多次运用基本不等式错解例析

合集下载

使用“基本不等式”解题时易错点分析

使用“基本不等式”解题时易错点分析

使 用 “基 本 不 等 式 ”解 题 时 易 错 点 分 析
黄翠花
摘 要:作者结合多年的教学实践,在阐述基本不等式内容的基础上,阐述了基本 不 等 式 解 题 的 易 错 点,然 后 典 型 例 题 分 析 了 基 本 不 等 式 的 正 确 解 法 ,以 期 为 学 生 提 供 些 许 指 导 .
关 键 词 :基 本 不 等 式 ;易 错 点 ;解 题 方 法
基本不等式是 高 中 数 学 的 重 要 内 容,许 多 函 数 最 值、较 为复杂的不等式、数列极限等问题都能找 到 基 本 不 等 式 的 影
子,并通过使用基本不等式的性质来 得 到 解 答. 基 本 不 等 式
内容简单,但变式多样,而且在满足特 定 限 制 条 件,即“一 正,
3 x
)

-2
-x������
3 -x
=-2 3,



-x=

3 x
时 ,也 即 x= -
3才 能 相 等 .
所以函数的最大值是2 3,最小值是-2 3.
现 场 纠 错 :1


y
=8-
x 2

2 x
(x
>0)的



是 .
(二 )忽 视 “二 定 ”条 件
例2 若正 数 x,y 满 足x+3y=5xy,则 3x+4y 的 最
二定,三相等”时才能够使用,许多学生 由 于 对 基 本 不 等 式 的
使 用 条 件 理 解 不 透 彻 ,导 致 做 题 过 程 中 出 现 错 误 .
一 、基 本 不 等 式 的 内 容
(一)基本不等式:a2+b≥ ab 成立条件:a>0,b>0,当且仅当a=b 时取等号. (二 )利 用 基 本 不 等 式 求 最 值 问 题 :

高中数学x基本不等式--三项注意

高中数学x基本不等式--三项注意

基本不等式----三大注意事项例题解答基本不等式是高中阶段的重要内容,是学生不容易掌握的重点知识之一,关键是其变形灵活,形式多姿多样,基本不等式“(0,0)2a b ab a b +≥>>”沟通了两个正数的“和”与“积”之间的关系,利用它可以解决求最值或者不等式证明问题.在运用基本不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形,造条件满足应用情境后再解决问题. 因此需要掌握一些变形技巧,注意三大方面. 一个技巧:运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab +≥逆用就是222a b ab +≤,2a b ab +≥ (0,0)a b >>逆用就是2()2a b ab +≤等. 两个变形: (1) 2221122a b a b ab a b ++≤≤≤+ (,)a b R +∈,即调和平均数≤几何平均数≤算术平均数≤平方平均数;(当且仅当a b =时取等号) (2) 222()22a b a b ab ++≤≤ (,)a b R ∈(当且仅当a b =时取等号). 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.例题.一、注意运用不等式链例1 已知0a >,0b >,1a b +=,求11a b +的最大值. 解析:由0a >,0b >,又2112a b a b +≤+,因为1a b +=,所以21112a b ≤+,所以11a b +4≥,当且仅当12a b ==时,等号成立. 评注:本题利用基本不等式链简化了问题,是题目的证明思路一目了然.二、注意结论成立的条件 对2221122a b a b ab a b++≤≤≤+来讲,一是要求,a b R +∈,二是和或积或平方和为定值,三是等号要成立即a b =.即所谓的一正、二定、三相等;但是对不等式222()22a b a b ab ++≤≤来讲,a b R ∈均可.例2 求函数()()y x x x=++49的最值. 错解: ()()y x x x x x x =++=++4913362=++≥+⋅=133********x x x x 当且仅当x x=36即x =±6时取等号. 所以当x =±6时,y 的最小值为25,此函数没有最大值.错因分析: 上述解题过程中应用了基本不等式,却忽略了应用基本不等式求最值时的条件—两个数都应大于零,因而导致错误.因为函数()()y x x x =++49的定义域为(,0)(0,)-∞+∞,所以必须对x 的正负加以分类讨论.正解: (1)当x >0时,25362133613=⋅+≥++=x x x x y , 当且仅当x x=36即6=x 时取等号.所以当x =6时,y min =25. (2)当x <0时,->->x x 0360,, ()()-+-⎛⎝ ⎫⎭⎪≥--⎛⎝ ⎫⎭⎪=x x x x 3623612, 11213)]36()[(13=-≤-+--=∴x x y .当且仅当-=-x x36,即x =-6时取等号,所以当x =-6时,y max =-=13121.评注:在利用基本不等式链时,一定要注意使用范围.例3 已知0,0x y >>,且191x y+=,求x y +的最小值. 错解:0,0x y >>,且191x y +=,∴()1992212x y x y xy x y xy ⎛⎫+=++≥= ⎪⎝⎭. 故 ()min 12x y += .错因分析:解法中两次连用基本不等式,在2x y xy +≥等号成立条件是x y =,在1992x y xy+≥等号成立条件是19x y=即9y x =,取等号的条件的不一致,产生错误. 正解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭ 当且仅当9y x x y=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += . 评注:在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法.三、注意要掌握三种拼凑方法由基本不等式链可以看出在运用基本不等式解决问题时主要是凑定和、定积或平方和为常数.例4 当04x <<时,求(82)y x x =-的最大值.解析:由04x <<知,820x ->,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值.注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可.211282(82)[2(82)]()8222x x y x x x x +-=-=-≤=. 当282x x =-,即2x =时取等号 ,所以当2x =时,(82)y x x =-的最大值为8.评注:本题无法直接运用基本不等式,但凑系数后可得到和为定值,从而可利用基本不等式求最大值. 例5 已知54x <,求函数14245y x x =-+-的最大值. 解析:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->, 11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =. 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值.例6 已知x ,y 为正实数,且2212y x +=,求21x y +的最大值. 解析:因条件和结论分别是二次和一次,故采用公式222a b ab +≤.同时还应化简21y +中前面的系数为12,22211122222y y x y x x ++==+.下面将x ,2122y +分别看成两个因式:则2211222y x y x +=+2212222y x ++≤324=, 当且仅当2122y x =+且2212y x +=,即32x =,22y =时,等号成立. 所以21x y +的最大值为324. 评注:本题注意到适当添加常数配凑后,两项的平方和为常数,故而进行变形利用基本不等式链解决问题.。

高三数学备考12利用基本不等式处理最值、证明不等式和实际问题解析版

高三数学备考12利用基本不等式处理最值、证明不等式和实际问题解析版

问题12利用基本不等式处理最值、证明不等式和实际问题一、考情分析不等式问题始终是高考数学的热点题型之一,而基本不等式法是最为常见、应用十分广泛的方法之一.下面笔者以近几年高考试题及模拟题为例,对高考中考查利用基本不等式解题的基本特征和基本类型作一些分类解析,供参考. 二、经验分享(1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. (2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(4)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解. (5)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(6)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围. 三、知识拓展 1.(1)若R b a ∈,,则;(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”).2.(1)若00a ,b >>,则ab ba ≥+2;(2)若00a ,b >>,则(当且仅当b a =时取“=”);(3)若00a ,b >>,则(当且仅当b a =时取“=”).3.若0x >,则12x x +≥(当且仅当1x =时取“=”);若0x <,则12x x+≤-(当且仅当1x =-时取“=”);若0x ≠,则12x x +≥,即12x x +≥或12x x+≤-(当且仅当b a =时取“=”). 4.若0>ab ,则2≥+a bb a (当且仅当b a =时取“=”);若0ab ≠,则2a b b a +≥,即2a b b a+≥或2a bb a+≤-(当且仅当b a =时取“=”). 6.若R b a ∈,,则(当且仅当b a =时取“=”).7.一个重要的不等式链:.8.9.函数图象及性质(1)函数图象如右图所示:(2)函数性质:①值域:;②单调递增区间:;单调递减区间:.10.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”;(2)求最值的条件“一正,二定,三相等”;(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.四、题型分析(一) 利用基本不等式求最值利用基本不等式求函数最值时,应注意三个条件:“一正,二定,三相等”,这三个条件中,以定值为本.因为在一定限制条件下,某些代数式需经过一定的变式处理,才可利用基本不等式求得最值,而怎样变式,完全取决于定值的作用.主要有两种类型:一类是中条件给出定值式,一类是条件中无定值式.类型一给出定值【例1】【江苏省南通市三县(通州区、海门市、启东市)2019届高三第一学期期末】已知实数,且,则的最小值为____【答案】【解析】由于a +b =2,且a >b >0,则0<b <1<a <2, 所以,,令t =2a ﹣1∈(1,3),则2a =t +1, 所以,当且仅当,即当时,等号成立.因此,的最小值为.故答案为:.【小试牛刀】设,x y 是正实数,且1x y +=,则的最小值是__________.【答案】14. 【分析一】考虑通法,消元化为单元函数,而后可用导数法和判别式法求解函数的最小值; 【解析一】【分析二】考虑整体替换的方法,分母的和为常数. 【解析二】设2x s +=,1y t +=,则4s t +=,类型二 未知定值【例2】已知,x y 为正实数,则433x yx y x++的最小值为 A .53 B .103 C .32D .3 【答案】3 【解析】,当且仅当时取等号.【点评】配凑法是解决这类问题的常用方法,其目的是将代数式或函数式变形为基本不等式适用的条件,对于这种没有明确定值式的求最大值(最小值)问题,要灵活依据条件或待求式合理构造定值式. 【小试牛刀】已知函数在R 上是单调递增函数,则23cb a-的最小值是【答案】1 【解析】 由题意的,因为函数()f x 在R 上单调递增,所以满足,可得23b c a≥,且0a >所以,当且仅当3b a =时等号成立,所以.技巧一:凑项【例3】设0a b >>,则的最小值是【分析】拼凑成和为定值的形式 【解析】4=(当且仅当和1ab ab =,即⎪⎩⎪⎨⎧==222b a 时取等号). 【点评】使用该公式时一定要牢牢抓住一正、二定、三相等这三个条件,如果不符合条件则:非正化正、非定构定、不等作图(单调性).平时应熟练掌握双钩函数的图象,还应加强非定构定、不等作图这方面的训练,并注重表达的规范性,才能灵活应对这类题型. 【小试牛刀】【江苏省无锡市2019届高三上学期期中】设为正实数,且,则的最小值为________. 【答案】27 【解析】因为,所以因此当且仅当时取等号,即的最小值为27.技巧二:凑系数【例4】 当04x <<时,求的最大值.【分析】由04x <<知820x ->,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值.注意到为定值,故只需将凑上一个系数即可.【解析】,当282x x =-,即2x =时取等号,∴当2x =时,的最大值为8.【评注】本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值. 【小试牛刀】设230<<x ,求函数的最大值.【解析】∵230<<x ,∴023>-x ,∴,当且仅当232x x =-,即时等号成立.【点评】总的来说,要提高拼凑的技巧,设法拼凑出乘积或和为定值的形式. 技巧三: 分离 【例5】 求的值域.【分析一】本题看似无法运用基本不等式,不妨将分子配方凑出含有()1x +的项,再将其分离. 【解析一】,当,即时,(当且仅当1x =时取“=”号).【小试牛刀】已知a,b 都是负实数,则的最小值是【答案】2(﹣1)【解析】222≥-.技巧四:换元【例6】已知a ,b 为正实数,2b +ab +a =30,求y =1ab 的最小值.【分析】这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行.【解法一】由已知得a =30-2b b +1 ,ab =30-2b b +1 ·b =-2 b 2+30bb +1 .∵a >0,∴0<b <15.令t =b +1,则 1<t <16,∴ab =-2t 2+34t -31t =-2(t +16t )+34.∵t +16t ≥2t ·16t =8,∴ab ≤18,∴y ≥118 ,当且仅当t =4,即a =6,b =3时,等号成立.【解法二】由已知得:30-ab =a +2b .∵a +2b ≥22 ab ,∴30-ab ≥2 2 ab .令u =ab ,则 u 2+2 2 u -30≤0,-5 2 ≤u ≤3 2 ,∴ab ≤3 2 ,ab ≤18,∴y ≥118 .【点评】①本题考查不等式的应用、不等式的解法及运算能力;②如何由已知不等式出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围.【小试牛刀】设正实数y x ,满足1=+y x ,则的取值范围为【答案】]89,1[ 【解析】因为,所以410≤<xy设,所以当41=t 时,上式取得最大值当21=t 时,上式取得最小值所以的取值范围为]89,1[【点评】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解. 技巧五:整体代换多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错.【例7】已知0,0x y >>,且191x y +=,求x y +的最小值.【错解】Q 0,0x y >>,且191x y+=,∴,故.【错因】解法中两次连用基本不等式,在等号成立条件是x y =,在1992xyxy+≥等号成立条件是19x y=,即9y x =,取等号的条件的不一致,产生错误.因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法. 【正解】,,当且仅当9y x x y=时,上式等号成立,又191x y+=,可得时,.【小试牛刀】【江苏省苏北四市2019届高三第一学期期末】已知正实数满足,则的最小值为____. 【答案】【解析】正实数x ,y 满足1,则:x +y =xy , 则: 4x +3y ,则: 437+4,故的最小值为.故答案为:.技巧六:取平方【例8】已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.【解析】W >0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20,∴W ≤20 =2 5 . 【小试牛刀】求函数的最大值.【解析】注意到21x -与52x -的和为定值.,又0y >,,当且仅当21x -=52x -,即32x =时取等号,故max 22y =. 【点评】本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件. 技巧七:构造要求一个目标函数),(y x f 的最值,我们利用基本不等式构造一个以),(y x f 为主元的不等式(一般为二次不等式),解之即可得),(y x f 的最值. 【例9】设,x y 为实数,若,则2x y +的最大值是 .【分析】利用基本不等式将已知定值式中224x y ,xy +的均转化成含2x y +的不等式,再求2x y +的最大值.【答案】2105. 【解析】,可解得2x y +的最大值为2105. 【点评】本题的解法过程体现了“消元”的思想,所求目标函数是和的形式,那我们就设法消去条件等式中的乘积,方法就是利用基本不等式,这里它的作用,一个是消元,还有就是把条件的等式变为了不等式. 【小试牛刀】若正实数x ,y ,满足,则x y +的最大值为【分析】构成关于x y +的不等式,通过解不等式求最值 【解析】由,得.即,.计算得出:.y x +∴的最大值是4.技巧八:添加参数【例10】若已知0,,>c b a ,则的最小值为 .【解析】时可取得函数的最小值,此时,此时51=λ,最小值为552. 【小试牛刀】设w z y x ,,,是不全为零的实数,求的最大值.【解析】显然我们只需考虑的情形,但直接使用基本不等式是不行的,我们假设可以找到相应的正参数,αβ满足:故依据取等号的条件得,,参数t 就是我们要求的最大值.消去,αβ我们得到一个方程,此方程的最大根为我们所求的最大值,得到212t +=. 【点评】从这个例子我们可以看出,这种配凑是有规律的,关键是我们建立了一个等式,这个等式建立的依据是等号成立的条件,目的就是为了取得最值.【小试牛刀】设,,x y z 是正实数,求的最小值.【解析】引进参数k ,使之满足,依据取等号的条件,有:,故的最小值4.综上所述,应用均值不等式求最值要注意:一要“正”:各项或各因式必须为正数;二可“定”:必须满足“和为定值”或“积为定值”,要凑出“和为定值”或“积为定值”的式子结构,如果找不出“定值”的条件用这个定理,求最值就会出错;三能“等”:要保证等号确能成立,如果等号不能成立,那么求出的仍不是最值. (二) 基本不等式与恒成立问题 【例11】已知x >0,y >0,且21+=1x y,若恒成立,则实数m 的取值范围是 .【分析】先求左边式子的最小值 【解析】∵0>x ,0>y ,且21+=1x y,∴,当且仅当4y x =x y ,即y x 2=时取等号,又21+=1x y,∴4=x ,2=y ,∴,要使恒成立,只需,即28>m +2m ,解得24<<-m ,故答案为24<<-m .【点评】恒成立指函数在其定义域内满足某一条件(如恒大于0等),此时,函数中的参数成为限制了这一可能性(就是说某个参数的存在使得在有些情况下无法满足要求的条件),因此,适当的分离参数能简化解题过程.例:要使函数恒大于0,就必须对a 进行限制--令0≥a ,这是比较简单的情况,而对于比较复杂的情况时,先分离参数的话做题较简单.【小试牛刀】若对任意的正实数,x y 恒成立,求a 的最小值. 【解析】对任意的正实数,x y 恒成立,∴对任意的正实数,x y 恒成立.设,由取等号条件:,消去k ,可以得到:210t t --=,解得:512t +=,因此a 的最小值为512+.题型二 基本不等式的实际应用【例12】某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【解析】(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1 000x 万元,依题意得:当0<x <80时,L (x )=1 000x ×0.05-(13x 2+10x )-250 =-13x 2+40x -250; 当x ≥80时,L (x )=1 000x ×0.05-(51x +10 000x -1 450)-250 =1 200-(x +10 000x ).∴L (x )=⎩⎪⎨⎪⎧-13x 2+40x -2500<x <80,1 200-x +10 000xx ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950. 对称轴为x =60,即当x =60时,L (x )最大=950(万元); 当x ≥80时,L (x )=1 200-(x +10 000x ) ≤1 200-210 000=1 000(万元),当且仅当x =100时,L (x )最大=1 000(万元), 综上所述,当年产量为100千件时,年获利润最大.【点评】(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【牛刀小试】 某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件. 【答案】80【解析】设每件产品的平均费用为y 元,由题意得 y =800x +x 8≥2800x ·x8=20.当且仅当800x =x8(x >0),即x =80时“=”成立.(2)年平均利润为y x =-x -25x +18=-(x +25x )+18, ∵x +25x ≥2x ·25x =10,∴y x =18-(x +25x )≤18-10=8,当且仅当x =25x ,即x =5时,取等号. 五、迁移运用1.【江苏省南通市通州区2018-2019学年第一学期高三年级期末】对于直角三角形的研究,中国早在商朝时期商高就提出了“勾三股四玄五”勾股定理的特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理如果一个直角三角形的斜边长等于5,那么这个直角三角形面积的最大值等于______. 【答案】【解析】设直角三角形的斜边为c ,直角边分别为a ,b , 由题意知, 则,则三角形的面积,,,则三角形的面积,当且仅当a=b=取等即这个直角三角形面积的最大值等于,故答案为:.2.【江苏省南通、扬州、泰州、苏北四市七市2019届高三第一次(2月)模拟】在平面四边形中,,则的最小值为_____.【答案】【解析】如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为,AB=1,由数量积的几何意义知在方向的投影为3,∴可设C(3,n),又所以,,即,==,当且仅当,即n=1,m=时,取等号,故答案为.3.【江苏省常州市2019届高三上学期期末】已知正数满足,则的最小值为________. 【答案】4【解析】由基本不等式可得,所以,当且仅当,即当y=x2时,等号成立,因此,的最小值为4,故答案为:4.4.【江苏省扬州市2018-2019学年度第一学期期末】已知正实数x,y满足,若恒成立,则实数m的取值范围为_______.【答案】【解析】由于x+4y﹣xy=0,即x+4y=xy,等式两边同时除以xy得,,由基本不等式可得,当且仅当,即当x=2y=6时,等号成立,所以,x+y的最小值为9.因此,m≤9.故答案为:m≤9.5.【江苏省徐州市(苏北三市(徐州、淮安、连云港))2019届高三年级第一次质量检测】已知,,且,则的最大值为_________.【答案】【解析】化为,即,解得:,所以,的最大值为。

基本不等式运用问题的解答方法

基本不等式运用问题的解答方法

基本不等式运用问题的解答方法基本不等式是指:①若a >0,b >0,则2a b+a=b 时取“=”号);②设a ,b ∈R ,则2a +2b ≥2ab (当且仅当a=b 时取“=”号)两个不等式,这两个不等式的条件不同,结论也有所差异,因此在实际运用基本不等式解答相关数学问题时,一定要注意根据问题条件,选用恰当的基本不等式。

纵观这几年的高考,基本不等式的运用问题主要包括:①运用基本不等式证明不等式;②运用基本不等式求最值;③运用基本不等式解答不等式恒成立,能成立,恰成立等问题;④运用基本不等式解答实际应用问题。

各种类型结构上具有各自的特征,解答的方法也不尽相同,那么在解答基本不等式的运用问题时,如何抓住问题的结构特征,采用恰当的方法快速,准确地解答呢?下面通过典型例题的详细解析来回答这个问题。

【典例1】解答下列问题:1、若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A 2a +2b >2ab B a+b C1a +1b D a b +ba ≥2 【解析】【知识点】①基本不等式的定义与性质;②基本不等式成立的条件。

【解题思路】运用基本不等式成立的条件,结合问题条件就可作出正确的判断。

【详细解答】对A ,Q a ,b ∈R ,∴2(a-b)≥0,⇒2a +2b ≥2ab 恒成立,等号当且仅当a=b 时成立,⇒当a=b 时,2a +2b >2ab 不成立,⇒A 错误;对B ,Q ab >0,∴a ,b同号,⇒当a <0,b <0时,a+b ⇒B 错误;对C ,Q ab >0,∴a ,b 同号,⇒当a <0,b <0时,1a +1b 不成立,⇒C 错误;对D ,Q ab >0,∴a ,b 同号,⇒a b >0,b a >0,a b +ba≥2成立,⇒D 正确, ∴选D 。

2、设0<a <b ,a+b=1,则下列四个数中最大的是( ) A12B bC 2abD 2a +2b 【解析】 【知识点】①基本不等式的定义与性质;②基本不等式的运用;③实数大小比较的基本方法。

(完整word版)多次运用基本不等式错解例析

(完整word版)多次运用基本不等式错解例析

多次运用基本不等式错解例析在《不等式》的学习中,我们结识了一个重要的不等式定理,即基本不等式(又叫均值定理),这个定理在解题中应用十分广泛,运用基本不等式时除了要注意 “一正、二定、三相等” 的条件以外,当多次运用基本不等式时,如果忽视了取等号的条件也一样会功败垂成,前功尽弃。

例1.设x ∈(0,π),则函数f(x)=sinx+xsin 4的最小值是( ) A .4 B. 5 C.3 D 。

6 【典型错误】因为x ∈(0,π),所以sinx 〉0, x sin 4〉0, f(x )=sinx+xsin 4≥2x x sin 4sin ⋅=4 因此f(x)的最小值是4。

故选A 。

【错因分析】忽略了均值不等式a+b ≥2ab (a>O,b>0)中等号成立的条件:当且仅当a=b 时等号成立.事实上,sinx=xsin 4不可能成立,因为它成立的条件是sinx =±2,这不可能. 【正确解答1】f(x)=sinx+x sin 4=sinx+x sin 1+x sin 3,因为sinx+xsin 1≥2, 当且仅当sinx=1,即x=2π时等号成立。

又x sin 3≥3,当且仅当sinx=1,即x=2π时等号成立.所以f(x)=sinx+xsin 4≥2+3=5,f (x)的最小值是5. 故选B 。

【正确解答2】令sinx=t ,因为x ∈(0,π),所以0〈t ≤1,所给函数变为y=t+t 4易知此函数在区间(0,1]上是减函数,所以,当t=1时,y 取最小值5.故选B.例2。

若实数m ,n ,x,y 满足条件m 2+n 2=a,x 2+y 2=b(a ≠b ) ,则mx+ny 的最大值是 .【典型错误】因为a+b=m 2+x 2+n 2+y 2≥2mx+2ny ,所以mx+ny ≤2b a +,即mx+ny 的最大值为2b a +. 【错因分析】m 2+x 2≥2mx 的等号成立的条件是m=x ,n 2+y 2≥2ny 的等号成立的条件是n=y.所以m 2=x 2,n 2=y 2⇒m 2+n 2=x 2+y 2即a=b,与a ≠b 矛盾.因此mx+ny 不可能取到最大值2b a +. 【正确解答】令m=a cos α,n=a sin α,x=b cos β,y=b sin β,则mx+ny=ab (cos αcos β+sin αsin β)=ab cos(α—β)≤ab ,所以mx+ny 的最大值是ab .例3.求函数f(x )=x 2+324-x x (x 2>3)的最小值. 【典型错误】f(x)=x 2+33233)3(23333224224224≥+=+-⋅-≥+-+-=-x x x x x x x x x ,因此函数f (x )的最小值为3。

高三数学基本不等式四种应用 专题辅导

高三数学基本不等式四种应用 专题辅导

高三数学基本不等式四种应用宁伟基本不等式ab 2b a ,0b ,0a ≥+>>是证明不等式及求函数最值的重要工具,在新教材中 这一作用体现得更为明显。

灵活使用基本不等式是成功解题的关键,使用时要注意“一正、二定、三相等”,下面介绍基本不等式的四种应用,供同学们学习时参考。

一、直接应用基本不等式直接应用基本不等式是指题目中已有基本不等式的结构,且满足“一正、二定、三相等”,只需直接运用即可。

例1. 已知a ,R b ∈,求证:12b a 1b 1a 2222++≤+⋅+。

证明:由基本不等式得12b a 21b 1a 1b 1a 22222222++=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+≤+⋅+二、间接应用基本不等式间接应用基本不等式是指题中没有基本不等式的结构,或不满足“一正、二定、三相等”,这时需要对已知条件作结构变换,构造基本不等式结构模型,然后再使用基本不等式解题。

例2. 设x>0,求证:231x 22x ≥++。

分析:由题意可知,若直接应用基本不等式,则无法证明,此时需对原不等式进行结构上的变换,创造条件使用基本不等式。

证明:21x 1x 1x 22x ++=++ 232121x 121x 22121x 121x =-+⋅⎪⎭⎫ ⎝⎛+≥-+++=等号成立时21x 121x +=+即21x =例3. 已知a ,+∈R b ,且a+b=1,求b2a 1+的最小值。

错解:因为1b a =+,所以4ab1,41ab ≥≤ 因此24ab 22b 2a 1≥≥+ 剖析:出错在于两次等号不能同时取到。

正解:223abba 223b a 2a b 3b b 2a 2a b a b 2a 1+=+≥++=+++=+当ba 2ab =时 即22b ,12a ,a 2b -=-==,取得最小值三、两次应用基本不等式连续两次应用不等式解题,使用时要注意等号要同时成立。

例4. 设a>b>0,求)b a (b 16a 2-+的最小值。

高考数学重难点第一讲(全国通用) 利用基本不等式求最值8大题型(解析版)(老师专用)

高考数学重难点第一讲(全国通用) 利用基本不等式求最值8大题型(解析版)(老师专用)

重难点第一讲利用基本不等式求最值8大题型【命题趋势】基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点,在解决数学问题中有着广泛的应用,尤其是在函数最值问题中。

题型通常为选择题与填空题,但它的应用范围几乎涉及高中数学的所有章节,它在高考中常用于大小判断、求最值、求最值范围等。

在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点。

在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用。

第1天认真研究满分技巧及思考热点题型【满分技巧】利用基本不等式求最值的方法1、直接法:条件和问题间存在基本不等式的关系2、配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。

3、代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法;类型2:分母为多项式时方法1:观察法适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系;方法2:待定系数法,适用于所有的形式,如分母为34+a b 与3+a b ,分子为2+a b ,设()()()()2343343+=+++=+++a b a b a b a bλμλμλμ∴31432+=⎧⎨+=⎩λμλμ,解得:1525⎧=⎪⎪⎨⎪=⎪⎩λμ4、消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。

5、构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。

【热点题型】第2天掌握直接法及配凑法求最值模型【题型1直接法求最值】例1(辽宁锦州·高三校考阶段练习)已知0,0x y >>,且12x y +=,则xy 的最大值为()A.16B.25C.36D.49【答案】C【解析】因为0,0x y >>,12x y +=≥36xy ≤,当且仅当6x y ==时取到等号,故xy 的最大值为36.故选:C【变式1-1】(四川广安·广安二中校考模拟预测)已知3918x y +=,当2x y +取最大值时,则xy 的值为()B.2C.3D.4【答案】B【解析】由已知3918x y +=可得23318x y +=,则21833x y =+≥+2381x y ≤,所以+24x y ≤,当且仅当=22x y =时取等号,即=2x ,=1y ,此时2xy =.故选:B.【变式1-2】(2023·河南郑州·高三校联考阶段练习)已知正数,a b 满足2221a b +=,则2ab 的最大值是()A.13C.9D.19【答案】C【解析】解:由题知2222212a b a b b =+=++≥13≤,当且仅当3a b ==时取等号,所以239ab .故选:C.【变式1-3】(2022·上海·高三统考学业考试)已知x >1,y >1且lg x +lg y =4,那么lg x ·lg y 的最大值是()A.2B.12C.14D.4【答案】D【解析】∵x >1,y >1,∴lg x >0,lg y >0,∴22lg lg 4lg lg 422x y x y +⎛⎫⎛⎫⋅≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当lg x =lg y =2,即x =y =100时等号成立.故选:D.【变式1-4】(2022春·云南·高三校联考阶段练习)已知正数,a b 满足()()5236a b a b ++=,则2+a b 的最小值为()A.16B.12C.8D.4【答案】D【解析】因为()()()()252522a b a b a b a b ⎡⎤+++++≤⎢⎥⎣⎦,所以29(2)364a b +≥.又0,0a b >>.所以24a b +≥,当且仅当,3382a b ==时,等号成立.故选:D 【题型2配凑法求最值】【例2】(2022·全国·高三专题练习)已知30x -<<,则()f x =值为________.【答案】92-【解析】因为30x -<<,所以()229922x x f x -+==≥-=-,当且仅当229x x -=,即322x =-时取等,所以()f x =92-.【变式2-1】(2022春·上海静安·高三上海市市西中学校考期中)函数9()(1)1=+>-f x x x x 的值域为______.【答案】[)7,+∞【解析】由题知,1x >,所以10x ->,所以()9()11171f x x x =-++≥=-,当且仅当911x x -=-,即4x =时取等号,所以函数9()(1)1=+>-f x x x x 的值域为[)7,+∞.【变式2-2】(2022春·湖南长沙·高三雅礼中学校考阶段练习)已知0,0x y >>,且7x y +=,则()()12x y ++的最大值为()A.36B.25C.16D.9【答案】B【解析】由7x y +=,得()()1210x y +++=,则()()()()21212252x y x y ⎡⎤+++++≤=⎢⎥⎣⎦,当且仅当12x y +=+,即4,3x y ==时,取等号,所以()()12x y ++的最大值为25.故选:B.【变式2-3】(2022春·山东济宁·高三统考期中)已知向量()()5,1,1,1m a n b =-=+,若0,0a b >>,且m n ⊥,则113223a b a b+++的最小值为()A.15B.110C.115D.120【答案】A【解析】根据题意,510m n a b ⋅=-++=,即4a b +=,则()()322320a b a b +++=,又0,0a b >>,故113223a b a b +++()()1113223203223a b a b a b a b ⎛⎫⎡⎤=++++ ⎪⎣⎦++⎝⎭123321122203223205a b a b a b a b ⎛⎫++⎛⎫=++≥⨯+= ⎪ ⎪ ⎪++⎝⎭⎝⎭,当且仅当23323223a b a b a b a b++=++,且4a b +=,即2a b ==时取得等号.故选:A.第3天掌握消元法及代换法求最值模型【题型3消元法求最值】【例3】(2022春·湖南永州·高三校考阶段练习)设220,0,12y x y x ≥≥+=,则的最大值为()A.122C.324【答案】C【解析】因为2212y x +=,所以22022y x =-≥,解得:[]0,1x ∈,故22232224x x +-===≤⨯=,当且仅当22232x x =-,即x 的最大值为4.【变式3-1】(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知正数,a b 满足2240a ab -+=,则4a b -的最小值为()A.1C.2D.【答案】B【解析】,0a b > ,2240a ab -+=,则有22a b a=+,224244a a a a b a a ∴-=+-=+ 24a a =,即a =时b =【变式3-2】(2022春·广东广州·高三执信中学校考阶段练习)设正实数x 、y 、z 满足22430x xy y z -+-=,则xyz的最大值为()A.0B.2C.1D.3【答案】C【解析】因为正实数x 、y 、z 满足22430x xy y z -+-=,则2243z x xy y =-+,则22114433xy xy x y z x xy y y x ==-++-,当且仅当20y x =>时取等号.故xyz的最大值为1.故选:C.【变式3-3】(2023·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为()A.0B.3C.94D.1【答案】D【解析】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴22114343xy xy x y z x xy y y x ==-++- ,当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+ ,当且仅当1y =时取等号,即212x y z +-的最大值是1.故选:D【变式3-4】(2022春·湖南长沙·高三湖南师大附中校考阶段练习)(多选)已知a ,b ,c 均为正实数,2ab ac +=,则118ab c a b c+++++的取值不可能是()A.1B.2C.3D.4【答案】ABC【解析】a ,b ,c 均为正实数,由2ab ac +=得:()2a b c +=,即2b c a+=,所以2211818282222a a aa b c a b c a a a a a+++=++=++++++,由基本不等式得:2211828422a a a b c a b c a a +++=+≥++++,当且仅当222822a a a a +=+,即2a =±【变式3-5】(2022春·云南昆明·高三云南师大附中校考阶段练习)若22221122124,4,2x y x y x y +=+=⋅=-,则21x y ⋅的最大值为___________.【答案】2【解析】()()()()222222121112211444444204x y y x x x x x ⎛⎫⎛⎫=--=--=-+ ⎪ ⎪⎝⎭⋅⎝⎭,由212y x -=,所以211222y x x -==≤,所以112x ≤≤,所以()222112142042044x y x x ⎛⎫=-+≤-⨯⎪⎝⎭⋅= ,当且仅当1||x 时,等号成立,所以21x y ⋅2≤,当且仅当21x y ==21x y ==时取等号,所以21x y ⋅的最大值为2.【题型4代换法求最值】【例4】(2022春·上海崇明·高三上海市崇明中学校考阶段练习)已知0,0x y >>,且41x y +=,则19x y+的最小值是_____.【答案】25【解析】因为0,0x y >>,且41x y +=,所以()1919346913254x y x y x y y x y x +=⎛⎫+=+ ⎪⎝+++⎭+≥=,当且仅当36x y y x =,即13,105x y ==时,等号成立.【变式4-1】(2022春·江西·高三九江一中校联考阶段练习)已知0a >,0b >,2a b +=,则4ba b +的最小值为_______.【答案】2【解析】因为0a >,0b >,且2a b +=,所以4422222b b a b b a a b a b a b +⎛⎫+=+=++≥= ⎪⎝⎭,当且仅当222b a =时取等号故4b a b +的最小值为2【变式4-2】(2022春·江西抚州·高三金溪一中校考阶段练习)若正实数x ,y 满足2x y xy +=,则2x y +的最小值为______.【答案】9【解析】由2x y xy +=得211y x+=,又因为0x >,0y >,所以()212222559x y x y x y y x yx ⎛⎫+=++=++≥= ⎪⎝⎭,当且仅当3x y ==时等号成立,故2x y +的最小值为9.【变式4-3】(2022春·黑龙江鹤岗·高三鹤岗一中校考阶段练习)已知2x >-,0y >,23x y +=,则2272x y x y++++的最小值为()A.4B.6C.8D.10【答案】B【解析】因为2x >-,0y >,23x y +=,所以()227x y ++=,20x +>,()()22722222222222x y x y y x y x x y x y x y +++++=+++=++++++26≥+,当且仅当2x y +=,即13x =,73y =时等号成立,即2272x y x y++++的最小值为6,故选:B.【变式4-4】(2022·广西·统考一模)如图,在△ABC 中,M 为线段BC 的中点,G 为线段AM 上一点且2AG GM =,过点G 的直线分别交直线AB 、AC 于P 、Q 两点,(0)AB x AP x => ,(0AC y AQ y => ),则111x y ++的最小值为()A.34B.1C.43D.4【答案】B【解析】由于M 为线段BC 的中点,则1122AM AB AC =+ ;又2AG GM =,所以32AM AG = ,又(0)AB x AP x => ,(0AC y AQ y => );所以3222x y AG AP AQ =+,则33x y AG AP AQ =+ ;因为,,G P Q 三点共线,则133x y+=,化得()14x y ++=;由()111111111221141414x y x y x y x y y x ⎛⎫⎛⎫⎛⎫++=+++=++≥+=⎡⎤ ⎪ ⎪ ⎪⎣⎦ ⎪+++⎝⎭⎝⎭⎝⎭;当且仅当11x y y x+=+时,即2,1x y ==时,等号成立,111x y ++的最小值为1故选:B第4天掌握双换元法及齐次化求最值模型【题型5双换元法求最值】【例5】(2022春·天津河西·高三天津市新华中学校考阶段练习)设1,2x y >->-,且4x y +=,则2212x y x y +++的最小值是__________.【答案】167【解析】令1(0)x a a +=>,2(0)y b b +=>,则1x a =-,2y b =-,因为4x y +=,则有7a b +=,所以2222(1)(2)142412x y a b a b x y a b a b--+=++-++-++14724(a b =--++1141()()7a b a b =+++141(147b a a b =++++1161(577≥+⨯+=;当且仅当2b a =,即714,33a b ==时取等号,则,x y 分别等于48,33时,2212x yx y +++的最小值是167.【变式5-1】(2022春·江西南昌·高三南昌二中校考阶段练习)已知正数x ,y满足()()381232x y y x y x +=++,则xy 的最小值是()A.54B.83C.43D.52【答案】D【解析】()()3838232232x y xy xy x y y x y x x y x y ⎡⎤=+=+⎢⎥++++⎣⎦,令2x y m +=,32x y n +=,则2n m x -=,34m n y -=,38367752322222x y n m xy x y x y m n =+=+-≥-=++,当且仅当362n m m n =且()()381232x y y x y x +=++,即x =y =所以52xy ≥,故xy 有最小值52.故选:D.【变式5-2】(2022·全国·高三专题练习)设正实数, x y 满足1,12x y >>,不等式224121x y m y x +≥--恒成立,则m 的最大值为()A.8B.16C.D.【答案】A【解析】设1,21y b x a -=-=,则()()()110,102y b b x a a =+>=+>所以()()2222114121a b x y y x b a ++++++++=+≥=--()222228⎛=≥=⋅+= ⎝;当且仅当1a b ==即2,1x y ==时取等号;所以224121x y y x +--的最小值是8,则m 的最大值为8.故选A【变式5-3】(2022春·浙江·高三浙江省新昌中学校联考期中)已知0,0x y >>,若1x y +=,则313213x y y+++的最小值是___________.【答案】85【解析】设()()3213x y k x y y λμ++=+++,由对应系数相等得13123k λλμμ=⎧⎪=+⎨⎪=⎩,得1319k λμ⎧=⎪⎪⎨⎪==⎪⎩;所以()()1113213939x y x y y ++=+++;整理得()()31132131010x y y =+++即()()()11961310x y y =+++;所以()()()3113196133213103213x y y x y y x y y⎛⎫+=++++ ⎪++++⎝⎭()313196811032135y x y x y y ⎛⎫++=+ ⎪++⎝⎭ .经验证当12x y ==时,等号可取到.【题型6齐次化求最值】【例6】(2020春·浙江金华·高三浙江金华第一中学校考阶段练习)已知,a b 都是负实数,则2a ba b a b+++的最小值是____________.【答案】2-【解析】222222232a b a ab b a b a b a ab b +++=++++22132ab a ab b =-++1123a b b a=-++,因为,a b 都是负实数,所以20,0a b ba >>,所以2a b b a +≥2a b b a =时等号成立).所以233a b b a++≥,所以123a b b a≤++,所以1323a b b a -≥=++,所以1113223a b b a-≥+=++.即2a b a b a b+++的最小值是2.【变式6-1】(2021春·重庆沙坪坝·高三重庆一中校考阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________.【答案】2【解析】因为0,0x y >>,则()2220x xy y x y xy -+=-+>,则()2222x y a x xy y +-+≤,即2222x y a x xy y+-+≤,又22222211x y xy x xy y x y +=-+-+,因为222x y xy +≥,所以22112xy x y -≥+,所以22121xy x y≤-+,即22222x y x xy y +≤-+,当且仅当x y =时,取等号,所以2222max2x y x xy y ⎛⎫+= ⎪-+⎝⎭,所以2a ≥,即实数a 的最小值是2.【变式6-2】(2022·全国·高三专题练习)已知0x >,0y >,则2223x y xy y ++的最小值为____.【答案】2【解析】∵x ,y >0,则2223x y xy y ++=2231x y x y++,设x y =t ,t >0,则()()2222212143311t t x y t xy y t t +-++++==+++=(t +1)+41t +当且仅当t +1=41t +,即t =1时取等号,此时x =y ,故2223x y xy y ++的最小值为2.第5天掌握构造不等式法及多次使用不等式求最值模型【题型7构造不等式法求最值】【例7】(2013春·浙江嘉兴·高三阶段练习)已知正实数a ,b 满足212ab a b =++,则ab 的最小值是___________.【答案】9【解析】由212ab a b =++得,212ab ≥,化简得)320≥,解得9ab ≥,所以ab 的最小值是9.【变式7-1】已知0x >,0y >,24xy x y =++,则x y +的最小值为______.【答案】4【解析】由题知0,0,x y >>由基本不等式得22x y xy +⎛⎫≤ ⎪⎝⎭,即2422x y x y +⎛⎫++≤⨯ ⎪⎝⎭,令t x y =+,0t >,则有2422t t ⎛⎫+≤⨯ ⎪⎝⎭,整理得2280t t --≥,解得2t ≤-(舍去)或4t ≥,即4x y +≥,当且仅当2x y ==时等号成立,所以x y +的最小值为4.【变式7-2】(2022·全国·高三专题练习)若2241x y xy ++=,则2x y +的最大值是___________.【解析】∵2241x y xy ++=,∴2222325(2)31(2)(2)228x y x y xy x y x y +⎛⎫+-=≥+-=+ ⎪⎝⎭,当且仅当2x y =时,等号成立,此时28(2)5x y +≤,所以2x y +≤2x y +的最大值是5.【变式7-3】(2020春·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)若0x >,0y >,1425y x x y+++=,则2x y +的最小值为___________.【答案】8【解析】因为0x >,0y >,所以20x y +>;由1425y x x y+++=两边同时乘xy ,得22425y y x x xy +++=,即2244254x y xy x y xy xy ++++=+,则()()2229x y x y xy +++=,因为()2222224x y x y xy ++⎛⎫≤= ⎪⎝⎭,所以()()2229999222248x y xy xy x y +=⨯≤⨯=+,故()()()2292228x y x y x y +++≤+,整理得()()22820x y x y +-+≥,即()()2280x y x y ++-≥,所以28x y +≥或20x y +≤(舍去),故2x y +的最小值为8.【题型8多次使用不等式求最值】【例8】(2022春·重庆沙坪坝·高三重庆八中校考阶段练习)已知0,0a b >>,则242ba ba ++的最小值为()A.B.C.1D.1【答案】B【解析】因为0,0a b >>,所以24422224b a a a b a a ++≥=+≥,当且仅当24b ba =且42a a =,即ab ==即242ba b a ++的最小值为故选:B.【变式8-1】(2022春·江苏淮安·高三校联考期中)当02,x a <<不等式()221112x a x +≥-恒成立,则实数a 的取值范围是()A.)+∞B.(0C.(]0,2D.[)2,+∞【答案】B【解析】()221112x a x +≥-恒成立,即()22min 1112x a x ⎡⎤+≥⎢⎥-⎢⎥⎣⎦;02,20x a a x <<∴-> ,又222211222(2)(2)(22)x a x x a x x a x a +≥=≥=+---,上述两个不等式中,等号均在2x a x =-时取到,()m 222in1122x a a x ⎡⎤∴+=⎢⎥-⎢⎥⎣⎦,212a ∴≥,解得a ≤0a ≠,又0a >,实数a的取值范围是(0.故选:B.【变式8-2】(2022·全国·模拟预测)已知0a >,0b >,1c >,22a b +=,则1221c a b c ⎛⎫++⎪-⎝⎭的最小值为()A.92B.2C.6D.212【答案】D【解析】()()121121221925542222baa b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当23a b ==时等号成立,(应用基本不等式时注意等号成立的条件)所以()12292911212c c a b c c ⎛⎫++≥-++≥ ⎪--⎝⎭92122=,当且仅当()91221c c -=-,即53c =且23a b ==时,等号成立,故最小值为212,故选:D【变式8-3】(2022春·安徽·高三校联考阶段练习)已知,,a b c +∈R ,,22ππθ⎡⎤∈-⎢⎥⎣⎦,不等式()2222cos 4b a c a b cθ+++ 恒成立,则θ的取值范围是()A.,22ππ⎛⎫- ⎪⎝⎭B.,33ππ⎡⎤-⎢⎥⎣⎦C.,44ππ⎡⎤-⎢⎥⎣⎦D.,66ππ⎡⎤-⎢⎥⎣⎦【答案】C【解析】因为,,,,22a b c ππθ+⎡⎤∈∈-⎢⎥⎣⎦R ,不等式()2222cos 4b a ca b c θ+++ 恒成立,所以()222max2cos 4b a c a b c θ⎡⎤+⎢⎥++⎣⎦ ,因为,,a b c +∈R,所以)))2222222ab aa b ⎤=≤+=+⎥⎦,当且仅当a =时等号成立;)))2222222bc cc c b ⎤=++⎥⎦,当且仅当c 时等号成立.所以()2222222222244b a c ab bc a b c a b c ++=≤++++=,当且仅当a c ==时等号成立,所以()22224b a c a bc +++,所以cos 2θ≥,又因为,22ππθ⎡⎤∈-⎢⎥⎣⎦,所以,44ππθ⎡⎤∈-⎢⎥⎣⎦.故选:C.【变式8-4】(2023·全国·高三专题练习)若a ,b ,c 均为正实数,则2222ab bca b c +++的最大值为()A.12B.14C.22【答案】A【解析】因为a ,b均为正实数,则2222222ab bc a c a c a b c b b ++=++++12==≤=,当且仅当222a c b b+=,且a c =,即a b c ==时取等号,则2222ab bc a b c +++的最大值为12.故选:A.第6天融会贯通限时练习(1)1.(2022春·江苏徐州·高三学业考试)若正实数x ,y 满足121x y+=,则x +2y 的最小值为()A.7B.8C.9D.10【答案】C【解析】因为x ,y 是正数,所以有()12222559y x x y x y x y ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当22y xx y=时取等号,即当且仅当3x y ==时取等号,故选:C 2.(2022春·广东湛江·高三校考阶段练习)已知12,2x y x x >=+-,则y 的最小值为()A.2B.1C.4D.3【答案】C【解析】因为2x >,所以120,02x x ->>-,由基本不等式得11222422y x x x x =+=-++≥=--,当且仅当122x x -=-,即3x =时,等号成立,则y 的最小值为4.故选:C3.(2022春·河南·高三安阳一中校联考阶段练习)已知1a >,1b >,且ln 4ln 2a b +=,则4log lo e e g a b +的最小值为()A.9lg2B.212C.252D.12【答案】C 【解析】n e 1log l a a =,44l l e og n b b=,因为1a >,1b >,故ln 0a >,ln 0b >,()414114log log ln 4ln ln ln 2ln ln e e a b a b a b a b ⎛⎫+=+=⨯++ ⎪⎝⎭14ln 4ln 12517172ln ln 22b a a b ⎛⎛⎫=⨯++≥⨯+= ⎪ ⎝⎭⎝,当且仅当ln ln a b =时,即25e a b ==时等号成立.所以4log lo e e g a b +的最小值为252.故选:C 4.(2022春·吉林四平·高三四平市第一高级中学校考阶段练习)已知正数,a b 满足494a b +=,则ab 的最大值为()A.19B.16C.13D.12【答案】A【解析】正数,a b 满足494a b +=,由基本不等式得:494a b +=≥19ab ≤,当且仅当49a b =,即12,29a b ==时,等号成立,ab 的最大值为19.故选:A5.(2022春·黑龙江牡丹江·高三牡丹江一中校考期末)已知0a >,0b >,9是3a与27b的等比中项,则22231a b a b+++的最小值为()A.9+C.7【答案】B【解析】由等比中项定义知:3232739a b a b +⋅==,34a b ∴+=,()2223121121163434544a b b a a b a b a b a b a b a b ++⎛⎫⎛⎫∴+=+++=+++=+++ ⎪⎪⎝⎭⎝⎭1521454444⎛++≥++=+= ⎝(当且仅当6b a a b =,即8a =,(433b =时取等号),即22231a b a b +++6.(2022春·河南南阳·高三校考阶段练习)在ABC 中,过重心E 任作一直线分别交AB ,AC 于M ,N 两点,设AM xAB =u u u r u u u r ,AN yAC =u u ur u u u r ,(0x >,0y >),则4x y +的最小值是()A.43B.103C.3D.2【答案】C【解析】在ABC 中,E 为重心,所以21()32AE AB AC =⋅+ 1()3AB AC =+,设AM xAB =u u u r u u u r ,AN yAC =u u ur u u u r ,(0x >,0y >)所以1AB AM x = ,1AC AN y = ,所以111133AE AM AN x y =⋅+⋅ .因为M 、E 、N 三点共线,所以11133x y+=,所以11(4)33x y x y ⎛⎫++⎪⎝⎭4143333y x x y =+++533≥+=(当且仅当433y x x y =,即12x =,1y =时取等号).故4x y +的最小值是3.故选:C.7.(2022春·四川德阳·高三阶段练习)已知实数0a b >、,且函数()f x =的定义域为R ,则22a b a+的最小值是()A.4B.6C.D.2【答案】A【解析】∵()f x =定义域为R,∴22()2()10x a b x a b -+++-≥在R 上恒成立,∴2[2()]4[2()1]0a b a b ∆=-+-⨯+-≤,即:2()2()10a b a b +-++≤∴2(1)0a b +-≤,解得:1a b +=又∵0,0a b >>∴2121212222a b b a b a b a -+=+=+-1212=()()224222a b a b b a b a ++-=++≥=当且仅当22a bb a=,即21,33a b ==时取等号.故选:A.8.(2022春·江西宜春·高三校考阶段练习)设x y z >>,且11()nn x y y z x z +≥∈---N 恒成立,则n 的最大值为()A.2B.3C.4D.5【答案】C【解析】因为x y z >>,所以0x y ->,0y z ->,0x z ->,所以不等式11n x y y z x z +≥---恒成立等价于11()n x z x y y z ⎛⎫≤-+ --⎝⎭恒成立.因为()()x z x y y z -=-+-≥,11x y y z +≥--所以11()44x z x y y z ⎛⎫-⋅+≥ ⎪--⎝⎭(当且仅当x y y z -=-时等号成立),则要使11()n x z x yy z ⎛⎫≤-⋅+⎪--⎝⎭恒成立,只需使4()n n ≤∈N ,故n 的最大值为4.故选:C第7天融会贯通限时练习(2)1.(2022春·重庆沙坪坝·高三重庆南开中学校考阶段练习)(多选)已知实数a ,b 满足2241a ab b -+=,以下说法正确的是()A.15a ≤B.1a b +<C.2244453a b ≤+≤D.25a b -≤【答案】ACD【解析】由2241a ab b -+=,可得22410b ab a -+-=,关于b 的方程有解,所以()()224410a a ∆=---≥,所以2415a ≤,即a ≤A 正确;取0,1a b ==,2241a ab b -+=,则1a b +=,故B 错误;由2241a ab b -+=,可得22141122a b ab ab +=+=+⋅,又222244222a b a b ab ++-≤≤,令224t a b =+,则()2122t t t -≤-≤,所以4453t ≤≤,即2244453a b ≤+≤,故C 正确;由2241a ab b -+=,可得()2231a b ab -+=,所以()()23213122a b ab a b -=-=+⋅⋅-,令2u a b =-,由()2222a b a b -⎛⎫⋅-≤ ⎪⎝⎭,可得22318u u ≤+,所以285u ≤,即2a b -≤故D 正确.故选:ACD.2.(2022·浙江·模拟预测)(多选)已知a ,b 为正数,且220a b +-=,则()A.2168a a +>B.219ab+≥5≥D.35422a b a +-<<-【答案】ACD【解析】对于A 选项,()2216840a a a +-=-≥,当且仅当4a =时等号成立,当4a =时,由于220a b +-=,得22286b a =-=-=-,与b 为正数矛盾,故4a ≠,即得2168a a +>,故A 选项正确;对于B 选项,220a b +-= ,12ba ∴+=.又0,0a b >> 212115922222b b a a a b a b a b ⎛⎫⎛⎫∴+=++=+++≥+ ⎪⎪⎝⎭⎝⎭,当且仅当b aa b =,即23a b ==时等号成立;故B 选项不正确;对于C 选项,220a b +-= ,22b a ∴=-,()0,1a ∈.()2222224422584555a b a a a a a ⎛⎫+=+-=-+=-+ ⎪⎝⎭ ,2245a b ∴+≥,当且仅当45a =时等号成立,≥C 选项正确;对于D 选项,220a b +-= ,22b a ∴=-,()0,1a ∈.()()2552253510122222a ab a a a a a a a a a ---+-+----∴====--<<-----,当01a <<时,221a -<-<-,55522a ∴-<<--,得351422a <--<-,即35422a b a +-<<-,故D 选项正确.故选:ACD3.(2022春·山西·高三校联考阶段练习)(多选)若1a b >>,且35a b +=,则()A.141a b b +--的最小值为24B.141a b b +--的最小值为25C.2ab b a b --+的最大值为14D.2ab b a b --+的最大值为116【答案】BD【解析】由1a b >>,可知0a b ->,10b ->,()()4134541a b b a b -+-=+-=-=,()()()()441411411a b b a b b a b b a b b -+-⎡⎤-+-⎣⎦+=+--()()414171b a b a b b --=++--17≥+25=;当且仅当115a b b -=-=时,等号成立,141a b b +--的最小值为25.又()()141a b b =-+-=≥()1412a b b -=-=时,等号成立,所以()()21116ab b a b a b b --+=-⋅-≤,故2ab b a b --+的最大值为116.故选:BD .4.(2022春·山东·高三利津县高级中学校联考阶段练习)(多选)在下列函数中,最小值是4的是()A.4y xx=+B.0)y x =>C.4sin sin y x x =+,0,2x π⎛⎤∈ ⎥⎝⎦D.144xx y -=+【答案】BD【解析】对于A,当0x >时,44y x x =+≥=,当且仅当4x x=,即2x =时取等号;当0x <时,44[()]4y x x xx=+=--+-≤-=-,当且仅当4x x-=-,即2x =-时取等号,所以(,4][4,)y ∈-∞-+∞ ,A 错误;对于B,y =,因为0x >1>,4=3x =时取等号,所以0)y x =>的最小值为4,B 正确;对于C,因为0,2x π⎛⎤∈ ⎥⎝⎦,所以sin (0,1]x ∈,由对勾函数性质可知:4sin [5,)sin y x x=+∈+∞,C 错误;对于D,40x >,1444444x x x x y -=++=≥,当且仅当444x x =,即12x =时取等号,所以144x x y -=+的最小值为4,D 正确.故选:BD5.(2022春·山东·高三利津县高级中学校联考阶段练习)已知正实数x ,y 满足474x y +=,则2132x y x y+++的最小值为______.【答案】94【解析】因为474x y +=,所以()()2112123232432x y x y x y x y x y x y ⎛⎫⎡⎤+=++++ ⎣⎦++++⎝⎭,所以()()22211413242233x y x y x y x y x y x y ⎡⎤++=+++⎢⎥++⎣+++⎦,因为,x y 为正实数,所以()()220,02233x y y y x y x x +++>>+,所以()()4222233x y x y x y x y ++++≥=+,当且仅当32474x y x y x y +=+⎧⎨+=⎩时等号成立,即84,1515x y ==时等号成立,所以()21194413244x y x y +≥++=++,当且仅当84,1515x y ==时等号成立,所以2132x y x y +++的最小值为94.6.(2022春·天津静海·高三静海一中校考阶段练习)若,a b ∈R ,且221b a -=,则22a b a b+-的最大值为___________.【解析】由题知,,a b ∈R ,且221b a -=,即221b a =+,所以221a b a a b b+-+=,当0a =时,21b =,即1b =±,此时11a b +=±,所以22a b a b+-的最大值为1,当0a ≠时,22221212211212a a a a ab b a a ⎛+⎫++==+≤+= ⎪+⎝⎭,当且仅当1=a 时取等号,此时1ab+≤;所以22a ab b+-.综上,22a ab b+-的最大值.7.(2022春·天津和平·高三耀华中学校考阶段练习)已知正数,x y 满足22831322x xy xy y +=++,则xy 的最小值是_________.【答案】52【解析】根据题意,由22831322x xy xy y +=++可得22228(2)3(32)1(32)(2)xy y x xy x xy xy y +++=++,即322223221)6914384384y x xy x x y xy yx xy y y x ++=+++=+;所以222222221691416914383844y y y x xy x x y y y x xy x xxy ++=+=+++++;又因为,x y 均是正数,令()0,y t x =∈+∞,则221614983()4xy f t t t t t =++++=;所以,22221831()4444316149348388183t t t t t t t t t f t t +++++==-=++++-+令2384)183(g t t t t ++=+,则16162112110101899()292718396183272727g t t t t t ⎛⎫=++=+++≥= ⎪++⎝⎭当且仅当1621996183t t ⎛⎫+= ⎪+⎝⎭,即12t =时,等号成立;所以2181455()44184182718332f t t t t +=+=-≥-=+;所以()f t 的最小值为min 5()2f t =;即当1,22y t x y x ====时,即x y ==时,等号成立.8.(2022春·陕西商洛·高三校联考阶段练习)已知正实数,,a b c 满足222120a ab b c ++-=,则当a bc+取得最大值时,2a b c -+的最大值为______.【答案】916【解析】由222120a ab b c ++-=,可得()()()2222231224a b c a b ab a b a b +⎛⎫=+-≥+-=+ ⎪⎝⎭,即4a b c +≤,当且仅当a b =时,等号成立,所以当a bc+取得最大值时,a b =,42a b a c +==,所以2223392416a b c a a a ⎛⎫-+=-=--+ ⎪⎝⎭,故当333,,448a b c ===时,2a b c -+取最大值916.。

灵活运用基本不等式,全面破解高考题

灵活运用基本不等式,全面破解高考题
但在具体运用基本不等式解题时我们常常会遇到题中某些式子不便于套用公式或者不便于利用题设条件此时需要对题中的式子适当进行恒等变形而巧妙地求出最值为此掌握基本不等式求最值的具体解题技巧显得十分重要笔者结合教学实践谈谈自己的做法
第3 2 卷第 2期
2 0 1 3年 2月
数 学教 学研究
3 7
灵活运用基本不等 式 , 全面破解高考题
小值 是 ( ( A) 3 ) .
O 1 1
( B ) 3


因为 ,
( n +2 b ) ( 口+ 2 c )
1 2 =a 0 +2 a b +2 a c +4 b c
≤ (

) 。
( B ) 4
( C ) 普

( D ) 等

( 口 +6 +c ) 0 ,
所求最值 的代数式 中, 各变量整体均应是 正
教学实践表 明, 给学生强化上述各种变 式的认识 , 对掌握基本不 等式核心思想是很
有帮助的. 这些 变式 表面上看 只是原型的简 单变形 , 却可以起 到启迪学生思维 、 开启学生 思路的作用. 2 代 入 消元 。 寻找 定值
数; ②各变量整体的和或积必须为定值 ; ③各
“ 和” 与“ 积” 进行相互转化. 领悟了本质, 就是 体会到这一重要不等式 的精髓. 但要能灵 活
运用 , 首先还得认识 了解 它的各种变式及其 特点.
变式 1 a - t - b . >
/ ,
本不等式是 高中数学 的一个重要知识点 , 在
各省高考考纲 中属于 C级 ( 熟练掌握) 要求.
解 因 为2 — z ・ 2 y ≤f

专题12多次使用基本不等式(压轴题解法分析与强化训练)

专题12多次使用基本不等式(压轴题解法分析与强化训练)

专题12 多次使用基本不等式[真题]例1 (2020·江苏考试研究会·14)设41(0,0)x y x y +=>>,0s t >>,则22221x s ys xy st t ++- 的最小值为 . 【分析】所求22221x s ys xy st t ++-变形为2221x y s xy st t ⎛⎫++ ⎪-⎝⎭.三次使用基本不等式,第一次,在条件41(0,0)x y x y +=>>下,求2x y xy+最小值,需使用“1”的代换化齐次;第二次,在条件0s t >>下,求2st t -最小值,为达到消t 的目的,需拆凑放缩(解答所给方法)或直接使用基本不等式()()222+==24t s t s st t t s t -⎡⎤--≤⎢⎥⎣⎦;第三次,直接运用互倒型,使用基本不等式.三次使用基本不等式取等条件相互独立,从而最小值能够取得.【解析】由题x +4y =1(x >0,y >0),x 2+y xy =x 2+(x +4y )y xy =x y +1+4y x ≥4+1=5,当且仅当x =13,y =16时,“=”成立. 因为0<t <s ,则1ts -t 2=4s 2-(s -2t )2≥4s 2,当且仅当s =2t 时,“=”成立. 于是x 2s 2+ys 2xy +1ts -t 2≥5s 2+4s 2≥45, 当且仅当x =13,y =16,s =255,t =55时,“=”成立.所以x 2s 2+ys 2xy +1ts -t 2的最小值为45. 点评:多元变量的最值问题是一种常见的题型,也是高考命题的热点,其解法灵活多变,较难把握.当目标式中有的变量间彼此独立,相互间没有制约条件时,使用分离变量法,多次使用基本不等式即可.例2 (2020·徐州打靶卷·14)已知正数a ,b 满足ab a+2b ≥1,则(a +1)2+(b +2)2的最小值是 . 【答案】22+12√2【解析】由平方均值不等式得√(a+1)2+(b+2)22≥(a+1)+(b+2)2,当且仅当a =b +1时,“=”成立由ab a+2b ≥1变形得2a +1b ≤1所以a +b ≥(a +b )(2a +1b )=3+(2b a +ab )≥3+2√2 ,当且仅当a =√2b ,即a =2+√2 ,b =1+√2时,“=”成立将a =2+√2 ,b =1+√2代入得(a +1)2+(b +2)2=22+12√2.所以(a +1)2+(b +2)2的最小值是22+12√2.例3 已知a >0,b >0,c >2,且a +b =2,那么ac b +c ab -c 2+5c -2的最小值为________. 【答案】10+5【解析】因为a >0,b >0,所以a b +1ab -12=a b +(a +b )24ab -12=a b +a 2+2ab +b 24ab -12=5a 4b +b 4a ≥52,当且仅当b =5a 时等号成立.又因为c >2,由不等式的性质可得ac b +c ab -c 2+5c -2=c ⎝⎛⎭⎫a b +1ab -12+5c -2≥52c +5c -2. 又因为52c +5c -2=52(c -2)+5c -2+5≥10+5,当且仅当c =2+2时等号成立, 所以ac b +c ab -c 2+5c -2的最小值为10+ 5. 点评:本题中有三个变量,其中两个变量间有约束条件.先求出其最值,然后使用不等式的性质放缩,再使用一次基本不等式.[强化训练]1.(2020·扬州五月调研·12)已知x >0,y >0,则16y x x xy++的最小值为 . 2.已知0a b >>,则264()a b a b +-的最小值为 .3.(2019·苏北三市第一学期期末联考·14)已知0x >,0y >,0z >,且6x z ++=,则323x y z ++的最小值为 .4. (2020·海安中学12月考·11) 设正实数x ,y 满足x y xy x y+=-,则实数x 的最小值为 . 5.(2020·镇江八校第二次联考·13) 已知正数,a b 满足2(2)4a b a b +=,则a b +的最小值为 .6. 若0x y >>323xy y +-的最小值为 ▲ . 【答案或提示】1.【答案】【解析】所求变形为16116=()y x x y x xy x y++++ ∵y >0∴168y y +≥=,当且仅当4y =时,等号成立, ∵x >0,168y y+≥∴168y x x x xy x ++≥+≥=x = ∴16y x x xy ++的最小值为,当且仅当x =,4y =成立. 2.【答案】32【解析】∵22()()24b a b a b a b +-⎛⎫-≤= ⎪⎝⎭,当且仅当2a b =时,等号成立,∴222646432()4a a ab a b +≥+≥=-,当且仅当4a =时,等号成立, ∴264()a b a b +-的最小值为32,当且仅当4a =,2b =成立. 3. 【答案】374【解析】先减元323x y z ++=323(6)x y x ++-=32453()24x x y -+-+ 令3()3f x x x =-,245()(4g y y =+, 2'()333(1)(1)f x x x x =-=-+,0x >,()f x 在(0,1)上递减,在(1,+∞)上递增,所以,min ()f x =f (1)=-2当y时,()g y 有最小值:min 45()4g y = 所以323x y z ++的最小值为-2+454=374.4.1.【解析】由正实数x ,y 满足x y xy x y+=-,化为11x y x y xy y x +-==+, 为求x 的最小值,将含“x ”项用“y ”的函数表示得:11x y x y x xy y +-==+∵1y y +≥(当且仅当1y =,“=”成立) ∴12x x -≥,解得21x +.∴实数x 1.5.【答案】2【解析】将已知条件2(2)4a b a b +=视为关于b 的一元二次方程,利用解方程分离元来实施减元.由2(2)4a b a b +=解得=b a -+∴2a b +=,当且仅当a =. 6. 【答案】10【提示】4)(22x y x y y xy ≤-=-,3212()f x x ≥+,再利用导数知识解决.。

运用基本不等式解题常见错误分析

运用基本不等式解题常见错误分析

运用基本不等式解题常见错误分析作者:宋仁高来源:《理科考试研究·高中》2013年第11期通过选修系列4-5专题不等式选讲的学习,学生要理解在自然界中存在着大量的不等量关系和等量关系,它们在数学研究和数学应用中起着重要的作用。

但是学生在证明不等式或运用不等式求最值时,往往要对相关的式子进行适当的放大、缩小或不等式之间进行传递、相加、相乘、配凑等变形,在这个过程中,许多同学因忽视不等式的基本性质和相关的限制条件而导致解题出错。

下面通过剖析错解,以引起足够的重视。

一、忽视“等号成立的条件”例题1求函数f(x)=sin2x+21sin2x的最小值。

错解f(x)=sin2x+21sin2x≥2sin2x·21sin2x=22,所以f(x)的最小值为22。

剖析在f(x)≥22中,等号成立的条件是sin2x=21sin2x,即sin4x=2。

由sinx的有界性可知,这是不可能的,因而上述求解中,均值不等式中的等号是不能成立的,所以22不是函数f (x)的最小值。

在用基本不等式求最值时,等号必须能取到,若取不到可用换元等方法,利用函数的单调性求解即可。

正解令sin2x=t,则t∈(0,1],f(x)化为g(t)=t+t12。

易证g(t)在t∈(0,1]上是减函数,所以g(t)的最小值是g(1)=3,此时f(x)的最小值为3。

二、忽视“各项均为正”例题2求函数y=x+11x-1(x≠1)的值域。

错解y=x+11x-1=(x-1)+11x-1+1≥2(x-1)11x-1+1=3,当且仅当x-1=11x-1,即x=2时取得最小值3,所以函数的值域为[3,+∞)。

剖析函数的定义域是x≠1,显然当x正解(1)当x>1时,有x-1>0,11x-1>0y=x+11x-1=(x-1)+11x-1+1≥2(x-1)11x-1+1=3,当且仅当x-1=11x-1,即x=2时,等号成立,此时函数取得最小值3。

(全)基本不等式应用,利用基本不等式求最值的技巧,题型分析

(全)基本不等式应用,利用基本不等式求最值的技巧,题型分析

基本不等式应用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2.(1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2⎪⎫ ⎛+≤b a ab (当且仅当b a =时取“=”)3.若x >=”) 注:(1(3)技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数例1.当时,求(82)y x x =-的最大值。

解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。

变式:设230<<x ,求函数)23(4x x y -=的最大值。

解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=23,043x 时等号成立。

不等式及其基本性质易错点剖析

不等式及其基本性质易错点剖析
2a-b=7, a=5, 字母系数的取值范围,所以在解题时错误得出 解得 从而错 5b-a=10, b=3.
5
3 误得到 ax>b 的解集是 x> . 5 2a-b<0, 10 正解:由不等式(2a-b)x+a-5b>0 的解集是 x< ,得5b-a 10 解 7 = , 2a-b 7
2 5
解一元一次不等式组错解示例
一、误认为一元一次不等式组的“公共部分”就是两个数之间的部分. 例 1 解不等式组
x-1>0,① x+2<0.②
错解:由①得 x>1,由②得 x<-2,所以不等式组的解集为-2<x<1. 错解分析:解一元一次不等式组的方法是先分别求出不等式组中各个不等 式的解集,再利用数轴求出这些不等式解集的公共部分.此题错在对“公共部 分”的理解上,误认为两个数之间的部分为“公共部分” (即解集) .实际上, 这两部分没有“公共部分” ,也就是说此不等式组无解,而所谓“公共部分”的 解是指“两线重叠”的部分.此外,可能会受到解题顺序的影响,把解集表示 成 1<x<-2 或-2<x>1 等,这些都是错误的. 正解:由①得 x>1.由②得 x<-2,所以此不等式组无解.
15 11x , 11x 15 ,
x
15 . 11
错解分析:在第一步的移项中,-4x 移到不等号的右边应注意变为 4x;在第三步
2
的计算中,-11x 与 15 移项后,不等号不应改变方向. 正解: 7x 4x 5 10 ,
3x 15 ,
x 5 .
点拨:在解这类题时,同学们应牢记不等式的基本性质. 五、 去分母时,对不含分母的项处理不当 例 5.解不等式
a<0, 3 得b 3 所以 ax>b 的解集是 x< . 5 = . a 5

基本不等式应用利用基本不等式求最值的技巧

基本不等式应用利用基本不等式求最值的技巧

基本不等式应用利用基本不等式求最值的技巧————————————————————————————————作者: ————————————————————————————————日期:ﻩ基本不等式应用利用基本不等式求最值的技巧 应用一:求最值例1:求下列函数的值域(1)y =3x 2+\f(1,2x 2) (2)y =x +错误!解:(1)y=3x 2+错误!≥2错误!=错误! ∴值域为[错误!,+∞)(2)当x >0时,y=x +错误!≥2错误!=2;当x<0时, y =x +1x = -(- x -1x)≤-2错误!=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。

解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。

变式:设230<<x ,求函数)23(4x x y -=的最大值。

解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。

专题2.1 基本不等式的应用技巧(解析版)

专题2.1 基本不等式的应用技巧(解析版)

专题2.1 基本不等式的应用技巧(解析版)基本不等式的应用技巧基本不等式是数学中常见的一种重要工具,通过它可以解决各种问题。

本文将介绍一些基本不等式的应用技巧,并通过解析版的方式进行具体分析。

1. 不等式的加减变形不等式的加减变形是不等式求解中常用的技巧。

通过对不等式两边同时加减同一个数,可以改变不等式的形式,从而更好地进行化简和求解。

例如,对于不等式 a + x < b,我们可以通过减去 a 并加上负数 x,得到 x < b - a。

这样,原不等式就被转化为一个更简单的形式,使得求解变得更加容易。

2. 不等式的乘除变形和加减变形类似,不等式的乘除变形也是常见的求解技巧之一。

通过对不等式两边同时乘除同一个数(要求该数不为0),可以改变不等式的方向以及取值范围。

例如,对于不等式 a/x > b,若 a 和 b 均为正数,我们可以将不等式两边同时乘以正数 x,得到 a > b*x。

这样,原不等式的方向被颠倒,变为大于号,并且取值范围也随之改变。

3. 绝对值不等式的应用绝对值不等式是基本不等式中的一个重要分支。

它关注的是具有绝对值符号的不等式,需要特别注意其取值范围的变化。

例如,对于不等式 |x - a| < b,我们可以通过分情况讨论来解决。

当x - a > 0 时,原不等式可以简化为 x - a < b;当 x - a < 0 时,原不等式可以简化为 a - x < b。

通过进一步化简和求解,可以得到不等式的解集。

4. 不等式的应用实例分析接下来,我们通过一个具体实例来进行不等式的应用分析。

假设有一条长为 20m 的绳子,要将其分成两段,其中一段的长度是另一段的3倍。

我们需要求解这两段绳子的长度。

设绳子的一段长度为 x,则另一段长度为 3x。

根据题意,我们可以得到以下不等式:x + 3x = 20,即 4x = 20。

通过解方程,可得 x = 5,因此一段绳子的长度是 5m,另一段绳子的长度是 15m。

基本不等式应用-利用基本不等式求最值的技巧-题型分析

基本不等式应用-利用基本不等式求最值的技巧-题型分析

基本不等式应用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.基本不等式求最值常见方法汇总 方法一、直接基本不等式法 方法二、倒数和分式乘1法 方法三、同一变量值域法 方法四、万能K 式判别式法 方法五、轮换对称口算法应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧:技巧一:拼、凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

基本不等式及其应用易错点

基本不等式及其应用易错点

基本不等式及其应用易错点
内容:
一、忽视条件“两个正数”导致错误
【例1】求函数x
x x f 1)(+=的值域. 错解:2121)(=⋅≥+
=x x x x x f (当且仅当x
x 1=,即1±=x 时,取得等号),即函数的值域为[)+∞,2. 剖析:本题忽视了利用基本不等式求最值的第一个条件“两数均为正值”,显然,当0<x 时,0)(<x f .
正解:当0>x 时,2121)(=⋅≥+=x x x x x f (当且仅当x
x 1=,即1=x 时,取得等号);当0<x 时,2121()(-=-⋅--≤-+--=x x x x x f (当且仅当x x -=-1,即1-=x 时,取得等号),即函数的值域为(][)+∞-∞-,22, .
二、忽视条件“定值”导致错误
【例2】设a ≥0,b ≥0,a 2+2
2b =1,求a 21b + 的最大值. 错解: 2
)21(242121)2(2121b a b a b a ++∙≤+∙=+ 43]1)212[(21]222212[21≥++=+++=a b a a (a=0时取等号) 剖析:并非定值.
正解:为利用均值不等式时出现定值,先进行适当的“凑、配”.
2
22122221221,2
3222222b a b a b a b a b a ++∙≤+∙∙=+∴=+1+=+
2
1,423223
22b f a +==∙当且仅当时取 “=”. 三、忽视验证“等号是否成立”。

(完整word版)多次运用基本不等式错解例析

(完整word版)多次运用基本不等式错解例析

多次运用基本不等式错解例析在《不等式》的学习中,我们结识了一个重要的不等式定理,即基本不等式(又叫均值定理),这个定理在解题中应用十分广泛,运用基本不等式时除了要注意 “一正、二定、三相等” 的条件以外,当多次运用基本不等式时,如果忽视了取等号的条件也一样会功败垂成,前功尽弃.例1.设x ∈(0,π),则函数f(x)=sinx+xsin 4的最小值是( ) A .4 B. 5 C.3 D.6 【典型错误】因为x ∈(0,π),所以sinx>0,x sin 4>0, f(x)=sinx+x sin 4≥2x x sin 4sin ⋅=4 因此f(x)的最小值是4.故选A.【错因分析】忽略了均值不等式a+b ≥2ab (a>O,b>0)中等号成立的条件:当且仅当a=b 时等号成立.事实上,sinx=xsin 4不可能成立,因为它成立的条件是sinx =±2,这不可能. 【正确解答1】f(x)=sinx+x sin 4=sinx+x sin 1+x sin 3,因为sinx+xsin 1≥2, 当且仅当sinx=1,即x=2π时等号成立.又x sin 3≥3,当且仅当sinx=1,即x=2π时等号成立.所以f(x)=sinx+xsin 4≥2+3=5,f(x)的最小值是5. 故选B. 【正确解答2】令sinx=t,因为x ∈(0,π),所以0<t ≤1,所给函数变为y=t+t 4易知此函数在区间(0,1]上是减函数,所以,当t=1时,y 取最小值5.故选B.例2.若实数m,n,x,y 满足条件m 2+n 2=a,x 2+y 2=b(a ≠b) ,则mx+ny 的最大值是 .【典型错误】因为a+b=m 2+x 2+n 2+y 2≥2mx+2ny,所以mx+ny ≤2b a +,即mx+ny 的最大值为2b a +. 【错因分析】m 2+x 2≥2mx 的等号成立的条件是m=x,n 2+y 2≥2ny 的等号成立的条件是n=y.所以m 2=x 2,n 2=y 2⇒m 2+n 2=x 2+y 2即a=b,与a ≠b 矛盾.因此mx+ny 不可能取到最大值2b a +. 【正确解答】令m=a cos α,n=a sin α,x=b cos β,y=b sin β,则mx+ny=ab (cos αcos β+sin αsin β)=ab cos(α-β)≤ab ,所以mx+ny 的最大值是ab .例3.求函数f(x)=x 2+324-x x (x 2>3)的最小值. 【典型错误】f(x)=x 2+33233)3(23333224224224≥+=+-⋅-≥+-+-=-x x x x x x x x x ,因此函数f(x)的最小值为3.【错因分析】上述解答中两个等号成立的条件不一致,第一个等号成立的条件是x 2-3=324-x x ,即x 2=23;第二个等号成立的条件是x 2=0.因此f(x)=3不可能取到.【正确解答】f(x)=x 2+324-x x =x 2+39)3(6)96(2224-++++-x x x x =(x 2-3)+ 26939)3(2339)3(6)3(222222≥+-+-=+-+-+-x x x x x +9,当x 2=3+23时取等号,因此函数f(x)的最小值为62+9.。

运用基本不等式的一个规则和四个技巧

运用基本不等式的一个规则和四个技巧

运用基本不等式的一个规则和四个技巧基本不等式是数学中常用的一个重要的不等式方法,它在解决各种不等式问题中起到了重要的作用。

下面我将介绍基本不等式中的一个规则和四个技巧,并给出一些用它们解决问题的例子。

1.规则:基本不等式的一个重要规则是,如果a>b,则a^2>b^2、也就是说,两个正数(或两个负数)之间的大小关系在平方后仍然成立。

这个规则的一个应用是在解决含有平方项的不等式时,通过平方化的转化,简化不等式的计算过程。

例如,要求解不等式x^2-5x+6>0,我们可以将不等式的两边同时平方,得到(x-3)(x-2)>0。

根据规则,我们知道(x-3)(x-2)大于零的条件是x-3和x-2要么都大于零,要么都小于零。

因此,不等式的解集是x<2或x>32.技巧一:取平方根如果两个正数(或两个负数)之间的大小关系在平方后仍然成立,则在开根号后仍然成立。

这个技巧在解决含有根号的不等式时非常有用。

例如,要求解不等式√(x-2)>3,我们可以将不等式两边都平方,得到x-2>9、然后,我们可以把9移到不等式的右边,得到x>113.技巧二:分解将不等式进行分解,可以将原问题简化为多个小问题,并从中得到更多的信息。

例如,要求解不等式x^2-5x+4≤0,我们可以将不等式进行分解,得到(x-4)(x-1)≤0。

根据不等式的性质,我们知道(x-4)(x-1)小于等于零的条件是x-4和x-1要么都小于等于零,要么都大于等于零。

因此,不等式的解集是1≤x≤44.技巧三:配方对于一些特定的不等式,可以通过配方的方法,将不等式变换成更简单的形式。

例如,要求解不等式x^2-8x+16≥0,我们可以通过配方将其变为(x-4)^2≥0。

根据不等式的性质,我们知道(x-4)^2大于等于零的条件是(x-4)大于等于零。

因此,不等式的解集是x≥45.技巧四:取倒数对于一些正数,其倒数的大小关系与它本身的大小关系是相反的。

届高三数学—不等式1:基本不等式经典例题+高考真题剖析(解析版)

届高三数学—不等式1:基本不等式经典例题+高考真题剖析(解析版)

必修五:基本不等式应用一:求最值 例:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧 技巧一:凑项 例 已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

技巧二:凑系数 例: 当时,求(82)y x x =-的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

变式:设230<<x ,求函数)23(4x x y -=的最大值。

解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。

技巧三: 分离、换元例:求2710(1)1x x y x x ++=>-+的值域。

解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多次运用基本不等式错解例析
在《不等式》的学习中,我们结识了一个重要的不等式定理,即基本不等式(又叫均值定理),这个定理在解题中应用十分广泛,运用基本不等式时除了要注意 “一正、二定、三相等” 的条件以外,当多次运用基本不等式时,如果忽视了取等号的条件也一样会功败垂成,前功尽弃.
例1.设x ∈(0,π),则函数f(x)=sinx+
x
sin 4的最小值是( ) A .4 B. 5 C.3 D.6 【典型错误】因为x ∈(0,π),所以sinx>0,
x sin 4>0, f(x)=sinx+x sin 4≥2x x sin 4sin ⋅=4 因此f(x)的最小值是4.故选A.
【错因分析】忽略了均值不等式a+b ≥2ab (a>O,b>0)中等号成立的条件:当且仅当a=b 时等号成立.事
实上,sinx=
x
sin 4不可能成立,因为它成立的条件是sinx =±2,这不可能. 【正确解答1】f(x)=sinx+x sin 4=sinx+x sin 1+x sin 3,因为sinx+x
sin 1≥2, 当且仅当sinx=1,即x=2π时等号成立.又x sin 3≥3,当且仅当sinx=1,即x=2
π时等号成立.所以f(x)=sinx+x
sin 4≥2+3=5,f(x)的最小值是5. 故选B. 【正确解答2】令sinx=t,因为x ∈(0,π),所以0<t ≤1,所给函数变为y=t+t 4易知此函数在区间(0,1]上是减函数,所以,当t=1时,y 取最小值5.故选B.
例2.若实数m,n,x,y 满足条件m 2+n 2=a,x 2+y 2=b(a ≠b) ,则mx+ny 的最大值是 .
【典型错误】因为a+b=m 2+x 2+n 2+y 2≥2mx+2ny,所以mx+ny ≤
2b a +,即mx+ny 的最大值为2b a +. 【错因分析】m 2+x 2≥2mx 的等号成立的条件是m=x,n 2+y 2≥2ny 的等号成立的条件是n=y.所以m 2=x 2,
n 2=y 2⇒m 2+n 2=x 2+y 2即a=b,与a ≠b 矛盾.因此mx+ny 不可能取到最大值2
b a +. 【正确解答】令m=a cos α,n=a sin α,x=b cos β,y=b sin β,则mx+ny=ab (cos αcos β+sin αsin β)=ab cos(α-β)≤ab ,所以mx+ny 的最大值是ab .
例3.求函数f(x)=x 2+324
-x x (x 2>3)的最小值. 【典型错误】f(x)=x 2+33233)3(23333224
224224≥+=+-⋅-≥+-+-=-x x x x x x x x x ,因此函数f(x)的最小值为3.
【错因分析】上述解答中两个等号成立的条件不一致,第一个等号成立的条件是x 2-3=324
-x x ,即x 2=23;第二个等号成立的条件是x 2
=0.因此f(x)=3不可能取到.
【正确解答】f(x)=x 2+324
-x x =x 2+39)3(6)96(2224-++++-x x x x =(x 2-3)+ 26939)3(2339)3(6)3(222222≥+-+-=+-+-+-x x x x x +9,当x 2=3+23时取等号,因此函数f(x)的最小值为62+9.。

相关文档
最新文档