理数的大小,特殊值代入法是解填空题不错的选择.14.(2分)(2022•常州)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是2.【分析】由题意可得CE是△ACD的中线,则有S△ACD=2S△AEC=2,再由AD是△ABC 的中线,则有S△ABD=S△ACD,即得解.【解答】解:∵E是AD的中点,∴CE是△ACD的中线,∴S△ACD=2S△AEC,∵△AEC的面积是1,∴S△ACD=2S△AEC=2,∵AD是△ABC的中线,∴S△ABD=S△ACD=2.故答案为:2.【点评】本题主要考查三角形的面积,解答的关键是明确三角形的中线把原三角形分成面积相等的两部分.15.(2分)(2022•常州)如图,将一个边长为20cm的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若∠BAD =60°,则橡皮筋AC不会断裂(填“会”或“不会”,参考数据:≈1.732).【分析】设AC与BD相交于点O,根据菱形的性质可得AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,从而可得△ABD是等边三角形,进而可得BD=20cm,然后再在Rt△ADO中,利用勾股定理求出AO,从而求出AC的长,即可解答.【解答】解:设AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=20cm,∴DO=BD=10(cm),在Rt△ADO中,AO===10(cm),∴AC=2AO=20≈34.64(cm),∵34.64cm<36cm,∴橡皮筋AC不会断裂,故答案为:不会.【点评】本题考查了菱形的性质,勾股定理的应用,熟练掌握菱形的性质是解题的关键.16.(2分)(2022•常州)如图,△ABC是⊙O的内接三角形.若∠ABC=45°,AC=,则⊙O的半径是1.【分析】连接AO并延长交⊙O于点D,连接CD,根据直径所对的圆周角是直角可得∠ACD=90°,再利用同弧所对的圆周角相等可得∠ADC=45°,然后在Rt△ACD中,利用锐角三角函数的定义求出AD的长,从而求出⊙O的半径,即可解答.【解答】解:连接AO并延长交⊙O于点D,连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠ABC=45°,∴∠ADC=∠ABC=45°,∴AD===2,∴⊙O的半径是1,故答案为:1.【点评】本题考查了三角形的外接圆与外心,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.17.(2分)(2022•常州)如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin∠ABD=.【分析】过点D作DE⊥BC,垂足为E,如图,由已知∠A=∠ABC=90°,可得AD∥BC,由平行线的性质可得∠ADB=∠CBD,根据角平分线的定义可得∠ADB=∠CDB,则可得CD=CB=3,根据矩形的性质可得AD=BE,即可得CE=BC﹣BE,在Rt△CDE 中,根据勾股定理DE=,在Rt△ADB中,根据勾股定理可得,根据正弦三角函数的定义进行求解即可得出答案.【解答】解:过点D作DE⊥BC,垂足为E,如图,∵∠A=∠ABC=90°,∴AD∥BC,∴∠ADB=∠CBD,∵DB平分∠ADC,∴∠ADB=∠CDB,∴CD=CB=3,∵AD=BE=1,∴CE=BC﹣BE=3﹣1=2,在Rt△CDE中,DE===,∵DE=AB,在Rt△ADB中,==,∴sin∠ABD==.故答案为:.【点评】本题主要考查了解直角三角形,根据题意作辅助线构造直角三角形应用解直角三角形的方法进行求解是解决本题的关键.18.(2分)(2022•常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF 中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是21.【分析】如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC 的外部被染色的区域是梯形MFF′N.求出梯形的上下底以及高,可得结论.【解答】解:如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB 于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC 的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵•DF•EF=•EF•GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.【点评】本题考查勾股定理,梯形的面积,平行线分线段成比例定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题在的压轴题.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(8分)(2022•常州)计算:(1)()2﹣(π﹣3)0+3﹣1;(2)(x+1)2﹣(x﹣1)(x+1).【分析】(1)利用实数的运算法则、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)利用完全平方公式,以及平方差公式化简,去括号合并即可得出答案.【解答】解:(1)原式=2﹣1+=;(2)原式=(x2+2x+1)﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2.【点评】此题主要考查了整式的运算、实数运算,正确掌握相关运算法则是解题的关键.20.(6分)(2022•常州)解不等式组,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由5x﹣10≤0,得:x≤2,由x+3>﹣2x,得:x>﹣1,则不等式组的解集为﹣1<x≤2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2022•常州)为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.(1)本次调查的样本容量是100,请补全条形统计图;(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.【分析】(1)用A类户数除以它所占的百分比得到样本容量,然后计算出C类和B类户数后补全条形统计图;(2)利用样本估计总体,由于1500×=225(户),则可估计该小区1周内使用7个及以上环保塑料袋的家庭约有225户,从而可判断调查小组的估计合理.【解答】解:(1)20÷20%=100,所以本次调查的样本容量为100;C类户数为100×25%=25(户),B类户数为100﹣20﹣25﹣15=40(户),补全条形统计图为:故答案为:100;(2)调查小组的估计合理.理由如下:因为1500×=225(户),所以根据该小区1周内使用7个及以上环保塑料袋的家庭约有225户.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.22.(8分)(2022•常州)在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图像关于原点对称;④函数的图像关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A 中搅匀,③、④、⑤放在不透明的盒子B中搅匀.(1)从盒子A中任意抽出1支签,抽到①的概率是;(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.【分析】(1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)从盒子A中任意抽出1支签,抽到①的概率是,故答案为:;(2)列表如下:①②③①③②③④①④②④⑤①⑤②⑤由表知,共有6种等可能结果,其中抽到的2张小纸条上的语句对函数的描述相符合的①③、①⑤、②④这3个,所以2张小纸条上的语句对函数的描述相符合的概率为=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)(2022•常州)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像分别与x轴、y轴交于点A、B,与反比例函数y=(x>0)的图像交于点C,连接OC.已知点B(0,4),△BOC的面积是2.(1)求b、k的值;(2)求△AOC的面积.【分析】(1)由点B(0,4)在一次函数y=2x+b的图象上,代入求得b=4,由△BOC 的面积是2得出C的横坐标为1,代入直线关系式即可求出C的坐标,从而求出k的值;(2)根据一次函数的解析式求得A的坐标,然后根据三角形的面积公式代入计算即可.【解答】解:(1)∵一次函数y=2x+b的图象过点B(0,4),∴b=4,∴一次函数为y=2x+4,∵OB=4,△BOC的面积是2.∴OB•x C=2,即=2,∴x C=1,把x=1代入y=2x+4得,y=6,∴C(1,6),∵点C在反比例函数y=(x>0)的图象上,∴k=1×6=6;(2)把y=0代入y=2x+4得,2x+4=0,解得x=﹣2,∴A(﹣2,0),∴OA=2,∴S△AOC==6.【点评】本题是一次函数与反比例函数的交点问题,考查了待定系数法求函数的解析式,一次函数图象上点的坐标特征,三角形的面积,求出C的坐标是解题的关键.24.(8分)(2022•常州)如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为(3,37°);(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.【分析】(1)根据点的位置定义,即可得出答案;(2)画出图形,证明△AOA′≌△BOA′(SAS),即可由全等三角形的性质,得出结论.【解答】(1)解:由题意,得A′(a,n°),∵a=3,n=37,∴A′(3,37°),故答案为:(3,37°);(2)证明:如图:∵A′(3,37°),B(3,74°),∴∠AOA′=37°,∠AOB=74°,OA=OB=3,∴∠A′OB=∠AOB﹣∠AOA′=74°﹣37°=37°,∵OA′=OA′,∴△AOA′≌△BOA′(SAS),∴A′A=A′B.【点评】本题考查全等三角形的判定与性质,新定义题目,旋转的性质,理解题意,熟练掌握全等三角形的判定与性质是解题的关键.25.(8分)(2022•常州)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME ﹣14的举办年份.(1)八进制数3746换算成十进制数是2022;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.【分析】(1)根据已知,从个位数字起,将八进制的每一位数分别乘以80,81,82,83,再把所得结果相加即可得解;(2)根据n进制数和十进制数的计算方法得到关于n的方程,解方程即可求解.【解答】解:(1)3746=3×83+7×82+4×81+6×80=1536+448+32+6=2022.故八进制数字3746换算成十进制是2022.故答案为:2022;(2)依题意有:n2+4×n1+3×n0=120,解得n1=9,n2=﹣13(舍去).故n的值是9.【点评】本题主要考查因式分解的应用,有理数的混合运算,解题的关键是弄清各个进制数转化为十进制数的计算方法.26.(10分)(2022•常州)在四边形ABCD中,O是边BC上的一点.若△OAB≌△OCD,则点O叫做该四边形的“等形点”.(1)正方形不存在“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD中,边BC上的点O是四边形ABCD的“等形点”.已知CD =4,OA=5,BC=12,连接AC,求AC的长;(3)在四边形EFGH中,EH∥FG.若边FG上的点O是四边形EFGH的“等形点”,求的值.【分析】(1)根据“等形点”的定义可知△OAB≌△OCD,则∠OAB=∠C=90°,而O 是边BC上的一点.从而得出正方形不存在“等形点”;(2)作AH⊥BO于H,由△OAB≌△OCD,得AB=CD=4,OA=OC=5,设OH=x,则BH=7﹣x,由勾股定理得,(4)2﹣(7﹣x)2=52﹣x2,求出x的值,再利用勾股定理求出AC的长即可;(3)根据“等形点”的定义可得△OEF≌△OGH,则∠EOF=∠HOG,OE=OG,∠OGH =∠OEF,再由平行线性质得OE=OH,从而推出OE=OH=OG,从而解决问题.【解答】解:(1)∵四边形ABCD是正方形,。
2020年江苏省常州市中考数学试卷附解析
2020年江苏省常州市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在Rt △ABC 中,∠C =90°,AC =1,BC =2.以边BC 所在直线为轴,把△ABC 旋转一周,得到的几何体的侧面积是( )A .πB .2πC .D .2.如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=3,BC=5,将腰 DC 绕点D 逆时针方向旋转90°至DE ,连结AE ,则△ADE 的面积是( )A .1B .2C .3D .43.下列多边形中不能够镶嵌平面的是( )A .矩形B .正三角形C .正五边形D .正方形4.0x ≤)的结果是( )A .B .-C .()x x y +D .()x x y -+ 5.已知,等腰三角形的一条边长等于6,另一条边长等于3,则此等腰三角形的周长是( )A .9B .12C .15D .12或15 6.将三角形ABC 的各顶点的横坐标不变,纵坐标分别减去3,连结所得三点组成的三角形 是由三角形ABC ( )A .向左平移3个单位得到B .向右平移3个单位得到C .向上平移3个单位得到D .向下平移3个单位得到7.分解因式14-x 得( )A .)1)(1(22-+x xB .22)1()1(-+x xC .)1)(1)(1(2++-x x xD .3)1)(1(+-x x8.0=,那么x y +的值为( )A .10B . 不能确定C .-6D .10± 9. 在-2,38-,0,31 各数中,有理数有( )A .4 个B .3 个C .2 个D .1 个二、填空题10.从 1、2、3、4、5 中任选两个数,这两个数的和恰好等于 7 的概率是 .11.若一条弧长等于l ,它的圆心角等于n °,则这条弧的半径R= ;当圆心角增加1°时,它的弧长增加 .12.二次函数y =2x 2+bx +c 的顶点坐标为(1,2),则这个函数的解析式为 . y =2x 2-4x +413.已知223x x --与7x +的值相等,则x 的值是 . 14.正五边形每个内角是 ,正六边形每个内角是 ,正n 边形每个内角 是 .15.已知点(32)M -,,将它先向左平移4个单位,再向上平移3个单位后得到点N ,则点N 的坐标是 .16.命题“有三边对应相等的两个三角形全等”的题设是 ,结论是.17.已知关于x 的不等式50x m -<只有两个正整数解,则m 的取值范围是 .18.某同学从学校出发向南走了10米,接着又向东走了 5米到达文化书店,则学校与文化书店之间的距离是 米.19.填空:(1)∵∠1=∠E ,∴ ∥ ( )(2)∵∠2=∠ ,∴AB ∥ (同位角相等,两直线平行)20.如图,在△ABC. 中,AB=AC=13 cm ,AB 的垂直平分线交AB 边于点D ,交AC 边于点E ,若△EBG 的周长为 21 cm ,则BC= cm.21.如图是一个五叶风车的示意图,它可以看作是“基本图案”_______•绕着点O 通过_______次旋转得到的.三、解答题22.判断下列各组数是否成比例,若成比例请写出比例式:(1)73,143,1,2; (2)5-352,723.利用函数图象求方程23690x x --=的解.24.把下列命题改写成“如果……,那么……”的形式:(1)对顶角相等;(2)角平分线上的点到角两边的距离相等.25.计算11 (318504)52+-÷32.26.计算:(1)11(27)(1245)35+--+;(2)11328222-+;(3)21 (342)(6) 32-⋅-;(4)1 (43212318)3-+÷.27.已知一个几何体的三视图如图,请画出它的表面展开图(只需画一种).28.如图,已知AC=BD,AD⊥AC,BD⊥BC,则AD=BC,请说明理由.29.小明站在镜子前看到自己的运动服号码如图所示,你能说出小明的运动服号码吗?30.如图,0A为圆的半径,以0A为角的一边,0为角的顶点画∠AOB=72°,0B交圆周于点B,然后依次画∠BOC=∠COD=∠DOE=72°,分别交圆周于点C、D、E,每隔一点连结两点之间的线段,观察所成的图形是一个什么图案.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.C4.B5.C6.D7.C8.C9.A二、填空题10.0.2.11.180l n π,l n12.13.5 或-214.108°,l20°,(2)180n n - 15.(11)-, 16.有三边对应相等的两个三角形,这两个三角形全等17.10<m ≤1518..(1)AC ;DE ;同位角相等,两直线平行;(2)B ,CD20.821.△ABO ,四三、解答题22.(1)成比例:1423713=;(2)= 23.23690x x --=,∴2230x x --=方程的解即是223y x x =--与 x 轴交点的横坐标,如图,可得 A(一 1,0) ,B(3 ,0)∴方程的根为11x=-,23x=24.(1)如果两个角是对顶角,那么这两个角相等;(2)如果一个点是角平分线上的点,那么这个点到这个角两边的距离相等25.解:原式=(92222)+-÷42=82÷42=226.(1)4143535-;(2)2;(3)432-;(4)9627.28.说明Rt△ACD≌Rt△BDC 29.05730.五角星。
2020年江苏省常州市中考数学试卷 (解析版)
2020年常州市中考数学试卷一、选择题(共8小题).1.2的相反数是()A.﹣2B.﹣C.D.22.计算m6÷m2的结果是()A.m3B.m4C.m8D.m123.如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥4.8的立方根为()A.B.C.2D.±25.如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1D.x+1>y+16.如图,直线a、b被直线c所截,a∥b,∠1=140°,则∠2的度数是()A.30°B.40°C.50°D.60°7.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.68.如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=,∠ADB=135°,S△ABD=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是()A.2B.4C.3D.6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把笞案直接填写在答题卡相应位置上)9.计算:|﹣2|+(π﹣1)0=.10.若代数式有意义,则实数x的取值范围是.11.地球的半径大约为6400km.数据6400用科学记数法表示为.12.分解因式:x3﹣x=.13.若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是.14.若关于x的方程x2+ax﹣2=0有一个根是1,则a=.15.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=°.16.数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是.17.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=.18.如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.先化简,再求值:(x+1)2﹣x(x+1),其中x=2.20.解方程和不等式组:(1)+=2;(2).21.为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.22.在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.23.已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.24.某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?25.如图,正比例函数y=kx的图象与反比例函数y=(x>0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.26.如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC =30°,BC=1.(1)点F到直线CA的距离是;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.27.如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ•PH的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为;②若直线n的函数表达式为y=x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,为半径作⊙F.若⊙F与直线1相离,点N(﹣1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4,求直线l的函数表达式.28.如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD =∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.参考答案一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.2的相反数是()A.﹣2B.﹣C.D.2【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.解:2的相反数是﹣2.故选:A.2.计算m6÷m2的结果是()A.m3B.m4C.m8D.m12【分析】利用同底数幂的除法运算法则计算得出答案.解:m6÷m2=m6﹣2=m4.故选:B.3.如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥【分析】该几何体的主视图与左视图均为矩形,俯视图为三角形,易得出该几何体的形状.解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C.4.8的立方根为()A.B.C.2D.±2【分析】根据立方根的定义求出的值,即可得出答案.解:8的立方根是==2,故选:C.5.如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1D.x+1>y+1【分析】根据不等式的性质逐个判断即可.解:∵x<y,∴2x<2y,故本选项符合题意;B、∵x<y,∴﹣2x>﹣2y,故本选项不符合题意;C、∵x<y,∴x﹣1<y﹣1,故本选项不符合题意;D、∵x<y,∴x+1<y+1,故本选项不符合题意;故选:A.6.如图,直线a、b被直线c所截,a∥b,∠1=140°,则∠2的度数是()A.30°B.40°C.50°D.60°【分析】先根据邻补角相等求得∠3,然后再根据两直线平行、内错角相等即可解答.解:∵∠1+∠3=180°,∠1=40°,∴∠3=180°﹣∠1=180°﹣140°=40°∵a∥b,∴∠2=∠3=40°.故选:B.7.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【分析】根据直角三角形斜边中线的性质以及直径是圆中最大的弦,即可求得MH的最大值是3.解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.8.如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=,∠ADB=135°,S△ABD=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是()A.2B.4C.3D.6【分析】根据三角形面积公式求得AE=2,易证得△AOM≌△CBD(AAS),得出OM=BD=,根据题意得出△ADE是等腰直角三角形,得出DE=AE=2,设A (m,),则D(m﹣2,3),根据反比例函数系数k的几何意义得出关于m 的方程,解方程求得m=3,进一步求得k=6.解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=,∵S△ABD==2,BD=,∴AE=2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2,∴D的纵坐标为3,设A(m,),则D(m﹣2,3),∵反比例函数y=(x>0)的图象经过A、D两点,∴k=m=(m﹣2)×3,解得m=3,∴k=m=6.故选:D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把笞案直接填写在答题卡相应位置上)9.计算:|﹣2|+(π﹣1)0=3.【分析】首先计算乘方和绝对值,然后计算加法,求出算式的值是多少即可.解:|﹣2|+(π﹣1)0=2+1=3,故答案为:3.10.若代数式有意义,则实数x的取值范围是x≠1.【分析】分式有意义时,分母x﹣1≠0,据此求得x的取值范围.解:依题意得:x﹣1≠0,解得x≠1,故答案为:x≠1.11.地球的半径大约为6400km.数据6400用科学记数法表示为 6.4×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将6400用科学记数法表示为6.4×103.故答案为:6.4×103.12.分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).13.若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是k>0.【分析】根据一次函数的性质,如果y随x的增大而增大,则一次项的系数大于0,据此求出k的取值范围.解:∵一次函数y=kx+2,函数值y随x的值增大而增大,∴k>0.故答案为:k>0.14.若关于x的方程x2+ax﹣2=0有一个根是1,则a=1.【分析】把x=1代入方程得出1+a﹣2=0,求出方程的解即可.解:∵关于x的方程x2+ax﹣2=0有一个根是1,∴把x=1代入方程得:1+a﹣2=0,解得:a=1,故答案为:1.15.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=30°.【分析】根据垂直平分线的性质得到∠B=∠BCF,再利用等边三角形的性质得到∠AFC =60°,从而可得∠B.解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.16.数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是(2,).【分析】根据直角三角形的性质可得OA和OD的长,根据菱形的性质和坐标与图形的性质可得答案.解:∵四边形ABCD是菱形,且AB=2,∴CD=AD=AB=2,∵∠DAB=120°,∴∠OAD=60°,Rt△AOD中,∠ADO=30°,∴OA=AD==1,OD==,∴C(2,),故答案为:(2,).17.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=.【分析】根据正方形的性质以及锐角三角函数的定义即可求出答案.解:连接CG,在正方形ACDE、BCFG中,∠ECA=∠GCB=45°,∴∠ECG=90°,设AC=2,BC=1,∴CE=2,CG=,∴tan∠GEC==,故答案为:.18.如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为4.【分析】如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H,证明四边形DGBT是平行四边形,求出DH,TH即可解决问题.解:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H.∵DG⊥BF,BT⊥BF,∴DG∥BT,∵AD=DB,AE=EC,∴DE∥BC,∴四边形DGBT是平行四边形,∴BG=DT,DG=BT,∠BDH=∠ABC=45°,∵AD=DB=3,∴BH=DH=3,∵∠TBF=∠BHF=90°,∴∠TBH+∠FBH=90°,∠FBH+∠F=90°,∴∠TBH=∠F,∴tan∠F=tan∠TBH===,∴=,∴TH=1,∴DT=TH+DH=1+3=4,∴BG=4.故答案为4.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.先化简,再求值:(x+1)2﹣x(x+1),其中x=2.【分析】先根据完全平方公式和单项式乘以多项式法则算乘法,再合并同类项,最后代入求出即可.解:(x+1)2﹣x(x+1)=x2+2x+1﹣x2﹣x=x+1,当x=2时,原式=2+1=3.20.解方程和不等式组:(1)+=2;(2).【分析】(1)方程两边都乘以x﹣1得出方程x﹣2=2(x﹣1),求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.解:(1)方程两边都乘以x﹣1得:x﹣2=2(x﹣1),解得:x=0,检验:把x=0代入x﹣1得:x﹣1≠0,所以x=0是原方程的解,即原方程的解是:x=0;(2),∵解不等式①得:x<3,解不等式②得:x≥﹣2,∴不等式组的解集是:﹣2≤x<3.21.为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是100;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.【分析】(1)根据打排球的人数和所占的百分比即可求出样本容量;(2)用总人数乘以打乒乓球的人数所占的百分比求出打乒乓球的人数,再用总人数减去其他项目的人数求出踢足球的人数,从而补全统计图;(3)用该校的总人数乘以“打篮球”的人数所占的百分比即可.解:(1)本次抽样调查的总人数是:25÷25%=100(人),则样本容量是100;故答案为:100;(2)打乒乓球的人数有:100×35%=35(人),踢足球的人数有:100﹣25﹣35﹣15=25(人),补全统计图如下:(3)根据题意得:2000×=300(人),答:估计该校最喜爱“打篮球”的学生人数有300人.22.在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.【分析】(1)共有3种可能出现的结果,其中“抽到1号”的有1种,可求出概率;(2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有6种可能出现的结果,其中“和为奇数”的有4种,∴P(和为奇数)==.23.已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.【分析】(1)首先利用平行线的性质得出,∠A=∠FBD,根据AB=CD即可得出AC =BD,进而得出△EAC≌△FBD解答即可;(2)根据全等三角形的性质和三角形内角和解答即可.【解答】证明:(1)∵EA∥FB,∴∠A=∠FBD,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△EAC与△FBD中,,∴△EAC≌△FBD(SAS),∴∠E=∠F;(2)∵△EAC≌△FBD,∴∠ECA=∠D=80°,∵∠A=40°,∴∠E=180°﹣40°﹣80°=60°,答:∠E的度数为60°.24.某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?【分析】(1)设每千克苹果的售价为x元,每千克梨的售价为y元,根据“购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m千克苹果,则购买(15﹣m)千克梨,根据总价=单价×数量结合总价不超过100元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.解:(1)设每千克苹果的售价为x元,每千克梨的售价为y元,依题意,得:,解得:.答:每千克苹果的售价为8元,每千克梨的售价为6元.(2)设购买m千克苹果,则购买(15﹣m)千克梨,依题意,得:8m+6(15﹣m)≤100,解得:m≤5.答:最多购买5千克苹果.25.如图,正比例函数y=kx的图象与反比例函数y=(x>0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.【分析】(1)把把点A(a,4)代入反比例函数关系式可求出a的值,确定点A的坐标,进而求出正比例函数的关系式;(2)根据BD=10,求出点B的横坐标,求出OB,代入求出BC,根据三角形的面积公式进行计算即可.解:(1)把点A(a,4)代入反比例函数y=(x>0)得,a==2,∴点A(2,4),代入y=kx得,k=2,∴正比例函数的关系式为y=2x,答:a=2,正比例函数的关系式为y=2x;(2)当BD=10=y时,代入y=2x得,x=5,∴OB=5,当x=5代入y=得,y=,即BC=,∴CD=BD﹣BC=10﹣=,∴S△ACD=××(5﹣2)=12.6,26.如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC =30°,BC=1.(1)点F到直线CA的距离是1;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.【分析】(1)如图1中,作FD⊥AC于D.证明△ABC≌△CDF(AAS)可得结论.(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.根据S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF计算即可.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt△EOH中,利用勾股定理构建方程求解即可.解:(1)如图1中,作FD⊥AC于D,∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.∴∠ACB=60°,∠FCE=∠BAC=30°,AC=CF,∴∠ACF=30°,∴∠BAC=∠FCD,在△ABC和△CDF中,,∴△ABC≌△CDF(AAS),∴FD=BC=1,故答案为1;(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF﹣S扇形ECH=﹣=.故答案为.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt△ECF中,∵EF=1,∠ECF=30°,EH⊥CF,∴EC=EF=,EH=,CH=EH=,在Rt△BOC中,OC==,∴OH=CH=OC=﹣,在Rt△EOH中,则有x2=()2+(﹣)2,解得x=或﹣(不合题意舍弃),∴OC==,∵CF=2EF=2,∴OF=CF﹣OC=2﹣=.27.如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ•PH的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点D(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为20;②若直线n的函数表达式为y=x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,为半径作⊙F.若⊙F与直线1相离,点N(﹣1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4,求直线l的函数表达式.【分析】(1)①根据远点,特征数的定义判断即可.②如图1﹣1中,过点O作OH⊥直线n于H,交⊙O于Q,P.解直角三角形求出PH,PQ的长即可解决问题.(2)如图2﹣1中,设直线l的解析式为y=kx+b.分两种情形k>0或k<0,分别求解即可解决问题.解:(1)①由题意,点D是⊙O关于直线m的“远点”,⊙O关于直线m的特征数=DB•DE=2×5=20,故答案为D,20.②如图1﹣1中,过点O作OH⊥直线n于H,交⊙O于Q,P.设直线y=x+4交x轴于F(﹣,0),交y轴于E(0,4),∴OE=4,OF=∴tan∠FEO==,∴∠FEO=30°,∴OH=OE=2,∴PH=OH+OP=3,∴⊙O关于直线n的“特征数”=PQ•PH=2×3=6.(2)如图2﹣1中,设直线l的解析式为y=kx+b.当k>0时,过点F作FH⊥直线l于H,交⊙F于E,N.由题意,EN=2,EN•NH=4,∴NH=,∵N(﹣1,0),M(1,4),∴MN==2,∴HM===,∴△MNH是等腰直角三角形,∵MN的中点K(0,2),∴KN=HK=KM=,∴H(﹣2,3),把H(﹣2,3),M(1,4)代入y=kx+b,则有,解得,∴直线l的解析式为y=x+,当k<0时,同法可知直线i经过H′(2,1),可得直线l的解析式为y=﹣3x+7.综上所述,满足条件的直线l的解析式为y=x+或y=﹣3x+7.28.如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=﹣4;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD =∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.【分析】(1)将点C坐标代入解析式可求解;(2)分两种情况讨论,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,可得点E(1,3),CE=BE=3,AE=1,可得∠EBC=∠ECB=45°,tan ∠ACE=,∠BCF=45°,由勾股定理逆定理可得∠BCD=90°,可求∠ACE=∠DBC,可得∠ACB=∠CFD,可得点F与点Q重合,即可求点P坐标;当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,先求直线BD解析式,点F坐标,由中点坐标公式可求点Q 坐标,求出CQ解析式,联立方程组,可求点P坐标;(3)设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,先求出∠CNH=45°,由轴对称的性质可得EN=NF,∠ENB =∠FNB=45°,由“AAS”可证△EMN≌△NKF,可得EM=NK=,MN=KF,可求CF=6,由轴对称的性质可得点G坐标,即可求解.解:(1)∵抛物线y=x2+bx+3的图象过点C(1,0),∴0=1+b+3,∴b=﹣4,故答案为:﹣4;(2)∵b=4,∴抛物线解析式为y=x2﹣4x+3∵抛物线y=x2﹣4x+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,∴点A(0,3),3=x2﹣4x,∴x1=0(舍去),x2=4,∴点B(4,3),∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点D坐标(2,﹣1),如图1,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,∵点A(0,3),点B(4,3),点C(1,0),CE⊥AB,∴点E(1,3),CE=BE=3,AE=1,∴∠EBC=∠ECB=45°,tan∠ACE=,∴∠BCF=45°,∵点B(4,3),点C(1,0),点D(2,﹣1),∴BC==3,CD==,BD==2,∵BC2+CD2=20=BD2,∴∠BCD=90°,∴tan∠DBC====tan∠ACE,∴∠ACE=∠DBC,∴∠ACE+∠ECB=∠DBC+∠BCF,∴∠ACB=∠CFD,又∵∠CQD=∠ACB,∴点F与点Q重合,∴点P是直线CF与抛物线的交点,∴0=x2﹣4x+3,∴x1=1,x2=3,∴点P(3,0);当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,∵CH⊥DB,HF=QH,∴CF=CQ,∴∠CFD=∠CQD,∴∠CQD=∠ACB,∵CH⊥BD,∵点B(4,3),点D(2,﹣1),∴直线BD解析式为:y=2x﹣5,∴点F(,0),∴直线CH解析式为:y=﹣x+,∴,解得,∴点H坐标为(,﹣),∵FH=QH,∴点Q(,﹣),∴直线CQ解析式为:y=﹣x+,联立方程组,解得:或,∴点P(,﹣);综上所述:点P的坐标为(3,0)或(,﹣);(3)如图,设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,∵点A(0,3),点C(1,0),∴直线AC解析式为:y=﹣3x+3,∴,∴,∴点N坐标为(,﹣),∵点H坐标为(,﹣),∴CH2=(﹣1)2+()2=,HN2=(﹣)2+(﹣+)2=,∴CH=HN,∴∠CNH=45°,∵点E关于直线BD对称的点为F,∴EN=NF,∠ENB=∠FNB=45°,∴∠ENF=90°,∴∠ENM+∠FNM=90°,又∵∠ENM+∠MEN=90°,∴∠MEN=∠FNM,∴△EMN≌△NKF(AAS)∴EM=NK=,MN=KF,∴点E的横坐标为﹣,∴点E(﹣,),∴MN==KF,∴CF=+﹣1=6,∵点F关于直线BC对称的点为G,∴FC=CG=6,∠BCF=∠GCB=45°,∴∠GCF=90°,∴点G(1,6),∴AG==.。
常州市中考数学试卷及答案(Word解析版)
江苏省常州市中考数学试卷一.选择题(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的)1.(2分)(•常州)在下列实数中,无理数是()A.2B.3.14 C.D.考点:无理数.分析:根据无理数,有理数的定义对各选项分析判断后利用排除法求解.解答:解:A、2是有理数,故本选项错误;B、3.14是有理数,故本选项错误;C 、﹣是有理数,故本选项错误;D 、是无理数,故本选项正确.故选D.点评:主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)(•常州)如图所示圆柱的左视图是()A.B.C.D.考点:简单几何体的三视图分析:找到从左面看所得到的图形即可.解答:解:此圆柱的左视图是一个矩形,故选C.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.(2分)(•常州)下列函数中,图象经过点(1,﹣1)的反比例函数关系式是()A.B.C.D.考点:反比例函数图象上点的坐标特征分析:设将点(1,﹣1)代入所设的反比例函数关系式y=(k≠0)即可求得k的值.解答:解:设经过点(1,﹣1)的反比例函数关系式是y=(k≠0),则﹣1=,解得,k=﹣1,所以,所求的函数关系式是y=﹣或.故选A.点评:本题主要考查反比例函数图象上点的坐标特征.所有反比例函数图象上点的坐标都满足该函数解析式.4.(2分)(•常州)下列计算中,正确的是()A.(a3b)2=a6b2B.a•a4=a4C.a6÷a2=a3D.3a+2b=5ab考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减对各选项分析判断后利用排除法求解.解答:解:A、(a3b)2=a6b2,故本选项正确;B、a•a4=a5,故本选项错误;C、a6÷a2=a6﹣2=a4,故本选项错误;D、3a与2b不是同类项,不能合并,故本选项错误.故选A.点评:本题考查了同底数幂的除法,同底数幂的乘法,积的乘方的性质,理清指数的变化是解题的关键.5.(2分)(•常州)已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是()A.甲组数据比乙组数据的波动大B.乙组数据的比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲组数据与乙组数据的波动不能比较考点:方差.分析:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,结合选项进行判断即可.解答:解:由题意得,方差<,A、甲组数据没有乙组数据的波动大,故本选项错误;B、乙组数据的比甲组数据的波动大,说法正确,故本选项正确;C、甲组数据没有乙组数据的波动大,故本选项错误;D、甲组数据没有乙组数据的波动大,故本选项错误;故选B.点本题考查了方差的意义,解答本题的关键是理解方差的意义,方差表示的是数据波评:动性的大小,方差越大,波动性越大.6.(2分)(•常州)已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.无法判断考点:直线与圆的位置关系.分析:根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解答:解:∵⊙O的半径为6,圆心O到直线l的距离为5,∵6>5,即:d<r,∴直线L与⊙O的位置关系是相交.故选;C.点评:本题主要考查对直线与圆的位置关系的性质的理解和掌握,能熟练地运用性质进行判断是解此题的关键.7.(2分)(•常州)二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5y 12 5 0 ﹣3 ﹣4 ﹣3 0 5 12给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0考点:二次函数的最值;抛物线与x轴的交点.分析:根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.解答:解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为﹣4;故(1)小题错误;根据表格数据,当﹣1<x<3时,y<0,所以,﹣<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(﹣1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故选B.点评:本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.8.(2分)(•常州)有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+b B.2a+b C.3a+b D.a+2b考点:完全平方公式的几何背景.分析:根据3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式即可得出答案.解答:解;3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,∵a2+4ab+4b2=(a+2b)2,∴拼成的正方形的边长最长可以为(a+2b),故选D.点评:此题考查了完全平方公式的几何背景,关键是根据题意得出a2+4ab+4b2=(a+2b)2,用到的知识点是完全平方公式.二.填空题(本大题共有9小题,第9小题4分,其余8小题每小题4分,共20分,)9.(4分)(•常州)计算﹣(﹣3)=3,|﹣3|=3,(﹣3)﹣1=﹣,(﹣3)2=9.考点:有理数的乘方;相反数;绝对值;有理数的减法.分析:根据相反数的定义,绝对值的性质,负整数指数幂,有理数的乘方的意义分别进行计算即可得解.解答:解:﹣(﹣3)=3,|﹣3|=3,(﹣3)﹣1=﹣,(﹣3)2=9.故答案为:3;3;﹣;9.点评:本题考查了相反数的定义,绝对值的性质,负整数指数幂,以及有理数的乘方的意义,是基础题.10.(2分)(•常州)已知点P(3,2),则点P关于y轴的对称点P1的坐标是(﹣3,2),点P关于原点O的对称点P2的坐标是(﹣3,﹣2).考点:关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称的点的横坐标互为相反数,纵坐标相同;关于原点对称的点的横坐标与纵坐标都互为相反数解答.解答:解:点P(3,2)关于y轴的对称点P1的坐标是(﹣3,2),点P关于原点O的对称点P2的坐标是(﹣3,﹣2).故答案为:(﹣3,2);(﹣3,﹣2).点评:本题考查了关于原点对称点点的坐标,关于y轴对称的点的坐标,熟记对称点的坐标特征是解题的关键.11.(2分)(•常州)已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),则k=2,b=﹣2.考点:待定系数法求一次函数解析式.分析:把点A、B的坐标代入函数解析式,利用待定系数法求一次函数解析式解答即可.解答:解:∵一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B (1,0),∴,解得.故答案为:2,﹣2.点评:本题主要考查了待定系数法求一次函数解析式,待定系数法是求函数解析式常用的方法之一,要熟练掌握并灵活运用.12.(2分)(•常州)已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是5πcm,扇形的面积是15πcm2(结果保留π).考点:扇形面积的计算;弧长的计算.分析:根据扇形的弧长公式l=和扇形的面积=,分别进行计算即可.解答:解:∵扇形的半径为6cm,圆心角为150°,∴此扇形的弧长是:l==5π(cm),根据扇形的面积公式,得S扇==15π(cm2).故答案为:5π,15π.点评:此题主要考查了扇形弧长公式以及扇形面积公式的应用,熟练记忆运算公式进行计算是解题关键.13.(2分)(•常州)函数y=中自变量x的取值范围是x≥3;若分式的值为0,则x=.考点:分式的值为零的条件;函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解;根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣3≥0,解得x≥3;2x﹣3=0且x+1≠0,解得x=且x≠﹣1,所以,x=.故答案为:x≥3;.点评:本题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.(2分)(•常州)我市某一周的每一天的最高气温统计如下表:最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数是27,众数是28.考点:众数;中位数.分析:根据中位数、众数的定义,结合表格信息即可得出答案.解答:解:将表格数据从大到小排列为:25,26,27,27,28,28,28,中位数为:27;众数为:28.故答案为:27、28.点评:本题考查了众数、中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.15.(2分)(•常州)已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a=﹣2或1.考点:一元二次方程的解.分析:方程的解就是能使方程左右两边相等的未知数的值,把x=﹣1代入方程,即可得到一个关于a的方程,即可求得a的值.解答:解:根据题意得:2﹣a﹣a2=0 解得a=﹣2或1点评:本题主要考查了方程的解得定义,是需要掌握的基本内容.16.(2分)(•常州)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=2.考点:圆周角定理;含30度角的直角三角形;勾股定理;圆心角、弧、弦的关系.分析:根据直径所对的圆周角是直角可得∠BAD=∠BCD=90°,然后求出∠CAD=30°,利用同弧所对的圆周角相等求出∠CBD=∠CAD=30°,根据圆内接四边形对角互补求出∠BDC=60°再根据等弦所对的圆周角相等求出∠ADB=∠ADC,从而求出∠ADB=30°,解直角三角形求出BD,再根据直角三角形30°角所对的直角边等于斜边的一半解答即可.解答:解:∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠BAC=120°,∴∠CAD=120°﹣90°=30°,∴∠CBD=∠CAD=30°,又∵∠BAC=120°,∴∠BDC=180°﹣∠BAC=180°﹣120°=60°,∵AB=AC,∴∠ADB=∠ADC,∴∠ADB=∠BDC=×60°=30°,∵AD=6,∴在Rt△ABD中,BD=AD÷cos60°=6÷=4,在Rt△BCD中,DC=BD=×4=2.故答案为:2.点评:本题考查了圆周角定理,直角三角形30°角所对的直角边等于斜边的一半,以及圆的相关性质,熟记各性质是解题的关键.17.(2分)(•常州)在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上,连接OA、OB,若OA⊥OB,OB=OA,则k=﹣.考点:反比例函数综合题.分析:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,设点A的坐标为(a,),点B的坐标为(b,),判断出△OBF∽△AOE,利用对应边成比例可求出k的值.解答:解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,设点A的坐标为(a,),点B的坐标为(b,),∵∠AOE+∠BOF=90°,∠OBF+∠BOF=90°,∴∠AOE=∠OBF,又∵∠BFO=∠OEA=90°,∴△OBF∽△AOE,∴==,即==,则=﹣b①,a=②,①×②可得:﹣2k=1,解得:k=﹣.故答案为:﹣.点评:本题考查了反比例函数的综合题,涉及了相似三角形的判定与性质,反比例函数图象上点的坐标的特点,解答本题要求同学们能将点的坐标转化为线段的长度.三、解答题(本大题共2小题,共18分)18.(8分)(•常州)化简(1)(2).考点:分式的加减法;实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:(1)分别进行二次根式的化简、零指数幂的运算,代入特殊角的三角函数值即可得出答案.(2)先通分,然后再进行分子的加减运算,最后化简即可.解答:解:(1)原式=2﹣1+2×=2.(2)原式=﹣==.点评:本题考查了分式的加减运算、特殊角的三角函数值及零指数幂的运算,属于基础题,掌握各部分的运算法则是关键.19.(10分)(•常州)解方程组和分式方程:(1)(2).考点:解分式方程;解二元一次方程组.分析:(1)利用代入消元法解方程组;(2)最简公分母为2(x﹣2),去分母,转化为整式方程求解,结果要检验.解答:解:(1),由①得x=﹣2y ③把③代入②,得3×(﹣2y)+4y=6,解得y=﹣3,把y=﹣3代入③,得x=6,所以,原方程组的解为;(2)去分母,得14=5(x﹣2),解得x=4.8,检验:当x=4.8时,2(x﹣2)≠0,所以,原方程的解为x=4.8.点评:本题考查了解分式方程,解二元一次方程组.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.四、解答题(本大题共2小题,共15分请在答题卡指定区域内作答,解答或写出文字说明及演算步骤)20.(7分)(•常州)为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).(1)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(2)扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72°.考点:条形统计图;扇形统计图.分析:(1)首先根据打篮球的人数是20人,占40%,求出总人数,再用总人数减去篮球、足球和其它人数得出乒乓球的人数,用各个爱好的人数除以总人数,即可得出所占的百分百,从而补全统计图;(2)用360°乘以足球所占的百分百,即可得出扇形的圆心角的度数.解答:解:(1)总人数是:20÷40%=50(人),则打乒乓球的人数是:50﹣20﹣10﹣15=5(人).足球的人数所占的比例是:×100%=20%,打乒乓球的人数所占的比例是:×100%=10%;其它的人数所占的比例是:×100%=30%.补图如下:(2)根据题意得:360°×=72°,则扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72°;故答案为:72°.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)(•常州)一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.考点:列表法与树状图法.专题:图表型.分析:(1)根据概率的意义列式即可;(2)画出树状图,然后根据概率公式列式计算即可得解.解答:解:(1)∵共有3个球,2个白球,∴随机摸出一个球是白球的概率为;(2)根据题意画出树状图如下:一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,所以,P(两次摸出的球都是白球)==.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.五.解答题(本大题共2小时,共13分,请在答题卡指定区域内作答,解答应写出证明过程)22.(6分)(•常州)如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.考点:全等三角形的判定与性质.专题:证明题.分析:根据中点定义求出AC=BC,然后利用“SSS”证明△ACD和△BCE全等,再根据全等三角形对应角相等证明即可.解答:证明:∵C是AB的中点,∴AC=BC,在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B.点评:本题考查了全等三角形的判定与性质,比较简单,主要利用了三边对应相等,两三角形全等,以及全等三角形对应角相等的性质.23.(7分)(•常州)如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC 的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.考点:菱形的判定.专题:证明题.分析:根据平行四边形的判定方法得出四边形ABCD是平行四边形,再利用菱形的判定得出.解答:证明:∵∠B=60°,AB=AC,∴△ABC为等边三角形,∴AB=BC,∴∠ACB=60°,∠FAC=∠ACE=120°,∴∠BAD=∠BCD=120°,∴∠B=∠D=60°,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形.点评:此题主要考查了平行四边形的判定以及菱形的判定和角平分线的性质等内容,注意菱形与平行四边形的区别,得出AB=BC是解决问题的关键.六.解答题(本大题共2小题,请在答题卡指定区域内作答,共13分)24.(6分)(•常州)在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:∠ABC=30°,∠A′BC=90°,OA+OB+OC=.考点:作图-旋转变换.专题:作图题.分析:解直角三角形求出∠ABC=30°,然后过点B作BC的垂线,在截取A′B=AB,再以点A′为圆心,以AO为半径画弧,以点B为圆心,以BO为半径画弧,两弧相交于点O′,连接A′O′、BO′,即可得到△A′O′B;根据旋转角与∠ABC的度数,相加即可得到∠A′BC;根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BOO′是等边三角形,根据等边三角形的三条边都相等可得BO=OO′,等边三角形三个角都是60°求出∠BOO′=∠BO′O=60°,然后求出C、O、A′、O′四点共线,再利用勾股定理列式求出A′C,从而得到OA+OB+OC=A′C.解答:解:∵∠C=90°,AC=1,BC=,∴tan∠ABC===,∴∠ABC=30°,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C===,∴OA+OB+OC=A′O′+OO′+OC=A′C=.故答案为:30°;90°;.点评:本题考查了利用旋转变换作图,旋转变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,等边三角形的判定与性质,综合性较强,最后一问求出C、O、A′、O′四点共线是解题的关键.25.(7分)(•常州)某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).(1)列出满足题意的关于x的不等式组,并求出x的取值范围;(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)表示出生产乙种饮料(650﹣x)千克,然后根据所需A种果汁和B种果汁的数量列出一元一次不等式组,求解即可得到x的取值范围;(2)根据销售总金额等于两种饮料的销售额的和列式整理,再根据一次函数的增减性求出最大销售额.解答:解:(1)设该厂生产甲种饮料x千克,则生产乙种饮料(650﹣x)千克,根据题意得,,由①得,x≤425,由②得,x≥200,所以,x的取值范围是200≤x≤425;(2)设这批饮料销售总金额为y元,根据题意得,y=3x+4(650﹣x)=3x+2600﹣4x=﹣x+2600,即y=﹣x+2600,∵k=﹣1<0,∴当x=200时,这批饮料销售总金额最大,为﹣200+2600=2400元.点评:本题考查了一次函数的应用,列一元一次不等式组解实际问题,根据A、B果汁的数量列出不等式组是解题的关键,(2)主要利用了一次函数的增减性.七.解答题(本大题共2小题,共25分,解答应写出文字说明,证明过程或演算步骤)26.(6分)(•常州)用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则S=a+b﹣1(史称“皮克公式”).小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:根据图中提供的信息填表:格点多边形各边上格点边多边形内部格点多边形的面积的格点的个数的格点个数多边形1 8 1多边形2 7 3…………一般格点多边形 a b S则S与a、b之间的关系为S=a+2(b﹣1)(用含a、b的代数式表示).考点:规律型:图形的变化类.分析:根据8=8+2(1﹣1),11=7+2(3﹣1)得到S=a+2(b﹣1).解答:解:填表如下:格点多边形各边上的格点的个数格点边多边形内部的格点个数格点多边形的面积多边形1 8 1 8多边形2 7 3 11…………一般格点多边形 a b S则S与a、b之间的关系为S=a+2(b﹣1)(用含a、b的代数式表示).点评:考查了作图﹣应用与设计作图.此题需要根据图中表格和自己所算得的数据,总结出规律.寻找规律是一件比较困难的活动,需要仔细观察和大量的验算.27.(9分)(•常州)在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为45°或135°;(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.考点:圆的综合题.专题:综合题.分析:(1)根据点A和点B坐标易得△OAB为等腰直角三角形,则∠OBA=45°,由于OC∥AB,所以当C点在y轴左侧时,有∠BOC=∠OBA=45°;当C点在y轴右侧时,有∠BOC=180°﹣∠OBA=135°;(2)由△OAB为等腰直角三角形得AB=OA=6,根据三角形面积公式得到当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,此时C点到AB的距离的最大值为CE的长然后利用等腰直角三角形的性质计算出OE,然后计算△ABC的面积;(3)①过C点作CF⊥x轴于F,易证Rt△OCF∽Rt△AOD,则=,即=,解得CF=,再利用勾股定理计算出OF=,则可得到C点坐标;②由于OC=3,OF=,所以∠COF=30°,则可得到∴BOC=60°,∠AOD=60°,然后根据“SAS”判断△BOC≌△AOD,所以∠BCO=∠ADC=90°,再根据切线的判定定理可确定直线BC为⊙O的切线.解答:解:(1)∵点A(6,0),点B(0,6),∴OA=OB=6,∴△OAB为等腰直角三角形,∴∠OBA=45°,∵OC∥AB,∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=180°﹣∠OBA=135°;(2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图,此时C点到AB的距离的最大值为CE的长,∵△OAB为等腰直角三角形,∴AB=OA=6,∴OE=AB=3,∴CE=OC+CE=3+3,△ABC的面积=CE•AB=×(3+3)×6=9+18.∴当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18.(3)①如图,过C点作CF⊥x轴于F,∵OC∥AD,∴∠ADO=∠COD=90°,∴∠DOA+∠DAO=90°而∠DOA+∠COF=90°,∴∠COF=∠DAO,∴Rt△OCF∽Rt△AOD,∴=,即=,解得CF=,在Rt△OCF中,OF==,∴C点坐标为(﹣,);②直线BC是⊙O的切线.理由如下:在Rt△OCF中,OC=3,OF=,∴∠COF=30°,∴∠OAD=30°,∴∠BOC=60°,∠AOD=60°,∵在△BOC和△AOD中,∴△BOC≌△AOD(SAS),∴∠BCO=∠ADC=90°,∴OC⊥BC,∴直线BC为⊙O的切线.点评:本题考查了圆的综合题:掌握切线的判定定理、平行线的性质和等腰直角三角形的判定与性质;熟练运用勾股定理和相似比进行几何计算.28.(10分)(•常州)在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a>0),直线l过动点M(0,m)(0<m<2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P 点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA.(1)写出A、C两点的坐标;(2)当0<m<1时,若△PAQ是以P为顶点的倍边三角形(注:若△HNK满足HN=2HK,则称△HNK为以H为顶点的倍边三角形),求出m的值;(3)当1<m<2时,是否存在实数m,使CD•AQ=PQ•DE?若能,求出m的值(用含a 的代数式表示);若不能,请说明理由.考点:一次函数综合题分析:(1)利用一次函数图象上点的坐标特征求解;(2)如答图1所示,解题关键是求出点P、点Q的坐标,然后利用PA=2PQ,列方程求解;(3)如答图2所示,利用相似三角形,将已知的比例式转化为:,据此列方程求出m的值.解答:解:(1)在直线解析式y=2x+2中,令y=0,得x=﹣1;x=0,得y=2,∴A(﹣1,0),C(0,2);(2)当0<m<1时,依题意画出图形,如答图1所示.∵PE=CE,∴直线l是线段PC的垂直平分线,∴MC=MP,又C(0,2),M(0,m),∴P(0,2m﹣2);直线l与y=2x+2交于点D,令y=m,则x=,∴D(,m),设直线DP的解析式为y=kx+b,则有,解得:k=﹣2,b=2m﹣2,∴直线DP的解析式为:y=﹣2x+2m﹣2.令y=0,得x=m﹣1,∴Q(m﹣1,0).已知△PAQ是以P为顶点的倍边三角形,由图可知,PA=2PQ,∴,即,整理得:(m﹣1)2=,解得:m=(>1,不合题意,舍去)或m=,∴m=.(3)当1<m<2时,假设存在实数m,使CD•AQ=PQ•DE.依题意画出图形,如答图2所示.由(2)可知,OQ=m﹣1,OP=2m﹣2,由勾股定理得:PQ=(m﹣1);∵A(﹣1,0),Q(m﹣1,0),B(a,0),∴AQ=m,AB=a+1;∵OA=1,OC=2,由勾股定理得:CA=.∵直线l∥x轴,∴△CDE∽△CAB,∴;又∵CD•AQ=PQ•DE,∴,∴,即,解得:m=.∵1<m<2,∴当0<a≤1时,m≥2,m不存在;当a>1时,m=.∴当1<m<2时,若a>1,则存在实数m=,使CD•AQ=PQ•DE;若0<a≤1,则m不存在.点评:本题是代数几何综合题,考查了坐标平面内一次函数的图象与性质、待定系数法、相似三角形、勾股定理、解方程等知识点.题目综合性较强,有一定的难度.第(3)问中,注意比例式的转化,这样可以简化计算.。
2022年常州市中考数学试题含答案解析
2022年常州市中考数学试题含答案解析一、选择题(每小题3分,共10小题,合计30分)1.-2的相反数是().A.-12B.12C.±2D.2答案:D.解析:数a的相反数是-a,所以-2的相反数是2,故选D.2.下列运算正确的是().A.m·m=2mC.(m2)3=m6答案:C.解析:m·m=2m2,(mn)3=m3n3,(m2)3=m6,m6÷a3=a4,故正确的是C,故选C.B.(mn)3=mn3D.m6÷a3=a33.右图是某个几何体的三视图,则该几何体是().A.圆锥C.圆柱答案:B.解析:由三视图确定几何体,从三视图可以确定此几何体为三棱柱,故选B.4.计算:B.三棱柱D.三棱锥某11+的结果是().某某1A.某2某12B.2某C.D.1答案:D.解析:本题考查分式的加法,同分母分式,分子相加减,原式=某11=1,故选D.某5.若3某>-3y,则下列不等式中一定成立的是().A.某+y>0B.某-y>0C.某+y<0D.某-y<0答案:A.解析:不等式的两边都除以3得某>-y,移项得某+y>0,故选A.6.如图,已知直线AB、CD被直线AE所截,AB∥CD,∠1=60°,则∠2的度数是(A.100°B.110°C.120°D.130°答案:C.解析:∵AB∥CD,∠1=60°,∴∠3=∠1=60°,所以∠2=180°-60°=120°,故选C.7.如图,已知矩形ABCD的顶点A、D分别落在某轴、y轴上,OD=2OA=6,AD:2).AB=3:1,则点C的坐标是().A.(2,7)C.(3,8)答案:A.解析:作BE⊥某轴于E,由题意知△ABE∽△DAO,因为OD=2OA=6,所以OA=3,由勾股定理得AD=35,因为AD:AB=3:1,所以AB=5,所以BE=1,AE=2,由矩形的性质知,将点D向上平移一个单位,向右平移2个单位得到点C,所以点C的坐标为(2,7),故选A.B.(3,7)D.(4,8)8.如图,已知□ABCD的四个内角的平分线分别相交于点E、F、G、H,连接AC,若EF=2,FG=GC=5,则AC的长是().A.12B.13C.65答案:B.D.83解析:作AM⊥CH交CH的延长线于H,因为四条内角平分线围成的四边形EFGH为矩形,所以3AM=FG=5,MH=AE=CG=5,所以CM=12,由勾股定理得AC=13,故选B.二、填空题:(本大题共10小题,每小题2分,共20分)9.计算:|-2|+(-2)0=.答案:3.解析:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,非零数的零次方都等于1,依此规则原式=2+1=3.10.若二次根式某2有意义,则实数某的取值范围是.答案:某≥2.解析:二次根式有意义需要满足被开方数为非负数,所以某-2≥0,解得某≥2.11.肥皂泡的泡壁厚度大约是0.0007mm,则数据0.0007用科学计数法表示为.答案:7某10-4.解析:用科学记数法表示较小的数,0.0007=7某10-4.12.分解因式:a某2-ay2=.答案:a(某+y)(某-y).解析:原式=a(某2-y2)=a(某+y)(某-y).13.已知某=1是关于某的方程a某2-2某+3=0的一个根,则a=.答案:-1.解析:将某=1代入方程a某2-2某+3=0得a-2+3=0,解得a=-1.14.已知圆锥的底面圆半径是1,母线长是3,则圆锥的侧面积是.答案:3π.解析:圆锥的侧面积=11某扇形半径某扇形弧长=某l某(2πr)=πrl=π某1某3=3π.设圆锥的母线长为l,设圆锥的底面半径为r,221某扇形半径某扇形弧长2则展开后的扇形半径为l,弧长为圆锥底面周长(2πR).我们已经知道,扇形的面积公式为:S=4=1某l某(2πr)=πrl.即圆锥的侧面积等于底面半径与母线和π的乘积.π某1某3=3π.215.(2022常州,15,2分)如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是.答案:15.解析:因为DE垂直平分BC,所以DB=DC,所以△ABD的周长=AD+AB+BD=AB+AD+CD=AB+AC=6+9=15.16.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点.若∠DAB=40°,则∠ABC=°.答案:70°.解析:连接AC,OC,因为C是弧BD的中点,∠DAB=40°,所以∠CAB=20°,所以∠COB=40°,由三角形内角和得∠B=70°.17.已知二次函数y=a某2+b某-3自变量某的部分取值和对应函数值y如下表:某y则在实数范围内能使得y-5>0成立的某的取值范围是.答案:某>4或某......-25-100-31-42-330 (5)解析:将点(-1,0)和(1,-4)代入y=a某2+b某-3得0ab3a1,解得:,所以该二次函数的解析式为y=某2-2某-3,4ab3b2若y>5,则某2-2某-3>5,某2-2某-8>0,解一元二次方程某2-2某-8=0,得某=4或某=-2.根据函数图象判断y-5>0成立的某的取值范围是某>4或某18.如图,已知点A是一次函数y=1某(某≥0)图像上一点,过点A作某轴的垂线l,B是l上一点(B在A上方),在AB的2右侧以AB为斜边作等腰直角三角形ABC,反比例函数y面积是.k(k)0)的图像过点B、C,若△OAB的面积为6,则△ABC的某答案:18.析:设点A(4a,2a),B(4a,2b),则C点的横坐标为4a+(3a-b)(a-b)=0,解得:a=b(舍去)或b=3a.S△ABC=1(2b-2a),C点的坐标为(3a+b,a+b).所以4a·2b=(3a+b)(a+b),21(2b-2a)·4a=8a2=6,k=4a·2b=24a2=18.2三、解答题:(本大题共6个小题,满分60分)19.(6分)先化简,再求值:(某+2)(某-2)-某(某-1),其中某=-2.思路分析:先化简,再代入求值.解:原式=某2-4-某2+某=某-4,当某=-2时,原式=-2-4=-6.20.(8分)解方程和不等式组:(1)2某53某3=-3某2某26(2)2某64某15思路分析:(1)解分式方程,检验方程的解是否为增根;(2)分别解两个不等式再确定不等式组的解集.解:(1)去分母得2某-5=3某-3-3(某-2),去括号移项合并同类项得,2某=-8,解得某=-4,经检验某=4是原方程的根,所以原方程的根是某=4;(2)解不等式①得某≥-3,解不等式②得某<1,所以不等式组的解集是-3≤某<1.21.(8分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”“打球”“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是.(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.思路分析:(1)利用爱好阅读的人数与占样本的百分比计算,30÷30%=100;(2)其他100某10%=10人,打球100-30-20-10=40人;(3)利用样本中的数据估计总体数据.解:(1)100;(2)其他10人,打球40人;(3)2000某740=800,所以估计该校课余兴趣爱好为“打球”的学生为数为800人.10022.(8分)一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.思路分析:(1)列举法求概率;(2)画树状图法求概率.解:(1)从4个球中摸出一个球,摸出的球面数字为1的概率是(2)用画树状图法求解,画树状图如下:1;4第一个球第二个球数字之和1234423134124123534356457567从树状图分析两次摸球共出现12种可能情况,其中两次摸出的乒乓球球面上数字之和为偶数的概率为:41=.12323.(8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.思路分析:(1)证明△ABC≌△DEC;(2)由∠EAC=45°通过等腰三角形的性质求解.解:(1)证明:∵∠BCE=∠ACD=90°,∴∠ACB=∠DCE,又∵∠BAC=∠D,BC=CE,∴△ABC≌△DEC,∴AC=CD.(2)∵∠ACD=90°,AC=CD,∴∠EAC=45°,8∵AE=AC∴∠AEC=∠ACE=1某(180°-45°)=67.5°,2∴∠DEC=180°-67.5°=112.5°.24.(8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种共50个,总费用不超过5500元,那么最多可购买多少个足球?思路分析:(1)根据等量关系列方程组求解;(2)根据不等关系列不等式求解.解:(1)解设每个篮球售价某元,每个足球售价y元,根据题意得:2某y320某100,解得:3某2y540y120答:每个篮球售价100元,每个足球售价120元.(2)设学校最多可购买a个足球,根据题意得100(50-a)+120a≤5500,解得:a≤25.答:学校最多可购买25个足球.25.(8分)如图,已知一次函数y=k某+b的图像与某轴交于点A,与反比例函数y=作BC⊥某轴于点C,点D(3-3n,1)是该反比例函数图像上一点.m(某<0)的图像交于点B(-2,n),过点B某(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=k某+b的表达式.思路分析:(1)将点B、D坐标代入反比例函数解析式求解m的值;(2)先求BD的解析式,再由线段垂直平分线的性质求得点A坐标,最后求AB的解析式.9解:(1)把B(-2,n),D(3-3n,1)代入反比例函数y=m得,某m62nm解得:,所以m的值为-6.n333nm(2)由(1)知B、D两点坐标分别为B(-2,3),D(-6,1),1p2pq3设BD的解析式为y=p某+q,所以,解得26pq1q4所以一次函数的解析式为y=1某+4,与某轴的交点为E(-8,0)2延长BD交某轴于E,∵∠DBC=∠ABC,BC⊥AC,∴BC垂直平分AC,∴CE=6,∴点A(4,0),将A、B点坐标代入y=k某+b得1k2kb31,解得,所以一次函数的表达式为y=-某+2.224kb0b226.(10分)如图1,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,一定是等角线四边形(填写图形名称);②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还需要满足时,四边形MNPQ是正方形;⑵如图2,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点.②若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是;②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由.10思路分析:(1)①矩形是对角线相等的四边形;②四边形的中点四边形是平行四边形,等角线四边形的中点四边形是菱形,当对角线AC、BD互相垂直时四边形MNPQ是正方形;⑵①根据题意画出图形,根据图形分析确定DF垂直平分AB,从而计算面积SABED=S△ABD+S△BCD;②如图四边形ABED面积的最大值时点E在直线AC上,点D是以AE 为斜边的等腰直角三角形的直角顶点,进而求得四边形ABED面积的最大值.解:(1)①矩形;②AC⊥BD;⑵①∵∠ABC=90°,AB=4,BC=3,∴BD=AC=5,作DF⊥AB于F,∵AD=BD,∴DF垂直平分AB,∴BF=2,由勾股定理得DF=21,由题意知SABED=S△ABD+S△BCD=1111某AB某DF+某BC某BF=某4某21+某3某2=221+3;2222②如图四边形ABED面积的最大值时点E在直线AC上,点D是以AE为斜边的直角三角形的直角顶点,所以AE=6,DO=3,在△ABC中,由面积公式得点B到AC的距离为12,所以四边形ABED面积的最大值=5S△AED+S△ABE=1211某6某3+某6某=16.2.5221127.(10分)如图,在平面直角坐标系某Oy中,已知二次函数y=-(1)求二次函数的表达式;12某+b某的图像过点A(4,0),顶点为B,连接AB、BO.2(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CP的对称点为B′,当△OCB′为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2BD,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.思路分析:(1)将A点坐标代入y=-12某+b某求得二次函数的表达式;2(2)根据题意画出图形,根据图形分析,若△OCB′为等边三角形,则∠OCB′=∠QCB′=∠QCB=60°,由∠B=90°,根据特殊三角函数值求得BQ的长;(3)按点F在OB上和点B在OA上进行讨论确定点E的位置,当点F在BA上,点E与点A重合时△DOF与△DEF全等;当F在OA上,DE∥AB时△DOF与△DEF全等,点O关于DF的对称点落在AB上时△DOF与△DEF 全等.解:(1)将A(4,0)代入y=-1212某+b某得,-某4+b某4=0,解得b=2,2212某+2某;2所以二次函数的表达式为y=-12(2)根据题意画出图形,二次函数y=-12某+2某的顶点坐标为B(2,2),与两坐标轴的交点坐标为O(0,0)、A(4,0).此时2OB=22,BC=,所以2,若△OCB′为等边三角形,则∠OCB′=∠QCB′=∠QCB=60°,因为∠B=90°tan∠QCB=QB:CB=3,所以QB=6;(3)①当点F在OB上时,如图,当且仅当DE∥OA,即点E与点A重合时△DOF≌△FED,此时点E的坐标为E(4,0);②点F在OA时,如图DF⊥OA,当OF=EF时△DOF≌△DEF,由于OD=2BD,所以点D坐标为(44,),点F坐33标为(48,0),点E坐标为(,0);33点F在OA时,如图,点O关于DF的对称点落在AB上时,△DOF≌△DEF,此时OD=DE=2BD=13432,BE=236,作BH⊥OA于H,EG⊥OA于G,由相似三角形的性质求得HG=233,所以点E坐标为(2+233,2-233).综上满足条件的点E的坐标为(4,0)、(82,0)、(2+333,2-233).28.(10分)如图,已知一次函数y=-(1)求线段AB的长度;4某+4的图像是直线l,设直线l分别与y轴、某轴交于点A、B.3(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.①当⊙N与某轴相切时,求点M的坐标;②在①的条件下,设直线AN与某轴交于点C,与⊙N的另一个交点为D,连接MD交某轴于点E.直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.思路分析:(1)求A、B两点坐标,由勾股定理求得AB的长度;(2)①根据题意画出图形,根据△AOB∽△NHA,△HAN≌△FMA计算出线段FM与OF的长;②分点P位于y轴负半轴上和点P位于y轴正半轴上两种情况进行分析,借助于相似三角形的对应线段比等于相似比列方程求得交点Q坐标,再将点Q坐标代入AB及NP解析式求得交点P的坐标.解:(1)函数y=-4某+4中,令某=0得y=4,令y=0得,某=3,所以A(0,4),B(3,0).AB=3242=5.3(2)①由图1知,当⊙N与某轴相切于点E时,作NH⊥y轴于H,则四边形NHOE为矩形,HO=EN=AM=AN,14∵∠HAN+∠OAB=90°,∠HNA+∠HAN=90°,∴∠OAB=∠HAN,因为AM⊥AN,所以△AOB∽△NHA,图1∴AHHNAN==,设AH=3某,则HN=4某,AN=NE=OH=5某,∵OH=OA+AH,∴3某+4=5某,∴某=2,OBAOAB∴AH=6,HN=8,AN=AM=10.∵AM=AN,∠OAB=∠HAN,∴Rt△HAN≌Rt△FMA,∴FM=6,AF=8,OF=4,∴M(6,-4).k1b4②当点P位于y轴负半轴上时,设直线AN的解析式为y=k某+b,将A(0,4),N(8,10)代入得,解得3,b8kb104所以直线AN的解析式为y=163某+4.所以点C坐标为(-,0),过D34作某轴的垂线可得点D(16,16).设点P坐标为(0,-p),N(8,10)则直线NP解析式为y=10p某-p,作EF⊥CD于F,8CE=1640202280+8=,AC=,CD=+20=,由相似三角形性质可得EF=8,△CDE∽△APQ,则333334p点Q横坐标绝对值(34p),解得点Q的横坐标绝对值为,将点Q 横坐标绝对值代入AB及NP解析式得80108310p(34p)(34p)4·-p=·(-)+4,解得p1=-4(舍去),p2=6,所以P(0,-6).81010315。
2022年江苏省常州市中考数学试卷(含答案解析)
一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项
是正确的)
1.2022的相反数是
A.2022B. C. D.
2.若二次根式 有意义,则实数 的取值范围是
A. B. C. D.
3.下列图形中,为圆柱的侧面展开图的是()
(3) 、 、 是二次函数 的图像上互不重合的三点.已知点 、 的
横坐标分别是 、 ,点 与点 关于该函数图像的对称轴对称,求 的
度数.
28.(本小题满分10分)
现有若干张相同的半圆形纸片,点 是圆心,直径 的长是 , 是半圆弧上的一点(点 与点 、 不重合),连接 、 .
(1)沿 、 剪下 ,则 是______三角形(填“锐角”、“直角”或“钝角”);
∴∠A′OB=∠AOB-∠AOA′=74°-37°=37°,
∵OA′=OA′,
∴△AOA′≌△BOA′(SAS),
∴A′A=A′B.
25.
解:
(1) ,
故答案为:2022;
(2)根据题意有: ,
整理得: ,
解得n=9,(负值舍去),
故n的值为9.
26.
(1)不存在,
理由如下:
假设正方形ABCD存在“等形点”点O,即存在△OAB≌△OCD,
共有6种结果,抽到的2张小纸条上的语句对函数的描述相符合的有①、③和①、⑤和②、④共3种,
抽到的2张小纸条上的语句对函数的描述相符合的概率为 .
23.
(1)解:∵一次函数 的图象 轴交于点 ,
∴ ,OB=4,
∴一次函数解析式为 ,
设点C(m,n),
∵ 的面积是2.
江苏省常州市2019年中考数学真题试题(含解析)
江苏省常州市2019年中考数学真题试题(含解析)1.选择题1.-3的相反数是()。
A。
3 B。
-2 C。
1 D。
-12.若代数式有意义,则实数x的取值范围是()。
A。
x = -1 B。
x = 3 C。
x ≠ -1 D。
x ≠ 33.如图是某几何体的三视图,该几何体是()。
A。
圆柱 B。
正方体 C。
圆锥 D。
球4.如图,在线段PA、PB、PC、PD中,长度最小的是()。
A。
线段PA B。
线段PB C。
线段PC D。
线段PD5.若△ABC~△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的周长的比为()。
A。
2:1 B。
1:2 C。
4:1 D。
1:46.下列各数中与2+的积是有理数的是()。
A。
2+ B。
2 C。
1:2 D。
2-77.判断命题“如果n<1,那么n^2-1<0”是假命题,只需举出一个反例。
反例中的n可以为()。
A。
-2 B。
0 C。
1 D。
28.随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切。
某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示时到t时PM2.5的值y1的极差(即时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是()。
A。
y2随t的增大而增大 B。
y2随t的增大而减小 C。
y2与t无关 D。
y2先增大后减小2.填空题9.计算:a^3 ÷ a = ____。
答案:a^210.4的算术平方根是 ____。
答案:211.分解因式:ax^2-4a = ____。
答案:a(x+2)(x-2)12.如果∠α=35°,那么∠α的余角等于 ____°。
答案:5513.如果a-b-2=0,那么代数式1+2a-2b的值是 ____。
答案:314.平面直角坐标系中,点P(-3.4)到原点的距离是 ____。
答案:515.若(1.2)是关于x、y的二元一次方程ax+y=3的解,则a = ____。
2022年江苏省常州市中考数学试卷附解析
2022年江苏省常州市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.sin65°与 cos26°之间的 系是( )A .sin65°<cos26°B .sin65°>cos26°C .sin65°= cos26°D .sin65°+cos26°= 1 2.把ad bc =写成比例式,错误的是( ) A .a:b=c:dB .b :d=a :cC .b:a=d:cD .b:d=c:a 3.抛物线2y ax =和22y x =的形状相同,则 a 的值是( )A .2B .-2C .2±D . 不确定 4.如图,1l ∥2l ,△ABC 为等边三角形,∠ABD=25°,则∠ACE 的度数是( )A .45°B .35°C .25°D .15°5. 一副三角板按如图方式摆放,且∠1 的度数比∠2 的度数大50°,若设∠1 =x °,∠2 = y °,则可得到方程组为( )A . 50180x y x y =-⎧⎨+=⎩B . 50180x y x y =+⎧⎨+=⎩C . 5090x y x y =-⎧⎨+=⎩D . 5090x y x y =+⎧⎨+=⎩6.以12x y =-⎧⎨=⎩为解的二元一次方程组( ) A . 有且只有一个B . 有且只有两个C . 有且只有三个D . 有无数个 7.计算23(2)a -的结果是( )A .56a -B .66a -C .58a -D .68a - 二、填空题8.一个正方体的每个面上都写一个汉字,这个正方体的平面展开图如图所示,则这个正方体中与“菏”字相对的面上的字为__________.9.一位画家把边长为1米的7个相同正方体摆成如图的形式,然后把露出的表面涂上颜色,那涂色面积为 米2. 10.当你乘坐的车沿一条平坦的路向前行驶时,你前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了.如图所示,当你所在的位置在 范围内时,你会看到后面那座高大的建筑物.11.已知3x=4y ,则yx =________. 12.正方形ABCD 中,对角线AC=8 cm ,点P 是AB 边上任意一点,则P 到AC ,BD 的距离之和为 .13.如果不等式2(1)3x a --≤的正整数解是 1、2、3,那么a 的取值范围是 .14.若不等式组2123x a x b -<⎧⎨->⎩的解为22x -<<,则(1)(1)a b +-的值等于 . 15. 如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,则∠C= .16.若0132=++x x 则x x312+= . 17.若=,,则b a b b a ==+-+-01222.三、解答题18.如图所示,一 个猎人在站在土丘上寻找猎物,A 处有一小白兔,一旦被猎人发现一定会被猎取,聪明的小免躲在什么范围内能逃过猎人的视线?请画图说明.19.图l 是“口子窖”酒的一个由铁皮制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图2),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm ,有三条边的长是3cm ,每个内角都是120º,该六棱校的高为3cm .现沿它的侧棱剪开展平,得到如图3的平面展开图.(1)制作这种底盒时,可以按图4中虚线裁剪出如图3的模片.现有一块长为17.5cm、宽为16.5cm的长方形铁皮,请问能否按图4的裁剪方法制作这样的无盖底盒?并请你说明理由;(2)如果用一块正三角形铁皮按图5中虚线裁剪出如图3的模片,那么这个正三角形的边长至少应为cm.(说明:以上裁剪均不计接缝处损耗.)20.已一段铁丝长为 80 cm,把它弯成半径为160cm的一段圆弧,求铁丝两端间的距离.21.某超市销售一种商品,每件商品的成本是20元.经统计销售情况发现,当这种商品的单价定为40元时,每天售出200件.在此基础上,假设这种商品的单价每降低1元,每天就会多售出20件.(1)用代数式表示,这种商品的单价为x元(x<40)时,销售1件该商品的利润和每天销售该商品的数量;(2)当商品单价定为多少时,该超市每天销售这种商品获得的利润为4500元.22.已知:如图,矩形ABCD的对角线BD,AC相交于点0,EF⊥BD于0,交AD于点E,交BC于点F,且EF=BF.求证:OF=CF.23.如图所示,是两个正五边形,如果想密铺,还需要怎么样的多边形?24.小华家距离学校 2.4 km,某一天小华从家中出发去上学,恰好行走到一半的路程时,发现离到校时间只有 12 min 了.如果小华要按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?25.k为何值时,代数式2(1)3k-的值不大于代数式156k-的值.59k<26.请你在如图所示的方格纸中,画一个与左上角已有图形全等的图形.27.如图,已知 0是直线AD 上的一点,∠A0B 、∠BOC 、∠COD 三个角从小到大依次相差25°,求这三个角的度数.28.计算: 36464; 33128-- (3)200812316()(1)2--+-;(4)2223--结果保留 3个有效数字).29.一正方形的面积为 10cm 2,求以这个正方形的边为直径的圆的面积. (π取 3.14)30. 一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD 上,(如图所示)他测得BC =2.7米,CD=1.2米.你能帮他求出树高为多少米吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.B5.D6.D7.D二、填空题8.加9.2310.BA4312.4 cm13.13a≤<14.-1415.38.5°16.-117.2,1三、解答题18.如图所示,小兔躲在 BC区域内能逃过猎人的视线.19.(1)能.理由:由题设可知,图4中长方形的宽为63+6<16.5,长方形的长为12+33 <17.5.故长为17.5 cm、宽为16.5 cm的长方形铁皮,能按图4的裁剪方法制成这样的无盖底盒.(2)63+15.20.如图所示:圆弧所在的圆心角=1808090160oππ⨯=⨯,∵OA=OB=160cm,∠AOB=90°,∴AB=160221.(1)x-20;200+(40-x)×20;(2)(x-20)(1000-20x)=4500,x=35.22.证△AE0≌△CFO,OF=12BF,∠FCO=30°正十边形24.6 km/h25.59k<26.略27.设∠AOB=x,则∠BOC=25°+x,∠COD=25°+ 25°x.根据题意,得∠AOB +∠BOC+∠COD=180°,即x+ 25°+x + 25°+ 25°+x=180°解得x=35°.∴∠AOB=35°,∠BOC=60°,∠COD=85°28.(1)4;(2)32- (3) -14;(4) -3.5029.7. 85cm2 30.4.2m。
江苏省常州市2020年中考数学试题(解析版)
常州市二○二○年初中学业水平考试数学试题注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效.考试结束后,请将本试卷和答题卡一并交回.考试时不允许使用计算器.2.答题前,考生务必将自己的姓名、考试证号填写在试卷上,并填写好答题卡上的考生信息. 3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1. 2的相反数是( ) A. 12- B. 12 C. 2 D. 2-【答案】D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D .2.计算62m m ÷结果是( ) A. 3mB. 4mC. 8mD. 12m【答案】B【解析】【分析】直接利用同底数幂除法的运算法则解答即可.【详解】解:62624m m m m -÷==.故选:B .【点睛】本题考查了同底数幂除法,掌握公式m m n m m m m -=÷是解答本题的关键.3.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 三棱柱C. 四棱柱D. 四棱锥【答案】C【解析】【分析】 通过俯视图为圆得到几何体为柱体,然后通过主视图和左视图可判断几何体为四棱柱.【详解】解:由图可知:该几何体是四棱柱.故选:C .【点睛】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助.4.8的立方根是( ) 2 B. ±2 C. ±2 D. 2【答案】D【解析】【详解】解:根据立方根的定义,由23=8,可得8的立方根是2故选:D .【点睛】本题考查立方根.5.如果x y <,那么下列不等式正确的是( )A. 22x y <B. 22x y -<-C. 11x y ->-D. 11x y +>+ 【答案】A【解析】【分析】根据不等式的性质对各选项分析判断后利用排除法求解.【详解】解:A 、由x <y 可得:22x y <,故选项成立;B 、由x <y 可得:22x y ->-,故选项不成立;C 、由x <y 可得:11x y -<-,故选项不成立;D 、由x <y 可得:11x y +<+,故选项不成立;故选A.【点睛】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.如图,直线a 、b 被直线c 所截,//a b ,1140∠=︒,则2∠的度数是()A. 30°B. 40°C. 50°D. 60° 【答案】B【解析】【分析】先根据邻补角相等求得∠3,然后再根据两直线平行、内错角相等即可解答.【详解】解:∵∠1+∠3=180°,1140∠=︒∴∠3=180°-∠1=180°-140°=40°∵//a b∴∠2=∠3=40°.故答案为B .【点睛】本题考查了平行线的性质,掌握“两直线平行、内错角相等”是解答本题的关键.7.如图,AB是O的弦,点C是优弧AB上的动点(C不与A、B重合),CH AB⊥,垂足为H,点M 是BC的中点.若O的半径是3,则MH长的最大值是()A. 3B. 4C. 5D. 6【答案】A【解析】【分析】根据直角三角形斜边中线定理,斜边上的中线等于斜边的一半可知MH=12BC,当BC为直径时长度最大,即可求解.【详解】解:∵CH AB⊥∴∠BHC=90°∵在Rt△BHC中,点M是BC的中点∴MH=12BC∵BC为O的弦∴当BC为直径时,MH最大∵O的半径是3∴MH最大为3.故选:A.【点睛】本题考查了直角三角形斜边中线定理,数形结合是结题关键.8.如图,点D 是OABC 内一点,CD 与x 轴平行,BD 与y 轴平行,2,135,2ABD BD ADB S =∠=︒=.若反比例函数()0k y x x =>的图像经过A 、D 两点,则k 的值是( )A. 22B. 4C. 32D. 6【答案】D【解析】【分析】 作AE BD ⊥交BD 的延长线于点E ,作AF x ⊥轴于点F ,计算出AE 长度,证明BCD AOF ≅△△,得出AF 长度,设出点A 的坐标,表示出点D 的坐标,使用D D A A x y x y =,可计算出k 值.【详解】作AE BD ⊥交BD 的延长线于点E ,作AF x ⊥轴于点F∵135ADB ︒∠=∴45ADE ︒∠=∴ADE 为等腰直角三角形∵2,2BD S ABD =△∴122ABD S BD AE =⋅=△,即22AE =∴DE=AE=22∵BC=AO ,且//BC AO ,//CD OF∴BCD AOF ∠=∠ ∴BCD AOF ≅△△ ∴2AF BD ==∴32D y =设点A (2)m ,(22,32)D m -∴2(22)32m m =-⋅解得:32m =∴3226k =⨯=故选:D .【点睛】本题考查了反比例函数与几何图形的综合,利用点A和点D表示出k的计算是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:|-2|+(π-1)0=____.【答案】3【解析】【分析】根据绝对值和0次幂的性质求解即可.【详解】原式=2+1=3.故答案为:3.【点睛】本题考查了绝对值和0次幂的性质.10.若代数式11x -有意义,则实数x 的取值范围是________. 【答案】x≠1【解析】【分析】分式有意义时,分母x-1≠0,据此求得x 的取值范围.【详解】解:依题意得:x-1≠0,解得x≠1,故答案为:x≠1.【点睛】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.11.地球半径大约是6400km ,将6400用科学记数法表示为________.【答案】36.410⨯【解析】【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】6400=36.410⨯.故答案为:36.410⨯.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.分解因式:3x -x=__________.【答案】x (x+1)(x -1)【解析】解:原式13.若一次函数2y kx =+的函数值y 随自变量x 增大而增大,则实数k 的取值范围是__________.【答案】k >0【解析】分析】直角利用一次函数增减性与系数的关系解答即可.【详解】解:∵一次函数2y kx =+的函数值y 随自变量x 增大而增大∴k >0.故答案为k >0.【点睛】本题主要考查了一次函数增减性与系数的关系,当一次函数的一次项系数大于零时,一次函数的函数值随着自变量x 的增大而增大.14.若关于x 的方程220x ax +-=有一个根是1,则a =_________.【答案】1【解析】【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于a 的一次方程,然后解此一次方程即可.【详解】解:把x=1代入方程220x ax +-=得1+a-2=0,解得a=1.故答案是:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.【答案】30【解析】【分析】根据垂直平分线的性质得到∠B=∠BCF ,再利用等边三角形的性质得到∠AFC=60°,从而可得∠B.【详解】解:∵EF 垂直平分BC ,∴BF=CF ,∴∠B=∠BCF ,∵△ACF 为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.【点睛】本题考查了垂直平分线的性质,等边三角形的性质,外角的性质,解题的关键是利用垂直平分线的性质得到∠B=∠BCF.16.数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD 中,2,120AB DAB =∠=︒.如图,建立平面直角坐标系xOy ,使得边AB 在x 轴正半轴上,点D 在y 轴正半轴上,则点C 的坐标是_________.【答案】(2,3) 【解析】 【分析】 根据菱形的性质可知AD=AB=CD=2,∠OAD=60°,由三角函数即可求出线段OD 的长度,即可得到答案.【详解】解:∵四边形ABCD 为菱形,2AB =∴AD=AB=CD=2,AB//CD∵120DAB ∠=︒∴60DAO ∠=︒在Rt △DOA 中,3sin 60=2OD AD ︒= ∴OD=3∴点C 的坐标是(2,3).故答案为:(2,3).【点睛】本题考查了平面直接坐标系中直角三角形的计算问题,以及菱形的性质,熟练掌握特殊三角函数值是解题关键.17.如图,点C 在线段AB 上,且2AC BC =,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 、BCFG ,连接EC 、EG ,则tan CEG ∠=_________.【答案】12【解析】【分析】设BC=a ,则AC=2a ,然后利用正方形的性质求得CE 、CG 的长、∠GCD=ECD=45°,进而说明△ECG 为直角三角形,最后运用正切的定义即可解答.【详解】解:设BC=a ,则AC=2a∵正方形ACDE∴EC=()()222222a a a +=,∠ECD=1452ACD ∠= 同理:CG=2a ,∠GCD=1452BCD ∠= ∴21tan 222CG a CEG CE a ∠===. 故答案为12.【点睛】本题考查了正方形的性质和正切的定义,根据正方形的性质说明△ECG 是直角三角形是解答本题的关键.18.如图,在ABC 中,45,62B AB ∠=︒=,D 、E 分别是AB 、AC 的中点,连接DE ,在直线DE 和直线BC 上分别取点F 、G ,连接BF 、DG .若3BF DG =,且直线BF 与直线DG 互相垂直,则BG 的长为_______.【答案】4或2【解析】【分析】分当点F 在点D 右侧时,当点F 在点D 左侧时,两种情况,分别画出图形,结合三角函数,勾股定理以及平行四边形的性质求解即可.【详解】解:如图,当点F 在点D 右侧时,过点F 作FM ∥DG ,交直线BC 于点M ,过点B 作BN ⊥DE ,交直线DE 于点N ,∵D,E 分别是AB 和AC 中点,AB=∴DE ∥BC ,BD=AD=∠FBM=∠BFD ,∴四边形DGMF 为平行四边形,则DG=FM ,∵DG ⊥BF ,BF=3DG ,∴∠BFM=90°,∴tan ∠FBM=13FM BF ==tan ∠BFD , ∴13BN FN =, ∵∠ABC=45°=∠BDN ,∴△BDN 为等腰直角三角形,∴3=, ∴FN=3BN=9,DF=GM=6,∵BF=∴FM=13BF ,∴10=,∴BG=10-6=4;当点F 在点D 左侧时,过点B 作BN ⊥DE ,交直线DE 于N ,过点B 作BM ∥DG ,交直线DE 于M ,延长FB 和DG ,交点为H ,可知:∠H=∠FBM=90°,四边形BMDG 为平行四边形,∴BG=MD ,BM=DG ,∵BF=3DG ,∴tan ∠BFD=13BM DH BN BF FH FN ===, 同理可得:△BDN 为等腰直角三角形,BN=DN=3,∴FN=3BN=9,∴BF=2293310+=,设MN=x ,则MD=3-x ,FM=9+x ,在Rt △BFM 和Rt △BMN 中,有2222FM BF MN BN -=+,即()()22293103x x +-=+, 解得:x=1,即MN=1,∴BG=MD=ND-MN=2.综上:BG 的值为4或2.故答案为:4或2.【点睛】本题考查了等腰直角三角形的判定和性质,三角函数,平行四边形的判定和性质,勾股定理,难度较大,解题的关键是根据题意画出图形,分清情况.三、解答题(本大题共10小题,共84分,请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.先化简,再求值:2(1)(1)x x x +-+,其中2x =.【答案】1x +;3【解析】【分析】先利用完全平方公式和单项式乘多项式化简,再代入求值即可.【详解】解:2(1)(1)x x x +-+=2212x x x x ++--=1x +将x=2代入,原式=3.【点睛】本题主要考查了整式的混合运算,解题的关键是正确的化简.20.解方程和不等式组:(1)2211x x x+=--; (2)260,3 6.x x -<⎧⎨-⎩ 【答案】(1)x=0;(2)﹣2≤x <3【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解; (2)分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【详解】解:(1)2211x x x+=-- 去分母得:x 2=2x 2--解得x=0,经检验x=0是分式方程的解;(2)26036xx-<⎧⎨-⎩,①,②由①得:x<3由②得:x≥﹣2则不等式组的解集为﹣2≤x<3.【点睛】本题考查了解分式方程与解不等式组,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解一元一次不等式组要注意不等号的变化.21.为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如下统计图.(1)本次抽样调查的样本容量是_________;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.【答案】(1)100;(2)见解析;(3)300人.【解析】【分析】(1)用条形统计图中最喜爱打排球的人数除以扇形统计图中最喜爱打排球的人数所占百分比即可求出本次抽样调查的样本容量;(2)用总人数乘以最喜爱打乒乓球的人数所占百分比即可求出最喜爱打乒乓球的人数,用总人数减去最喜爱其它三项运动的人数即得最喜爱踢足球的人数,进而可补全条形统计图;(3)用最喜爱打篮球的人数除以总人数再乘以2000即可求出结果.【详解】解:(1)本次抽样调查的样本容量是25÷25%=100;故答案为:100;(2)打乒乓球的人数为100×35%=35人,踢足球的人数为100-25-35-15=25人;补全条形统计图如图所示:(3)152000300100⨯=人;答:估计该校最喜爱“打篮球”的学生有300人.【点睛】本题考查了条形统计图、扇形统计图、样本容量以及利用样本估计总体等知识,属于基本题型,熟练掌握上述基本知识是解题关键.22.在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是_________;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.【答案】(1)13;(2)23【解析】【分析】(1)由概率公式即可得出答案;(2)画出树状图,得到所有等可能的情况,再利用概率公式求解即可.【详解】解:(1)∵共有3个号码,∴抽到1号签的概率是13,故答案为:13;(2)画树状图如下:所有等可能的情况有6种,其中抽到的2支签上签号的和为奇数的有4种,∴抽到的2支签上签号的和为奇数的概率为:46=23. 【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 23.已知:如图,点A 、B 、C 、D 在一条直线上,//,,EA FB EA FB AB CD ==.(1)求证:E F ∠=∠;(2)若40,80A D ∠=︒∠=︒,求E ∠的度数.【答案】(1)见解析;(2)60°【解析】【分析】(1)根据已知条件证明△ACE ≌△BDF ,即可得到结论;(2)根据全等三角形的性质得到∠D=∠ACE=80°,再利用三角形内角和定理求出结果.【详解】解:(1)∵AE ∥BF ,∴∠A=∠DBF ,∵AB=CD ,∴AB+BC=CD+BC ,即AC=BD ,又∵AE=BF ,∴△ACE ≌△BDF (SAS ),∴∠E=∠F ;(2)∵△ACE ≌△BDF ,∴∠D=∠ACE=80°,∵∠A=40°,∴∠E=180°-∠A-∠ACE=60°.【点睛】本题考查了全等三角形的判定和性质和三角形内角和,解题的关键是找出三角形全等的条件. 24.某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元. (1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?【答案】(1)每千克苹果售价8元,每千克梨6千克;(2)最多购买5千克苹果【解析】【分析】(1)设每千克苹果售价x 元,每千克梨y 千克,由题意列出x 、y 的方程组,解之即可;(2)设购买苹果a 千克,则购买梨(15-a )千克,由题意列出a 的不等式,解之即可解答.【详解】(1)设每千克苹果售价x 元,每千克梨y 千克,由题意,得:326222x y x y +=⎧⎨+=⎩, 解得:86x y =⎧⎨=⎩, 答:每千克苹果售价8元,每千克梨6千克,(2)设购买苹果a 千克,则购买梨(15-a )千克,由题意,得:8a+6(15-a)≤100,解得:a ≤5,∴a 最大值为5,答:最多购买5千克苹果.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解答的关键是认真审题,分析相关信息,正确列出方程组和不等式.25.如图,正比例函数y kx =的图像与反比例函数()80y x x=>的图像交于点(),4A a .点B 为x 轴正半轴上一点,过B 作x 轴的垂线交反比例函数的图像于点C ,交正比例函数的图像于点D .(1)求a 的值及正比例函数y kx =的表达式;(2)若10BD =,求ACD △的面积.【答案】(1)a=2;y=2x ;(2)635 【解析】【分析】(1)已知反比例函数解析式,点A 在反比例函数图象上,故a 可求;求出点A 的坐标后,点A 同时在正比例函数图象上,将点A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设B 点坐标为(b ,0),则D 点坐标为(b ,2b),根据BD=10,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.【详解】(1)已知反比例函数解析式为y=8x,点A(a ,4)在反比例函数图象上,将点A 坐标代入,解得a=2,故A 点坐标为(2,4),又∵A 点也在正比例函数图象上,设正比例函数解析为y=kx ,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x .故a=2;y=2x .(2)根据第一问的求解结果,以及BD 垂直x 轴,我们可以设B 点坐标为(b ,0),则C 点坐标为(b ,8b )、D 点坐标为(b ,2b),根据BD=10,则2b=10,解得b=5,故点B 的坐标为(5,0),D 点坐标为(5,10),C 点坐标为(5,85),则在△ACD 中,()18105225S ⎛⎫=⨯-⨯- ⎪⎝⎭△ACD =635. 故△ACD 的面积为635. 【点睛】(1)本题主要考查求解正比例函数及反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法是解答本题的关键.(2)本题根据第一问求解的结果以及BD 垂直x 轴,利用待定系数法,设B 、C 、D 三点坐标,求出B 、C 、D 三点坐标,是解答本题的关键,同时掌握三角形面积公式,即可求解.26.如图1,点B 在线段CE 上,Rt △ABC ≌Rt △CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. ①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.【答案】(1)1;(2)12π;(3)23OF = 【解析】【分析】(1)根据直角三角形的性质和全等三角形的性质可得∠ACF =∠ECF =30°,即CF 是∠ACB 的平分线,然后根据角平分线的性质可得点F 到直线CA 的距离即为EF 的长,于是可得答案;(2)①易知E 点和F 点的运动轨迹是分别以CF 和CE 为半径、圆心角为30°的圆弧,据此即可画出旋转后的平面图形;在图3中,先解Rt △CEF 求出CF 和CE 的长,然后根据S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )即可求出阴影面积;②作EH ⊥CF 于点H ,如图4,先解Rt △EFH 求出FH 和EH 的长,进而可得CH 的长,设OH=x ,则CO 和OE 2都可以用含x 的代数式表示,然后在Rt △BOC 中根据勾股定理即可得出关于x 的方程,解方程即可求出x 的值,进一步即可求出结果.【详解】解:(1)∵30BAC ∠=︒,90ABC ∠=︒,∴∠ACB =60°,∵Rt △ABC ≌Rt △CEF ,∴∠ECF =∠BAC =30°,EF =BC =1,∴∠ACF =30°,∴∠ACF =∠ECF =30°,∴CF 是∠ACB 的平分线,∴点F 到直线CA 的距离=EF =1;故答案为:1;(2)①线段EF 经旋转运动所形成的平面图形如图3中的阴影所示:在Rt △CEF 中,∵∠ECF =30°,EF =1,∴CF =2,CE 3由旋转的性质可得:CF=CA =2,CE=CG 3∠ACG =∠ECF =30°, ∴S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )=S 扇形ACF -S 扇形CEG =(2230330236036012πππ⨯⨯-=; 故答案为:12π;②作EH ⊥CF 于点H ,如图4,在Rt △EFH 中,∵∠F =60°,EF =1, ∴13,2FH EH == ∴CH =13222-=, 设OH=x ,则32OC x =-,2222223324OE EH OH x x ⎛=+=+=+ ⎝⎭, ∵OB=OE ,∴2234OB x =+, 在Rt △BOC 中,∵222OB BC OC +=,∴2233142x x ⎛⎫++=- ⎪⎝⎭, 解得:16x =,∴112263OF =+=.【点睛】本题考查了旋转的性质和旋转作图、全等三角形的性质、角平分线的性质、扇形面积公式、勾股定理和解直角三角形等知识,涉及的知识点多,综合性较强,熟练掌握上述知识、灵活应用整体思想和方程思想是解题的关键.27.如图1,⊙I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交⊙I 于P 、Q 两点(Q 在P 、H 之间).我们把点P 称为⊙I 关于直线a 的“远点”,把PQ PH ⋅的值称为⊙I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为()0,4,半径为1的⊙O 与两坐标轴交于点A 、B 、C 、D .①过点E 画垂直于y 轴的直线m ,则⊙O 关于直线m 的“远点”是点_________(填“A ”、“B ”、“C ”或“D ”),⊙O 关于直线m 的“特征数”为_________;②若直线n 的函数表达式为34y x +,求O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy 中,直线l 经过点()1,4M ,点F 是坐标平面内一点,以F 2径作⊙F .若⊙F 与直线l 相离,点()1,0N -是⊙F 关于直线l 的“远点”,且⊙F 关于直线l 的“特征数”是求直线l 的函数表达式.【答案】(1)①D ;10;②⊙O 关于直线n 的“特征数”为6;(2)直线l 的解析式为y=-3x+7或y=13x+113【解析】【分析】(1)①根据题干中“远点”及“特征数”的定义直接作答即可;②过圆心O 作OH ⊥直线n ,垂足为点H ,交⊙O 于点P 、Q ,首先判断直线n 也经过点E (0,4),在Rt △EOF 中,利用三角函数求出∠EFO=60°,进而求出PH 的长,再根据“特征数”的定义计算即可; (2)连接NF 并延长,设直线l 的解析式为y=kx+b 1,用待定系数法得到114=k b n mk b +⎧⎨=+⎩①②,再根据两条直线互相垂直,两个一次函数解析式的系数k 互为负倒数的关系可设直线NF 的解析式为y=1k-x+b 2,用待定系数法同理可得2210=b k m n b k ⎧+⎪⎪⎨⎪=-+⎪⎩④⑤,消去b 1和b 2,得到关于m 、n 的方程组41n mk k m n k k -=-⎧⎪⎨-=+⎪⎩;根据⊙F 关于直线l 的“特征数”是,再利用两点之间的距离公式列出方程(m+1)2+n 2=10,把222411421k k m k k n k ⎧--=⎪⎪+⎨-⎪=⎪+⎩代入,求出k 的值,便得到m 、n 的值即点A 的坐标,再根据待定系数法求直线l 的函数表达式.注意有两种情况,不要遗漏.【详解】解:(1)①⊙O 关于直线m 的“远点”是点D ,⊙O 关于直线m 的“特征数”为DB·DE=2×5=10;②如下图:过圆心O 作OH ⊥直线n ,垂足为点H ,交⊙O 于点P 、Q ,∵直线n 的函数表达式为34y x +,当x=0时,y=4;当y=0时,x=433-, ∴直线n 经过点E (0,4),点F (43,0), 在Rt △EOF 中,∵tan ∠FEO=FO EO =4334=3 ∴∠FEO=30°,∴∠EFO=60°,Rt △HOF 中,∵sin ∠HFO=HO FO, ∴HO= sin ∠HFO·FO=2,∴PH=HO+OP=3,∴PQ·PH=2×3=6,∴⊙O 关于直线n 的“特征数”为6;(2)如下图,∵点F 是圆心,点()1,0N -是“远点”,∴连接NF 并延长,则直线NF ⊥直线l ,设NF 与直线l 的交点为点A (m ,n ),设直线l 的解析式为y=kx+b 1(k ≠0),将点()1,4M 与A (m ,n )代入y=kx+b 1中,114=k b n mk b +⎧⎨=+⎩①②②-①得:n-4=mk-k ,③又∵直线NF ⊥直线l ,∴设直线NF 的解析式为y=1k-x+b 2(k ≠0), 将点()1,0N -与A (m ,n )代入y=1k -x+b 2中, 2210=b k m n b k ⎧+⎪⎪⎨⎪=-+⎪⎩④⑤ ④-⑤得:-n=1k +m k,⑥ 联立方程③与方程⑥,得:41n mk k m n k k -=-⎧⎪⎨-=+⎪⎩解得:222411421k k m k k n k ⎧--=⎪⎪+⎨-⎪=⎪+⎩,∴点A 的坐标为(22411k k k --+,2421k k -+); 又∵⊙F 关于直线l 的“特征数”是⊙F∴NB·NA=即NA= 解得:∴[m-(-1)]2+(n-0)2)2,即(m+1)2+n 2=10, 把222411421k k m k kn k ⎧--=⎪⎪+⎨-⎪=⎪+⎩代入,解得k=-3或k=13; 当k=-3时,m=2,n=1,∴点A 的坐标为(2,1),把点A (2,1)与点()1,4M 代入y=kx+b 1中,解得直线l 的解析式为y=-3x+7;当k=13时,m=-2,n=3, ∴点A 的坐标为(-2,3), 把点A (-2,3)与点()1,4M 代入y=kx+b 1中,解得直线l 的解析式为y=13x+113. ∴直线l 的解析式为y=-3x+7或y=13x+113. 【点睛】本题是一次函数与圆的综合题,考查了直线与圆的位置关系、一次函数的图象和性质、解直角三角形等,理解“远点”和“特征数”的意义,熟练掌握一次函数的图象和性质、两点之间距离公式、两条直线互相垂直的两个一次函数解析式中系数k 互为负倒数的关系是解题的关键.28.如图,二次函数23y x bx =++的图像与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于另一点B ,抛物线过点()1,0C ,且顶点为D ,连接AC 、BC 、BD 、CD .(1)填空:b =________;(2)点P 是抛物线上一点,点P 的横坐标大于1,直线PC 交直线BD 于点Q .若CQD ACB ∠=∠,求点P 的坐标;(3)点E 在直线AC 上,点E 关于直线BD 对称的点为F ,点F 关于直线BC 对称的点为G ,连接AG .当点F 在x 轴上时,直接写出AG 的长.【答案】(1)-4;(2)(3,0)或(53,89);(310 【解析】【分析】(1)根据待定系数法求解即可;(2)分点Q 在CD 上方和点Q 在CD 下方时,两种情况,结合三角函数,勾股定理等知识求解;(3)设点C 关于BD 的对称点为C′,BD 中点为点R ,直线AC 与直线BD 交于N′,设C′(p ,q ),利用点R 到点C 和点C′的距离相等以及点N′到点C 和点C′的距离相等,求出点C′的坐标,从而得到C′N′直线的解析式,从而求出点F 坐标,再利用点F 和点G 关于直线BC 对称,结合BC 的表达式可求出点G 坐标,最后得到AG 的长.【详解】解:(1)∵抛物线过点C (1,0),∴将C (1,0)代入23y x bx =++得0=1+b+3,解得b=-4,故答案为:-4;(2)由(1)可得抛物线解析式为:243y xx =-+,当x=0时,y=3,∴A 的坐标为(0,3),当y=3时得2343x x =-+,解得x 1=0,x 2=4,∴点B 的坐标为(4,3),∵()224321y x x x =-+=--,∴顶点D 的坐标为(2,-1),设BD 与x 轴的交点为M ,作CH ⊥AB 于H ,DG ⊥CM 于G ,∴tan ∠ACH= tan ∠OAC=13, 根据勾股定理可得BC=322BD=25∴22BC CD +∴∠BCD=90°,∴tan ∠CBD=13, ∴∠ACH=∠CBM ,∵∠HCB=∠BCM=45°,∴∠ACH+∠HCB=∠CBM+∠MCB ,即∠ACB=∠CMD ,Q 在CD 上方时:若CQD ACB ∠=∠,则Q 与M 点重合,∵243y x x =-+中,令y=0,解得:x=1或3,∴抛物线与x 轴的另一个交点坐标为(3,0),即此时P 的坐标为(3,0);Q 在CD 下方时:过点Q 作QK ⊥x 轴,过点C 作CL ⊥QM 于点L ,过点A 作AN ⊥BC 于点N ,可得:AB=4,BC=,设CN=x ,则BN=,在△ABC 中,2222AC CN AB BN -=-,即()22224x x -=-,解得:x=∴cos ∠ACN=CN AC 设直线BD 的表达式为:y=mx+n ,将B ,D 代入得:3412m n m n =+⎧⎨-=+⎩,解得:25m n =⎧⎨=-⎩, ∴直线BD 的表达式为y=2m-5,令y=0,则x=52,即点M (52,0), 设点Q 坐标为(a ,2a-5),则QK=5-2a ,CM=32, ∵∠ACB=∠CMD ,∠ACB=∠CQD ,∴∠CMD=∠CQD ,即CQ=CM=32,∴cos ∠CQD=cos ∠ACB=QL CQ =,∴QL=10,QM=5,CL=5, 在△CQM 中,1122CM KQ QM CL ⋅=⋅,即32KQ ⋅=KQ=65,∴910=, ∴Q (1910,65-), 设直线CQ 表达式为:y=sx+t ,将点C 和点Q 代入,0619510s t s t =+⎧⎪⎨-=+⎪⎩,解得:4343s t ⎧=-⎪⎪⎨⎪=⎪⎩, 则CQ 表达式:4433y x =-+,联立: 2443343y x y x x ⎧=-+⎪⎨⎪=-+⎩,解得5389x y ⎧=⎪⎪⎨⎪=-⎪⎩, 即点P 坐标为(53,89), 综上:点P 的坐标为(3,0)或(53,89);(3)设点C 关于BD 的对称点为C′,BD 中点为点R ,直线AC 与直线BD 交于N′, ∴R (3,1),设C′(p ,q ),由题意可求得:直线AC 表达式为:y=-3x+3,直线BD 表达式为:y=2x-5,直线BC 的表达式为:y=x-1,令-3x+3=2x-5,解得:x=85,则y=95-, ∴点N′(85,95-),∵点C 和C′关于直线BD 对称,∴CR=C′R=12CN′=C′N′=5=, 则有()()22231p q -+-=,22289555p q ⎛⎫⎛⎫⎛⎫-++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即222262501618110555p p q q p p q q ⎧-+-+=⎪⎨-+++=⎪⎩①②, ①-②得:12p q =-③,代入①, 解得:65q =-或0(舍),代入③中,得:175p =, 解得:17565p q ⎧=⎪⎪⎨⎪=-⎪⎩,即点C′(175,65-), ∵N′(85,95-), 求得直线C′N′的表达式为:1733y x =-, ∵点F 在x 轴上,令y=0,则x=7,∴点F (7,0),又∵点F 和点G 关于直线BC 对称,BC :y=x-1,连接CG ,可得∠BCF=45°=∠BCG , ∴∠FCG=90°,∴CG=CF=6,∴点G 的坐标为(1,6),又A (0,3),∴AG=【点睛】本题是二次函数综合题,考查了二次函数解析式,一次函数,三角函数,面积法,对称的性质,知识点较多,难度较大,解题时要注意分类讨论,画图相应图形,利用数形结合思想解答.。
江苏省常州市中考数学试卷含答案解析
2021年江苏省常州市中考数学试卷一、选择题〔共8小题,每题2分,总分值16分〕1.﹣2的绝对值是〔〕A.﹣2B.2C.﹣D ..计算﹣〔﹣〕的结果是〔2A.﹣4B.﹣2C.2D .43.以下列图是一个几何体的三视图,这个几何体的名称是〔〕A.圆柱体B.三棱锥C.球体D.圆锥体4.如图,数轴上点P对应的数为p,那么数轴上与数﹣对应的点是〔〕A.点AB.点BC.点CD.点D.如图,把直角三角板的直角极点放在损坏玻璃镜的圆周上,两直角边与圆弧分别交于点、,量得5OM=8cm,ON=6cm,那么该圆玻璃镜的半径是〔〕A.cmB.5cmC.6cmD.10cm6.假定x>y,那么以下不等式中不必定成立的是〔〕A.x+1>y+1B.2x>2y C.>D.x2>y27.△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,那么CP的长可能是〔A.2B.4C.5D.78.一次函数 y1=kx+m〔k≠0〕和二次函数y2=ax2+bx+c〔a≠0〕的自变量和对应函数值如表:x⋯1024y1⋯0135x⋯1134⋯y2⋯0405⋯当y2>y1,自量x的取范是〔〕A.x<1B.x>4C.1<x<4D.x<1或x>4二、填空〔共10小,每小2分,分20分〕9.化:=______.10.假定分式存心,x的取范是______.11.分解因式:x32x2+x=______.12.一个多形的每个外角都是60°,个多形数______.13.假定代数式x5与2x1的相等,x的是______.14.在比率尺1:40000的地上,某条道路的7cm,道路的度是______km.15.正比率函数y=ax〔≠〕与反比率函数y=〔≠〕象的一个交点坐〔1,〕,另一a0k01个交点坐是______.16.如,在⊙O的内接四形ABCD中,∠A=70°°,∠OBC=60,∠ODC=______.17.x、y足2x?4y=8,当0≤x≤1,y的取范是______.18.如,△APB中,AB=2,∠APB=90°,在AB的同作正△ABD、正△APE和正△BPC,四形PCDE面的最大是______.三、解答题〔共10小题,总分值84分〕19.先化简,再求值〔x﹣1〕〔x﹣2〕﹣〔x+1〕2,此中x=.20.解方程和不等式组:〔1〕+ =1〔2〕.21.为认识某市市民晚餐后1小时内的生活方式,检查小组设计了“阅读〞、“锻炼〞、“看电视〞和“其余〞四个选项,用随机抽样的方法检查了该市局部市民,并依据检查结果绘制成以下统计图.依据统计图所供给的信息,解答以下问题:〔1〕本次共检查了______名市民;〔2〕补全条形统计图;〔3〕该市共有 480万市民,预计该市市民晚餐后1小时内锻炼的人数.22.一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都同样〔1〕搅匀后从袋子中随意摸出1个球,求摸到红球的概率;〔2〕搅匀后从袋子中随意摸出1个球,记录颜色后放回、搅匀,再从中随意摸出1个球,求两次都摸到红球的概率.(23.如图,△ABC中,AB=AC,BD、CE是高,BD与CE订交于点O1〕求证:OB=OC;2〕假定∠ABC=50°,求∠BOC的度数.24.某商场销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.〔1〕求甲、乙两种糖果的价钱;〔2〕假定购买甲、乙两种糖果共20千克,且总价不超出240元,问甲种糖果最少购买多少千克?25.如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α〔30°<α<180°〕,获得△AO′B′.〔1〕当α=60°时,判断点B能否在直线O′B′上,并说明原因;〔2〕连结OO′,设OO′与AB交于点D,当α为什么值时,四边形ADO′B′是平行四边形?请说明原因.26.〔1〕阅读资料:教材中的问题,如图1,把5个边长为1的小正方形构成的十字形纸板剪开,使剪成的假定干块能够拼成一个大正方形,小明的思虑:因为剪拼前后的图形面积相等,且5个小正方形的总面积为 5,因此拼成的大正方形边长为______,故沿虚线AB剪开可拼成大正方形的一边,请在图1顶用虚线补全剪拼表示图.〔2〕类比解决:如图2,边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的局部DBCE剪开,使剪成的假定干块能够拼成一个新的正三角形.①拼成的正三角形边长为______;②在图2顶用虚线画出一种剪拼表示图.〔3〕灵巧运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的假定干块拼成一个轴对称的风筝,此中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼表示图,并求出相应轻质钢丝的总长度.〔说明:题中的拼接都是不重叠无空隙无节余〕27.如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象订交于O、A两点,点A〔3,3〕,点M为抛物线的极点.〔1〕求二次函数的表达式;〔2〕长度为2 的线段PQ在线段OA〔不包含端点〕上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;〔3〕直线OA上能否存在点E,使得点E对于直线MA的对称点F知足S△AOF=S△AOM?假定存在,求出点 E的坐标;假定不存在,请说明原因.28.如图,正方形ABCD的边长为 1,点P在射线BC上〔异于点 B、C〕,直线AP与对角线BD及射线DC 分别交于点F、Q1〕假定BP=,求∠BAP的度数;2〕假定点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;3〕以PQ为直径作⊙M.①判断FC和⊙M的地点关系,并说明原因;②当直线BD与⊙M相切时,直接写出PC的长.2021年江苏省常州市中考数学试卷参照答案与试题分析一、选择题〔共 8小题,每题2分,总分值16分〕1.﹣2的绝对值是〔〕A.﹣2 B.2C.﹣D.【考点】绝对值.【剖析】依据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.应选B.【评论】本题考察了绝对值的定义,重点是利用了绝对值的性质.2.计算3﹣〔﹣1〕的结果是〔A.﹣4 B.﹣2 C.2 D.4〕【考点】有理数的减法.【剖析】减去一个数等于加上这个数的相反数,因3﹣〔﹣1〕=3+1=4.此【解答】解:3﹣1〕=4,〔﹣故答案为:D.【评论】本题考察了有理数的减法,属于根基题,比较简单;娴熟掌握减法法那么是做好本题的重点.3.以下列图是一个几何体的三视图,这个几何体的名称是〔〕A.圆柱体B.三棱锥C.球体D.圆锥体【考点】由三视图判断几何体.【剖析】主视图、左视图、俯视图是分别从物体正面、左面和上边看,所获得的图形.【解答】解:因为主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.应选A.【评论】本题考察了由三视图来判断几何体,还考察学生对三视图掌握程度和灵巧运用能力,同时也表达了对空间想象能力.4.如图,数轴上点P对应的数为p,那么数轴上与数﹣对应的点是〔〕A.点AB.点BC.点CD.点D【考点】数轴.【剖析】依据图示获得点P所表示的数,而后求得﹣的值即可.【解答】解:以下列图,点P表示的数是,那么﹣>﹣1,那么数轴上与数﹣对应的点是C.应选:C.【评论】本题考察了数轴,依据图示获得点P所表示的数是解题的重点.5.如图,把直角三角板的直角极点O放在损坏玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,那么该圆玻璃镜的半径是〔〕A ..5cmC.6cmD.10cm cmB【考点】圆周角定理;勾股定理.【剖析】如图,连结MN,依据圆周角定理能够判断 MN是直径,因此依据勾股定理求得直径,而后再来求又半径即可.【解答】解:如图,连结MN,∵∠O=90°,∴MN是直径,OM=8cm,ON=6cm,∴MN== =10〔cm〕.∴该圆玻璃镜的半径是:MN=5cm.应选:B.【评论】本题考察了圆周角定理和勾股定理,半圆〔或直径〕所对的圆周角是直角,直径.90°的圆周角所对的弦是6.假定x>y,那么以下不等式中不必定成立的是〔〕A.x+1>y+1B.2x>2y C.>D.x2>y2【考点】不等式的性质.【剖析】依据不等式的根天性质进行判断,不等式的两边加上同一个数,不等号的方向不变;不等式的两边乘以〔或除以〕同一个正数,不等号的方向不变.【解答】解:〔A〕在不等式x>y两边都加上1,不等号的方向不变,故〔A〕正确;〔B〕在不等式x>y两边都乘上2,不等号的方向不变,故〔B〕正确;〔C〕在不等式x>y两边都除以2,不等号的方向不变,故〔C〕正确;D〕当x=1,y=﹣2时,x>y,但x2<y2,故〔D〕错误.应选〔D〕【评论】本题主要考察了不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以〔或除以〕同一个负数时,必定要改变不等号的方向.7.△ABCA.2 B.4中,BC=6,AC=3,CP⊥AB,垂足为C.5 D.7P,那么CP的长可能是〔〕【考点】垂线段最短.【剖析】依据垂线段最短得出结论.【解答】解:如图,依据垂线段最短可知:PC<3,∴CP的长可能是2,应选A.【点】本考了垂段最短的性,正确理解此性,垂段最短,指的是从直外一点到条直所作的垂段最短;本是指点C到直AB接的全部段中,CP是垂段,因此最短;在中波及路最短,其理依照从“两点之,段最短〞和“垂段最短〞两此中去.8.一次函数y1=kx+m〔k≠0〕和二次函数y2=ax2+bx+c〔a≠0〕的自量和函数如表:x⋯1024⋯y1⋯0135⋯x⋯1134⋯y2⋯0405⋯当y2>y1,自量x的取范是〔〕A.x<1B.x>4C.1<x<4D.x<1或x>4【考点】二次函数与不等式〔〕.【剖析】先在表格中找出点,用待定系数法求出直和抛物的分析式,用y2>y1成立不等式,求解不等式即可.【解答】解:由表可知,〔1,0〕,〔0,1〕在直一次函数y1=kx+m的象上,∴,∴∴一次函数y1=x+1,由表可知,〔1,0〕,〔1,4〕,〔3,0〕在二次函数y2=ax2+bx+c〔a≠0〕的象上,∴,∴∴二次函数 y2=x2﹣2x 3y2>y1时,∴x2﹣2x﹣3>x+1,∴〔x﹣4〕〔x+1〕>0,∴x>4或x<﹣1,应选D【评论】本题是二次函数和不等式题目,主要考察了待定系数法,解不等式,解本题的重点是求出直线和抛物线的分析式.二、填空题〔共10小题,每题2分,总分值20分〕9.化简:﹣=.【考点】二次根式的加减法.【剖析】先把各根式化为最简二次根式,再依据二次根式的减法进行计算即可.【解答】解:原式=2 ﹣.故答案为:.【评论】本题考察的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数同样的二次根式进行归并,归并方法为系数相加减,根式不变是解答本题的重点.10.假定分式存心义,那么x的取值范围是x≠﹣1 .【考点】分式存心义的条件.【剖析】依据分式存心义的条件列出对于x的不等式,求出x的取值范围即可.【解答】解:∵分式存心义,x+1≠0,即x≠﹣﹣1故答案为:x≠﹣1.【评论】本题考察的是分式存心义的条件,熟知分式存心义的条件是分母不等于零是解答本题的重点.11.分解因式:x3﹣2x2+x= x〔x﹣1〕2.【考点】提公因式法与公式法的综合运用.【剖析】第一提取公因式x,从而利用完好平方公式分解因式即可.【解答】解:x3﹣2x2+x=x〔x2﹣2x+1〕=x〔x﹣1〕2.故答案为:x〔x﹣1〕2.【评论】本题主要考察了提取公因式法以及公式法分解因式,娴熟应用完好平方公式是解题重点.12.一个多边形的每个外角都是60°,那么这个多边形边数为6.【考点】多边形内角与外角.【剖析】利用外角和除之外角的度数即可获得边数.【解答】解:360÷60=6.故这个多边形边数为6.故答案为:6.【评论】本题主要考察了多边形的外角和,重点是掌握任何多边形的外角和都360°.13.假定代数式x﹣5与2x﹣1的值相等,那么x的值是﹣4.【考点】解一元一次方程.【剖析】依据题意列出方程,求出方程的解即可获得【解答】解:依据题意得:x﹣5=2x﹣1,解得:x=﹣4,故答案为:﹣4x的值.【评论】本题考察认识一元一次方程,娴熟掌握运算法那么是解本题的重点.14.在比率尺为1:40000的地图上,某条道路的长为7cm,那么该道路的实质长度是km.【考点】比率线段.【剖析】依据比率尺=图上距离:实质距离,依题意列比率式直接求解即可.【解答】解:设这条道路的实质长度为x,那么:,解得.∴这条道路的实质长度为.故答案为:【评论】本题考察比率线段问题,能够依据比率尺正确进行计算,注意单位的变换.15.正比率函数y=ax〔a≠0〕与反比率函数y= 〔k≠0〕图象的一个交点坐标为〔﹣1,﹣1〕,那么另一个交点坐标是〔1,1〕.【考点】反比率函数与一次函数的交点问题.【剖析】反比率函数的图象是中心对称图形,那么经过原点的直线的两个交点必定对于原点对称.【解答】解:∵反比率函数的图象与经过原点的直线的两个交点必定对于原点对称,∴另一个交点的坐标与点〔﹣1,﹣1〕对于原点对称,∴该点的坐标为〔1,1〕.故答案为:〔1,1〕.【评论】本题主要考察了反比率函数图象的中心对称性,要求同学们要娴熟掌握对于原点对称的两个点的坐标的横、纵坐标都互为相反数.16.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,那么∠OD C= 50°.【考点】圆内接四边形的性质.【剖析】依据圆内接四边形的对角互补求得∠C的度数,利用圆周角定理求出∠BOD的度数,再依据四边形内角和为360度即可求出∠ODC的度数.【解答】解:∵∠A=70°∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为:50°.【评论】本题考察的是圆内接四边形的性质,熟知圆内接四边形的对角互补以及圆周角定理是解答本题的重点.x?4y=8,当0≤x≤1时,y的取值范围是≤≤.17.x、y知足21y【考点】解一元一次不等式组;同底数幂的乘法;幂的乘方与积的乘方.【剖析】第一把获得式子的两边化成以 2为底数的幂的形式,而后获得x和y的关系,依据x的范围求得y的范围.【解答】解:∵2x?4y=8,2x?22y=23,即2x+2y=23,x+2y=3.∴y=,∵0≤x≤1,∴1≤y≤.故答案是:1≤y≤.【评论】本题考察了幂的乘方和同底数的幂的乘法法那么,理解幂的运算法那么获得x和y的关系是重点.18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,那么四边形PCDE 面积的最大值是 1 .【考点】平行四边形的判断与性质;全等三角形的判断与性质;等边三角形的性质.【剖析】先延伸EP交BC于点F,得出PF⊥BC,再判断四边形CDEP为平行四边形,依据平行四边形的性质得出:四边形CDEP的面积=EP×CF=a×b=ab,最后依据a2+b2=4,判断ab的最大值即可.【解答】解:延伸EP交BC于点F,∵∠APB=90°,∠AOE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣°°,150=30PF均分∠BPC,又∵PB=PC,PF⊥BC,Rt△ABP中,AP=a,BP=b,那么CF= CP= b,a2+b2=22=4,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB〔SAS〕,ED=PB=CP,同理可得:△APB≌△DCB〔SAS〕,EP=AP=CP,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a× b= ab,又∵〔a﹣b〕2=a2﹣2ab+b2≥0,2ab≤a2+b2=4,ab≤1,即四边形PCDE面积的最大值为1.故答案为:1【评论】本题主要考察了等边三角形的性质、平行四边形的判断与性质以及全等三角形的判断与性质,解决问题的重点是作协助线结构平行四边形的高线.三、解答题〔共10小题,总分值84分〕19.先化简,再求值〔x﹣1〕〔x﹣2〕﹣〔x+1〕2,此中x=.【考点】多项式乘多项式.【剖析】依据多项式乘以多项式先化简,再代入求值,即可解答.【解答】解:〔x﹣1〕〔x﹣2〕﹣〔x+1〕2,=x2﹣2x﹣x+2﹣x2﹣2x﹣1=﹣5x+1当x= 时,原式=﹣5×+1=﹣.【评论】本题考察了多项式乘以多项式,解决本题的重点是熟记多项式乘以多项式.20.解方程和不等式组:〔1〕+ =1〔2〕.【考点】解分式方程;解一元一次不等式组.【剖析】〔1〕先把分式方程化为整式方程求出x的值,再代入最简公分母进行查验即可;2〕分别求出各不等式的解集,再求出其公共解集即可.【解答】解:〔1〕原方程可化为x﹣5=5﹣2x,解得x=,把x= 代入2x﹣5得,2x﹣5= ﹣5= ≠0,故x= 是原分式方程的解;〔2〕,由①得,x≤2,由②得,x>﹣1,故不等式组的解为:﹣1<x≤2.【评论】本题考察的是解分式方程,在解答此类题目时要注意验根.21.为认识某市市民晚餐后1小时内的生活方式,检查小组设计了“〞“〞“〞“〞阅读、锻炼、看电视和其余四个选(项,用随机抽样的方法检查了该市局部市民,并依据检查结果绘制成以下统计图.依据统计图所供给的信息,解答以下问题:1〕本次共检查了2000名市民;2〕补全条形统计图;〔3〕该市共有480万市民,预计该市市民晚餐后1小时内锻炼的人数.【考点】条形统计图;整体、个体、样本、样本容量;用样本预计整体;扇形统计图.【剖析】〔1〕依据“总人数=看电视人数÷看电视人数所占比率〞即可算出本次共检查了多少名市民;〔2〕依据“其余人数=总人数×其余人数所占比率〞即可算出晚餐后选择其余的市民数,再用“锻炼人数=总人数﹣看电视人数﹣阅读人数﹣其余人数〞即可算出晚餐后选择锻炼的人数,依此增补完好条形统计图即可;3〕依据“本市选择锻炼人数=本市总人数×锻炼人数所占比率〞即可得出结论.【解答】解:〔1〕本次共检查的人数为:800÷40%=2000,故答案为:2000.2〕晚餐后选择其余的人数为:2000×28%=560,晚餐后选择锻炼的人数为:2000﹣800﹣240﹣560=400.将条形统计图增补完好,以下列图.3〕晚餐后选择锻炼的人数所占的比率为:400÷2000=20%,该市市民晚餐后1小时内锻炼的人数为:480×20%=96〔万〕.答:该市共有 480万市民,预计该市市民晚餐后1小时内锻炼的人数为96万.【评论】本题考察了条形统计图、扇形统计图以及用样本预计整体,解题的重点是:〔样本容量;〔2〕求出选择其余和锻炼的人数;〔3〕依据比率关系估量出本市晚餐后题属于中档题,难度不大,解决该题型题目时,娴熟掌握各统计图的相关知识是重点.1〕依据数目关系算出1小时内锻炼的人数.本22.一只不透明的袋子中装有〔1〕搅匀后从袋子中随意摸出〔2〕搅匀后从袋子中随意摸出1个红球、1个黄球和1个白球,这些球除颜色外都同样1个球,求摸到红球的概率;1个球,记录颜色后放回、搅匀,再从中随意摸出1个球,求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【专题】计算题.【剖析】〔1〕直接利用概率公式求解;2〕先利用画树状图展现全部9种等可能的结果数,再找出两次都摸到红球的结果数,而后依据概率公式求解.【解答】解:〔1〕摸到红球的概率 = ;〔2〕画树状图为:共有9种等可能的结果数,此中两次都摸到红球的结果数为1,因此两次都摸到红球的概率= .【评论】本题考察了列表法与树状图法:经过列表法或树状图法展现全部等可能的结果求出合事件A或B的结果数目m,而后依据概率公式求失事件A或B的概率.n,再从中选出符23.如图,△ABC中,AB=AC,BD、CE是高,BD与CE订交于点O1〕求证:OB=OC;2〕假定∠ABC=50°,求∠BOC的度数.【考点】等腰三角形的性质.【剖析】〔1〕第一依据等腰三角形的性质获得∠ABC=∠ACB,而后利用高线的定义获得∠ECB=∠DBC,从而得证;2〕第一求出∠A的度数,从而求出∠BOC的度数.【解答】〔1〕证明:∵AB=AC,∴∠ABC=∠ACB,BD、CE是△ABC的两条高线,∴∠DBC=∠ECB,∴OB=OC;〔2〕∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠BOC=180°﹣80°=100°.【评论】本题考察了等腰三角形的性质及三角形的内角和定理;重点是掌握等腰三角形等角平等边.24.某商场销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.〔1〕求甲、乙两种糖果的价钱;〔2〕假定购买甲、乙两种糖果共20千克,且总价不超出240元,问甲种糖果最少购买多少千克?【考点】一元一次不等式的应用;二元一次方程组的应用.【剖析】〔1〕设商场甲种糖果每千克需x元,乙种糖果每千克需y元.依据“3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元〞列出方程组并解答;〔2〕设购买甲种糖果a千克,那么购买乙种糖果〔20﹣a〕千克,联合“总价不超出240元〞列出不等式,并解答.【解答】解:〔〕设商场甲种糖果每千克需x 元,乙种糖果每千克需y元,1依题意得:,解得.答:商场甲种糖果每千克需10元,乙种糖果每千克需14元;2〕设购买甲种糖果a千克,那么购买乙种糖果〔20﹣a〕千克,依题意得:10a+14〔20﹣a〕≤240,解得a≥10,a最小值=10.答:该顾客混淆的糖果中甲种糖果最少10千克.【评论】本题考察了一元一次不等式和二元一次方程组的应用.解决问题的重点是读懂题意,找到重点描绘语,找到所求的量的数目关系.25.如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α°α°′′〔30<<180〕,获得△AOB.〔1〕当α=60°时,判断点B能否在直线O′B′上,并说明原因;〔2〕连结OO′,设OO′与AB交于点D,当α为什么值时,四边形ADO′B′是平行四边形?请说明原因.【考点】一次函数图象上点的坐标特色;平行四边形的判断;坐标与图形变化-旋转.【剖析】〔〕第一证明∠BAO=30°,再求出直线′′的分析式即可解决问题.1OB〔〕如图2中,当α°时,四边形′′是平行四边形.只需证明∠′∠′′°,∠′∠2=120ADOB DAO=AOB=90OAO=O′AB′=30°,即可解决问题.【解答】解;〔1〕如图1中,∵一次函数y=﹣x+1的图象与∴A〔,0〕,B〔0,1〕,∴tan∠BAO=,∴∠BAO=30°,AB=2OB=2,∵旋转角为60°,x轴、y轴分别交于点A、B,∴B′〔,2〕,O′〔,〕,设直线O′B′分析式为y=kx+b,∴,,解得,∴直线O′B′的分析式为y= x+1,x=0时,y=1,∴点B〔0,1〕在直线O′B′上.〔2〕如图2中,当α=120°时,四边形ADO′B′是平行四边形.原因:∵AO=AO′,∠OAO′=120°,∠BAO=30°,∴∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,AD∥O′B′,DO′∥AB′,∴四边形ADO′B′是平行四边形.【评论】本题考察一次函数图象上的点的特色、平行四边形的性质和判断、旋转变换等知识,解题的重点是利用性质不变性解决问题,属于中考常考题型.26.〔1〕阅读资料:教材中的问题,如图1,把5个边长为1的小正方形构成的十字形纸板剪开,使剪成的假定干块能够拼成一个大正方形,小明的思虑:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,因此拼成的大正方形边长为,故沿虚线AB剪开可拼成大正方形的一边,请在图1顶用虚线补全剪拼表示图.〔2〕类比解决:如图2,边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的局部DBCE剪开,使剪成的假定干块能够拼成一个新的正三角形.①拼成的正三角形边长为;②在图2顶用虚线画出一种剪拼表示图.〔3〕灵巧运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的假定干块拼成一个轴对称的风筝,此中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼表示图,并求出相应轻质钢丝的总长度.〔说明:题中的拼接都是不重叠无空隙无节余〕【考点】四边形综合题.【剖析】〔1〕依题意补全图形如图1,利用剪拼前后的图形面积相等,得出大正方形的面积即可;〔2〕①先求出梯形EDBC的面积,利用剪拼前后的图形面积相等,联合等边三角形的面积公式即可;②依题意补全图形如图3所示;3〕依题意补全图形如图4,依据剪拼的特色,得出AC是正方形的对角线,点E,F是正方形两邻边的中点,构成等腰直角三角形,即可.【解答】解:〔1〕补全图形如图1所示,由剪拼可知,5个小正方形的面积之和等于拼成的一个大正方形的面积,∵5个小正方形的总面积为 5∴大正方形的面积为5,∴大正方形的边长为,故答案为:;〔2〕①如图2,∵边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,∴DE=BC=1,BD=CE=1过点D作DM⊥BC,∵∠DBM=60°∴DM=,∴S梯形EDBC= 〔DE+BC〕×DM=〔1+2〕×= ,由剪拼可知,梯形EDBC的面积等于新拼成的等边三角形的面积,设新等边三角形的边长为a,∴a2=,a=或a=﹣〔舍〕,∴新等边三角形的边长为,故答案为:;②剪拼表示图如图3所示,〔3〕剪拼表示图如图4所示,∵正方形的边长为60cm,由剪拼可知,AC是正方形的对角线,AC=60cm,由剪拼可知,点E,F分别是正方形的两邻边的中点,CE=CF=30cm,∵∠ECF=90°,依据勾股定理得,EF=30cm;∴轻质钢丝的总长度为AC+EF=60 +30 =90 cm.【评论】本题是四边形综合题,主要考察了正方形的性质,等边三角形的性质,勾股定理,剪拼的特色,解本题的重点是依据题意补全图形,难点是剪拼新正三角形和筝形.27.如图,在平面直角坐标系x Oy中,一次函数y=x与二次函数y=x2+bx的图象订交于O、A两点,点A 〔3,3〕,点M为抛物线的极点.〔1〕求二次函数的表达式;〔2〕长度为2 的线段PQ在线段OA〔不包含端点〕上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;〔3〕直线OA上能否存在点E,使得点E对于直线MA的对称点F知足S△AOF=S△AOM?假定存在,求出点E的坐标;假定不存在,请说明原因.【考点】二次函数综合题.【剖析】〔1〕把点A〔3,3〕代入y=x2+bx中,即可解决问题.〔2〕设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.设点P〔m,m〕〔0<m<1〕,那么Q〔m+2,m+2〕,P1〔m,m 2﹣2m〕,Q1〔m+2,m2+2m〕,建立二次函数,利用二次函数性质即可解决问题.〔3〕存在,第一证明EF是线段AM的中垂线,利用方程组求交点【解答】解:〔1〕把点A〔3,3〕代入y=x2+bx中,得:3=9+3b,解得:b=﹣2,E坐标即可.∴二次函数的表达式为y=x2﹣2x.〔2〕设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.PE⊥QQ1,QQ1⊥x轴,∴PE∥x轴,∵直线OA的分析式为y=kx,∴∠QPE=45°,∴PE=PQ=2.∴设点P〔m,m〕〔0<m<1〕,那么Q〔m+2,m+2〕,P1〔m,m2﹣2m〕,Q1〔m+2,m2+2m〕,PP1=3m﹣m2,QQ1=2﹣m2﹣m,∴= 〔PP1+QQ1〕?PE=﹣2m2+2m+2=﹣2+ ,∴当m=时,取最大值,最大值为.〔3〕存在.如图2中,点E的对称点为F,EF与AM交于点G,连结OM、MF、AF、OF.S△AOF=S△AOM,MF∥OA,∵EG=GF,= ,AG=GM,∵M〔1,﹣1〕,A〔3,3〕,∴点G〔2,1〕,∵直线AM分析式为y=2x﹣3,∴线段AM的中垂线EF的分析式为y=﹣x+2,由解得,∴点E坐标为〔,〕.【评论】本题考察二次函数综合题、待定系数法、平行线的性质、一次函数、面积问题等知识,解题的重点是灵巧应用待定系数法确立函数分析式,学会建立二次函数,利用二次函数性质解决最值问题,学会利用方程组求两个函数的交点,属于中考压轴题.28.如图,正方形ABCD的边长为 1,点P在射线BC上〔异于点 B、C〕,直线AP与对角线BD及射线DC分别交于点F、Q1〕假定BP=,求∠BAP的度数;2〕假定点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;3〕以PQ为直径作⊙M.①判断FC和⊙M的地点关系,并说明原因;②当直线BD与⊙M相切时,直接写出PC的长.【考点】圆的综合题.【剖析】〔1〕在直角△ABP中,利用特别角的三角函数值求∠BAP的度数;〔2〕设PC=x,依据全等和正方形性质得:QC=1﹣x,BP=1﹣x,由AB∥DQ得,代入列方程求出x的值,因为点P在线段BC上,因此x<1,写出切合条件的PC的长;〔3〕①如图2,当点P在线段BC上时,FC与⊙M相切,只需证明FC⊥CM即可,先依据直角三角形斜边上的中线得CM=PM,那么∠MCP=∠MPC,从而能够得出∠MCP+∠BAP=90°,再证明△ADF≌△CDF,得∠FAD=∠FCD,那么∠BAP=∠BCF,因此得出∠MCP+∠BCF=90°,FC⊥CM;如图3,当点P在线段BC的延伸线上时,FC与⊙M相切,同理可得∠MCD+∠FCD=90°,那么FC⊥CM,FC 与⊙M相切;②当点P在线段AB上时,如图4,设⊙M切BD于E,连结EM、MC,设∠Q=x,依据平角BFD列方程求出x的值,作AP的中垂线HN,得∠BHP=30°,在Rt△BHP中求出BP的长,那么得出PC= ﹣1;当点P在点C的右边时〔即在线段BC的延伸线上〕,如图5,同理可得:PC= +1.【解答】解:〔 1〕∵四边形A BCD是正方形,∴∠ABP=90°,∴tan∠BAP== = ,∵tan30°=,。
2022年江苏省常州市中考数学真题(含详细解析)
B项,可知这两款新能源汽车的0~100km/h的加速时间的数值分别处于直线m的上方和下方,满电续航里程的数值分别位于直线n的左侧和右侧,符合要求;
C项,两款车的满电续航里程的数值均在直线n的左侧,不符合要求,故C项错误;
A. B. C. D.
【答案】C
【解析】
【分析】根据:平均每人拥有绿地 ,列式求解.
【详解】解:依题意,得:平均每人拥有绿地 .
故选:C
【点睛】本题考查了反比例函数,解题的关键是掌握题目中数量之间的相互关系.
6.如图,斑马线 作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()
A. 区域①、②B. 区域①、③C. 区域①、④D. 区域③、④
【答案】B
【解析】
【分析】根据中位数的性质即可作答.
【详解】在添加了两款新能源汽车的测评数据之后,0~100km/h的加速时间的中位数ms,满电续航里程的中位数nkm,这两组中位数的值不变,即可知这两款新能源汽车的0~100km/h的加速时间的数值分别处于直线m的上方和下方,满电续航里程的数值分别位于直线n的左侧和右侧,据此逐项判断即可:
13.如图,数轴上的点 、 分别表示实数 、 ,则 ______ .(填“>”、“=”或“<”)
14.如图,在 中, 是中线 的中点.若 的面积是1,则 的面积是______.
15.如图,将一个边长为 的正方形活动框架(边框粗细忽略不计)扭动成四边形 ,对角线是两根橡皮筋,其拉伸长度达到 时才会断裂.若 ,则橡皮筋 _____断裂(填“会”或“不会”,参考数据: ).
2020年江苏省常州市中考数学试卷和答案解析
2020年江苏省常州市中考数学试卷和答案解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2分)2的相反数是()A.﹣2B.﹣C.D.2解析:利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.参考答案:解:2的相反数是﹣2.故选:A.点拨:此题主要考查了相反数的概念,正确把握定义是解题关键.2.(2分)计算m6÷m2的结果是()A.m3B.m4C.m8D.m12解析:利用同底数幂的除法运算法则计算得出答案.参考答案:解:m6÷m2=m6﹣2=m4.故选:B.点拨:此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.3.(2分)如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥解析:该几何体的主视图与左视图均为矩形,俯视图为正方形,易得出该几何体的形状.参考答案:解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C.点拨:主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.4.(2分)8的立方根为()A.B.C.2D.±2解析:根据立方根的定义求出的值,即可得出答案.参考答案:解:8的立方根是==2,故选:C.点拨:本题考查了对立方根的定义的理解和运用,注意:a的立方根是.5.(2分)如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1D.x+1>y+1解析:根据不等式的性质逐个判断即可.参考答案:解:A、∵x<y,∴2x<2y,故本选项符合题意;B、∵x<y,∴﹣2x>﹣2y,故本选项不符合题意;C、∵x<y,∴x﹣1<y﹣1,故本选项不符合题意;D、∵x<y,∴x+1<y+1,故本选项不符合题意;故选:A.点拨:本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.6.(2分)如图,直线a、b被直线c所截,a∥b,∠1=140°,则∠2的度数是()A.30°B.40°C.50°D.60°解析:先根据邻补角互补求得∠3,然后再根据两直线平行、内错角相等即可解答.参考答案:解:∵∠1+∠3=180°,∠1=40°,∴∠3=180°﹣∠1=180°﹣140°=40°∵a∥b,∴∠2=∠3=40°.故选:B.点拨:本题考查了平行线的性质,掌握“两直线平行、内错角相等”是解答本题的关键.7.(2分)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O 的半径是3,则MH长的最大值是()A.3B.4C.5D.6解析:根据直角三角形斜边中线的性质以及直径是圆中最大的弦,即可求得MH的最大值是3.参考答案:解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.点拨:本题考查了直角三角形斜边中线的性质,明确BC的最大值为⊙O的直径的长是解题的关键.8.(2分)如图,点D是▱OABC内一点,CD与x轴平行,BD与y 轴平行,BD=,∠ADB=135°,S△ABD=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是()A.2B.4C.3D.6解析:根据三角形面积公式求得AE=2,易证得△AOM≌△CBD (AAS),得出OM=BD=,根据题意得出△ADE是等腰直角三角形,得出DE=AE=2,设A(m,),则D(m﹣2,3),根据反比例函数系数k的几何意义得出关于m的方程,解方程求得m=3,进一步求得k=6.参考答案:解:作AM⊥y轴于M,延长BD,交AM于E,设BC 与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=,∵S△ABD==2,BD=,∴AE=2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2,∴D的纵坐标为3,设A(m,),则D(m﹣2,3),∵反比例函数y=(x>0)的图象经过A、D两点,∴k=m=(m﹣2)×3,解得m=3,∴k=m=6.故选:D.点拨:本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,平行四边形的性质,等腰直角三角形的判定和性质,三角形的面积等,表示出A、D的坐标是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把笞案直接填写在答题卡相应位置上)9.(2分)计算:|﹣2|+(π﹣1)0=3.解析:首先计算乘方和绝对值,然后计算加法,求出算式的值是多少即可.参考答案:解:|﹣2|+(π﹣1)0=2+1=3,故答案为:3.点拨:此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.10.(2分)若代数式有意义,则实数x的取值范围是x≠1.解析:分式有意义时,分母x﹣1≠0,据此求得x的取值范围.参考答案:解:依题意得:x﹣1≠0,解得x≠1,故答案为:x≠1.点拨:本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.11.(2分)地球的半径大约为6400km.数据6400用科学记数法表示为 6.4×103.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.参考答案:解:将6400用科学记数法表示为6.4×103.故答案为:6.4×103.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2分)分解因式:x3﹣x=x(x+1)(x﹣1).解析:本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.参考答案:解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).点拨:本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.13.(2分)若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是k>0.解析:根据一次函数的性质,如果y随x的增大而增大,则一次项的系数大于0,据此求出k的取值范围.参考答案:解:∵一次函数y=kx+2,函数值y随x的值增大而增大,∴k>0.故答案为:k>0.点拨:本题考查的是一次函数的性质,解答本题要注意:在一次函数y=kx+b(k≠0)中,当k>0时y随x的增大而增大.14.(2分)若关于x的方程x2+ax﹣2=0有一个根是1,则a=1.解析:把x=1代入方程得出1+a﹣2=0,求出方程的解即可.参考答案:解:∵关于x的方程x2+ax﹣2=0有一个根是1,∴把x=1代入方程得:1+a﹣2=0,解得:a=1,故答案为:1.点拨:本题考查了一元二次方程的解和解一元一次方程,能得出关于a的一元一次方程是解此题的关键.15.(2分)如图,在△ABC中,BC的垂直平分线分别交BC、AB 于点E、F.若△AFC是等边三角形,则∠B=30°.解析:根据垂直平分线的性质得到∠B=∠BCF,再利用等边三角形的性质得到∠AFC=60°,从而可得∠B的度数.参考答案:解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.点拨:本题考查了垂直平分线的性质,等边三角形的性质,三角形外角的性质,解题的关键是利用垂直平分线的性质得到∠B=∠BCF.16.(2分)数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD 中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是(2,).解析:根据直角三角形的性质可得OA和OD的长,根据菱形的性质和坐标与图形的性质可得答案.参考答案:解:∵四边形ABCD是菱形,且AB=2,∴CD=AD=AB=2,∵∠DAB=120°,∴∠OAD=60°,Rt△AOD中,∠ADO=30°,∴OA=AD==1,OD==,∴C(2,),故答案为:(2,).点拨:此题主要考查了含30度角的直角三角形的性质,菱形的性质,坐标与图形的性质等知识,解题的关键是确定OD的长.17.(2分)如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=.解析:根据正方形的性质以及锐角三角函数的定义即可求出答案.参考答案:解:连接CG,在正方形ACDE、BCFG中,∠ECA=∠GCB=45°,∴∠ECG=90°,设AC=2,BC=1,∴CE=2,CG=,∴tan∠GEC==,故答案为:.点拨:本题考查正方形,解题的关键是熟练运用正方形的性质以及锐角三角函数的定义,本题属于基础题型.18.(2分)如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为4或2.解析:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H,证明四边形DGBT是平行四边形,求出DH,TH 即可解决问题.参考答案:解:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H.∵DG⊥BF,BT⊥BF,∴DG∥BT,∵AD=DB,AE=EC,∴DE∥BC,∴四边形DGBT是平行四边形,∴BG=DT,DG=BT,∠BDH=∠ABC=45°,∵AD=DB=3,∴BH=DH=3,∵∠TBF=∠BHF=90°,∴∠TBH+∠FBH=90°,∠FBH+∠F=90°,∴∠TBH=∠F,∴tan∠F=tan∠TBH===,∴=,∴TH=1,∴DT=TH+DH=1+3=4,∴BG=4.当点F在ED的延长线上时,同法可得DT=BG=3﹣1=2.故答案为4或2.点拨:本题考查相似三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6分)先化简,再求值:(x+1)2﹣x(x+1),其中x=2.解析:先根据完全平方公式和单项式乘以多项式法则算乘法,再合并同类项,最后代入求出即可.参考答案:解:(x+1)2﹣x(x+1)=x2+2x+1﹣x2﹣x=x+1,当x=2时,原式=2+1=3.点拨:本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.20.(8分)解方程和不等式组:(1)+=2;(2).解析:(1)方程两边都乘以x﹣1得出方程x﹣2=2(x﹣1),求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.参考答案:解:(1)方程两边都乘以x﹣1得:x﹣2=2(x﹣1),解得:x=0,检验:把x=0代入x﹣1得:x﹣1≠0,所以x=0是原方程的解,即原方程的解是:x=0;(2),∵解不等式①得:x<3,解不等式②得:x≥﹣2,∴不等式组的解集是:﹣2≤x<3.点拨:本题考查了解分式方程和解一元一次不等式组,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.21.(8分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是100;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.解析:(1)根据打排球的人数和所占的百分比即可求出样本容量;(2)用总人数乘以打乒乓球的人数所占的百分比求出打乒乓球的人数,再用总人数减去其他项目的人数求出踢足球的人数,从而补全统计图;(3)用该校的总人数乘以“打篮球”的人数所占的百分比即可.参考答案:解:(1)本次抽样调查的总人数是:25÷25%=100(人),则样本容量是100;故答案为:100;(2)打乒乓球的人数有:100×35%=35(人),踢足球的人数有:100﹣25﹣35﹣15=25(人),补全统计图如下:(3)根据题意得:2000×=300(人),答:估计该校最喜爱“打篮球”的学生人数有300人.点拨:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.解析:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,可求出概率;(2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.参考答案:解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有6种可能出现的结果,其中“和为奇数”的有4种,∴P(和为奇数)==.点拨:本题考查列表法和树状图求随机事件发生的概率,列举出所有可能出现的结果情况,是正确解答的关键.23.(8分)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.解析:(1)首先利用平行线的性质得出,∠A=∠FBD,根据AB=CD即可得出AC=BD,进而得出△EAC≌△FBD解答即可;(2)根据全等三角形的性质和三角形内角和解答即可.参考答案:证明:(1)∵EA∥FB,∴∠A=∠FBD,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△EAC与△FBD中,,∴△EAC≌△FBD(SAS),∴∠E=∠F;(2)∵△EAC≌△FBD,∴∠ECA=∠D=80°,∵∠A=40°,∴∠E=180°﹣40°﹣80°=60°,答:∠E的度数为60°.点拨:此题主要考查了全等三角形的判定与性质等知识,解题时注意:两边及其夹角分别对应相等的两个三角形全等.根据已知得出△EAC≌△FBD是解题关键.24.(8分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?解析:(1)设每千克苹果的售价为x元,每千克梨的售价为y元,根据“购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m千克苹果,则购买(15﹣m)千克梨,根据总价=单价×数量结合总价不超过100元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.参考答案:解:(1)设每千克苹果的售价为x元,每千克梨的售价为y元,依题意,得:,解得:.答:每千克苹果的售价为8元,每千克梨的售价为6元.(2)设购买m千克苹果,则购买(15﹣m)千克梨,依题意,得:8m+6(15﹣m)≤100,解得:m≤5.答:最多购买5千克苹果.点拨:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.(8分)如图,正比例函数y=kx的图象与反比例函数y=(x >0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B 作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.解析:(1)把把点A(a,4)代入反比例函数关系式可求出a的值,确定点A的坐标,进而求出正比例函数的关系式;(2)根据BD=10,求出点B的横坐标,求出OB,代入求出BC,根据三角形的面积公式进行计算即可.参考答案:解:(1)把点A(a,4)代入反比例函数y=(x>0)得,a==2,∴点A(2,4),代入y=kx得,k=2,∴正比例函数的关系式为y=2x,答:a=2,正比例函数的关系式为y=2x;(2)当BD=10=y时,代入y=2x得,x=5,∴OB=5,当x=5代入y=得,y=,即BC=,∴CD=BD﹣BC=10﹣=,∴S△ACD=××(5﹣2)=12.6,点拨:本题考查反比例函数、一次函数图象上点的坐标特征,把点的坐标代入是常用方法.26.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC =∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是1;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB 时,求OF的长.解析:(1)如图1中,作FD⊥AC于D.证明△ABC≌△CDF(AAS)可得结论.(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E 落在CF上的点H处.根据S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC =S扇形ACF计算即可.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt △EOH中,利用勾股定理构建方程求解即可.参考答案:解:(1)如图1中,作FD⊥AC于D,∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.∴∠ACB=60°,∠FCE=∠BAC=30°,AC=CF,∴∠ACF=30°,∴∠BAC=∠FCD,在△ABC和△CDF中,,∴△ABC≌△CDF(AAS),∴FD=BC=1,故答案为1;(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF﹣S扇形ECH=﹣=.故答案为.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt△ECF中,∵EF=1,∠ECF=30°,EH⊥CF,∴EC=EF=,EH=,CH=EH=,在Rt△BOC中,OC==,∴OH=CH﹣OC=﹣,在Rt△EOH中,则有x2=()2+(﹣)2,解得x=或﹣(不合题意舍弃),∴OC==,∵CF=2EF=2,∴OF=CF﹣OC=2﹣=.点拨:本题考查作图﹣旋转变换,解直角三角形,全等三角形的性质,扇形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27.(10分)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P 称为⊙I关于直线a的“远点“,把PQ•PH的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点D(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为6;②若直线n的函数表达式为y=x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F 是坐标平面内一点,以F为圆心,为半径作⊙F.若⊙F与直线1相离,点N(﹣1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4,求直线l的函数表达式.解析:(1)①根据远点,特征数的定义判断即可.②如图1﹣1中,过点O作OH⊥直线n于H,交⊙O于Q,P.解直角三角形求出PH,PQ的长即可解决问题.(2)如图2﹣1中,设直线l的解析式为y=kx+b.分两种情形k >0或k<0,分别求解即可解决问题.参考答案:解:(1)①由题意,点D是⊙O关于直线m的“远点”,⊙O关于直线m的特征数=DB•DE=2×5=20,故答案为D,20.②如图1﹣1中,过点O作OH⊥直线n于H,交⊙O于Q,P.设直线y=x+4交x轴于F(﹣,0),交y轴于E(0,4),∴OE=4,OF=∴tan∠FEO==,∴∠FEO=30°,∴OH=OE=2,∴PH=OH+OP=3,∴⊙O关于直线n的“特征数”=PQ•PH=2×3=6.(2)如图2﹣1中,设直线l的解析式为y=kx+b.当k>0时,过点F作FH⊥直线l于H,交⊙F于E,N.由题意,EN=2,EN•NH=4,∴NH=,∵N(﹣1,0),M(1,4),∴MN==2,∴HM===,∴△MNH是等腰直角三角形,∵MN的中点K(0,2),∴KN=HK=KM=,∴H(﹣2,3),把H(﹣2,3),M(1,4)代入y=kx+b,则有,解得,∴直线l的解析式为y=x+,当k<0时,同法可知直线i经过H′(2,1),可得直线l的解析式为y=﹣3x+7.综上所述,满足条件的直线l的解析式为y=x+或y=﹣3x+7.点拨:本题属于圆综合题,考查了一次函数的性质,解直角三角形,远点,特征数的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.28.(10分)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=﹣4;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F 关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.解析:(1)将点C坐标代入解析式可求解;(2)分两种情况讨论,当点Q在点D上方时,过点C作CE⊥AB 于E,设BD与x轴交于点F,可得点E(1,3),CE=BE=3,AE=1,可得∠EBC=∠ECB=45°,tan∠ACE=,∠BCF=45°,由勾股定理逆定理可得∠BCD=90°,可求∠ACE=∠DBC,可得∠ACB=∠CFD,可得点F与点Q重合,即可求点P坐标;当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,先求直线BD解析式,点F坐标,由中点坐标公式可求点Q坐标,求出CQ解析式,联立方程组,可求点P坐标;(3)设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,先求出∠CNH =45°,由轴对称的性质可得EN=NF,∠ENB=∠FNB=45°,由“AAS”可证△EMN≌△NKF,可得EM=NK=,MN=KF,可求CF=6,由轴对称的性质可得点G坐标,即可求解.参考答案:解:(1)∵抛物线y=x2+bx+3的图象过点C(1,0),∴0=1+b+3,∴b=﹣4,故答案为:﹣4;(2)∵b=4,∴抛物线解析式为y=x2﹣4x+3∵抛物线y=x2﹣4x+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,∴点A(0,3),3=x2﹣4x,∴x1=0(舍去),x2=4,∴点B(4,3),∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点D坐标(2,﹣1),如图1,当点Q在点D上方时,过点C作CE⊥AB于E,设BD 与x轴交于点F,∵点A(0,3),点B(4,3),点C(1,0),CE⊥AB,∴点E(1,3),CE=BE=3,AE=1,∴∠EBC=∠ECB=45°,tan∠ACE=,∴∠BCF=45°,∵点B(4,3),点C(1,0),点D(2,﹣1),∴BC==3,CD==,BD==2,∵BC2+CD2=20=BD2,∴∠BCD=90°,∴tan∠DBC====tan∠ACE,∴∠ACE=∠DBC,∴∠ACE+∠ECB=∠DBC+∠BCF,∴∠ACB=∠CFD,又∵∠CQD=∠ACB,∴点F与点Q重合,∴点P是直线CF与抛物线的交点,∴0=x2﹣4x+3,∴x1=1,x2=3,∴点P(3,0);当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,∵CH⊥DB,HF=QH,∴CF=CQ,∴∠CFD=∠CQD,∴∠CQD=∠ACB,∵CH⊥BD,∵点B(4,3),点D(2,﹣1),∴直线BD解析式为:y=2x﹣5,∴点F(,0),∴直线CH解析式为:y=﹣x+,∴,解得,∴点H坐标为(,﹣),∵FH=QH,∴点Q(,﹣),∴直线CQ解析式为:y=﹣x+,联立方程组,解得:或,∴点P(,﹣);综上所述:点P的坐标为(3,0)或(,﹣);(3)如图,设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,∵点A(0,3),点C(1,0),∴直线AC解析式为:y=﹣3x+3,∴,∴,∴点N坐标为(,﹣),∵点H坐标为(,﹣),∴CH2=(﹣1)2+()2=,HN2=(﹣)2+(﹣+)2=,∴CH=HN,∴∠CNH=45°,∵点E关于直线BD对称的点为F,∴EN=NF,∠ENB=∠FNB=45°,∴∠ENF=90°,∴∠ENM+∠FNM=90°,又∵∠ENM+∠MEN=90°,∴∠MEN=∠FNM,∴△EMN≌△NKF(AAS)∴EM=NK=,MN=KF,∴点E的横坐标为﹣,∴点E(﹣,),∴MN==KF,∴CF=+﹣1=6,∵点F关于直线BC对称的点为G,∴FC=CG=6,∠BCF=∠GCB=45°,∴∠GCF=90°,∴点G(1,6),∴AG==.点拨:本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定和性质,轴对称性质,等腰三角形的性质,锐角三角函数等知识,综合性强,求出∠CNH=45°是本题的关键.。
江苏省常州市2021年数学中考真题(解析版)
江苏省常州市2021年数学中考真题一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的) 1. 12的倒数是( )A. 2B. ﹣2C. 12D. ﹣12 【答案】A【解析】【分析】直接利用倒数的定义即可得出答案. 【详解】解:12倒数是2,故选:A .【点睛】此题主要考查了倒数,正确掌握相关定义是解题关键.2. 计算()32m 的结果是( )A. 5mB. 6mC. 8mD. 9m 【答案】B【解析】【分析】根据幂的乘方公式,即可求解.【详解】解:()32m =6m ,故选B .【点睛】本题主要考查幂的乘方公式,掌握幂的乘方公式,是解题的关键.3. 如图是某几何体的三视图,该几何体是( )A. 正方体B. 圆锥C. 圆柱D. 球的【答案】D【解析】【分析】首先根据俯视图将正方体淘汰掉,然后根据主视图和左视图将圆锥和圆柱淘汰,即可求解.【详解】解:∵俯视图是圆,∴排除A ,∵主视图与左视图均是圆,∴排除B 、C ,故选:D .【点睛】此题主要考查了简单几何体的三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.4. 观察所示脸谱图案,下列说法正确的是( )A. 它是轴对称图形,不是中心对称图形B. 它是中心对称图形,不是轴对称图形C. 它既是轴对称图形,也是中心对称图形D. 它既不是轴对称图形,也不是中心对称图形【答案】A【解析】 【分析】根据轴对称图形和中心对称图形的定义,逐一判断选项,即可.【详解】解:脸谱图案是轴对称图形,不是中心对称图形,故选A .【点睛】本题主要考查轴对称和中心对称图形,掌握轴对称和中心对称图形的定义,是解题的关键.5. 如图,BC 是O 的直径,AB 是O 的弦.若60AOC ∠=︒,则OAB ∠的度数是( )A. 20︒B. 25︒C. 30D. 35︒【答案】C【解析】【分析】先根据平角的定义求出∠AOB ,再根据等腰三角形的性质求解,即可.【详解】解:∵60AOC ∠=︒,∴∠AOB =180°-60°=120°,∵OA =OB ,∴OAB ∠=∠OBA =(180°-120°)÷2=30°,故选C .【点睛】本题主要考查圆基本性质以及等腰三角形的性质,掌握圆的半径相等,是解题的关键.6. 以下转盘分别被分成2个、4个、5个、6个面积相等的扇形,任意转动这4个转盘各1次.已知某转盘停止转动时,指针落在阴影区域的概率是13,则对应的转盘是( ) A.B.C.D.【答案】D【解析】【分析】根据概率公式求出每个选项的概率,即可得到答案.【详解】解:A .指针落在阴影区域的概率是12, 的B .指针落在阴影区域的概率是14, C .指针落在阴影区域的概率是25, D .指针落在阴影区域的概率是13, 故选D .【点睛】本题主要考查几何概率,熟练掌握概率公式,是解题的关键.7. 已知二次函数2(1)y a x =-,当0x >时,y 随x 增大而增大,则实数a 的取值范围是( )A 0a > B. 1a > C. 1a ≠ D. 1a <【答案】B【解析】【分析】根据二次函数的性质,可知二次函数的开口向上,进而即可求解.【详解】∵二次函数2(1)y a x =-的对称轴为y 轴,当0x >时,y 随x 增大而增大,∴二次函数2(1)y a x =-的图像开口向上,∴a -1>0,即:1a >,故选B .【点睛】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数的关系,是解题的关键.8. 为规范市场秩序、保障民生工程,监管部门对某一商品的价格持续监控.该商品的价格1y (元/件)随时间t (天)的变化如图所示,设2y (元/件)表示从第1天到第t 天该商品的平均价格,则2y 随t 变化的图像大致是( )A. B.C. D.【答案】A【解析】【分析】根据函数图像先求出1y 关于t 的函数解析式,进而求出2y 关于t 的解析式,再判断各个选项,即可.【详解】解:∵由题意得:当1≤t ≤6时,1y =2t +3,当6<t ≤25时,1y =15,当25<t ≤30时,1y =-2t +65,∴当1≤t ≤6时,2y =()54223t t t t +÷=++, 当6<t ≤25时,2y =()()530156115256t t t +⎡⎤+-÷=-⎢⎥⎣⎦⨯, 当25<t ≤30时,2y =()()()132615(5256)51525622t t t ⎡⎤+-+⨯-⎡⎤+⎣⎦+⨯-+÷⎢⎥⎢⎥⎣⎦⨯ =63064t t--+ , ∴当t=30时,2y =13,符合条件的选项只有A .故选A .【点睛】本题主要考查函数图像和函数解析式,掌握待定系数法以及函数图像上点的坐标意义,是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.=___.【答案】3【解析】【详解】试题分析:根据立方根的定义,求数a 的立方根,也就是求一个数x ,使得x 3=a ,则x 就是a 的一个立方根:∵33=27,3=.10. 计算:()2222a a -+=__________.【答案】22a -【解析】【分析】先去括号,再合并同类项,即可求解.【详解】解:原式=2222a a --=22a -,故答案是:22a -.【点睛】本题主要考查整式的运算,掌握去括号法则以及合并同类项法则,是解题的关键.11. 分解因式:224x y -=__________.【答案】()()22x y x y -+【解析】【分析】根据平方差公式分解因式,即可.【详解】解:224x y -=()()22x y x y -+,故答案是:()()22x y x y -+.【点睛】本题主要考查因式分解,掌握平方差公式是解题的关键.12. 近年来,5G 在全球发展迅猛,中国成为这一领域基础设施建设、技术与应用落地的一大推动者.截至2021年3月底,中国已建成约819000座5G 基站,占全球70%以上.数据819000用科学记数法表示为__________.【答案】8.19×105【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:819000=8.19×105,故答案是:8.19×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.13. 数轴上的点A、B分别表示3-、2,则点__________离原点的距离较近(填“A”或“B”).【答案】B【解析】【分析】先求出A、B点所对应数的绝对值,进而即可得到答案.-、2,【详解】解:∵数轴上的点A、B分别表示3-==,且3>2,∴33,22∴点B离原点的距离较近,故答案是:B.【点睛】本题主要考查数轴上点与原点之间的距离,掌握绝对值的意义,是解题的关键.14. 如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,其中点A在x轴正半轴上.若BC=,则点A的坐标是__________.3【答案】(3,0)【解析】【分析】根据平行四边形的性质,可知:OA=BC=3,进而即可求解.【详解】解:∵四边形OABC是平行四边形,∴OA=BC=3,∴点A的坐标是(3,0),故答案是:(3,0).【点睛】本题主要考查平行四边形的性质以及点的坐标,掌握平行四边形的对边相等,是解题的关键.15. 如图,在ABC 中,点D 、E 分别在BC 、AC 上,40,60B C ∠=︒∠=︒.若//DE AB ,则AED =∠________︒.【答案】100【解析】【分析】先根据三角形内角和定理求出∠A =80°,再根据平行线的性质,求出AED ∠,即可.【详解】解:∵40,60B C ∠=︒∠=︒,∴∠A =180°-40°-60°=80°,∵//DE AB ,∴AED =∠180°-80°=100°.故答案是100.【点睛】本题主要考查三角形内角和定理以及平行线的性质,掌握两直线平行,同旁内角互补,是解题的关键.16. 中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在ABC 中,分别取AB 、AC 的中点D 、E ,连接DE ,过点A 作AF DE ⊥,垂足为F ,将ABC 分割后拼接成矩形BCHG .若3,2DE AF ==,则ABC 的面积是__________.【答案】12【解析】【分析】先证明ADF BDG ≌,AEF CEH ≌,把三角形的面积化为矩形的面积,进而即可求解.【详解】解:∵D 是AB 的中点,四边形BCHG 是矩形,∴AD =BD ,∠G =∠AFD =90°,又∵∠ADF =∠BDG ,∴ADF BDG ≌,∴DF =DG ,AF =BG =2,同理:AEF CEH ≌,∴EF =EH ,∴GH =2(DF +EF )=2DE =2×3=6,∴ABC 的面积=矩形BCHG 的面积=2×6=12.【点睛】本题主要考查全等三角形的判定和性质,矩形的性质,通过全等三角形的判定,把三角形的面积化为矩形的面积,是解题的关键.17. 如图,在ABC 中,3,4AC BC ==,点D 、E 分别在CA 、CB 上,点F 在ABC 内.若四边形CDFE 是边长为1的正方形,则sin FBA ∠=________.【解析】【分析】连接AF ,CF ,过点F 作FM ⊥AB ,由ABC ACF BCF ABF SS S S =++,可得FM =1,再根据锐角三角函数的定义,即可求解.【详解】解:连接AF ,CF ,过点F 作FM ⊥AB ,∵四边形CDFE 是边长为1的正方形,∴∠C =90°,∴AB 5=,∵ABC ACF BCF ABF SS S S =++, ∴111134314152222FM ⨯⨯=⨯⨯+⨯⨯+⨯⨯, ∴ FM =1,∵BF =,∴sin FBA ∠==.【点睛】本题主要考查锐角三角函数的定义,勾股定理,掌握”等积法“是解题的关键.18. 如图,在Rt ABC 中,90,30,1ACB CBA AC ∠=︒∠=︒=,D 是AB 上一点(点D 与点A 不重合).若在Rt ABC 的直角边上存在4个不同的点分别和点A 、D 成为直角三角形的三个顶点,则AD 长的取值范围是________.【答案】43<AD <2 【解析】【分析】以AD 为直径,作O 与BC 相切于点M ,连接OM ,求出此时AD 的长;以AD 为直径,作O ,当点D 与点B 重合时,求出AD 的长,进入即可得到答案.【详解】解:以AD 为直径,作O 与BC 相切于点M ,连接OM ,则OM ⊥BC ,此时,在Rt ABC 的直角边上存在3个不同的点分别和点A 、D 成为直角三角形,如图,∵在Rt ABC 中,90,30,1ACB CBA AC ∠=︒∠=︒=,∴AB =2,∵OM ⊥BC , ∴1sin 302OM OB ︒==, 设OM =x ,则AO =x , ∴122x x =-,解得:23x =, ∴AD =2×23=43, 以AD 为直径,作O ,当点D 与点B 重合时,如图,此时AD =AB =2, ∴在Rt ABC 的直角边上存在4个不同的点分别和点A 、D 成为直角三角形的三个顶点,则AD 长的取值范围是:43<AD <2. 故答案是:43<AD <2.【点睛】本题主要考查圆的综合问题,熟练掌握圆周角定理的推论,解直角三角形,画出图形,分类讨论,是解题的关键.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.201 (1)(1)2π-----+.【答案】1 2【解析】【分析】先算算术平方根,零指数幂,负整数指数幂以及平方运算,再算加减法,即可求解.【详解】解:原式=1 2112 --+=12.【点睛】本题主要考查实数的混合运算,掌握算术平方根,零指数幂,负整数指数幂以及平方运算法则,是解的关键.20. 解方程组和不等式组:(1)0 23 x yx y+=⎧⎨-=⎩(2)3602xx x+>⎧⎨-<-⎩【答案】(1)11xy=⎧⎨=-⎩;(2)-2<x<1【解析】【分析】(1)利用加减消元法,即可求解;(2)分别求出各个不等式的解,再取公共部分,即可求解.【详解】解:(1)23x yx y+=⎧⎨-=⎩①②,①+②,得3x=3,解得:x=1,把x=1代入①得:y=-1,∴方程组的解为:11 xy=⎧⎨=-⎩;(2)3602xx x+>⎧⎨-<-⎩①②,由①得:x>-2,由②得:x<1,∴不等式组的解为:-2<x<1【点睛】本题主要考查解二元一次方程组以及解一元一次不等式组,掌握加减消元法以及解不等组的基本步骤,是解题的关键.21. 为降低处理成本,减少土地资源消耗,我国正在积极推进垃圾分类政策,引导居民根据“厨余垃圾”、“有害垃圾”、“可回收物”和“其他垃圾”这四类标准将垃圾分类处理调查小组就某小区居民对垃圾分类知识的了解程度进行了抽样调查,并根据调查结果绘制成如下统计图.(1)本次调查的样本容量是_______;(2)补全条形统计图;(3)已知该小区有居民2000人,请估计该小区对垃圾分类知识“完全了解”的居民人数.【答案】(1)100;(2)补全图形见详解;(3)600【解析】【分析】(1)用较多了解的人数÷对应百分比,即可求解;(2)先算出完全了解人数,较少了解人数,再补全统计图,即可;(3)用2000ד完全了解”的百分比,即可求解.【详解】解:(1)55÷55%=100(人),故答案是:100;(2)完全了解人数:100×30%=30(人),较少了解人数:100-30-55-5=10(人),补全统计图如下:(3)2000×30%=600(人),答:估计该小区对垃圾分类知识“完全了解”的居民人数有600人.【点睛】本题主要考查扇形统计图和条形统计图,准确找出相关数据,是解题的关键.22. 在3张相同的小纸条上,分别写上条件:①四边形ABCD是菱形;②四边形ABCD有一个内角是直角;③四边形ABCD的对角线相等.将这3张小纸条做成3支签,放在一个不透明的盒子中.(1)搅匀后从中任意抽出1支签,抽到条件①的概率是__________;(2)搅匀后先从中任意抽出1支签(不放回),再从余下的2支签中任意抽出1支签.四边形ABCD同时满足抽到的2张小纸条上的条件,求四边形ABCD一定是正方形的概率.【答案】(1)13;(2)23【解析】【分析】(1)根据等可能事件的概率公式,直接求解,即可;(2)先画出树状图,再根据概率公式,即可求解.【详解】解:(1)3支签中任意抽出1支签,抽到条件①的概率=1÷3=13,故答案是:13;(2)画出树状图:∵一共有6种等可能的结果,四边形ABCD 一定是正方形的可能有4种,∴四边形ABCD 一定是正方形的概率=4÷6=23. 【点睛】本题主要考查等可能事件的概率,熟练画出树状图是解题的关键.23. 如图,B 、F 、C 、E 是直线l 上的四点,//,,AB DE AB DE BF CE ==.(1)求证:ABC DEF △≌△;(2)将ABC 沿直线l 翻折得到A BC '.①用直尺和圆规在图中作出A BC '(保留作图痕迹,不要求写作法);②连接A D ',则直线A D '与l 的位置关系是__________.【答案】(1)见详解;(2)①见详解;②平行【解析】【分析】(1)根据“SAS ”即可证明ABC DEF △≌△;(2)①以点B 为圆心,BA 为半径画弧,以点C 为圆心,CA 为半径画画弧,两个弧交于A ',连接A 'B ,A 'C ,即可;②过点A '作A 'M ⊥l ,过点D 作DN ⊥l ,则A 'M ∥DN ,且A 'M =DN ,证明四边形A 'MND 是平行四边形,即可得到结论.【详解】(1)证明:∵BF CE =,∴BC =EF ,∵//AB DE ,∴∠ABC =∠DEF ,又∵AB DE =,∴ABC DEF △≌△;(2)①如图所示,A BC '即为所求;②A D '∥l ,理由如下:∵ABC DEF △≌△,A BC '与ABC 关于直线l 对称,∴A BC DEF '△≌△,过点A '作A 'M ⊥l ,过点D 作DN ⊥l ,则A 'M ∥DN ,且A 'M =DN ,∴四边形A 'MND 是平行四边形,∴A D '∥l ,故答案是:平行.【点睛】本题主要考查全等三角形的判定和性质,平行四边形的判定和性质,添加辅助线,构造平行四边形是解题的关键.24. 为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?【答案】该景点在设施改造后平均每天用水2吨.【解析】【分析】设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨,列出分式方程,即可求解.【详解】解:设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨,由题意得:202052x x-=,解得:x =2, 经检验:x =2是方程的解,且符合题意,答:该景点在设施改造后平均每天用水2吨.【点睛】本题主要考查分式方程的实际应用,找出等量关系,列出方程,是解题的关键.25. 如图,在平面直角坐标系xOy 中,一次函数12y x b =+的图像分别与x 轴、y 轴交于点A 、B ,与反比例函数(0)ky x x =>的图像交于点C ,连接OC .已知点()4,0A -,2AB BC =.(1)求b 、k 的值;(2)求AOC △的面积.【答案】(1)b =2,k =6;(2)6【解析】【分析】(1)过点C 作CD ⊥x 轴,则OB ∥CD ,把()4,0A -代入12y x b =+得:b =2,由AOB ADC △∽△,得23OAOBDA CD ==,进而即可求解;(2)根据三角形的面积公式,直接求解即可.【详解】解:(1)过点C 作CD ⊥x 轴,则OB ∥CD ,把()4,0A -代入12y x b =+得:()1042b =⨯-+,解得:b =2, ∴122y x =+,令x =0代入122y x =+,得y =2,即B (0,2),∴OB =2,∵2AB BC =,OB ∥CD ,∴AOB ADC △∽△, ∴23OA OB DA CD ==,即:4223DA CD == ∴DA =6,CD =3∴OD =6-4=2,∴D (2,3), ∴32k =,解得:k =6; (2)AOC △的面积=1143622OA CD ⋅=⨯⨯=. 【点睛】本题主要考查反比例函数与一次函数综合,相似三角形的判定和性质,掌握待定系数法以及函数图像点的特征,是解题关键.26. 通过构造恰当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是“数形结合”思想的典型应用.【理解】(1)如图1,,AC BC CD AB ⊥⊥,垂足分别为C 、D ,E 是AB 的中点,连接CE .已知AD a =,()0BD b a b =<<.①分别求线段CE 、CD 的长(用含a 、b 的代数式表示);②比较大小:CE __________CD (填“<”、“=”或“>”),并用含a 、b 的代数式表示该大小关系.【应用】(2)如图2,在平面直角坐标系xOy 中,点M 、N 在反比例函数()10y x x=>的图像上,横坐标分别为m 、n .设11,p m n q m n =+=+,记14l pq =. ①当1,2m n ==时,l =__________;当3,3m n ==时,l =________;②通过归纳猜想,可得l 的最小值是__________.请利用图2构造恰当的图形,并说明你的猜想成立.【答案】(1)①CD =,CE =()12a b +;②>,()12a b +(2)①98,1;②l 的最小值是1,理由见详解【解析】【分析】(1)①先证明ADC CDB ∽△△,从而得2CD ab =,进而得CD 的值,根据直角三角形的性质,直接得CE 的值;②根据点到线之间,垂线段最短,即可得到结论;(2)①把m ,n 的值直接代入l =14pq =()1114m n m n ⎛⎫++ ⎪⎝⎭进行计算,即可;②过点M 作x ,y 轴的平行线,过点N 作x ,y 轴的平行线,如图所示,则A (n ,1m ),B (m ,1n ),画出图形,用矩形的面积表示111114m m n n m n n m ⎛⎫⨯+⨯+⨯+⨯ ⎪⎝⎭,进而即可得到结论. 【详解】解:(1)①∵,AC BC CD AB ⊥⊥,∴∠ACD +∠A =∠ACD +∠BCD =90°,即:∠A =∠BCD ,又∵∠ADC =∠CDB =90°,∴ADC CDB ∽△△, ∴AD CD CD BD =,即:a CD CD b=,∴2CD ab =,即:CD =(负值舍去), ∵E 是AB 的中点,∴CE =12AB =()12a b +; ②∵CD AB ⊥,0a b <<,∴CE >CD ,即:()12a b + 故答案是:>;(2)①当1,2m n ==时,l =14pq =()1114m n m n ⎛⎫++ ⎪⎝⎭=()1119124128⎛⎫⨯+⨯+= ⎪⎝⎭,当3,3m n ==时,l =14pq =()1114m n m n ⎛⎫++ ⎪⎝⎭=()111331433⎛⎫⨯+⨯+= ⎪⎝⎭, 故答案是:98,1; ②l 的最小值是:1,理由如下:由题意得:M (m ,1m),N (n ,1n ),过点M 作x ,y 轴的平行线,过点N 作x ,y 轴的平行线,如图所示,则A (n ,1m ),B (m ,1n ), l =14pq =()1114m n m n ⎛⎫++ ⎪⎝⎭=111114m m n n m n n m ⎛⎫⨯+⨯+⨯+⨯ ⎪⎝⎭ =14[(①的面积+②的面积)+②的面积+(②的面积+④的面积)+(①的面积+②的面积+③的面积 +④的面积)] =14[(①的面积+②的面积)+(②的面积+④的面积)+(①的面积+②的面积)+(②的面积+④的面积)+③的面积] =14(1+1+1+1+③的面积)≥1, ∴l 的最小值是1.【点睛】本题主要考查直角三角形的性质,反比例函数的图像和性质以及相似三角形的判定和性质,熟练掌握相似三角形的判定和性质,反比例函数图像上点的坐标特征,是解题的关键.27. 在平面直角坐标系xOy 中,对于A 、A '两点,若在y 轴上存在点T ,使得90ATA '∠=︒,且TA TA '=,则称A 、A '两点互相关联,把其中一个点叫做另一个点的关联点.已知点()2,0M -、()1,0N -,点(),Q m n 在一次函数21y x =-+的图像上.(1)①如图,在点()2,0B 、()0,1C -、()22D ,--中,点M 的关联点是_______(填“B ”、“C ”或“D ”); ②若在线段MN 上存在点()1,1P 的关联点P ',则点P '的坐标是_______;(2)若在线段MN 上存在点Q 的关联点Q ',求实数m 的取值范围;(3)分别以点()4,2E 、Q 为圆心,1为半径作E 、Q .若对E 上的任意一点G ,在Q 上总存在点G ',使得G 、G '两点互相关联,请直接写出点Q 的坐标.【答案】(1)①B ;②()2,0-;(2)213m ≤≤或10m -≤≤;(3)513,33Q ⎛⎫- ⎪⎝⎭或()3,5Q -. 【解析】【分析】由材料可知关联点的实质就是将点A 绕y 轴上点T 顺时针或逆时针旋转90度的得到点A '.故先找到旋转90°坐标变化规律,再根据规律解答即可,(1)①根据关联点坐标变化规律列方程求解点T 坐标,有解则是关联点;无解则不是;②关联点的纵坐标等于0,根据关联点坐标变化规律列方程求解即可;(2)根据关联点坐标变化规律得出关联点Q ',列不等式求解即可;(3)根据关联点的变化规律可知圆心是互相关联点,由点E 坐标求出点Q 坐标即可.【详解】解:在平面直角坐标系xOy 中,设(),A x y ,点()0,T a ,关联点(),A x y ''',将点A 、点A '、点T 向下平移a 个单位,点T 对应点与原点重合,此时点A 、点A '对应点()0,A x y a -、()0,A x y a '''-, ∵绕原点旋转90度的坐标变化规律为:点(x ,y )顺时针旋转,对应点坐标为(y ,-x );逆时针旋转对应点坐标为(-y ,x ),∴()0,A x y a -绕原点旋转90度的坐标对应点坐标为()0,A y a x '--或()0,A a y x '-, 即顺时针旋转时,x y a y a x =-⎧⎨-=-''⎩解得:x y a y a x=-⎧⎨=-''⎩,即关联点(),A y a a x '--, 或逆时针旋转时,x a y y a x =-⎧⎨-=''⎩,解得:x a y y x a=-⎧⎨=+''⎩,即关联点(),A a y x a '-+, 即:在平面直角坐标系xOy 中,设(),A x y ,点()0,T a ,关联点坐标为(),A y a a x '--或(),A a y x a '-+,(1)①由关联点坐标变化规律可知,点()2,0M -关于在y 轴上点()0,T a 的关联点坐标为:(),2A a a '-+或(),2A a a '-+,若点()2,0B 是关联点,则220a a -=⎧⎨+=⎩或220a a =⎧⎨-+=⎩,解得:2a =±,即y 轴上点()0,2T 或()0,2T -,故点()2,0B 是关联点; 若点()0,1C -是关联点,则021a a -=⎧⎨+=-⎩或021a a =⎧⎨-+=-⎩,无解,故点()0,1C -不是关联点; 若点()22D ,--是关联点,则222a a -=-⎧⎨+=-⎩或222a a =-⎧⎨-+=-⎩,无解,故点()22D ,--不是关联点; 故答案为:B ;②由关联点坐标变化规律可知,点()1,1P 关于点()0,T a 的关联点P '的坐标为()1,1P a a '--或()1,1P a a '-+,若10a -=,解得:1a =,此时即点()0,0P ',不在线段MN 上;若10a +=,解得:1a =-,此时即点()2,0P '-,在线段MN 上;综上所述:若在线段MN 上存在点()1,1P 的关联点P ',则点()2,0P '-故答案为:()2,0-;(2)设点(),Q m n 与点Q '是关于点()0,T a 关联点,则点Q '坐标为(),Q n a a m '--或(),Q a n a m '-+, 又因为点(),Q m n 在一次函数21y x =-+的图像上,即:21n m =-+,点Q '在线段MN 上,点()2,0M -、()1,0N -,当∴=02121a m n m n a -⎧⎪=-+⎨⎪-≤-≤-⎩,∴2211m m -≤-+-≤-, ∴213m ≤≤, 或=02121a m n m a n +⎧⎪=-+⎨⎪-≤-≤-⎩,∴2211m m -≤--≤-,当10m -≤≤; 综上所述:当213m ≤≤或10m -≤≤时,在线段MN 上存在点Q 的关联点Q '. (3)对E 上的任意一点G ,在Q 上总存在点G ',使得G 、G '两点互相关联,故点E 与点Q 也是关于同一点关联,设该点()0,T a ,则设点(),Q m n 与点E 是关于点()0,T a 关联点,则点E 坐标为(),E n a a m --或(),E a n a m -+, 又因为(),Q m n 在一次函数21y x =-+的图像上,即:21n m =-+,∵点()4,2E ,若2142n m n a a m =-+⎧⎪-=⎨⎪-=⎩,解得:5313313m n a ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩, 即点513,33Q ⎛⎫- ⎪⎝⎭, 的若2142n m a n a m =-+⎧⎪-=⎨⎪+=⎩,解得:351m n a =⎧⎪=-⎨⎪=-⎩,即点()3,5Q -, 综上所述:513,33Q ⎛⎫- ⎪⎝⎭或()3,5Q -. 【点睛】本题主要考查了坐标的旋转变换和一次函数图像上点的特征,解题关键是总结出绕点旋转90°的点坐标变化规律,再由规律列出方程或不等式求解.28. 如图,在平面直角坐标系xOy 中,正比例函数()0y kx k =≠和二次函数2134y x bx =-++的图像都经过点(4,3)A 和点B ,过点A 作OA 的垂线交x 轴于点C .D 是线段AB 上一点(点D 与点A 、O 、B 不重合),E 是射线AC 上一点,且AE OD =,连接DE ,过点D 作x 轴的垂线交抛物线于点F ,以DE 、DF 为邻边作DEGF .(1)填空:k =________,b =________;(2)设点D 的横坐标是(0)t t >,连接EF .若FGE DFE ∠=∠,求t 的值;(3)过点F 作AB 的垂线交线段DE 于点P .若13DFP DEGF S S =,求OD 的长.【答案】(1)34,1;(2)t =(3)11536 【解析】 【分析】(1)把(4,3)A 分别代入一次函数解析式和二次函数解析式,即可求解;(2)先证明EF =ED ,结合D (t , 34t ),F (t , 2134t t -++),可得点E 的纵坐标为:2173882t t -++,过点A 作AM ⊥EG ,延长GE 交x 轴于点N ,由4cos cos 5EM AOC AEM AE ∠=∠==,从而得217334882554t t t ⎛⎫--++ ⎪⎝⎭=,进而即可求解; (3)先推出23DP DC =,由FP ∥AC ,得23DQ DP DA DC ==,结合35DQ DH DF OD ==,可得DA =32DQ =2331132544t t ⎛⎫⨯⨯-++ ⎪⎝⎭,结合DA +OD =5,列出方程,即可求解. 【详解】解:(1)把(4,3)A 代入()0y kx k =≠得:34k =,解得:34k =, 把(4,3)A 代入2134y x bx =-++得:2134434b =-⨯++,解得:b =1, 故答案是:34,1; (2)∵DEGF 中,FGE FDE ∠=∠,∵FGE DFE ∠=∠,∴FDE ∠=DFE ∠,∴EF =ED ,∵设点D 的横坐标是(0)t t >,则D (t ,34t ),F (t , 2134t t -++), ∴点E 的纵坐标为:(34t 2134t t -++)÷2=2173882t t -++, 联立213434y x x y x ⎧=-++⎪⎪⎨⎪=⎪⎩,解得:43x y =⎧⎨=⎩或394x y =-⎧⎪⎨=-⎪⎩, ∴A (4,3),∴ 过点A 作AM ⊥EG ,延长GE 交x 轴于点N ,则∠AEM =∠NEC =∠AOC , ∴4cos cos 5EM AOC AEM AE ∠=∠==, 又∵AE OD =54t =, ∴217334882554t t t ⎛⎫--++ ⎪⎝⎭=,解得:t =t = 在∴t =(3)当13DFP DEGF S S =时,则23DP DC =, ∵AB ⊥FP ,AB ⊥AC , ∴FP ∥AC ,∴23DQ DP DA DC ==, ∵∠FDQ =∠ODH ,∴334cos cos 554t DQ DH FDQ ODH DF OD t ∠===∠==, 又∵DF =2134t t -++-34t =211344t t -++, ∴DQ =23113544t t ⎛⎫-++ ⎪⎝⎭, ∴DA =32DQ =2331132544t t ⎛⎫⨯⨯-++ ⎪⎝⎭, ∵DA +OD =5,∴2331132544t t ⎛⎫⨯⨯-++ ⎪⎝⎭+54t =5,解得:239t =或4t =(舍去), ∴OD =54t =11536.【点睛】本题主要考查二次函数与平面几何的综合,根据题意画出图形,添加合适的辅助线,熟练掌握锐角三角函数的定义,平行四边形的性质,是解题的关键.祝福语祝你考试成功!。
2020年江苏省常州市中考数学试卷(有详细解析)
2020年江苏省常州市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共8小题,共16.0分)1.2的相反数是()A. −2B. −12C. 12D. 22.计算m6÷m2的结果是()A. m3B. m4C. m8D. m123.如图是某几何体的三视图,该几何体是()A. 圆柱B. 三棱柱C. 四棱柱D. 四棱锥4.8的立方根为()A. 2√2B. ±2√2C. 2D. ±25.如果x<y,那么下列不等式正确的是()A. 2x<2yB. −2x<−2yC. x−1>y−1D. x+1>y+16.如图,直线a、b被直线c所截,a//b,∠1=140°,则∠2的度数是()A. 30°B. 40°C. 50°D. 60°7.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A. 3B. 4C. 5D. 68.如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=√2,∠ADB=135°,S△ABD=2.若反比例函数y=kx(x>0)的图象经过A、D两点,则k的值是()A. 2√2B. 4C. 3√2D. 6二、填空题(本大题共10小题,共20.0分)9.计算:|−2|+(π−1)0=______.10.若代数式1x−1有意义,则实数x的取值范围是______.11.地球的半径大约为6400km.数据6400用科学记数法表示为______.12.分解因式:x3−x=_________13.若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是______.14.若关于x的方程x2+ax−2=0有一个根是1,则a=______.15.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=______°.16.数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是______.17.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=______.18.如图,在△ABC中,∠B=45°,AB=6√2,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为______.三、计算题(本大题共1小题,共8.0分)19.解方程和不等式组:(1)xx−1+21−x=2;(2){2x−6<0−3x≤6.四、解答题(本大题共9小题,共76.0分)20.先化简,再求值:(x+1)2−x(x+1),其中x=2.21.为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是______;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.22.在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是______;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.23.已知:如图,点A、B、C、D在一条直线上,EA//FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.24.某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?(x>25.如图,正比例函数y=kx的图象与反比例函数y=8x0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.26.如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是______;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为______;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.27.如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ⋅PH的值称为⊙I 关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点______(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为______;②若直线n的函数表达式为y=√3x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,√2为半径作⊙F.若⊙F与直线1相离,点N(−1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4√5,求直线l的函数表达式.28.如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=______;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.答案和解析1. A解:2的相反数是−2.2. B解:m 6÷m 2=m 6−2=m 4.3. C解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形, 则可得出该几何体是四棱柱.4. C解:8的立方根是√83=√233=2,5. A解:∵x <y ,∴2x <2y ,故本选项符合题意;B 、∵x <y ,∴−2x >−2y ,故本选项不符合题意;C 、∵x <y ,∴x −1<y −1,故本选项不符合题意;D 、∵x <y ,∴x +1<y +1,故本选项不符合题意;6. B解:∵∠1+∠3=180°,∠1=40°,∴∠3=180°−∠1=180°−140°=40°∵a//b ,∴∠2=∠3=40°.解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.BC,∴MH=12∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,8.D解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA//BC,OA=BC,∴∠AOM=∠CNM,∵BD//y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=√2,BD⋅AE=2,BD=√2,∵S△ABD=12∴AE=2√2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2√2,∴D的纵坐标为3√2,设A(m,√2),则D(m−2√2,3√2),(x>0)的图象经过A、D两点,∵反比例函数y=kx∴k=√2m=(m−2√2)×3√2,解得m=3√2,∴k=√2m=6.9.3解:|−2|+(π−1)0=2+110.x≠1解:依题意得:x−1≠0,解得x≠1,11.6.4×103解:将6400用科学记数法表示为6.4×103.12.x(x+1)(x−1)解:x3−x,=x(x2−1),=x(x+1)(x−1).13.k>0解:∵一次函数y=kx+2,函数值y随x的值增大而增大,∴k>0.14.1解:∵关于x的方程x2+ax−2=0有一个根是1,∴把x=1代入方程得:1+a−2=0,解得:a=1,15.30解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.16.(2,√3)解:∵四边形ABCD是菱形,且AB=2,∴CD=AD=AB=2,∵∠DAB=120°,∴∠OAD=60°,Rt△AOD中,∠ADO=30°,∴OA=12AD=12×2=1,OD=√22−12=√3,∴C(2,√3),17.12解:连接CG,在正方形ACDE、BCFG中,∠ECA=∠GCB=45°,∴∠ECG=90°,设AC=2,BC=1,∴CE=2√2,CG=√2,∴tan∠GEC=CGEC =12,18.4解:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H.∵DG⊥BF,BT⊥BF,∴DG//BT,∵AD=DB,AE=EC,∴DE//BC,∴四边形DGBT是平行四边形,∴BG=DT,DG=BT,∠BDH=∠ABC=45°,∵AD=DB=3√2,∴BH=DH=3,∵∠TBF=∠BHF=90°,∴∠TBH+∠FBH=90°,∠FBH+∠F=90°,∴∠TBH=∠F,∴tan∠F=tan∠TBH=BTBF =DGBF=13,∴THBH =13,∴TH=1,∴DT=TH+DH=1+3=4,∴BG=4.19. 解:(1)方程两边都乘以x −1得:x −2=2(x −1),解得:x =0,检验:把x =0代入x −1得:x −1≠0,所以x =0是原方程的解,即原方程的解是:x =0;(2){2x −6<0 ①−3x ≤6 ②, ∵解不等式①得:x <3,解不等式②得:x ≥−2,∴不等式组的解集是:−2≤x <3.20. 解:(x +1)2−x(x +1)=x 2+2x +1−x 2−x=x +1,当x =2时,原式=2+1=3.21. 100解:(1)本次抽样调查的总人数是:25÷25%=100(人),则样本容量是100;故答案为:100;(2)打乒乓球的人数有:100×35%=35(人),踢足球的人数有:100−25−35−15=25(人),补全统计图如下:(3)根据题意得:2000×15100=300(人),答:估计该校最喜爱“打篮球”的学生人数有300人.22. 13解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为13,故答案为:13;(2)用列表法表示所有可能出现的结果情况如下:共有6种可能出现的结果,其中“和为奇数”的有4种,∴P (和为奇数)=46=23.23. 证明:(1)∵EA//FB ,∴∠A =∠FBD ,∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD ,在△EAC 与△FBD 中,{EA =FB ∠A =∠FBD AC =BD,∴△EAC≌△FBD(SAS),∴∠E =∠F ;(2)∵△EAC≌△FBD ,∴∠ECA =∠D =80°,∵∠A =40°,∴∠E =180°−40°−80°=60°,答:∠E 的度数为60°.24. 解:(1)设每千克苹果的售价为x 元,每千克梨的售价为y 元,依题意,得:{x +3y =262x +y =22, 解得:{x =8y =6. 答:每千克苹果的售价为8元,每千克梨的售价为6元.(2)设购买m 千克苹果,则购买(15−m)千克梨,依题意,得:8m +6(15−m)≤100,解得:m≤5.答:最多购买5千克苹果.25.解:(1)把点A(a,4)代入反比例函数y=8x(x>0)得,a=84=2,∴点A(2,4),代入y=kx得,k=2,∴正比例函数的关系式为y=2x,答:a=2,正比例函数的关系式为y=2x;(2)当BD=10=y时,代入y=2x得,x=5,∴OB=5,当x=5代入y=8x 得,y=85,即BC=85,∴CD=BD−BC=10−85=425,∴S△ACD=12×425×(5−2)=12.6,26.1 π12解:(1)如图1中,作FD⊥AC于D,∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.∴∠ACB=60°,∠FCE=∠BAC=30°,AC=CF,∴∠ACF=30°,∴∠BAC=∠FCD,在△ABC和△CDF中,{∠BAC=∠FCD ∠ABC=∠CDF AC=CF,∴△ABC≌△CDF(AAS),∴FD=BC=1,故答案为1;(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.S 阴=S △EFC +S 扇形ACF −S 扇形CEH −S △AHC =S 扇形ACF −S 扇形ECH =30⋅π⋅22360−30⋅π⋅(√3)2360=π12. 故答案为π12. (3)如图2中,过点E 作EH ⊥CF 于H.设OB =OE =x .在Rt △ECF 中,∵EF =1,∠ECF =30°,EH ⊥CF ,∴EC =√3EF =√3,EH =√32,CH =√3EH =32, 在Rt △BOC 中,OC =√OB 2+BC 2=√1+x 2,∴OH =CH =OC =32−√1+x 2, 在Rt △EOH 中,则有x 2=(√32)2+(32−√1+x 2)2, 解得x =√73或−√73(不合题意舍弃), ∴OC =(√73)=43, ∵CF =2EF =2,∴OF =CF −OC =2−43=23.27. D 20解:(1)①由题意,点D是⊙O关于直线m的“远点”,⊙O关于直线m的特征数=DB⋅DE=2×5=20,故答案为D,20.②如图1−1中,过点O作OH⊥直线n于H,交⊙O于Q,P.设直线y=√3x+4交x轴于F(−4√33,0),交y轴于E(0,4),∴OE=4,OF=4√33∴tan∠FEO=OFOE =√33,∴∠FEO=30°,∴OH=12OE=2,∴PH=OH+OP=3,∴⊙O关于直线n的“特征数”=PQ⋅PH=2×3=6.(2)如图2−1中,设直线l的解析式为y=kx+b.当k>0时,过点F作FH⊥直线l于H,交⊙F于E,N.由题意,EN=2√2,EN⋅NH=4√5,∴NH=√10,∵N(−1,0),M(1,4),∴MN=√22+42=2√5,∴HM =√MN 2−NH 2=√20−10=√10,∴△MNH 是等腰直角三角形,∵MN 的中点K(0,2),∴KN =HK =KM =√5,∴H(−2,3),把H(−2,3),M(1,4)代入y =kx +b ,则有{k +b =4−2k +b =3, 解得{k =13b =113, ∴直线l 的解析式为y =13x +113,当k <0时,同法可知直线i 经过H′(2,1),可得直线l 的解析式为y =−3x +7.综上所述,满足条件的直线l 的解析式为y =13x +113或y =−3x +7.28. −4解:(1)∵抛物线y =x 2+bx +3的图象过点C(1,0),∴0=1+b +3,∴b =−4,故答案为:−4;(2)∵b =4,∴抛物线解析式为y =x 2−4x +3∵抛物线y =x 2−4x +3的图象与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于另一点B , ∴点A(0,3),3=x 2−4x ,∴x 1=0(舍去),x 2=4,∴点B(4,3),∵y =x 2−4x +3=(x −2)2−1,∴顶点D 坐标(2,−1),如图1,当点Q 在点D 上方时,过点C 作CE ⊥AB 于E ,设BD 与x 轴交于点F ,∵点A(0,3),点B(4,3),点C(1,0),CE ⊥AB ,∴点E(1,3),CE =BE =3,AE =1,∴∠EBC =∠ECB =45°,tan∠ACE =AE EC =13,∴∠BCF =45°,∵点B(4,3),点C(1,0),点D(2,−1), ∴BC =√9+9=3√2,CD =√1+1=√2,BD =√(4−2)2+(3+1)2=2√5, ∵BC 2+CD 2=20=BD 2,∴∠BCD =90°,∴tan∠DBC =CD BC =√23√2=13=tan∠ACE , ∴∠ACE =∠DBC ,∴∠ACE +∠ECB =∠DBC +∠BCF ,∴∠ACB =∠CFD ,又∵∠CQD =∠ACB ,∴点F 与点Q 重合,∴点P 是直线CF 与抛物线的交点,∴0=x 2−4x +3,∴x 1=1,x 2=3,∴点P(3,0);当点Q 在点D 下方上,过点C 作CH ⊥DB 于H ,在线段BH 的延长线上截取HF =QH ,连接CQ 交抛物线于点P ,∵CH ⊥DB ,HF =QH ,∴CF =CQ ,∴∠CFD =∠CQD ,∴∠CQD =∠ACB ,∵CH ⊥BD ,∵点B(4,3),点D(2,−1),∴直线BD 解析式为:y =2x −5,∴点F(52,0), ∴直线CH 解析式为:y =−12x +12,∴{y =−12x +12y =2x −5, 解得{x =115y =−35,∴点H 坐标为(115,−35), ∵FH =QH , ∴点Q(1910,−65),∴直线CQ 解析式为:y =−43x +43,联立方程组{y =−43x +43y =x 2−4x +3, 解得:{x 1=1y 1=0或{x 2=53y 2=−89, ∴点P(53,−89); 综上所述:点P 的坐标为(3,0)或(53,−89); (3)如图,设直线AC 与BD 的交点为N ,作CH ⊥BD 于H ,过点N 作MN ⊥x 轴,过点E 作EM ⊥MN ,连接CG ,GF ,∵点A(0,3),点C(1,0),∴直线AC 解析式为:y =−3x +3,∴{y =−3x +3y =2x −5, ∴{x =85y =−95, ∴点N 坐标为(85,−95),∵点H 坐标为(115,−35),∴CH 2=(115−1)2+(35)2=95,HN 2=(115−85)2+(−35+95)2=95,∴CH =HN ,∴∠CNH=45°,∵点E关于直线BD对称的点为F,∴EN=NF,∠ENB=∠FNB=45°,∴∠ENF=90°,∴∠ENM+∠FNM=90°,又∵∠ENM+∠MEN=90°,∴∠MEN=∠FNM,∴△EMN≌△NKF(AAS)∴EM=NK=95,MN=KF,∴点E的横坐标为−15,∴点E(−15,185),∴MN=275=KF,∴CF=85+275−1=6,∵点F关于直线BC对称的点为G,∴FC=CG=6,∠BCF=∠GCB=45°,∴∠GCF=90°,∴点G(1,6),∴AG=√12+(6−3)2=√10.。
江苏省常州市2020年中考数学试题(解析版)
【详解】原式=2+1=3.
故答案为:3.
【点睛】本题考查了绝对值和0次幂的性质.
10.若代数式 有意义,则实数x的取值范围是________.
【答案】x≠1
【解析】
【分析】
分式有意义时,分母x-1≠0,据此求得x的取值范围.
【详解】解:依题意得:x-1≠0,
解得x≠1,
【答案】k>0
【解析】
分析】
直角利用一次函数增减性与系数的关系解答即可.
【详解】解:∵一次函数 的函数值y随自变量x增大而增大
∴k>0.
故答案为k>0.
【点睛】本题主要考查了一次函数增减性与系数的关系,当一次函数的一次项系数大于零时,一次函数的函数值随着自变量x的增大而增大.
14.若关于x的方程 有一个根是1,则 _________.
故答案为:x≠1.
【点睛】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.
11.地球半径大约是 ,将 用科学记数法表示为________.
【答案】
【解析】
【分析】
对于一个绝对值较大的数,用科学记数法写成 的形式,其中 ,n是比原整数位数少1的数.
19.先化简,再求值: ,其中 .
【答案】 ;3
【解析】
【分析】
先利用完全平方公式和单项式乘多项式化简,再代入求值即可.
【详解】解:
=
=
将x=2代入,
原式=3
【点睛】本题主要考查了整式的混合运算,解题的关键是正确的化简.
20.解方程和不等式组:
(1) ;
(2)
【答案】(1)x=0;(2)﹣2≤x<3
2020年江苏省常州市中考数学试卷(含解析)
2020年江苏省常州市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(本大题共8小题,每小题2分,共16分)1.2的相反数是()A.﹣2 B.﹣C.D.22.计算m6÷m2的结果是()A.m3B.m4C.m8D.m123.如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥4.8的立方根为()A.B.C.2 D.±25.如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1 D.x+1>y+16.如图,直线a、b被直线c所截,a∥b,∠1=140°,则∠2的度数是()A.30°B.40°C.50°D.60°7.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3 B.4 C.5 D.68.如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=,∠ADB=135°,S△ABD=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是()A.2B.4 C.3D.6二、填空题(本大题共10小题,每小题2分,共20分)9.(计算:|﹣2|+(π﹣1)0=.10.若代数式有意义,则实数x的取值范围是.11.地球的半径大约为6400km.数据6400用科学记数法表示为.12.分解因式:x3﹣x=.13.若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是.14.若关于x的方程x2+ax﹣2=0有一个根是1,则a=.15.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=°.16.数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是.17.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=.18.如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为.三、解答题(本大题共10小题,共84分)19.(6分)先化简,再求值:(x+1)2﹣x(x+1),其中x=2.20.(8分)解方程和不等式组:(1)+=2;(2).21.(8分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.22.(8分)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.23.(8分)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.24.(8分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?25.(8分)如图,正比例函数y=kx的图象与反比例函数y=(x>0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.26.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.27.(10分)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ•PH的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为;②若直线n的函数表达式为y=x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,为半径作⊙F.若⊙F与直线1相离,点N(﹣1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4,求直线l的函数表达式.28.(10分)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F 在x轴上时,直接写出AG的长.参考答案与试题解析一、选择题1.【解答】解:2的相反数是﹣2.故选:A.2.【解答】解:m6÷m2=m6﹣2=m4.故选:B.3.【解答】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C.4.【解答】解:8的立方根是==2,故选:C.5.【解答】解:A、∵x<y,∴2x<2y,故本选项符合题意;B、∵x<y,∴﹣2x>﹣2y,故本选项不符合题意;C、∵x<y,∴x﹣1<y﹣1,故本选项不符合题意;D、∵x<y,∴x+1<y+1,故本选项不符合题意;故选:A.6.【解答】解:∵∠1+∠3=180°,∠1=40°,∴∠3=180°﹣∠1=180°﹣140°=40°∵a∥b,∴∠2=∠3=40°.故选:B.7.【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.8.【解答】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=,∵S△ABD==2,BD=,∴AE=2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2,∴D的纵坐标为3,设A(m,),则D(m﹣2,3),∵反比例函数y=(x>0)的图象经过A、D两点,∴k=m=(m﹣2)×3,解得m=3,∴k=m=6.故选:D.二、填空题9.【解答】解:|﹣2|+(π﹣1)0=2+1=3,故答案为:3.10.【解答】解:依题意得:x﹣1≠0,解得x≠1,故答案为:x≠1.11.【解答】解:将6400用科学记数法表示为6.4×103.故答案为:6.4×103.12.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).13.【解答】解:∵一次函数y=kx+2,函数值y随x的值增大而增大,∴k>0.故答案为:k>0.14.【解答】解:∵关于x的方程x2+ax﹣2=0有一个根是1,∴把x=1代入方程得:1+a﹣2=0,解得:a=1,故答案为:1.15.【解答】解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.16.【解答】解:∵四边形ABCD是菱形,且AB=2,∴CD=AD=AB=2,∵∠DAB=120°,∴∠OAD=60°,Rt△AOD中,∠ADO=30°,∴OA=AD==1,OD==,∴C(2,),故答案为:(2,).17.【解答】解:连接CG,在正方形ACDE、BCFG中,∠ECA=∠GCB=45°,∴∠ECG=90°,设AC=2,BC=1,∴CE=2,CG=,∴tan∠GEC==,故答案为:.18.【解答】解:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H.∵DG⊥BF,BT⊥BF,∴DG∥BT,∵AD=DB,AE=EC,∴DE∥BC,∴四边形DGBT是平行四边形,∴BG=DT,DG=BT,∠BDH=∠ABC=45°,∵AD=DB=3,∴BH=DH=3,∵∠TBF=∠BHF=90°,∴∠TBH+∠FBH=90°,∠FBH+∠F=90°,∴∠TBH=∠F,∴tan∠F=tan∠TBH===,∴=,∴TH=1,∴DT=TH+DH=1+3=4,∴BG=4.当点F在ED的延长线上时,同法可得DT=BG=3﹣1=2.故答案为4或2.三、解答题19.【解答】解:(x+1)2﹣x(x+1)=x2+2x+1﹣x2﹣x=x+1,当x=2时,原式=2+1=3.20.【解答】解:(1)方程两边都乘以x﹣1得:x﹣2=2(x﹣1),解得:x=0,检验:把x=0代入x﹣1得:x﹣1≠0,所以x=0是原方程的解,即原方程的解是:x=0;(2),∵解不等式①得:x<3,解不等式②得:x≥﹣2,∴不等式组的解集是:﹣2≤x<3.21.【解答】解:(1)本次抽样调查的总人数是:25÷25%=100(人),则样本容量是100;故答案为:100;(2)打乒乓球的人数有:100×35%=35(人),踢足球的人数有:100﹣25﹣35﹣15=25(人),补全统计图如下:(3)根据题意得:2000×=300(人),答:估计该校最喜爱“打篮球”的学生人数有300人.22.【解答】解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有6种可能出现的结果,其中“和为奇数”的有4种,∴P(和为奇数)==.23.【解答】证明:(1)∵EA∥FB,∴∠A=∠FBD,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△EAC与△FBD中,,∴△EAC≌△FBD(SAS),∴∠E=∠F;(2)∵△EAC≌△FBD,∴∠ECA=∠D=80°,∵∠A=40°,∴∠E=180°﹣40°﹣80°=60°,答:∠E的度数为60°.24.【解答】解:(1)设每千克苹果的售价为x元,每千克梨的售价为y元,依题意,得:,解得:.答:每千克苹果的售价为8元,每千克梨的售价为6元.(2)设购买m千克苹果,则购买(15﹣m)千克梨,依题意,得:8m+6(15﹣m)≤100,解得:m≤5.答:最多购买5千克苹果.25.【解答】解:(1)把点A(a,4)代入反比例函数y=(x>0)得,a==2,∴点A(2,4),代入y=kx得,k=2,∴正比例函数的关系式为y=2x,答:a=2,正比例函数的关系式为y=2x;(2)当BD=10=y时,代入y=2x得,x=5,∴OB=5,当x=5代入y=得,y=,即BC=,∴CD=BD﹣BC=10﹣=,∴S△ACD=××(5﹣2)=12.6,26.【解答】解:(1)如图1中,作FD⊥AC于D,∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.∴∠ACB=60°,∠FCE=∠BAC=30°,AC=CF,∴∠ACF=30°,∴∠BAC=∠FCD,在△ABC和△CDF中,,∴△ABC≌△CDF(AAS),∴FD=BC=1,故答案为1;(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF﹣S扇形ECH=﹣=.故答案为.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt△ECF中,∵EF=1,∠ECF=30°,EH⊥CF,∴EC=EF=,EH=,CH=EH=,在Rt△BOC中,OC==,∴OH=CH﹣OC=﹣,在Rt△EOH中,则有x2=()2+(﹣)2,解得x=或﹣(不合题意舍弃),∴OC==,∵CF=2EF=2,∴OF=CF﹣OC=2﹣=.27.【解答】解:(1)①由题意,点D是⊙O关于直线m的“远点”,⊙O关于直线m的特征数=DB•DE=2×5=20,故答案为D,20.②如图1﹣1中,过点O作OH⊥直线n于H,交⊙O于Q,P.设直线y=x+4交x轴于F(﹣,0),交y轴于E(0,4),∴OE=4,OF=∴tan∠FEO==,∴∠FEO=30°,∴OH=OE=2,∴PH=OH+OP=3,∴⊙O关于直线n的“特征数”=PQ•PH=2×3=6.(2)如图2﹣1中,设直线l的解析式为y=kx+b.当k>0时,过点F作FH⊥直线l于H,交⊙F于E,N.由题意,EN=2,EN•NH=4,∴NH=,∵N(﹣1,0),M(1,4),∴MN==2,∴HM===,∴△MNH是等腰直角三角形,∵MN的中点K(0,2),∴KN=HK=KM=,∴H(﹣2,3),把H(﹣2,3),M(1,4)代入y=kx+b,则有,解得,∴直线l的解析式为y=x+,当k<0时,同法可知直线i经过H′(2,1),可得直线l的解析式为y=﹣3x+7.综上所述,满足条件的直线l的解析式为y=x+或y=﹣3x+7.28.【解答】解:(1)∵抛物线y=x2+bx+3的图象过点C(1,0),∴0=1+b+3,∴b=﹣4,故答案为:﹣4;(2)∵b=4,∴抛物线解析式为y=x2﹣4x+3∵抛物线y=x2﹣4x+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,∴点A(0,3),3=x2﹣4x,∴x1=0(舍去),x2=4,∴点B(4,3),∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点D坐标(2,﹣1),如图1,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,∵点A(0,3),点B(4,3),点C(1,0),CE⊥AB,∴点E(1,3),CE=BE=3,AE=1,∴∠EBC=∠ECB=45°,tan∠ACE=,∴∠BCF=45°,∵点B(4,3),点C(1,0),点D(2,﹣1),∴BC==3,CD==,BD==2,∵BC2+CD2=20=BD2,∴∠BCD=90°,∴tan∠DBC====tan∠ACE,∴∠ACE=∠DBC,∴∠ACE+∠ECB=∠DBC+∠BCF,∴∠ACB=∠CFD,又∵∠CQD=∠ACB,∴点F与点Q重合,∴点P是直线CF与抛物线的交点,∴0=x2﹣4x+3,∴x1=1,x2=3,∴点P(3,0);当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,∵CH⊥DB,HF=QH,∴CF=CQ,∴∠CFD=∠CQD,∴∠CQD=∠ACB,∵CH⊥BD,∵点B(4,3),点D(2,﹣1),∴直线BD解析式为:y=2x﹣5,∴点F(,0),∴直线CH解析式为:y=﹣x+,∴,解得,∴点H坐标为(,﹣),∵FH=QH,∴点Q(,﹣),∴直线CQ解析式为:y=﹣x+,联立方程组,解得:或,∴点P(,﹣);综上所述:点P的坐标为(3,0)或(,﹣);(3)如图,设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,∵点A(0,3),点C(1,0),∴直线AC解析式为:y=﹣3x+3,∴,∴,∴点N坐标为(,﹣),∵点H坐标为(,﹣),∴CH2=(﹣1)2+()2=,HN2=(﹣)2+(﹣+)2=,∴CH=HN,∴∠CNH=45°,∵点E关于直线BD对称的点为F,∴EN=NF,∠ENB=∠FNB=45°,∴∠ENF=90°,∴∠ENM+∠FNM=90°,又∵∠ENM+∠MEN=90°,∴∠MEN=∠FNM,∴△EMN≌△NKF(AAS)∴EM=NK=,MN=KF,∴点E的横坐标为﹣,∴点E(﹣,),∴MN==KF,∴CF=+﹣1=6,∵点F关于直线BC对称的点为G,∴FC=CG=6,∠BCF=∠GCB=45°,∴∠GCF=90°,∴点G(1,6),∴AG==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省常州市中考数学试卷 试题解析 一、选择题(本大题共8小题,每小题2分,共16分。
在每小题所给出的四个选项中,只有一项是正确的)1.(2分)﹣3的相反数是( )A .31B .31-C .3D .﹣3【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选:C .【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.(2分)若代数式31-+x x 有意义,则实数x 的取值范围是( ) A .x =﹣1 B .x =3 C .x ≠﹣1 D .x ≠3【分析】分式有意义的条件是分母不为0.【解答】解:∵代数式31-+x x 有意义, ∴x ﹣3≠0,∴x ≠3.故选:D .【点评】本题运用了分式有意义的条件知识点,关键要知道分母不为0是分式有意义的条件.3.(2分)如图是某几何体的三视图,该几何体是( )A .圆柱B .正方体C .圆锥D .球【分析】通过俯视图为圆得到几何体为圆柱或球,然后通过主视图和左视图可判断几何体为圆锥.【解答】解:该几何体是圆柱.故选:A .【点评】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助.4.(2分)如图,在线段PA 、PB 、PC 、PD 中,长度最小的是( )A .线段PAB .线段PBC .线段PCD .线段PD【分析】由垂线段最短可解.【解答】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B .故选:B .【点评】本题考查的是直线外一点到直线上所有点的连线中,垂线段最短,这属于基本的性质定理,属于简单题.5.(2分)若△ABC ~△A ′B 'C ′,相似比为1:2,则△ABC 与△A 'B ′C '的周长的比为( )A .2:1B .1:2C .4:1D .1:4【分析】直接利用相似三角形的性质求解.【解答】解:∵△ABC ~△A ′B 'C ′,相似比为1:2,∴△ABC 与△A 'B ′C '的周长的比为1:2.故选:B .【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.相似三角形的面积的比等于相似比的平方.6.(2分)下列各数中与2+3的积是有理数的是( )A .2+3B .2C .3D .2﹣3【分析】利用平方差公式可知与2+3的积是有理数的为2-3;【解答】解:∵(2+3)(2﹣3)=4﹣3=1;故选:D .【点评】本题考查分母有理化;熟练掌握利用平方差公式求无理数的无理化因子是解题的关键.7.(2分)判断命题“如果n <1,那么n 2﹣1<0”是假命题,只需举出一个反例.反例中的n 可以为( )A .﹣2B .﹣21 C .0 D .21 【分析】反例中的n 满足n <1,使n 2﹣1≥0,从而对各选项进行判断.【解答】解:当n =﹣2时,满足n <1,但n 2﹣1=3>0,所以判断命题“如果n <1,那么n 2﹣1<0”是假命题,举出n =﹣2.故选:A .【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.(2分)随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是()A.B.C.D.【分析】根据极差的定义,分别从t=0、0<t≤10、10<t≤20及20<t≤24时,极差y2随t的变化而变化的情况,从而得出答案.【解答】解:当t=0时,极差y2=85﹣85=0,当0<t≤10时,极差y2随t的增大而增大,最大值为43;当10<t≤20时,极差y2随t的增大保持43不变;当20<t≤24时,极差y2随t的增大而增大,最大值为98;故选:B.【点评】本题主要考查极差,解题的关键是掌握极差的定义及函数图象定义与画法.二、填空题(本大题共10小题,每小题2分,共20分。
不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2分)计算:a3÷a=.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:a3÷a=a2.故答案为:a2.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.(2分)4的算术平方根是.【分析】根据算术平方根的含义和求法,求出4的算术平方根是多少即可.【解答】解:4的算术平方根是2.故答案为:2.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a 是非负数;②算术平方根a 本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.11.(2分)分解因式:ax 2﹣4a = .【分析】先提取公因式a ,再对余下的多项式利用平方差公式继续分解.【解答】解:ax 2﹣4a ,=a (x 2﹣4),=a (x +2)(x ﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(2分)如果∠α=35°,那么∠α的余角等于 °.【分析】若两角互余,则两角和为90°,从而可知∠α的余角为90°减去∠α,从而可解.【解答】解:∵∠α=35°,∴∠α的余角等于90°﹣35°=55°故答案为:55.【点评】本题考查的两角互余的基本概念,题目属于基础概念题,比较简单.13.(2分)如果a ﹣b ﹣2=0,那么代数式1+2a ﹣2b 的值是 .【分析】将所求式子化简后再将已知条件中a ﹣b =2整体代入即可求值;【解答】解:∵a ﹣b ﹣2=0,∴a ﹣b =2,∴1+2a ﹣2b =1+2(a ﹣b )=1+4=5;故答案为5.【点评】本题考查代数式求值;熟练掌握整体代入法求代数式的值是解题的关键.14.(2分)平面直角坐标系中,点P (﹣3,4)到原点的距离是 .【分析】作PA ⊥x 轴于A ,则PA =4,OA =3,再根据勾股定理求解.【解答】解:作PA ⊥x 轴于A ,则PA =4,OA =3.则根据勾股定理,得OP =5.故答案为5.【点评】此题考查了点的坐标的知识以及勾股定理的运用.点到x 轴的距离即为点的纵坐标的绝对值. 15.(2分)若⎩⎨⎧==21y x 是关于x 、y 的二元一次方程ax +y =3的解,则a = .【分析】把⎩⎨⎧==21y x 代入二元一次方程ax +y =3中即可求a 的值.【解答】解:把⎩⎨⎧==21y x 代入二元一次方程ax +y =3中,a +2=3,解得a =1.故答案是:1.【点评】本题运用了二元一次方程的解的知识点,运算准确是解决此题的关键.16.(2分)如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,∠AOC =120°,则∠CDB = °.【分析】先利用邻补角计算出∠BOC ,然后根据圆周角定理得到∠CDB 的度数.【解答】解:∵∠BOC =180°﹣∠AOC =180°﹣120°=60°,∴∠CDB =21∠BOC =30°. 故答案为30.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.17.(2分)如图,半径为3的⊙O 与边长为8的等边三角形ABC 的两边AB 、BC 都相切,连接OC ,则tan ∠OCB = 53 .【分析】根据切线长定理得出∠OBC =∠OBA =21∠ABC =30°,解直角三角形求得BD ,即可求得CD ,然后解直角三角形OCD 即可求得tan ∠OCB 的值.【解答】解:连接OB ,作OD ⊥BC 于D ,∵⊙O 与等边三角形ABC 的两边AB 、BC 都相切,∴∠OBC =∠OBA =21∠ABC =30°, ∴tan ∠OBC =BDOD ,∴BD =o OD 30tan =333=3, ∴CD =BC ﹣BD =8﹣3=5,∴tan ∠OCB =CDOD =53. 故答案为53.【点评】本题考查了切线的性质,等边三角形的性质,解直角三角形等,作出辅助线构建直角三角形是解题的关键.18.(2分)如图,在矩形ABCD 中,AD =3AB =310,点P 是AD 的中点,点E 在BC 上,CE =2BE ,点M 、N 在线段BD 上.若△PMN 是等腰三角形且底角与∠DEC 相等,则MN = 6或815 .【解答】解:①作PF ⊥MN 于F ,如图所示:则∠PFM =∠PFN =90°,∵四边形ABCD 是矩形,∴AB =CD ,BC =AD =3AB =310,∠A =∠C =90°,∴AB =CD =10,BD =22AD AB =10, ∵点P 是AD 的中点,∴PD =21AD =2103, ∵∠PDF =∠BDA ,∴△PDF ∽△BDA ,∴AB PF =BD PD ,即10210310=PF , 解得:PF =23, ∵CE =2BE ,∴BC =AD =3BE ,∴BE =CD ,∴CE =2CD ,∵△PMN 是等腰三角形且底角与∠DEC 相等,PF ⊥MN ,∴MF =NF ,∠PNF =∠DEC ,∵∠PFN =∠C =90°,∴△PNF ∽△DEC ,∴PF NF =CDCE =2, ∴NF =2PF =3,∴MN =2NF =6;②MN 为等腰△PMN 的腰时,作PF ⊥BD 于F ,如图2所示,由①得:PF=23,MF=3, 设MN=PN=x ,则FN=3-x , 在Rt △PNF 中,()222323x x =-+⎪⎭⎫ ⎝⎛, 解得:815=x ,即MN=815, 综上所述,MN 的长为6或815。
故答案为:6或815. 【点评】本题考查了矩形的性质、等腰三角形的性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和等腰三角形的性质,证明三角形相似是解题的关键.三、解答题(本大题共10小题,共84分。