圆培优题

合集下载

中考数学圆的综合(大题培优)及详细答案

中考数学圆的综合(大题培优)及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF =【解析】 分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB 是⊙O 的直径∴∠ACB=90°∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8∵直径AB ⊥弦CD 于点E∴AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB∴∠CEO=∠FCE=90°∴△OCE ∽△CFE ∴OC OE CF CE= 即106=8CF ∴40CF 3= 点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.2.矩形ABCD 中,点C (3,8),E 、F 为AB 、CD 边上的中点,如图1,点A 在原点处,点B 在y 轴正半轴上,点C 在第一象限,若点A 从原点出发,沿x 轴向右以每秒1个单位长度的速度运动,点B 随之沿y 轴下滑,并带动矩形ABCD 在平面内滑动,如图2,设运动时间表示为t 秒,当点B 到达原点时停止运动.(1)当t =0时,点F 的坐标为 ;(2)当t =4时,求OE 的长及点B 下滑的距离;(3)求运动过程中,点F 到点O 的最大距离;(4)当以点F 为圆心,FA 为半径的圆与坐标轴相切时,求t 的值.【答案】(1)F (3,4);(2)8-43;(3)7;(4)t 的值为245或325. 【解析】试题分析:(1)先确定出DF ,进而得出点F 的坐标;(2)利用直角三角形的性质得出∠ABO =30°,即可得出结论; (3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,即可得出结论;(4)分两种情况,利用相似三角形的性质建立方程求解即可.试题解析:解:(1)当t =0时.∵AB =CD =8,F 为CD 中点,∴DF =4,∴F (3,4); (2)当t =4时,OA =4.在Rt △ABO 中,AB =8,∠AOB =90°,∴∠ABO =30°,点E 是AB 的中点,OE =12AB =4,BO =43,∴点B 下滑的距离为843-.(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,∴FO=OE+EF=7.(4)在Rt △ADF 中,FD 2+AD 2=AF 2,∴AF 22FD AD +,①设AO =t 1时,⊙F 与x 轴相切,点A 为切点,∴FA ⊥OA ,∴∠OAB +∠FAB =90°.∵∠FAD +∠FAB =90°,∴∠BAO =∠FAD .∵∠BOA =∠D =90°,∴Rt △FAE ∽Rt △ABO ,∴AB AO FA FE =,∴1853t =,∴t 1=245,②设AO =t 2时,⊙F 与y 轴相切,B 为切点,同理可得,t 2=325.综上所述:当以点F为圆心,FA为半径的圆与坐标轴相切时,t的值为245或325.点睛:本题是圆的综合题,主要考查了矩形的性质,直角三角形的性质,中点的意义,勾股定理,相似三角形的判定和性质,切线的性质,解(2)的关键是得出∠ABO=30°,解(3)的关键是判断出当O、E、F三点共线时,点F到点O的距离最大,解(4)的关键是判断出Rt△FAE∽Rt△ABD,是一道中等难度的中考常考题.3.已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC画图操作:(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)理解应用:(2)在(1)的条件下,①若tan∠APB12=,求点P的坐标②当点P的坐标为时,∠APB最大拓展延伸:(3)若在直线y43=x+4上存在点P,使得∠APB最大,求点P的坐标【答案】(1)图形见解析(2)(0,2),(0,4)(0,33953-,1255)【解析】试题分析:(1)以AC为直径画圆交y轴于P,连接PA、PB,∠PAB即为所求;(2)①由题意AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6);②当⊙K与y轴相切时,∠APB的值最大,(3)如图3中,当经过AB的园与直线相切时,∠APB最大.想办法求出点P坐标即可解决问题;试题解析:解:(1)∠APB如图所示;(2)①如图2中,∵∠APB=∠ACB,∴tan∠ACB=tan∠APB=12=ABBC.∵A(2,0),B(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6).②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,∴BC22AC AB3,∴C(6,3∴K(4,2),∴P(0,3案为:(0,3(3)如图3中,当经过AB的园与直线相切时,∠APB最大.∵直线y=43x+4交x轴于M(﹣3,0),交y轴于N(0,4).∵MP是切线,∴MP2=MA•MB,∴MP5PK⊥OA于K.∵ON∥PK,∴ONPK=OMMK=NMMP,∴4PK=3MK35,∴PK125MK=955,∴OK=55﹣3,∴P(955﹣3,1255).点睛:本题考查了一次函数综合题、直线与圆的位置关系、平行线的性质、切线的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线解决问题,学会构造辅助圆解决最大角问题,属于中考压轴题.4.如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.【答案】(1)证明见解析;(2)【解析】【分析】(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.【详解】(1)证明:连接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半径,点C为半径外端,∴CE是⊙O的切线.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四边形AOCD是平行四边形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等边三角形,在Rt△CFB中,CF=,∴S四边形ABCD=(DC+AB)•CF=【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.5.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.【答案】(1)详见解析;(2)32π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,OB=BD=23,根据勾股定理求出PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴BD CD,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,3,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=123,3,在Rt△DEP中,∵37∴22(7)(3)=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE,∠BED=∠AEC,∴△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=17,∴AE=577 ∵BE ∥DF , ∴△ABE ∽△AFD ,∴BE AE DF AD= ,即57571257DF = , 解得DF=12,在Rt △BDH 中,BH=12BD=3, ∴阴影部分的面积=△BDF 的面积﹣弓形BD 的面积=△BDF 的面积﹣(扇形BOD 的面积﹣△BOD 的面积)=22160(23)3123(23)23604π⨯⨯⨯--⨯ =93﹣2π. 【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.6.如图,□ABCD 的边AD 是△ABC 外接圆⊙O 的切线,切点为A ,连接AO 并延长交BC 于点E ,交⊙O 于点F ,过点C 作直线CP 交AO 的延长线于点P ,且∠BCP =∠ACD . (1)求证:PC 是⊙O 的切线;(2)若∠B =67.5°,BC =2,求线段PC ,PF 与弧CF 所围成的阴影部分的面积S .【答案】(1)见解析;(2)14π-【解析】 【分析】(1) 过C 点作直径CM ,连接MB ,根据CM 为直径,可得∠M+∠BCM =90°,再根据AB ∥DC 可得∠ACD =∠BAC ,由圆周角定理可得∠BAC =∠M ,∠BCP =∠ACD ,从而可推导得出∠PCM =90°,根据切线的判定即可得;(2)连接OB ,由AD 是⊙O 的切线,可得∠PAD =90°,再由BC ∥AD ,可得AP ⊥BC ,从而得BE =CE = 12BC =1,继而可得到∠ABC =∠ACB =67.5°,从而得到∠BAC =45°,由圆周角定理可得∠BOC=90°,从而可得∠BOE =∠COE =∠OCE = 45°,根据已知条件可推导得出OE =CE =1,PC =OC 22OE CE 2+部分的面积.【详解】(1)过C点作直径CM,连接MB,∵CM为直径,∴∠MBC=90°,即∠M+∠BCM=90°,∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠ACD=∠BAC,∵∠BAC=∠M,∠BCP=∠ACD,∴∠M=∠BCP,∴∠BCP+∠BCM=90°,即∠PCM=90°,∴CM⊥PC,∴PC与⊙O相切;(2)连接OB,∵AD是⊙O的切线,切点为A,∴OA⊥AD,即∠PAD=90°,∵BC∥AD,∠AEB=∠PAD=90°,∴AP⊥BC.∴BE=CE=12BC=1,∴AB=AC,∴∠ABC=∠ACB=67.5°,∴∠BAC=180°-∠ABC-∠ACB=45°,∴∠BOC=2∠BAC=90°,∵OB=OC,AP⊥BC,∴∠BOE=∠COE=∠OCE= 45°,∵∠PCM=90°,∴∠CPO=∠COE=∠OCE= 45°,∴OE=CE=1,PC=OC=22OE CE2+=,∴S=S△POC-S扇形OFC=()245π21π221 23604⨯⨯⨯-=-.【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.7.如图,已知△ABC,23BC=,∠B=45°,点D在边BC上,联结AD,以点A 为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF⊥AD.(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;(2)如果E是DF的中点,求:BD CD的值;(3)联结CF,如果四边形ADCF是梯形,求BD的长.【答案】(1) 2442y x x (0≤x≤3); (2) 45; (3) BD 的长是1或1+52. 【解析】【分析】 (1)过点A 作AH ⊥BC ,垂足为点H .构造直角三角形,利用解直角三角形和勾股定理求得AD 的长度.联结DF ,点D 、F 之间的距离y 即为DF 的长度,在Rt △ADF 中,利用锐角三角形函数的定义求得DF 的长度,易得函数关系式.(2)由勾股定理求得:AC=22AH DH +.设DF 与AE 相交于点Q ,通过解Rt △DCQ 和Rt △AHC 推知12DQ CQ =.故设DQ=k ,CQ=2k ,AQ=DQ=k ,所以再次利用勾股定理推知DC 的长度,结合图形求得线段BD 的长度,易得答案.(3)如果四边形ADCF 是梯形,则需要分类讨论:①当AF ∥DC 、②当AD ∥FC .根据相似三角形的判定与性质,结合图形解答.【详解】(1)过点A 作AH ⊥BC ,垂足为点H .∵∠B =45°,AB 2∴·cos 1BH AH AB B ===.∵BD 为x ,∴1DH x =-.在Rt △ADH 中,90AHD ∠=︒,∴22222AD AH DH x x =+=-+. 联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒.在Rt △ADF 中,90DAF ∠=︒,∴2442cos AD DF x x ADF==-+∠ ∴2442y x x =-+.()03x ≤≤ ;(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF .∵BC=3,∴312HC =-=.∴AC =.设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=︒,tan DQ DCQ CQ ∠=. 在Rt △AHC 中,90AHC ∠=︒,1tan 2AH ACH HC ∠==. ∵DCQ ACH ∠=∠,∴12DQ CQ =. 设,2DQ k CQ k ==,AQ DQ k ==,∵3k =k =,∴53DC ==. ∵43BD BC DC =-=,∴4:5BD CD =. (3)如果四边形ADCF 是梯形 则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ⊥,即点D 与点H 重合. ∴1BD =.②当AD ∥FC 时,45ADF CFD ∠=∠=︒.∵45B ∠=︒,∴B CFD ∠=∠.∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠.∴ABD ∆∽DFC ∆.∴AB AD DF DC =. ∵DF =,DC BC BD =-.∴2AD BC BD =-.即23x =-,整理得 210x x --=,解得 x =综上所述,如果四边形ADCF 是梯形,BD 的长是1或2. 【点睛】此题属于圆的综合题,涉及了平行四边形的性质、相似三角形的判定与性质、三角函数值以及勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.8.如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径,BD AD =,DE ⊥BC ,垂足为E .(1)判断直线ED 与⊙O 的位置关系,并说明理由;(2)若CE =1,AC =4,求阴影部分的面积.【答案】(1)ED 与O 相切.理由见解析;(2)2=33S π-阴影. 【解析】【分析】 (1)连结OD ,如图,根据圆周角定理,由BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可.【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC . ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD260233604π⋅⋅=-•22 23=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.9.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE=36.【解析】【分析】(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为AG AG,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA=2∠ABC.②如图2﹣1中,连接AG,作FH⊥AG于H.∵BD=OE,∠CDB=∠AEO=90°,∠B=∠AOE,∴△CDB≌△AEO(AAS),∴CD=AE,∵EC=EA,∴AC=2CD.∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 22221AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=, ∴PE 3. 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10.已知:如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC 、BC 分别交于点D 、E ,过点D 作DF ⊥BC ,垂足为F .(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求图中阴影部分的面积.【答案】(1)见解析(2)332 23π-【解析】试题分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;(2)首先由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;再连接OE,求得CF,EF的长,从而利用S直角梯形FDOE﹣S扇形OED求得阴影部分的面积.试题解析:(1)证明:连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,∴DF为⊙O的切线;(2)∵△OAD是等边三角形,∴AD=AO=AB=2.∴CD=AC﹣AD=2.Rt△CDF中,∵∠CDF=30°,∴CF=CD=1.∴DF=,连接OE,则CE=2.∴CF=1,∴EF=1.∴S直角梯形FDOE=(EF+OD)•DF=,∴S扇形OED==,∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.。

第二十四章 圆培优检测卷(解析版)(重点突围)

第二十四章 圆培优检测卷(解析版)(重点突围)

《第二十四章 圆》培优检测卷班级___________ 姓名___________ 学号____________ 分数____________考试范围:第二十四章; 考试时间:120分钟; 总分:120分一、选择题(本大题共6小题,每小题3分,共18分)1.(2021·浙江·杭州市建兰中学九年级期中)已知O e 的半径为3cm ,点A 到圆心O 的距离为2cm ,那么点A 与O e 的位置关系是( )A .点A 在O e 内B .点A 在O e 上C .点A 在O e 外D .不能确定【答案】A【分析】根据点到圆心的距离d 与圆的半径r 之间的数量关系进行判断即可.【详解】解:由题意得:2,3d r ==,故:d r <,∴点A 在O e 内,故选A .【点睛】本题考查点与圆的位置关系:点到圆心的距离大于圆的半径时,点在圆外,点到圆心的距离等于圆的半径时,点在圆上,点到圆心的距离小于圆的半径时,点在圆内.2.(2022·福建省福州延安中学九年级阶段练习)下列四个命题中,真命题是( )A .如果两条弦相等,那么它们所对的圆心角相等B .圆是轴对称图形, 任何一条直径都是圆的对称轴C .平分弦的直径一定垂直于这条弦D .等弧所对的圆周角相等【答案】D【分析】根据圆心角、弧、弦的关系对A 进行判断,根据对称轴的定义对B 进行判断,根据垂径定理的推论对C 进行判断,根据圆周角定理的推论对D 进行判断.【详解】解:A 、在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,故此选项错误,不符合题意;B 、圆是轴对称图形, 任何一条直径所在的直线都是圆的对称轴,故此选项错误,不符合题意;C 、平分弦(非直径)的直径一定垂直于这条弦,故此选项错误,不符合题意;D 、等弧所对的圆周角相等正确,故此选项正确,符合题意,故选:D .理及圆周角定理的推论.3.(2022·湖北孝感·九年级期末)点P 到⊙O 的最近点的距离为2cm ,最远点的距离为7cm ,则⊙O 的半径是( )A .5cm 或9cmB .2.5cmC .4.5cmD .2.5cm 或4.5cm【答案】D【分析】根据已知条件能求出圆的直径,即可求出半径,此题点的位置不确定所以要分类讨论.【详解】解:①当点在圆外时,∵圆外一点和圆周的最短距离为2cm ,最长距离为7cm ,∴圆的直径为7﹣2=5(cm ),∴该圆的半径是2.5cm ;②当点在圆内时,∵点到圆周的最短距离为2cm ,最长距离为7cm ,∴圆的直径=7+2=9(cm ),∴圆的半径为4.5cm ,故选:D .【点睛】本题考查了点和圆的位置关系的应用,能根据已知条件求出圆的直径是解此题的关键.4.(2022·北京·人大附中九年级阶段练习)如图,AB 为O e 的直径,点C ,D 在O e 上,若130ADC Ð=°,则BAC Ð的度数为( )A .25°B .30°C .40°D .50°【答案】C 【分析】根据圆内接四边形对角互补求得B Ð,根据直径所对的圆周角是直角可得=90°ACB Ð,根据直角三角形的两个锐角互余即可求解.【详解】解:∵AB 为O ⊙的直径,,60OA OB AOB =Ð=°Q ,AOB \ 是等边三角形,12,12OA AB AP AB \====,223OP OA AP \=-=,即这个正六边形的边心距为3,【点睛】本题考查了正多边形的中心角和边心距、等边三角形的判定与性质、勾股定理,熟练掌握正多边形的中心角和边心距的概念是解题关键.6.(2022·全国·九年级单元测试)如图,AB过半⊙O的圆心O,过点B作半⊙O的切线BC,切点为点C,连接AC,若∠A=25°,则∠B的度数是( )A.65°B.50°C.40°D.25°【答案】C【分析】连接OC,根据切线的性质,得出∠OCB=90°,再利用圆的半径相等,结合等边对等角,得出∠A =∠OCA,然后再利用三角形的外角和定理,得出∠BOC的度数,再利用直角三角形两锐角互余,即可得出∠B的度数.【详解】解:连接OC,∵BC与半⊙O相切于点C,∴∠OCB=90°,∵∠A=25°,∵OA=OC,∴∠A=∠OCA,∴∠BOC=2∠A=50°,∴∠B=90°﹣∠BOC=40°.故选:C【点睛】本题考查了切线的性质、等边对等角、三角形外角和定理、直角三角形两锐角互余,解本题的关键在熟练掌握相关的性质、定理.二、填空题(本大题共6小题,每小题3分,共18分)7.(2022·北京市朝阳区人大附中朝阳分校九年级阶段练习)如图,点A、B、C在⊙O上,∠C=45°,半径OB的长为3,则AB的长为_____.【答案】32【分析】首先根据圆周角定理求出∠【答案】1【分析】连接OA、OC、OD然后由含30°角的直角三角形的性质求解即可.【详解】解:连接OA、OC∵点O为正六边形ABCDEF【答案】15【分析】如图,连接CQ,然后求出【详解】解:如图,连接CQ.由题意CQ=CP,CDPQ=∴DQ=DP=12∵PA=QB,【答案】1或3或5e与坐标轴的切点为【分析】设PQ点D是切点,P e的半径是1Q,PB=2Q=,PC2\=+=,52 AP AC PC定及性质,利用分类讨论的思想求解.三、(本大题共5小题,每小题6分,共30分)(1)点M的坐标为 (2)点D(5,﹣2)在⊙M【答案】(1)(2,0)(2)内【分析】(1)由网络可得出线段(2)解:由图知,圆的半径AM∵2513>,∴点D在圆M内,(1)求正六边形的边长;(2)以A为圆心,AF为半径画弧【答案】(1)6(2)4π(1)求ACBÐ的度数;e的半径为3,求圆弧 AC的长.(2)若O【答案】(1)30°(2)2pe的切线∵AB是O^∴OA AB∴90Ð=OAB°∵90Ð=DAC°Ð=Ð∴DAC OAB(2)在(1)的基础上,连接BO 并延长与【点睛】本题考查了作图:无刻度直尺作图,考查了正五边形的对称性质,掌握正五边形的性质是解题的关键.17.(2022·湖南·长沙麓山国际实验学校九年级阶段练习)如图,与A ,B 重合),过O 作OC ⊥AP (1)试判断CD 与AB 的数量和位置关系?并说明理由;(2)若45B Ð=°,AP=4,则⊙∵45B Ð=°,四、(本大题共3小题,每小题8分,共24分)18.(2021·江苏·阜宁县实验初级中学九年级阶段练习)如图,⊙O 的弦AB 、DC 的延长线相交于点E .A D AE DE E E Ð=Ðìï=íïÐ=Ðî,∴△ACE ≌△DBE (ASA ),∴BE =CE ,∵AE =DE ,∴AE -BE =DE -CE ,即AB =CD .【点睛】本题考查了圆的相关计算与证明,三角形全等的判定和性质,正确理解圆心角、弧与弦的关系是解题的关键.19.(2021·广东惠州·九年级期末)如图在Rt ABC 中,∠C =90º,以AC 为直径作⊙O ,交AB 于D ,过O 作OE ∥AB ,交BC 于E .(1)求证:DE 是⊙O 的切线;(2)如果⊙O 的半径为3,DE =4,求AB 的长;(3)在(2)的条件下,求△ADO 的面积.【答案】(1)证明见解析(2)10AB =(3) 4.32ADO S =△【分析】(1)根据平行线的性质,得出123A Ð=ÐÐ=Ð,,再根据等边对等角,得出1A Ð=Ð,再根据等量代换,得出32Ð=Ð,再利用SAS ,得出OCE ODE ≌△△,进而得出OCE ODE Ð=Ð,进而得出OD DE ^,即可得出结论;(2)根据(1),得出ODE 是直角三角形,根据勾股定理,得出5OE =,再根据三角形的中位线定理,即可得出AB 的长;(3)连接CD ,根据圆周角定理,得出90ADC Ð=°,再根据等面积法,得出CD 的长,然后根据勾股定理,得出AD 的长,再根据三角形的面积公式,得出ADC 的面积,再根据三角形中线平分三角形的面积,即可得出ADO △的面积.(1)证明:如图,∵OE AB ∥,∴123A Ð=ÐÐ=Ð,,∵OA OD =,∴1A Ð=Ð,∴32Ð=Ð,∵OC OD OE OE ==,,∴()OCE ODE SAS △≌△,∴OCE ODE Ð=Ð,∵90C Ð=°,∴90OCE ODE Ð=Ð=°,即OD DE ^,∴DE 是⊙O 的切线.(2)解:由(1),可得:三角形ODE 是直角三角形,在Rt ODE △中,∵34OD DE ==,,∴5OE =,【点睛】本题考查了平行线的性质、等边对等角、全等三角形的性质与判定、切线判定定理、勾股定理、三角形的中位线定理、圆周角定理、三角形中线的性质,解本题的关键在熟练掌握相关的性质定理.20.(2022·江苏·泰州市姜堰区南苑学校九年级)如图,在圆心,OB为半径的圆与(1)如图1,若AP=DP,则⊙O的半径r值为_______;(2)求BC=6,求⊙O的半径r长;(3)若AD的垂直平分线和⊙O有公共点,求半径r的取值范围.【答案】(1)8 3(2)3∵Oe与AC相切于点∴AC OD^,∴∠ADO=90°,即∠PDO∵∠ABC =90°, AB =8,∴22AC AB BC =+=∵OD AC ^,AB BC ^∴1122AC OD BC OB ×+×∴AC OD BC OB ×+×=∵∠EFD=∠ODF=∠OEF=90°∴四边形ODFE是矩形,∵OD=OE,∴四边形ODFE是正方形,===∴AF DF OD r∵222,∵OD<OA,∴OB+OD<OB+OA,∴2r<8,∴r<4,∴r的取值范围是252-【点睛】本题主要考查了圆的切线的判定与性质、切线长定理、勾股定理、用不等式求取值范围等知识与方法,熟练掌握相关知识点是解题的关键,属于考试压轴题.五、(本大题共2小题,每小题9分,共18分)(1)求抛物线解析式及D 点坐标.(2)猜测直线CM 与D e 的位置关系,并证明你的猜想.(3)抛物线对称轴上是否存在点P ,若将线段上?若能,求点P 的坐标;若不能,说明理由.【答案】(1)()2125344y x =--+;(3,0)(2)相切;证明见解析;由抛物线的解析式得:M (3,254∵D (3,0),∴()22225225403416CM æö=-+-=ç÷èø∴222CM CD DM +=,根据题意得∠CP C¢=∠CGD=∠GDO ∴∠CPH+∠HP C¢=90°,∠GCP+∴∠GCD=∠HP C¢,OC=GD=4,∵CP=C¢P∴∆CGP≅∆PH C¢,∴PG=C¢H=GD-DP=4-k,CG=PH六、(本大题共12分)。

圆培优题

圆培优题

六年级上册圆培优题圆☞易错题1、两个圆的半径比是2:3,他们的直径比是(),周长比是()。

2、一个圆的直径扩大到原来的2倍,它的半径就扩大到原来()倍,它的周长扩大到原来的()倍。

3、一座石英钟的时针长6cm,经过6小时,这时针的尖端所走的路程是()cm,经过12小时,这时针的尖端所走的路程是()cm4、周长相等的正方形,长方形和圆,面积最大的是(),最小的是()。

5、将一个圆,沿半径剪开,得到若干个小扇形,然后拼成一个近似的长方形。

这个长方形的长是圆的(),宽是圆的()。

如果这个长方形的宽是3cm,那么这个长方形的长是()cm,周长是()cm,面积是()平方厘米。

如果拼成的长方形的长为12.56dm,那么原来圆的面积是()cm26)。

7)平方分米。

8)平方厘米。

9、在一块直径是1.2米的圆形桌布周围缝在一条花边,接头处长6厘米,这条花边长()米。

10、用一根12.56dm长的铁丝弯成一个圆形铁环,这个铁环的直径是()dm,面积是()dm2求阴影部分的面积与周长例1、求下面图形中阴影部分的面积与周长。

练2、.如图,四个扇形的半径相等, 3、如图所示,正方形的面积是18dm²,求阴影部分的面积。

(单位:厘米) 求圆的面积。

4、.如图,大正方形的边长为6厘米,小正方形的边长为4厘米求阴影部分的面积。

5、求阴影部分的面积。

(单位:厘米)半圆的周长例1积。

练1、如图所示,这个四分之一园的周长是17.85厘米,求它的面积。

2、一个半圆形的周长是51.4厘米,求这个半圆形的面积。

钟表问题例1、一个时钟的分针长5厘米,当它走过一圈时,它的尖端走了多少厘米?分针扫过的面积是多少平方厘米?1、一座石英钟的时针长6cm,经过6小时,这时针的尖端所走的路程是多少厘米,经过过12小时,这时针的尖端所走的路程又是多少厘米?2、学校圆形大钟的时钟长40厘米,分针长50厘米,经过一昼夜,分针尖端走过的路程是多少?时钟扫过了多少平方厘米?车轮问题题型1例1、一辆自行车轮胎的外直径70cm,如果每分钟转100圈,通过一座1099m的大桥,大约需要几分钟?练1、为倡导“节能减排,绿色出行”,李叔叔每天骑自行车上班。

人教版九年级数学上册《圆》培优检测试题(含答案)

人教版九年级数学上册《圆》培优检测试题(含答案)

人教版九年级数学上册《圆》培优检测试题(含答案)一.选择题1.如图,△ABC内接于⊙O中,AB=AC,=60°,则∠B=()A.30°B.45°C.60°D.75°2.已知圆锥的母线长为5cm,高为4cm,则该圆锥侧面展开图的圆心角是()A.216°B.270°C.288°D.300°3.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,则∠ADB的度数为()A.15°B.30°C.45°D.60°4.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=AP=8,则⊙O的直径为()A.10 B.8 C.5 D.35.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为()A.9﹣3πB.9﹣2πC.18﹣9πD.18﹣6π6.如图,AB是⊙O的直径,点C在⊙O上,半径OD∥AC,如果∠BOD=130°,那么∠B的度数为()A.30°B.40°C.50°D.60°7.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π8.如图所示,已知AB为⊙O的弦,且AB⊥OP于D,PA为⊙O的切线,A为切点,AP=6cm,OP=4cm,则BD的长为()A. cm B.3cm C. cm D.2cm9.下列说法正确的个数()①近似数32.6×102精确到十分位:②在,,﹣||中,最小的数是③如图所示,在数轴上点P所表示的数为﹣1+④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中有两个纯角”⑤如图②,在△ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点A.1 B.2 C.3D.410.如图,△ABC中,∠C=90°,AC与圆O相切于点D,AB经过圆心O,且与圆交于点E,连接BD,若AC=3CD=3,则BD的长为()A.3 B.2C.D.2二.填空题11.如图,⊙O的半径为5,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,CD=8,则弦AC的长为.12.如图,直尺三角尺都和⊙O相切,∠A=60°,点B是切点,且AB=8c m,则⊙O的半径为cm.13.如图,正五边形ABCDE内接于半径为1的⊙O,则的长为.14.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部面积是.15.如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=.16.如图,△ABC内接于半径为的半⊙O,AB为直径,点M是的中点,连结BM交AC 于点E,AD平分∠CAB交BM于点D.(1)∠ADB=°;(2)当点D恰好为BM的中点时,BC的长为.17.如图,在平面直角坐标系中,OA=1,以OA为一边,在第一象限作菱形OAA1B,并使∠AOB=60°,再以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B1,再依次作菱形OA2A3B2,OA3A4B3,……,则过点B2018,B2019,A2019的圆的圆心坐标为.三.解答题18.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)证明:DF是⊙O的切线;(2)若AC=3AE,FC=6,求AF的长.19.如图,点A在⊙O上,点P是⊙O外一点.PA切⊙O于点A.连接OP交⊙O于点D,作AB上OP于点C,交⊙O于点B,连接PB.(1)求证:PB是⊙O的切线;(2)若PC=9,AB=6,求图中阴影部分的面积.20.如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD.(1)求证;∠ABD=∠CAB;(2)若B是OE的中点,AC=12,求⊙O的半径.21.如图,AB是⊙O的直径,点C、D是⊙O上的点,且OD∥BC,AC分别与BD、OD相交于点E、F.(1)求证:点D为的中点;(2)若CB=6,AB=10,求DF的长;(3)若⊙O的半径为5,∠DOA=80°,点P是线段AB上任意一点,试求出PC+PD的最小值.22.如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D三点的⊙O交AB于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE=∠DCE.(1)求证:DF是⊙O的切线.(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.23.如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,在CD上有点N满足CN=CA,AN交圆O于点F,过点F的AC的平行线交CD的延长线于点M,交AB的延长线于点E (1)求证:EM是圆O的切线;(2)若AC:CD=5:8,AN=3,求圆O的直径长度;(3)在(2)的条件下,直接写出FN的长度.24.如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.(1)求证:CE=AE;(2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.参考答案一.选择题1.解:∵AB=AC,=60°,∴∠B=∠C,∠A=30°,∴∠B=(180°﹣30°)=75°;故选:D.2.解:设该圆锥侧面展开图的圆心角为n°,圆锥的底面圆的半径==3,根据题意得2π×3=,解得n=216.即该圆锥侧面展开图的圆心角为216°.故选:A.3.解:∵AB=BC,∠ABC=120°,∴∠C=∠BAC=30°,∴∠ADB=∠C=30°,故选:B.4.解:连接OC,∵CD⊥AB,CD=8,∴PC=CD=×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP﹣OA=8﹣x,∴OC2=PC2+OP2,即x2=42+(8﹣x)2,解得x=5,∴⊙O的直径为10.故选:A.5.解:连接AC ,∵四边形ABCD 是菱形,∴AB =BC =6,∵∠B =60°,E 为BC 的中点,∴CE =BE =3=CF ,△ABC 是等边三角形,AB ∥CD ,∵∠B =60°,∴∠BCD =180°﹣∠B =120°,由勾股定理得:AE ==3,∴S △AEB =S △AEC =×6×3×=4.5=S △AFC ,∴阴影部分的面积S =S △AEC +S △AFC ﹣S 扇形CEF =4.5+4.5﹣=9﹣3π, 故选:A .6.解:∵∠BOD =130°,∴∠AOD =50°,又∵AC ∥OD ,∴∠A =∠AOD =50°,∵AB 是⊙O 的直径,∴∠C =90°,∴∠B =90°﹣50°=40°.故选:B .7.解:∵在▱ABCD 中,∠A =2∠B ,∠A +∠B =180°,∴∠A =120°,∵∠C =∠A =120°,⊙C 的半径为3,∴图中阴影部分的面积是:=3π,故选:C.8.解:∵PA为⊙O的切线,A为切点,∴∠PAO=90°,在直角△APO中,OA==2,∵AB⊥OP,∴AD=BD,∠ADO=90°,∴∠ADO=∠PAO=90°,∵∠AOP=∠DOA,∴△APO∽△DAO,∴=,即=,解得:AD=3(cm),∴BD=3cm.故选:B.9.解:①近似数32.6×102精确到十位,故本说法错误;②在,,﹣||中,最小的数是﹣(﹣2)2,故本说法错误;③如图所示,在数轴上点P所表示的数为﹣1+,故本说法错误;④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中至少有两个纯角”,故本说法错误;⑤如图②,在△ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点,故本说法正确;故选:A.10.解:连接OD,如图,∵AC与圆O相切于点D,∴OD⊥AC,∴∠ODA=90°,∵∠C=90°,∴OD∥BC,∵==3,∴AO=2OB,∴AO=2OD,∴sin A==,∴∠A=30°,在Rt△ABC中,BC=AC=×3=3,在Rt△BCD中,BD===2.故选:B.二.填空题11.解:如图,连接OA,并反向延长OA交CD于点E,∵直线AB与⊙O相切于点A,∴OA⊥AB,又∵CD∥AB,∴AO⊥CD,即∠CEO=90°,∵CD=8,∴CE=DE=CD=4,连接OC,则OC=OA=5,在Rt△OCE中,OE===3,∴AE=AO+OE=8,则AC=.故答案为:4.12.解:设圆O与直尺相切于B点,连接OE、OA、OB,设三角尺与⊙O的切点为E,∵AC、AB都是⊙O的切线,切点分别是E、B,∴∠OBA=90°,∠OAE=∠OAB=∠BAC,∵∠CAD=60°,∴∠BAC=120°,∴∠OAB=×120°=60°,∴∠BOA=30°,∴OA=2AB=16cm,由勾股定理得:OB===8(cm),即⊙O的半径是8cm.故答案是:8.13.解:如图,连接OA,OE.∵ABCDE是正五边形,∴∠AOE==72°,∴的长==,故答案为.14.解:作OD⊥AB于D,∵△ABC为等边三角形,∴∠ACB=60°,∴∠AOB=2∠ACB=120°,∵OA=OB,OD⊥AB,∴∠AOD=∠AOB=60°,BD=AD,则OD=OA×cos∠AOD=3×=,AD=OA×sin∠AOD,∴AB=2AD=3,∴图中阴影部面积=﹣×3×=3π﹣,故答案为:3π﹣.15.解:∵OD⊥AC,∴AD=DC,∵BO=CO,∴AB=2OD=2×2=4,∵BC是⊙O的直径,∴∠BAC=90°,∵OE⊥BC,∴∠BOE=∠COE=90°,∴=,∴∠BAE=∠CAE=∠BAC=90°=45°,∵EA⊥BD,∴∠ABD=∠ADB=45°,∴AD=AB=4,∴DC=AD=4,∴BC===4.故答案为:4.16.解:(1)∵AB是直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵=,∴∠CBM=∠ABM,∵∠CAD=∠BAD,∴∠DAB+∠DBA=(∠CAB+∠CBA)=45°,∴∠ADB=180°﹣(∠DAB+∠DBA)=135°,故答为135.(2)如图作MH⊥AB于M,连接AM,OM,OM交AC于F.∵AB是直径,∴∠AMB=90°∵∠ADM=180°﹣∠ADB=45°,∴MA=MD,∵DM=DB,∴BM=2AM,设AM=x,则BM=2x,∵AB=2,∴x2+4x2=40,∴x=2(负根已经舍弃),∴AM=2,BM=4,∵•AM•BM=•AB•MH,∴MH==,∴OH===,∴OM ⊥AC ,∴AF =FC ,∵OA =OB ,∴BC =2OF ,∵∠OHM =∠OFA =90°,∠AOF =∠MOH ,OA =OM ,∴△OAF ≌△OMH (AAS ),∴OF =OH =,∴BC =2OF =故答案为.17.解:过A 1作A 1C ⊥x 轴于C ,∵四边形OAA 1B 是菱形,∴OA =AA 1=1,∠A 1AC =∠AOB =60°,∴A 1C =,AC =,∴OC =OA +AC =,在Rt △OA 1C 中,OA 1==,∵∠OA 2C =∠B 1A 2O =30°,∠A 3A 2O =120°,∴∠A 3A 2B 1=90°,∴∠A 2B 1A 3=60°,∴B 1A 3=2,A 2A 3=3,∴OA 3=OB 1+B 1A 3=3=()3∴菱形OA 2A 3B 2的边长=3=()2, 设B 1A 3的中点为O 1,连接O 1A 2,O 1B 2,于是求得,O 1A 2=O 1B 2=O 1B 1==()1,∴过点B 1,B 2,A 2的圆的圆心坐标为O 1(0,2),∵菱形OA 3A 4B 3的边长为3=()3,∴OA 4=9=()4, 设B 2A 4的中点为O 2,连接O 2A 3,O 2B 3,同理可得,O 2A 3=O 2B 3=O 2B 2=3=()2,∴过点B 2,B 3,A 3的圆的圆心坐标为O 2(﹣3,3),…以此类推,菱形菱形OA 2019A 2020B 2019的边长为()2019,OA 2020=()2020, 设B 2018A 2020的中点为O 2018,连接O 2018A 2019,O 2018B 2019,求得,O 2018A 2019=O 2018B 2019=O 2018B 2018=()2018, ∴点O 2018是过点B 2018,B 2019,A 2019的圆的圆心, ∵2018÷12=168…2,∴点O 2018在射线OB 2上,则点O 2018的坐标为(﹣()2018,()2019),即过点B 2018,B 2019,A 2019的圆的圆心坐标为(﹣()2018,()2019),故答案为:(﹣()2018,()2019).三.解答题18.(1)证明:如图1,连接OD ,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:如图2,连接BE,AD,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴A B=3AE,CE=4AE,∴=2,∴,∵∠DFC=∠AEB=90°,∴DF∥BE,∴△DFC∽△BEC,∵CF=6,∴DF=3,∵AB是直径,∴AD⊥BC,∵DF⊥AC,∴∠DFC=∠ADC=90°,∠DAF=∠FDC,∴△ADF∽△DCF,∴,∴DF2=AF•FC,∴,∴AF=3.19.(1)证明:连接OB,∵OP⊥AB,OP经过圆心O,∴AC=BC,∴OP垂直平分AB,∴AP=BP,∵OA=OB,OP=OP,∴△APO≌△BPO(SSS),∴∠PAO=∠PBO,∵PA切⊙O于点A,∴AP⊥OA,∴∠PAO=90°,∴∠PBO=∠PAO=90°,∴OB⊥BP,又∵点B在⊙O上,∴PB是⊙O的切线;(2)解:∵OP⊥AB,OP经过圆心O,∵∠PBO =∠BCO =90°,∴∠PBC +∠OBC =∠OBC +∠BOC =90°,∴∠PBC =∠BOC ,∴△PBC ∽△BOC ,∴=∴OC ===3,∴在Rt △OCB 中,OB ===6,tan ∠COB ===,∴∠COB =60°,∴S △OPB =×OP ×BC =×(9+3)×3=18,S 扇DOB ==6π,∴S 阴影=S △OPB ﹣S 扇DOB =18﹣6π.20.解:(1)证明:∵AB 、CD 是⊙O 的两条直径,∴OA =OC =OB =OD ,∴∠OAC =∠OCA ,∠ODB =∠OBD ,∵∠AOC =∠BOD ,∴∠OAC =∠OCA =∠ODB =∠OBD ,即∠ABD =∠CAB ;(2)连接BC .∵AB 是⊙O 的两条直径,∴∠ACB =90°,∵CE 为⊙O 的切线,∴∠OCE =90°,∵B 是OE 的中点,∴BC=OB,∵OB=OC,∴△OBC为等边三角形,∴∠ABC=60°,∴∠A=30°,∴BC=AC=4,∴OB=4,即⊙O的半径为4.21.(1)∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠OFA=90°,∴OF⊥AC,∴=,即点D为的中点;(2)解:∵OF⊥AC,∴AF=CF,而OA=OB,∴OF为△ACB的中位线,∴OF=BC=3,∴DF=OD﹣OF=5﹣3=2;(3)解:作C点关于AB的对称点C′,C′D交AB于P,连接OC,如图,∵PC=PC′,∴PD+PC=PD+PC′=DC′,∴此时PC+PD的值最小,∵=,∴∠BOD=∠AOD=80°,∴∠BOC=20°,∵点C和点C′关于AB对称,∴∠C′OB=20°,∴∠DOC′=120°,作OH⊥DC′于H,如图,则C′H=DH,在Rt△OHD中,OH=OD=,∴DH=OH=,∴DC′=2DH=5,∴PC+PD的最小值为5.22.解:(1)∵∠ACB=90°,点B,D在⊙O上,∴BD是⊙O的直径,∠BCE=∠BDE,∵∠FDE=∠DCE,∠BCE+∠DCE=∠ACB=90°,∴∠BDE+∠FDE=90°,即∠BDF=90°,∴DF⊥BD,又∵BD是⊙O的直径,∴DF是⊙O的切线.(2)如图,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=2×4=8,∴=4,∵点D是AC的中点,∴,∵BD是⊙O的直径,∴∠DEB=90°,∴∠DEA=180°﹣∠DEB=90°,∴,在Rt△BCD中,==2,在Rt△BED中,BE===5,∵∠FDE=∠DCE,∠DCE=∠DBE,∴∠FDE=∠DBE,∵∠DEF=∠BED=90°,∴△FDE∽△DBE,∴,即,∴.23.(1)证明:连接FO,∵CN=AC,∴∠CAN=∠CNA,∵AC∥ME,∴∠CAN=∠MFN,∵∠CAN=∠FNM,∴∠MFN=∠FNM=∠CAN,∵CD⊥AB,∴∠HAN+∠HNA=90°,∵AO=FO,∴∠OAF=∠OFA,∴∠OFA+∠MFN=90°,即∠MFO=90°,∴EM是圆O的切线;(2)解:连接OC,∵AC:CD=5:8,设AC=5a,则CD=8a,∵CD⊥AB,∴CH=DH=4a,AH=3a,∵CA=CN,∴NH=a,∴AN===a=3,∴a=3,AH=3a=9,CH=4a=12,设圆的半径为r,则OH=r﹣9,在Rt△OCH中,OC=r,CH=12,OH=r﹣9,由OC2=CH2+OH2得r2=122+(r﹣9)2,解得:r=,∴圆O的直径为25;(3)∵CH=DH=12,∴CD=24,∵AC:CD=5:8,∴CN=AC=15,∴DN=24﹣15=9,∵∠AFD=∠ACD,∠FND=∠CNA,∴△FND∽△CNA,∴,∵AN=3,∴,∴FN=.24.证明(1)∵AB=AC,AC=CD∴∠ABC=∠ACB,∠CAD=∠D∵∠ACB=∠CAD+∠D=2∠CAD∴∠ABC=∠ACB=2∠CAD∵∠CAD=∠EBC,且∠ABC=∠ABE+∠EBC∴∠ABE=∠EBC=∠CAD,∵∠ABE=∠ACE∴∠CAD=∠ACE∴CE=AE(2)①当∠ABC=60°时,四边形AOCE是菱形;理由如下:如图,连接OE∵OA=OE,OE=OC,AE=CE∴△AOE≌△EOC(SSS)∴∠AOE=∠COE,∵∠ABC=60°∴∠AOC=120°∴∠AOE=∠COE=60°,且OA=OE=OC∴△AOE,△COE都是等边三角形∴AO=AE=OE=OC=CE,∴四边形AOCE是菱形故答案为:60°②如图,过点C作CN⊥AD于N,∵AE=,AB=,∴AC=CD=2,CE=AE=,且CN⊥AD ∴AN=DN在Rt△ACN中,AC2=AN2+CN2,①在Rt△ECN中,CE2=EN2+CN2,②∴①﹣②得:AC2﹣CE2=AN2﹣EN2,∴8﹣3=(+EN)2﹣EN2,∴EN=∴AN=AE+EN==DN∴DE=DN+EN=故答案为:人教版九年级上册第24章数学圆单元测试卷(含答案)一、选择题1.下列语句中,正确的是( )A.长度相等的弧是等弧;等弧对等弦B.在同一平面上的三点确定一个圆C.直径是弦;半圆是劣弧D.三角形的外心到三角形三个顶点的距离相等答案 D 选项A中,长度相等的弧不一定是等弧,故A错误;选项B中,不在同一直线上的三点确定一个圆,故B错误;选项C中,直径是圆中最长的弦,半圆既不是优弧也不是劣弧,故C 错误;选项D中,三角形的外心到三角形三个顶点的距离相等,故D正确.故选D.2.如图,已知☉O的半径为13,弦AB长为24,则点O到AB的距离是( )A.6B.5C.4D.3答案 B 过O作OC⊥AB于C,由垂径定理得AC=BC=AB=12,在Rt△AOC中,由勾股定理得OC==5.故选B.3.如图,△ABC内接于☉O,∠OBC=40°,则∠A的度数为( )A.80°B.100°C.110°D.130°答案 D 连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°.∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选D.4.如图,四边形ABCD内接于☉O,已知∠ADC=140°,则∠AOC的大小是( )A.80°B.100°C.60°D.40°答案 A 因为∠ADC=140°,所以∠ABC=180°-∠ADC=40°,所以∠AOC=2∠ABC=80°.5.如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,☉O2的半径为1,O1O2⊥AB于点P,O1O2=6,若☉O2绕点P按顺时针方向旋转360°,则在旋转过程中,☉O2与矩形的边只有一个公共点的情况一共出现( )A.3次B.4次C.5次D.6次答案 B 当☉O2与AD相切且位于AD上方时,有一个交点;当☉O2与AD相切且位于AD下方时,有一个交点;与BC相切时与AD情况相同,所以共出现4次,故选B.6.如图,直径AB为12的半圆绕点A逆时针旋转60°,此时点B旋转到点B',则图中阴影部分的面积是( )A.12πB.24πC.6πD.36π答案 B 因为以AB为直径的半圆绕点A逆时针旋转60°得到以AB'为直径的半圆,故S半圆AB'=S半圆AB,则S阴影=S扇形BAB'+S半圆AB'-S半圆AB=S扇形BAB'===24π,故选B.7.如图,已知线段OA交☉O于点B,且OB=AB,点P是☉O上的一个动点,那么∠OAP的最大值是( )A.30°B.45°C.60°D.90°答案A连接OP,根据题意知,当OP⊥AP时,∠OAP的取值最大.在Rt△AOP 中,∵OP=OB,OB=AB,∴AO=2OP,∴∠OAP=30°.故选A.8.如图,直线AB与☉O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若☉O的半径为,CD=4,则弦EF的长为( )A.4B.2C.5D.6答案 B 连接OA,并反向延长交CD于点H,连接OC,∵直线AB与☉O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴OH⊥CD,∴CH=CD=×4=2,∵☉O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.9.如图,在平面直角坐标系xOy中,☉P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被☉P截得的弦AB的长为4,则a的值是( )A.4B.3+C.3D.3+答案B作如图所示的辅助线,易得OC=CD=3,AP=3,AE=2,故PE=DE==1,PD=,故a=PC=DC+PD=3+.10.如图,已知直线y=x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA、PB,则△PAB面积的最大值是( )A.8B.12C.D.答案 C 如图,平移AB使其与☉C相切于P,此时P点距离AB最远,即△PAB的面积最大,连接AC,连接PC并延长交AB于H.因为PC是☉C的半径,MN∥AB,所以PH⊥AB.∵直线y=x-3与x轴、y轴分别交于A、B两点,∴A点的坐标为(4,0),B点的坐标为(0,-3),则AB=5.∵S△ABC=·BC·AO=·AB·CH,∴CH=,∴PH=1+=,∴△PAB面积的最大值是×5×=,故选C.二、填空题11.“三角形中至少有一个内角大于或等于60°”,这个命题用反证法证明应假设.答案三角形中三个内角都小于60°解析第一步应假设结论不成立,即三角形中三个内角都小于60°.12.如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°,弧AB的长为12πcm,则该圆锥的侧面积为cm2.答案108π解析圆锥的侧面积就是所给扇形的面积,设扇形的半径为r cm,∵弧AB的长为12πcm,∴πr=12π,解得r=18,∴S=πr2=π×182=108π(cm2).另解:S=rl=×18×12π=108π(cm2).13.如图,将长为8cm的铁丝AB首尾相接围成半径为2cm的扇形.则S扇形= cm2.答案4解析由题意可知扇形的周长为8cm.因为半径r=2cm,所以弧长l=8-2×2=4(cm),所以S扇形=l·r=×4×2=4(cm2).14.如图,点A、B、C、D都在☉O上,∠ABC=90°,AD=3,CD=2,则☉O的直径的长是.答案解析连接AC,∵点A、B、C、D都在☉O上,∠ABC=90°,∴∠ADC=180°-∠ABC=90°,AC是直径,∵AD=3,CD=2,∴AC==,即☉O直径的长是.15.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,外圆的半径OC⊥AB于D,测得CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.答案50cm解析如图,连接OA,设半径为r cm,∵CD=10cm,AB=60cm,∴AD=AB=30cm,OD=(r-10)cm,∴r2=(r-10)2+302,解得r=50.∴这个车轮的外圆半径是50cm.16.如图,两个同心圆,大圆的半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.答案8<AB≤10解析如图,当AB经过圆心时最长,此时AB=2×5=10.当AB与小圆相切于D时,利用勾股定理可得AD=4.利用垂径定理可得AB=8.根据直线与圆的位置关系可得,若大圆的弦AB与小圆相交,则8<AB≤10.17.如图,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x 轴上,☉M半径为2,☉M与直线l相交于A、B两点,若△ABM为等腰直角三角形,则点M的坐标为.答案(2,0)或(-2,0)解析过点M作MC⊥l,垂足为C,∵△MAB是等腰直角三角形,∴MA=MB,且∠BAM=∠ABM=45°.∵MC⊥l,∴∠BAM=∠CMA=45°,∴AC=CM.在Rt△ACM中,∵AC2+CM2=AM2,即2CM2=4,∴CM=.在Rt△OCM中,∠COM=30°,∴CM=OM,∴OM=2CM=2,∴M(2,0).根据对称性知,若点M在x轴负半轴上,则点M(-2,0)也满足条件.18.如图24-5-16,在☉O中,AB是直径,点D是☉O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q.连接AC.关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中正确结论是(只需填写序号).答案②③解析如图,连接OD,∵DG是☉O的切线,∴∠GDO=90°.∴∠GDP+∠ADO=90°.在Rt△APE中,∠OAD+∠APE=90°,∵AO=DO,∴∠OAD=∠ADO.∴∠APE=∠GPD=∠GDP,∴GP=GD.结论②正确.∵AB是☉O的直径,∴∠ACB=90°,∴∠CAQ+∠AQC=90°.∵点C是的中点,∴∠CAQ=∠ABC.又∵∠ABC+∠BCE=90°.∴∠AQC=∠BCE,∴PC=PQ.∵∠ACP+∠BCE=90°,∠AQC+∠CAP=90°,∴∠CAP=∠ACP,∴AP=CP,∴AP=CP=PQ,∴点P是△ACQ的外心.所以结论③正确.由于不能确定∠BAD与∠ABC的关系,所以结论①不一定正确.故答案是②③.三、解答题19.如图,AB是☉O的直径,弦CD⊥AB于点E.点M在☉O上,MD恰好经过圆心O,连接MB. (1)若CD=16,BE=4,求☉O的直径;(2)若∠M=∠D,求∠D的度数.答案(1)∵AB是☉O的直径,弦CD⊥AB,CD=16,∴DE=CD=8.∵BE=4,∴OE=OB-BE=OD-4.在Rt△OED中,OE2+ED2=OD2,∴(OD-4)2+82=OD2,解得OD=10.∴☉O的直径是20.(2)∵弦CD⊥AB,∴∠OED=90°.∴∠EOD+∠D=90°.∵∠M=∠D,∠EOD=2∠M,∴∠BOD+∠D=2∠M+∠D=90°.∴∠D=30°.20.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的☉O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).答案(1)证明:连接OD.∵BC是☉O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵∠OAD=∠BAC=30°,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∠OED=∠AOE=60°,∵OE=OD,∴△ODE为等边三角形,∴∠DOE=60°,∴阴影部分的面积=S扇形ODE==π.21.如图,AB是☉O的直径,BD是☉O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为☉O的切线;(3)若☉O的半径为5,∠BAC=60°,求DE的长.答案(1)证明:连接AD,∵AB是☉O的直径,∴∠ADB=90°,又BD=CD,∴AD垂直平分BC,∴AB=AC.(2)证明:连接OD,∵点O、D分别是AB、BC的中点,∴OD∥AC,又DE⊥AC,∴OD⊥DE,∴DE为☉O的切线.(3)由AB=AC,∠BAC=60°知,△ABC是等边三角形.∵☉O的半径为5,∴AB=BC=10,CD=BC=5.又∵∠C=60°,∴∠CDE=30°,∴CE=CD=.∴DE===.22.如图①,AB为☉O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.(1)若CD=2,BP=4,求☉O的半径;(2)求证:直线BF是☉O的切线;(3)当点P与点O重合时,过点A作☉O的切线交线段BC的延长线于点E,在其他条件不变的情况下,判断四边形AEBF是什么特殊的四边形,请在图②中补全图形并证明你的结论.答案(1)∵CD⊥AB,AB为☉O的直径,CD=2,∴CP=PD=CD=.又∵BP=4,CD⊥AB,∴BC===.设☉O的半径为x,则OP=4-x,连接OC,∵CD⊥AB,∴OC2=OP2+CP2,∴x2=(4-x)2+()2,解得x=.即☉O的半径为.(2)证明:∵CD⊥AB,∴∠C+∠ABC=90°,∵∠F=∠ABC,∠C=∠A,∴∠A+∠F=90°,即∠ABF=90°,又AB为直径,∴直线BF是☉O的切线.(3)四边形AEBF为平行四边形,证明如下:∵AE为切线,BF为切线,AB为直径,∴∠EAB=∠ABF=90°,∴AE∥BF.∵CD⊥AB,OC=OB,∴∠OCB=∠OBC=45°.∵∠F=∠ABC,∴∠F=45°.∵∠ABF=90°,∴∠BAF=45°,∴∠BAF=∠ABC=45°,∴AF∥BE.又∵AE∥BF,∴四边形AEBF为平行四边形.人教版九年级数学上册第23章旋转单元练习卷含答案一、单选题1.已知点与点关于坐标原点对称,则实数a、b的值是A. ,B. ,C. ,D. ,2.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A. B. C. D.3.将图绕中心按顺时针方向旋转60°后可得到的图形是()A. B. C. D.4.如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=()A. 106°B. 146°C. 148°D. 156°6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是( )A. B. C. D.7.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A. 1B. 2C. 3D. 48.已知点P1(a,3)与P2(﹣5,﹣3)关于原点对称,则a的值为()A. 5B. 3C. 4D. -5二、填空题9.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点A2016的坐标是________.10.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转90°后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为90°.(1)判断下列说法是否正确(在相应横线里填上“对”或“错”)①正五边形是旋转对称图形,它有一个旋转角为144°.________②长方形是旋转对称图形,它有一个旋转角为180°.________(2)填空:下列图形中时旋转对称图形,且有一个旋转角为120°的是________ .(写出所有正确结论的序号)①正三角形②正方形③正六边形④正八边形11.在下列图案中可以用平移得到的是________(填代号).12.如图是奥迪汽车的车牌标志,右边的三个圆环可以看作是左边的圆环经过________得到的.13.将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)14.如图,在平面直角坐标系中,是由绕着某点旋转得到的,则这点的坐标是________.15.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________ .三、解答题16.如图,在直角坐标系中,已知△ABC各顶点坐标分别为A(0,1),B(3,﹣1),C(2,2),试作出与△ABC关于原点对称的图形△A1B1C1,并直接写出A1,B1,C1的坐标.17.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.18.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)四、作图题19.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.答案一、单选题1.【答案】D【解析】【解答】点与点关于坐标原点对称,实数a、b的值是:,.故答案为:D【分析】根据关于原点对称点的坐标特点:横纵坐标都互为相反数,就可求出a、b的值。

人教版数学九年级上《第二十四章圆》培优单元试题(含答案)

人教版数学九年级上《第二十四章圆》培优单元试题(含答案)

第二十四章:圆培优单元试题一.选择题(共10小题)1.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有()A.1个B.2个C.3个D.4个2.如图,O为圆心,AB是直径,C是半圆上的点,D是上的点.若∠BOC=40°,则∠D的大小为()A.1l0°B.120°C.130°D.140°3.如图, AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65°B.35°C.25°D.15°4.如图,AB是⊙O的直径,CD切⊙O于点C,若∠BCD=25°,则∠B等于()A.25°B.65°C.75°D.90°5.如图,等边三角形ABC的边长为2,CD⊥AB于D,若以点C为圆心,CD为半径画弧,则图形阴影部分的面积是()A.﹣πB.2﹣πC.2D.2﹣6.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.5cm C.5cm D.6cm7.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定8.已知⊙O的直径为13cm,圆心O到直线l的距离为8cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切9.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE 的度数为()A.56°B.62°C.68°D.78°10.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3,则下列结论:①F=.其中正确的个数为()是CD的中点;②⊙O的半径是2;③AE=CE;④S阴影A.1 B.2 C.3 D.4二.填空题(共6小题)11.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,设∠A=α,则∠E+∠F=(用含α的式子表示).12.如图,A、B、C、D均在⊙O上,E为BC延长线上的一点,若∠A=102°,则∠DCE=.13.如图,在边长为8的菱形ABCD中,∠BAD=45°,BE⊥AD于点E,以B为圆心,BE为半径画弧,分别交AB、CB于点F、G,则图中阴影部分的面积为(结果保留π)14.如图,AB是半圆O的直径,点D,E在半圆上,∠DOE=100°,点C在上,连接CD,CE,则∠DCE等于度.15.在△ABC中,AB=AC=2,BC=4,P是AB上一点,连接PC,以PC为直径作⊙M交BC于D,连接PD,作DE⊥AC于点E,交PC于点G,已知PD=PG,则BD=16.如图,AB是⊙O的直径,点C在⊙O上,若⊙O半径为3,AC长为2,则BC=.三.解答题(共7小题)17.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,B P与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.18.如图,BC是⊙O的直径,AB是⊙O的弦,半径OF∥AC交AB于点E.(1)求证:=;(2)若AB=6,EF=3.求半径OB的长.19.如图,已知AC是⊙O的直径,B为⊙O上一点,D为的中点,过D作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(Ⅰ)求证:EF为⊙O的切线;(Ⅱ)若AB=2,∠BDC=2∠A,求的长.20.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD于点E,BF∥OC,连接BC和CF,CF交AB于点G.(1)求证:∠OCF=∠BCD;(2)若CD=4,tan∠OCF=,求⊙O半径的长.21.如图,在半径为1的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出是哪条边,并求其长度;如果不存在,请说明理由.22.如图,点O是△ABC的边AB上一点,以OB为半径的⊙O交BC于点D,过点D的切线交AC于点E,且DE ⊥AC.(1)证明:AB=AC;(2)设AB=cm,BC=2cm,当点O在AB上移动到使⊙O与边AC所在直线相切时,求⊙O的半径.23.如图,AD的圆O的切线,切点为A,AB是圆O的弦.过点B作BC∥AD,交圆O于点C,连接AC,过点C 作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与圆O的位置关系,并说明理由.(2)若AB=9,BC=6,求圆O的半径和PC的长.参考答案一.选择题1.解:(1)长度相等的弧不一定是等弧,弧的度数必须相同,故错误;(2)同圆或等圆中相等的圆心角所对的弧相等,故错误;(3)同圆或等圆中劣弧一定比优弧短,故错误;(4)直径是圆中最长的弦,正确,正确的只有1个,故选:A.2.解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D==110°,故选:A.3.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.4.解:连接OC,如图,∵CD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∴∠OCB=90°﹣∠BCD=90°﹣25°=65°,∵OB=OC,∴∠B=∠OCB=65°.故选:B.5.解:∵△ABC是等边三角形,且CD⊥AB,∴AD=AB=1,∠ACB=60°,由勾股定理得:CD==,∴S阴影=S△ABC﹣S扇形CEF=AB•CD﹣=×2×﹣=﹣,故选:A.6.解:连接EC,由圆周角定理得,∠E=∠B,∠ACE=90°,∵∠B=∠EAC,∴∠E=∠EAC,∴CE=CA,∴AC=AE=5(cm),故选:B.7.解:∵圆心A的坐标是(1,2),点P的坐标是(5,2),∴AP==4<5,∴点P在⊙A内,故选:A.8.解:∵⊙O的半径为6.5cm,圆心O到直线l的距离为8cm,6.5<8,∴直线l与⊙O相离.故选:C.9.解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,∴∠CDE=∠B=68°,故选:C.10.解:①∵AF是AB翻折而来,∴AF=AB=6,∵四边形ABCD是矩形,AD=BC=3,∴DF===3,∴F是CD中点;∴①正确;②连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴,设OP=OF=x,则,解得:x=2,∴②正确;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE =4CE , ∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边三角形;同理△OPG 为等边三角形; ∴∠POG =∠FOG =60°,OH =,S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG ) =S 矩形OPDH ﹣S △OF G =2×﹣××=.∴④正确;其中正确的结论有:①②④,3个; 故选:C .二.填空题(共6小题)11.解:∵四边形ABCD 内接于⊙O ,∴∠ADC +∠ABC =180°,∠ECD =∠A =α,∠BCF =∠A =α, ∴∠EDC +∠FBC =180°,∴∠E +∠F =360°﹣180°﹣2α=180°﹣2α, 故答案为:180°﹣2α.12.解:连接OB ,OD ,∵∠DOB 与∠A 都对,∠DOB (大于平角的角)与∠BCD 都对,∴∠DOB =2∠A ,∠DOB (大于平角的角)=2∠BCD , ∵∠DOB +∠DOB (大于平角的角)=360°,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠DCE=∠A=102°,故答案为:102°13.解:∵在边长为8的菱形ABCD中,∠BAD=45°,BE⊥AD,∴AE=BE,∠BEA=90°,∴BE=AE∴BE=AE=4,∴图中阴影部分的面积是:()×2=(16﹣4π)×2=32﹣8π,故答案为:32﹣8π.14.解:补全⊙O,在⊙O上AB的下方取一点M,连接DM,EM.∵∠M=∠DOE=50°,∠M+∠DCE=180°,∴∠DCE=130°,故答案为13015.解:如图,作AH⊥BC于H.∵AB=AC=2,AH⊥BC,∴∠B=∠ACD,BH=CH=2,AH==4,∵PC是直径,∴∠PDC=90°∵DE⊥AC,∴∠CDP=∠CED=90°,∵PD=PG,∴∠PDG=∠PGD=∠CGE,∵∠PDG+∠CDE=90°,∠CDE+∠ECD=90°,∴∠PDG=∠ECD=∠B=∠EGC,∵∠PDB=∠DEC=∠AHB=90°,∴△PDB∽△DEC∽△CEG∽△AHB,设BD=a,则有PD=PG=2a,CD=4﹣a,EC=,CG=,∴PC=PG+CG=,在Rt△PCD中,∵PD2+CD2=PC2,∴4a2+(4﹣a)2=()2,解得a=或4(舍弃),∴BD=.故答案为.16.解:∵如图,AB是⊙O的直径,∴∠C=90°,∵⊙O半径为3,AC长为2,∴由勾股定理知:BC===4.故答案是:4.三.解答题(共7小题)17.(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.18.(1)证明:∵AB是直径,∴∠A=90°,∵OF∥AC,∴∠OEB=∠A=90°,∴OF⊥AB,∴=.(2)解:设OB=r,∵OF⊥AB,∴,在Rt△OBE中,∵OB2=OE2+EB2,∴r2=(r﹣3)2+(3)2,∴r=6,即OB=6.19.(Ⅰ)证明:连接OD,OB.∵D为的中点,∴∠BOD=∠COD.∵OB=OC,∴OD⊥BC,∴∠OGC=90°.∵EF∥BC,∴∠ODF=∠OGC=90°,即OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(Ⅱ)解:∵四边形ABDC是⊙O的内接四边形,∴∠A+∠BDC=180°,又∵∠BDC=2∠A,∴∠A+2∠A=180°,∴∠A=60°,∵OA=OB,∴△OAB等边三角形,∵OB=AB=2,又∵∠BOC=2∠A=120°,∴=.20.(1)证明:∵AB是直径,AB⊥CD,∴,∴∠BCD=∠BFC,∵BF∥OC∴∠OCF=∠BFC,∴∠OCF=∠BCD;(2)解:∵AB⊥CD,∴CE=CD=2,∵∠OCF=∠BCD∴tan∠OCF=tan∠BCD=,∵CE=2∴BE=1,设OC=OB=x,则OE=x﹣1,在Rt△OCE中,∵x2=(x﹣1)2+22,解得x=,即⊙O半径的长为.21.解:(1)∵OD⊥BC,∴BD=BC=,∴OD==;(2)DE的长保持不变,理由如下:连接AB,由勾股定理得,AB==,∵OD⊥BC,OE⊥AC,∴BD=CD,AE=EC,∴DE=AB=.22.(1)证明:连接OD.∵DE是⊙O的切线,∵DE⊥OD,∵AC⊥DE,∴OD∥AC,∴∠ODB=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠C,∴AB=AC.(2)设AC与⊙O相切于点F,连接OF,作AH⊥BC于H.设半径为r.∵AB=AC,AH⊥BC,∴BH=CH=1,∴AH==2,∴tan∠C==2,∵∠OFE=∠ODE=∠DEF=90°,∴四边形ODEF是矩形,∵OD=OF,∴四边形ODEF是正方形,∴EF=DE=r,∵tan C==2,∴EC=,∴AF=﹣r﹣r=﹣r,在Rt△AOF中,∵OA2=AF2+OF2,∴(﹣r)2=r2+(﹣r)2,解得r=.23.解:(1)直线PC与圆O相切,理由是:如图1,连接CO交延长,交⊙O于点N,连接BN,∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠BNC,∴∠BNC=∠ACD,∵∠BCP=∠ACD,∴∠BNC=∠BCP,∵CN是⊙O的直径,∴∠CBN=90°,∴∠BNC+∠BCN=90°,∴∠BCP+∠BCN=90°,∴∠PCO=90°,即PC⊥OC,∵点C在⊙O上,∴直线PC与圆O相切;(5分)(2)∵AD是⊙O的切线,∴AD⊥OA,即∠OAD=90°,∵BC∥AD,∴∠OMC=180°﹣∠OAD=90°,即OM⊥BC,∴MC=MB,∴AB=AC,在Rt△AMC中,∠AMC=90°,MC=BC=3,由勾股定理得:AM==6,设⊙O的半径为r,在Rt△OMC中,∠OMC=90°,OM=AM﹣AO=6﹣r,MC=3,OC=r,由勾股定理得:OM2+MC2=OC2,即,解得:r=,∵∠OMC=∠OCP,∠MOC=∠COP,∴△OMC∽△OCP,∴,∴=,∴PC=.(11分)。

初三数学圆的综合的专项培优练习题(含答案)及答案

初三数学圆的综合的专项培优练习题(含答案)及答案

初三数学圆的综合的专项培优练习题(含答案)及答案一、圆的综合1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°. 【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数. 试题解析:(1)∵∠AOC=∠BOD ∴∠AOC -∠COD=∠BOD-∠COD 即∠AOD=∠BOC ∵四边形ABCD 是矩形 ∴∠A=∠B=90°,AD=BC ∴AOD BOC ∆≅∆ ∴AO=OB (2)解:∵AB 是O 的直径,PA 与O 相切于点A ,∴PA ⊥AB , ∴∠A=90°. 又∵∠OPA=40°, ∴∠AOP=50°, ∵OB=OC , ∴∠B=∠OCB. 又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.2.如图,AB 为⊙O 的直径,点D 为AB 下方⊙O 上一点,点C 为弧ABD 的中点,连接CD ,CA .(1)求证:∠ABD =2∠BDC ;(2)过点C 作CH ⊥AB 于H ,交AD 于E ,求证:EA =EC ;(3)在(2)的条件下,若OH =5,AD =24,求线段DE 的长度.【答案】(1)证明见解析;(2)见解析;(3)92DE =. 【解析】 【分析】(1)连接AD ,如图1,设∠BDC =α,∠ADC =β,根据圆周角定理得到∠CAB =∠BDC =α,由AB 为⊙O 直径,得到∠ADB =90°,根据余角的性质即可得到结论;(2)根据已知条件得到∠ACE =∠ADC ,等量代换得到∠ACE =∠CAE ,于是得到结论; (3)如图2,连接OC ,根据圆周角定理得到∠COB =2∠CAB ,等量代换得到∠COB =∠ABD ,根据相似三角形的性质得到OH =5,根据勾股定理得到AB =22AD BD +=26,由相似三角形的性质即可得到结论.【详解】(1)连接AD .如图1,设∠BDC =α,∠ADC =β, 则∠CAB =∠BDC =α,∵点C 为弧ABD 中点,∴AC =CD ,∴∠ADC =∠DAC =β,∴∠DAB =β﹣α,∵AB 为⊙O 直径,∴∠ADB =90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD =90°﹣∠DAB =90°﹣(β﹣α),∴∠ABD =2α,∴∠ABD =2∠BDC ;(2)∵CH ⊥AB ,∴∠ACE +∠CAB =∠ADC +∠BDC =90°, ∵∠CAB =∠CDB ,∴∠ACE =∠ADC , ∵∠CAE =∠ADC ,∴∠ACE =∠CAE ,∴AE =CE ; (3)如图2,连接OC ,∴∠COB =2∠CAB , ∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD , ∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴12OH OC BD AB ==,∵OH =5,∴BD =10,∴AB =22AD BD +=26,∴AO =13,∴AH =18,∵△AHE ∽△ADB ,∴AH AE AD AB =,即1824=26AE ,∴AE =392,∴DE =92.【点睛】本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.3.如图AB 是△ABC 的外接圆⊙O 的直径,过点C 作⊙O 的切线CM ,延长BC 到点D ,使CD=BC ,连接AD 交CM 于点E ,若⊙OD 半径为3,AE=5, (1)求证:CM ⊥AD ; (2)求线段CE 的长.【答案】(1)见解析;(2)5 【解析】分析:(1)连接OC ,根据切线的性质和圆周角定理证得AC 垂直平分BD ,然后根据平行线的判定与性质证得结论;(2)根据相似三角形的判定与性质证明求解即可. 详解:证明:(1)连接OC∵CM 切⊙O 于点C , ∴∠OCE=90°,∵AB是⊙O的直径,∴∠ACB=90°,∵CD=BC,∴AC垂直平分BD,∴AB=AD,∴∠B=∠D∵∠B=∠OCB∴∠D=∠OCB∴OC∥AD∴∠CED=∠OCE=90°∴CM⊥AD.(2)∵OA=OB,BC=CD∴OC=1AD2∴AD=6∴DE=AD-AE=1易证△CDE~△ACE∴CE DEAE CE∴CE2=AE×DE∴CE=5点睛:此题主要考查了切线的性质和相似三角形的判定与性质的应用,灵活判断边角之间的关系是解题关键,是中档题.4.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.5.如图,一条公路的转弯处是一段圆弧().AB()1用直尺和圆规作出AB所在圆的圆心O;(要求保留作图痕迹,不写作法)()2若AB的中点C到弦AB的距离为2080m AB m=,,求AB所在圆的半径.【答案】(1)见解析;(2)50m【解析】分析:()1连结AC、BC,分别作AC和BC的垂直平分线,两垂直平分线的交点为点O,如图1;()2连接OA OC OC,,交AB于D,如图2,根据垂径定理的推论,由C为AB的中点得到1OC AB AD BD AB402⊥===,,则CD20=,设O的半径为r,在Rt OAD中利用勾股定理得到222r (r 20)40=-+,然后解方程即可. 详解:()1如图1,点O 为所求;()2连接OA OC OC ,,交AB 于D ,如图2,C 为AB 的中点,OC AB ∴⊥,1402AD BD AB ∴===,设O 的半径为r ,则20OA r OD OD CD r ==-=-,,在Rt OAD 中,222OA OD AD =+,222(20)40r r ∴=-+,解得50r =,即AB 所在圆的半径是50m .点睛:本题考查了垂径定理及勾股定理的应用,在利用数学知识解决实际问题时,要善于把实际问题与数学中的理论知识联系起来,能将生活中的问题抽象为数学问题.6.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD 3FC 的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案;(2)根据正切的性质求出EC的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°.∵OB=OC,∴∠B=∠OCB.又∵∠FCA=∠B,∴∠FCA=∠OCB,∴∠FCA+∠ACO=90°,即∠FCO=90°,∴FC⊥OC,∴FC是⊙O切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE33∠==设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+32,解得r=8.∴OE=r-4=4=AE.∵CE⊥OA,∴CA=CO=8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.7.如图.在△ABC中,∠C=90°,AC=BC,AB=30cm,点P在AB上,AP=10cm,点E从点P 出发沿线段PA以2c m/s的速度向点A运动,同时点F从点P出发沿线段PB以1c m/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t (s)(0<t<20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210) 240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.8.已知:BD 为⊙O 的直径,O 为圆心,点A 为圆上一点,过点B 作⊙O 的切线交DA 的延长线于点F ,点C 为⊙O 上一点,且AB =AC ,连接BC 交AD 于点E ,连接AC . (1)如图1,求证:∠ABF =∠ABC ;(2)如图2,点H 为⊙O 内部一点,连接OH ,CH 若∠OHC =∠HCA =90°时,求证:CH =12DA ; (3)在(2)的条件下,若OH =6,⊙O 的半径为10,求CE 的长.【答案】(1)见解析;(2)见解析;(3)215. 【解析】 【分析】()1由BD 为O 的直径,得到D ABD 90∠∠+=,根据切线的性质得到FBA ABD 90∠∠+=,根据等腰三角形的性质得到C ABC ∠∠=,等量代换即可得到结论;()2如图2,连接OC ,根据平行线的判定和性质得到ACO COH ∠∠=,根据等腰三角形的性质得到OBC OCB ∠∠=,ABC CBO ACB OCB ∠∠∠∠+=+,根据相似三角形的性质即可得到结论;()3根据相似三角形的性质得到AB BD 2OHOC==,根据勾股定理得到22AD BD AB 16=-=,根据全等三角形的性质得到BF BE =,AF AE =,根据射影定理得到212AF 916==,根据相交弦定理即可得到结论.【详解】()1BD 为O 的直径,90BAD ∴∠=,90D ABD ∴∠+∠=,FB 是O 的切线, 90FBD ∴∠=, 90FBA ABD ∴∠+∠=,FBA D ∴∠=∠, AB AC =,C ABC ∴∠=∠, CD ∠=∠,ABF ABC ∴∠=∠;()2如图2,连接OC ,90OHC HCA ∠=∠=,//AC OH ∴,ACO COH ∴∠=∠, OB OC =,OBC OCB ∴∠=∠,ABC CBO ACB OCB ∴∠+∠=∠+∠, 即ABD ACO ∠=∠, ABC COH ∴∠=∠,90H BAD ∠=∠=,ABD ∴∽HOC , 2AD BD CH OC ∴==, 12CH DA ∴=; ()3由()2知,ABC ∽HOC ,2AB BDOH OC∴==, 6OH =,O 的半径为10,212AB OH ∴==,20BD =,2216AD BD AB ∴=-=,在ABF 与ABE 中,90ABF ABE AB AB BAF BAE ∠=∠⎧⎪=⎨⎪∠=∠=⎩, ABF ∴≌ABE ,BF BE ∴=,AF AE =, 90FBD BAD ∠=∠=,2AB AF AD ∴=⋅,212916AF ∴==,9AE AF ∴==,7DE ∴=,2215BE AB AE =+=, AD ,BC 交于E , AE DE BE CE ∴⋅=⋅,9721155AE DE CE BE ⋅⨯∴===.【点睛】本题考查了切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,勾股定理,射影定理,相交弦定理,正确的识别图形是解题的关键.9.已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=2523812n n- ;(3) n 9559155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3mOH OCH =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =中,=,,∴2OH =. ∵AB =6,∴3OC =. 由勾股定理得: 5CH = ∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n-=,解得9n :=.即圆心距等于O 、1O 的半径的和,就有O 、1O 外切不合题意舍去.ii )11O P OO =22233m m n m -+-()()n =,解得:23m n =,即23n 23812n n-=,解得9155n :=. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132nn n-=,解得955n :=. 综上所述:n 的值为955或9155. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.10.如图,线段BC 所在的直线 是以AB 为直径的圆的切线,点D 为圆上一点,满足BD =BC ,且点C 、D 位于直径AB 的两侧,连接CD 交圆于点E . 点F 是BD 上一点,连接EF ,分别交AB 、BD 于点G 、H ,且EF =BD . (1)求证:EF ∥BC ;(2)若EH =4,HF =2,求BE 的长.【答案】(1)见解析;(2) 233π【解析】 【分析】(1)根据EF =BD 可得EF =BD ,进而得到BE DF ,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”即可得出角相等进而可证.(2)连接DF ,根据切线的性质及垂径定理求出GF 、GE 的长,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”及平行线求出相等的角,利用锐角三角函数求出∠BHG ,进而求出∠BDE 的度数,确定BE 所对的圆心角的度数,根据∠DFH =90°确定DE 为直径,代入弧长公式即可求解. 【详解】 (1)∵EF =BD , ∴EF =BD ∴BEDF∴∠D=∠DEF又BD=BC,∴∠D=∠C,∴∠DEF=∠CEF∥BC(2)∵AB是直径,BC为切线,∴AB⊥BC又EF∥BC,∴AB⊥EF,弧BF=弧BE,GF=GE=12(HF+EH)=3,HG=1DB平分∠EDF,又BF∥CD,∴∠FBD=∠FDB=∠BDE=∠BFH ∴HB=HF=2∴cos∠BHG=HGHB =12,∠BHG=60°.∴∠FDB=∠BDE=30°∴∠DFH=90°,DE为直径,DE=43,且弧BE所对圆心角=60°.∴弧BE=16×43π=233π【点睛】本题是圆的综合题,主要考查圆周角、切线、垂径定理、弧长公式等相关知识,掌握圆周角的有关定理,切线的性质,垂径定理及弧长公式是解题关键.11.如图,已知AB是⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CD⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积. 【答案】(1)详见解析;(2)6334π-.【解析】 【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC, ∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º ∴∠PCA=∠OCB, ∵OC=OB,∴∠OBC=∠OCB, ∴∠PCA=∠ABC ; (2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B, ∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形, ∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º, ∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA, 同理,CF =FM,∴AM =2CF=3 Rt △ACM 中,易得AC=33=3=OC,∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º, ∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB, 连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =OA×tan30º=3 , ∵△CDO ≌△EDO(AAS), ∴EG=CD=AC×sin60º=332, ∴1332ABM S AB MO ∆=⨯=, 同样,易求934AOE S ∆=, 260333602BOES ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形=93363333424ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.12.如图,四边形ABCD 内接于⊙O ,∠BAD =90°,AD 、BC 的延长线交于点F ,点E 在CF 上,且∠DEC =∠BAC . (1)求证:DE 是⊙O 的切线;(2)当AB =AC 时,若CE =2,EF =3,求⊙O 的半径.【答案】(1)证明见解析;(235. 【解析】【分析】(1)先判断出BD 是圆O 的直径,再判断出BD ⊥DE ,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F =∠EDF ,根据等腰三角形的判定得到DE =EF =3,根据勾股定理得到CD 225DE CE =-=,证明△CDE ∽△DBE ,根据相似三角形的性质即可得到结论. 【详解】(1)如图,连接BD .∵∠BAD =90°,∴点O 必在BD 上,即:BD 是直径,∴∠BCD =90°,∴∠DEC +∠CDE =90°. ∵∠DEC =∠BAC ,∴∠BAC +∠CDE =90°.∵∠BAC =∠BDC ,∴∠BDC +∠CDE =90°,∴∠BDE =90°,即:BD ⊥DE . ∵点D 在⊙O 上,∴DE 是⊙O 的切线;(2)∵∠BAF =∠BDE =90°,∴∠F +∠ABC =∠FDE +∠ADB =90°. ∵AB =AC ,∴∠ABC =∠ACB .∵∠ADB =∠ACB ,∴∠F =∠FDE ,∴DE =EF =3. ∵CE =2,∠BCD =90°,∴∠DCE =90°,∴CD 225DE CE =-=.∵∠BDE =90°,CD ⊥BE ,∴∠DCE =∠BDE =90°. ∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD 533522⨯==,∴⊙O 的半径354=.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE =EF 是解答本题的关键.13.如图,等边△ABC 内接于⊙O ,P 是弧AB 上任一点(点P 不与A 、B 重合),连AP ,BP ,过C 作CM ∥BP 交PA 的延长线于点M ,(1)求证:△PCM 为等边三角形;(2)若PA =1,PB =2,求梯形PBCM 的面积.【答案】(1)见解析;(21534【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM 为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH ⊥CM 于H ,∵△ABC 是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM ∥BP ,∴∠BPC=∠PCM=60°,∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形,∴∠PCA+∠ACM=∠BCP+∠PCA ,∴∠BCP=∠ACM ,在△BCP 和△ACM 中, BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ACM (SAS ),∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt △PMH 中,∠MPH=30°,∴332∴S梯形PBCM=12(PB+CM)×PH=12×(2+3)×332=1534.【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.14.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高.(2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.在△ABC 中,0090,60ACB BAC ∠=∠=,AC=2,P 为△ABC 所在平面内一点,分别连PA,PB ,PC .(1)如图1,已知,APB BPC APC ∠=∠=∠,以A 为旋转中心,将APB ∆顺时针旋转60度,得到AMN ∆.①请画出图形,并求证:C 、P 、M 、N 四点在同一条直线上;②求PA+PB+PC 的值.(2)如图2,如果点P 满足090BPC ∠=,设Q 为AB 边中点,求PQ 的取值范围.【答案】(1)①详见解析;②7;(231312PQ PQ ≤≤≠且;【解析】【分析】(1)①欲证明C 、P 、M 、N 四点在同一条直线上,只要证明∠APC+∠APM=180°,∠AMN+∠AMP=180°即可;②只要证明PA+PB+PC=PC+PM+MN=CN ,在Rt △CBN 中,利用勾股定理求出NC 即可; (2)如图2中,由∠BPC=90°,推出点P 在以BC 为直径的圆上(P 不与B 、C 重合),设BC 的中点为O ,作直线OQ 交⊙O 与P 和P′,可得PQ 3-1,PQ 的最大值为3+1,PQ≠2,由此即可解决问题;【详解】(1)①证明:如图,∵△APB≌△AMN,△APM是等边三角形,∴∠APM=∠APM=60°,∵∠APB=∠BPC=∠APC=120°,∴∠APB=∠BPC=∠APC=∠AMN=120°,∴∠APC+∠APM=180°,∠AMN+∠AMP=180°,∴C、P、M、N四点在同一条直线上;②解:连接BN,易得ΔABN是等边三角形∴∠ABN=60°,∵∠ABC=30°,∴∠NBC=90°,∵AC=2,∴AB=BN=4,BC=23,∵PA=PM,PB=MN,∴PA+PB+PC=PC+PM+MN=CN,在Rt△CBN中,CN=22+=,BC BN27∴PA+PB+PC=27.(2) 如图2中,∵∠BPC=90°,∴点P在以BC为直径的圆上(P不与B、C重合),设BC的中点为O,作直线OQ交⊙O与P和P′,可得PQ3-1,PQ3+1,PQ≠2,∴33+1且PQ≠2.且∴≤≤≠PQ1PQ1PQ2【点睛】本题考查几何变换综合题、等边三角形的性质和判定、全等三角形的性质、勾股定理、圆的有关知识等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用辅助圆解决问题,属于中考压轴题.。

中考数学 圆的综合 培优练习(含答案)附详细答案

中考数学 圆的综合 培优练习(含答案)附详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.(1)如图1,求证:∠DAC=∠PAC;(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=23DG,PO=5,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.【解析】【分析】(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出EH∥DG,求出OM=12AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=12MOBM=,tanP=12COPO=,设OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠PAC=∠OCA,∴∠DAC=∠PAC;(2)证明:连接BE交GF于H,连接OH,∵FG∥AD,∴∠FGD+∠D=180°,∵∠D=90°,∴∠FGD=90°,∵AB为⊙O的直径,∴∠BEA=90°,∴∠BED=90°,∴∠D=∠HGD=∠BED=90°,∴四边形HGDE是矩形,∴DE=GH,DG=HE,∠GHE=90°,∵BF AF=,∴∠HEF=∠FEA=12∠BEA=1902o⨯=45°,∴∠HFE=90°﹣∠HEF=45°,∴∠HEF=∠HFE,∴FH=EH,∴FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,∵EH=HF,OE=OF,HO=HO,∴△FHO≌△EHO,∴∠FHO=∠EHO=45°,∵四边形GHED是矩形,∴EH∥DG,∴∠OMH=∠OCP=90°,∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM,∴HM=MO,∵OM⊥BE,∴BM=ME,∴OM=12 AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,∴ME=CD=2a,BM=2a,在Rt△BOM中,tan∠MBO=122 MO aBM a==,∵EH∥DP,∴∠P=∠MBO,tanP=12 COPO=,设OC=k,则PC=2k,在Rt△POC中,,解得:在Rt△OME中,OM2+ME2=OE2,5a2=5,a=1,∴HE=3a=3,在Rt△HFE中,∠HEF=45°,∴.【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.2.四边形ABCD 的对角线交于点E,且AE=EC,BE=ED,以AD 为直径的半圆过点E,圆心为O.(1)如图①,求证:四边形ABCD 为菱形;(2)如图②,若 BC 的延长线与半圆相切于点 F ,且直径 AD =6,求弧AE 的长.【答案】(1)见解析;(2)π2 【解析】 试题分析:(1)先判断出四边形ABCD 是平行四边形,再判断出AC ⊥BD 即可得出结论; (2)先判断出AD =DC 且DE ⊥AC ,∠ADE =∠CDE ,进而得出∠CDA =30°,最后用弧长公式即可得出结论.试题解析:证明:(1)∵四边形ABCD 的对角线交于点E ,且AE =EC ,BE =ED ,∴四边形ABCD 是平行四边形.∵以AD 为直径的半圆过点E ,∴∠AED =90°,即有AC ⊥BD ,∴四边形ABCD 是菱形;(2)由(1)知,四边形ABCD 是菱形,∴△ADC 为等腰三角形,∴AD =DC 且DE ⊥AC ,∠ADE =∠CDE .如图2,过点C 作CG ⊥AD ,垂足为G ,连接FO .∵BF 切圆O 于点F ,∴OF ⊥AD ,且132OF AD ==,易知,四边形CGOF 为矩形,∴CG =OF =3. 在Rt △CDG 中,CD =AD =6,sin ∠ADC =CG CD =12,∴∠CDA =30°,∴∠ADE =15°. 连接OE ,则∠AOE =2×∠ADE =30°,∴3031802AE ππ⋅⨯==.点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.3.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F .(1)求证:OE ∥BD ;(2)当⊙O 的半径为5,2sin 5DBA ∠=时,求EF 的长.【答案】(1)证明见解析;(2)EF 的长为212 【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明; (2)根据锐角三角函数和相似三角形的性质,直接求解即可.试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠.∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD .(2)由(1)可得sin ∠C = ∠DBA= 25,在Rt △OBE 中, sin ∠C =25BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒∵E C ∠=∠,∴△CBD ∽△EBO .∴BD CD BO EO= ∴252EO =. ∵OE ∥BD ,CO =OD ,∴CF =FB .∴122OF BD ==. ∴212EF OE OF =-=4.在平面直角坐标系xOy 中,点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (0,23),则以AB 为边的“坐标菱形”的最小内角为 ;(2)若点C (1,2),点D 在直线y=5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O 的半径为2,点P 的坐标为(3,m ).若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m的取值范围.【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1【解析】分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.详解:(1)∵点A(2,0),B(0,3∴OA=2,OB3.在Rt△AOB中,由勾股定理得:AB22(),∴∠ABO=30°.223∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.故答案为:60°;(2)如图2.∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.∵⊙O2,且△OQ'D是等腰直角三角形,∴OD2OQ'=2,∴P'D=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴BD=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P,Q的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.5.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧OB上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.(1)求证:PD2=PE•PF;(2)当∠BOP=30°,P点为OB的中点时,求D、E、F、P四个点的坐标及S△DEF.【答案】(1)详见解析;(2)D(﹣34a,34a),E(﹣334a,34a),F(﹣32a,0),P(﹣3a,2a);S△DEF=33a2.【解析】试题分析:(1)连接PB,OP,利用AB切⊙O1于B求证△PBE∽△POD,得出PB PEOP PD=,同理,△OPF∽△BPD,得出PB PDOP PF=,然后利用等量代换即可.(2)连接O1B,O1P,得出△O1BP和△O1PO为等边三角形,根据直角三角形的性质即可解得D、E、F、P四个点的坐标.再利用三角形的面积公式可直接求出三角形DEF的面积.试题解析:(1)证明:连接PB,OP,∵PE⊥AB,PD⊥OB,∴∠BEP=∠PDO=90°,∵AB切⊙O1于B,∠ABP=∠BOP,∴△PBE∽△POD,∴=,同理,△OPF∽△BPD∴=,∴=,∴PD2=PE•PF;(2)连接O1B,O1P,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a, a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,过E作EM⊥x轴于M,∵AO切⊙O1于O,∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a, a),∵E(﹣a, a),D(﹣a, a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为: a,∴S △DEF =×a×a=a 2.故答案为:D (﹣a , a ),E (﹣a , a ),F (﹣a ,0),P (﹣a ,);S △DEF =a 2.6.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)【答案】(1)证明见解析 (2)233π- 【解析】【分析】 (1)连接OD ,只要证明OD ∥AC 即可解决问题;(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题.【详解】(1)连接OD .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∴BC 是⊙O 的切线.(2)连接OE ,OE 交AD 于K .∵AE DE =,∴OE ⊥AD .∵∠OAK=∠EAK,AK=AK,∠AKO=∠AKE=90°,∴△AKO≌△AKE,∴AO=AE=OE,∴△AOE是等边三角形,∴∠AOE=60°,∴S阴=S扇形OAE﹣S△AOE26023360π⋅⋅=-⨯22233π=-.【点睛】本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.7.如图,⊙O的直径AB=8,C为圆周上一点,AC=4,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.(1)求∠AEC的度数;(2)求证:四边形OBEC是菱形.【答案】(1)30°;(2)详见解析.【解析】【分析】(1)易得△AOC是等边三角形,则∠AOC=60°,根据圆周角定理得到∠AEC=30°;(2)根据切线的性质得到OC⊥l,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBE C为平行四边形,再由OB =OC,即可判断四边形OBEC是菱形.【详解】(1)解:在△AOC中,AC=4,∵AO=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴∠AEC=30°;(2)证明:∵OC⊥l,BD⊥l.∴OC∥BD.∴∠ABD=∠AOC=60°.∵AB为⊙O的直径,∴∠AEB=90°,∴△AEB为直角三角形,∠EAB=30°.∴∠EAB=∠AEC.∴CE ∥OB ,又∵CO ∥EB∴四边形OBEC 为平行四边形.又∵OB =OC =4.∴四边形OBEC 是菱形.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.8.如图,过⊙O 外一点P 作⊙O 的切线PA 切⊙O 于点A ,连接PO 并延长,与⊙O 交于C 、D 两点,M 是半圆CD 的中点,连接AM 交CD 于点N ,连接AC 、CM .(1)求证:CM 2=MN.MA ;(2)若∠P=30°,PC=2,求CM 的长.【答案】(1)见解析;(2)2【解析】【分析】(1)由CM DM =知CAM DCM ∠=∠,根∠CMA=∠NMC 据证ΔAMC ∽ΔCMN 即可得;(2)连接OA 、DM ,由直角三角形PAO 中∠P=30°知()1122OA PO PC CO ==+,据此求得OA=OC=2,再证三角形CMD 是等腰直角三角形得CM 的长.【详解】(1)O 中,M 点是半圆CD 的中点, ∴ CM DM =,CAM DCM ∴∠=∠,又CMA NMC ∠=∠,AMC CMN ∽∴∆∆,∴ CM AM MN CM=,即2·CM MN MA =; (2)连接OA 、DM ,PA 是O 的切线,90PAO ∴∠=︒,又30P ∠=︒, ()1122OA PO PC CO ∴==+, 设O 的半径为r , 2PC =,()122r r ∴=+, 解得:2r =,又CD 是直径,90CMD ∴∠=︒, CM DM =,CMD ∴∆是等腰直角三角形, ∴在Rt CMD ∆中,由勾股定理得222CM DM CD +=,即()222216CM r ==, 则28CM =, 22CM ∴=.【点睛】本题主要考查切线的判定和性质,解题的关键是掌握切线的性质、圆周角定理、相似三角形的判定和性质等知识点9.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为.(1)问题发现 如图1,当时,线段的长等于_________,线段的长等于_________. (2)探究证明 如图2,当时,求证:,且. (3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】(1);;(2)详见解析;(3)【解析】【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案;(3)首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.【详解】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.10.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=5△APM与△PCN是否相似,并说明理由.【答案】(1)半径为52)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P 与边AC 相切,∴BD 就是⊙P 的半径,在Rt △ABD 中,tanA=1BD 2AD =, 设BD=x ,则AD=2x ,∴x 2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN ,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(52解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中, ()22356-,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5, ∴3535AM MP ==,35PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.。

初三数学尖子生培优练习题—圆

初三数学尖子生培优练习题—圆

尖子生培优练习题—圆一、选择题:1、如图,以O为圆心的圆与直线y=-x+交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为()A.πB.πC. πD.π2、如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A.40°B.60°C.70°D.80°3、如图,以AB为直径的半圆绕A点,逆时针旋转60o,点B旋转到点B’的位置,已知AB=6,则图中阴影部分的面积为()A.6B.5C.4D.34、如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()A.55°B.60°C.65°D.70°5、如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°6、如图,在△ABC中,∠C=90°,AC=BC,AB=2,点O为AB的中点,以点O为圆心作半圆与边AC相切于点D.则图中阴影部分的面积为()A.1﹣πB.﹣C.2﹣D.2﹣π7、如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10D.12二、填空题:8、如图,已知AB是⊙O的直径,点C,D在⊙O上,∠ABC=35°,则∠D= .9、如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是.10、如图,平面直角坐标系中,O为坐标原点,以O为圆心作⊙O,点A、C分别是⊙O 与x轴负半轴、y轴正半轴的交点,点B、D在⊙O上,那么∠ADC的度数是 .11、如图,在正六边形ABCDEF中,连接AD,AE,则∠DAE= 度.12、如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB 上一点,∠BMO=120°,则⊙C的半径为________.13、在2×2的正方形网格中,每个小正方形的边长为1.以点O为圆心,2为半径画弧交图中网格线与点A,B,则弧AB的长是________.四、解答题:14、如图,已知四边形ABCD内接于⊙O,E是AD延长线上一点,且AC=BC,求证:DC平分∠BDE。

中考数学 圆的综合 培优练习(含答案)含答案解析

中考数学 圆的综合 培优练习(含答案)含答案解析

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且点C是的中点,过点C作⊙O的切线交AB的延长线于点D,交AF的延长线于点E.(1)求证:AE⊥DE;(2)若∠BAF=60°,AF=4,求CE的长.【答案】(1)证明见解析;(2)【解析】试题分析:(1)首先连接OC,由OC=OA,,易证得OC∥AE,又由DE切⊙O于点C,易证得AE⊥DE;(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA=AB,在△ACB 中,利用已知条件求得答案.试题解析:(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE切⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O的直径,∴△ABC是直角三角形,∵∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF为等边三角形,∴AF=OA=AB,在Rt△ACB中,AC=2,tan∠CBA=,∴BC=2,∴AB=4,∴AF=2.考点:切线的性质.2.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=13,求AE的长.【答案】(1)证明见解析;(22【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA 是⊙O 半径,∴DA 为⊙O 的切线;(2)∵OB =OC ,∴∠OCB =∠B .∵∠DCE =∠OCB ,∴∠DCE =∠B .∵∠DAC =∠B ,∴∠DAC =∠DCE .∵∠D =∠D ,∴△CED ∽△ACD ;(3)在Rt △AOD 中,OA =1,sin D =13,∴OD =OA sinD =3,∴CD =OD ﹣OC =2. ∵AD =22OD OA -=22. 又∵△CED ∽△ACD ,∴AD CD CD DE =,∴DE =2CD AD =2, ∴AE =AD ﹣DE =22﹣2=2.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC ∽△DCA 是解题的关键.3.如图1O ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC ,∠=,过点P 作PD OP ⊥交O 于点D .()1如图2,当//PD AB 时,求PD 的长;()2如图3,当DC AC =时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O 的切线;②求PC 的长.【答案】(1)262)333①见解析,②.【解析】分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长; ()2①首先得出OBD 是等边三角形,进而得出ODE OFB 90∠∠==,求出答案即可; ②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案. 详解:()1如图2,连接OD ,//OP PD PD AB ⊥,,90POB ∴∠=, O 的直径12AB =,6OB OD ∴==,在Rt POB 中,30ABC ∠=, 3tan306233OP OB ∴=⋅=⨯=, 在Rt POD 中, 22226(23)26PD OD OP =-=-=;()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,DC AC =,30DBC ABC ∴∠=∠=,60ABD ∴∠=,OB OD =,OBD ∴是等边三角形,OD FB ∴⊥,12BE AB =, OB BE ∴=,//BF ED ∴,90ODE OFB ∴∠=∠=,DE ∴是O 的切线;②由①知,OD BC ⊥,3cos30633CF FB OB ∴==⋅==在Rt POD 中,OF DF =, 13(2PF DO ∴==直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=-.点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出OBD 是等边三角形是解题关键.4.如图,O 是△ABC 的内心,BO 的延长线和△ABC 的外接圆相交于D ,连结DC 、DA 、OA 、OC ,四边形OADC 为平行四边形.(1)求证:△BOC ≌△CDA .(2)若AB =2,求阴影部分的面积.【答案】(1)证明见解析;(2433π-. 【解析】 分析: (1)根据内心性质得∠1=∠2,∠3=∠4,则AD=CD ,于是可判断四边形OADC 为菱形,则BD 垂直平分AC ,∠4=∠5=∠6,易得OA=OC ,∠2=∠3,所以OB=OC ,可判断点O 为△ABC 的外心,则可判断△ABC 为等边三角形,所以∠AOB=∠BOC=∠AOC=120°,BC=AC ,再根据平行四边形的性质得∠ADC=∠AOC=120°,AD=OC ,CD=OA=OB ,则根据“SAS”证明△BOC ≌△CDA ;(2)作OH ⊥AB 于H ,如图,根据等腰三角形的性质和三角形内角和定理得到∠BOH=30°,根据垂径定理得到BH=AH=12AB=1,再利用含30度的直角三角形三边的关系得到3323S 阴影部分=S 扇形AOB-S △AOB 进行计算即可.详解:(1)证明:∵O 是△ABC 的内心,∴∠2=∠3,∠5=∠6,∵∠1=∠2,∴∠1=∠3,由AD ∥CO ,AD =CO ,∴∠4=∠6,∴△BOC ≌△CDA (AAS )(2)由(1)得,BC =AC ,∠3=∠4=∠6,∴∠ABC =∠ACB∴AB =AC∴△ABC 是等边三角形∴O 是△ABC 的内心也是外心∴OA =OB =OC设E 为BD 与AC 的交点,BE 垂直平分AC .在Rt △OCE 中,CE=12AC=12AB=1,∠OCE=30°, ∴OA=OB=OC=33∵∠AOC=120°,∴=AOB AOB S S S -阴影扇 =2120231323602π-⨯ =433π- 点睛: 本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了等边三角形的判定与性质和扇形面积的计算.5.(1)问题背景如图①,BC 是⊙O 的直径,点A 在⊙O 上,AB=AC ,P 为BmC 上一动点(不与B ,C 重2PA=PB+PC .小明同学观察到图中自点A 出发有三条线段AB ,AP ,AC ,且AB=AC ,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC 绕着点A 顺时针旋转90°至△QAB (如图①);第二步:证明Q,B,P三点共线,进而原题得证.请你根据小明同学的思考过程完成证明过程.(2)类比迁移如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.(3)拓展延伸如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=43AC,AB⊥AC,垂足为A,则OC的最小值为.【答案】(1)证明见解析;(2)OC最小值是32﹣3;(3)32.【解析】试题分析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ 是等腰直角三角形即可解决问题;(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;(3)如图③构造相似三角形即可解决问题.作AQ⊥OA,使得AQ=43OA,连接OQ,BQ,OB.由△QAB∽OAC,推出BQ=43OC,当BQ最小时,OC最小;试题解析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①);∵BC是直径,∴∠BAC=90°,∵AB=AC,∴∠ACB=∠ABC=45°,由旋转可得∠QBA=∠PCA,∠ACB=∠APB=45°,PC=QB,∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q,B,P三点共线,∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP2=AP2+AQ2=2AP2,∴2AP=QB+BP=PC+PB,∴2.(2)如图②中,连接OA ,将△OAC 绕点A 顺时针旋转90°至△QAB ,连接OB ,OQ ,∵AB ⊥AC,∴∠BAC=90°,由旋转可得 QB=OC ,AQ=OA ,∠QAB=∠OAC ,∴∠QAB+∠BAO=∠BAO+∠OAC=90°, ∴在Rt △OAQ 中,OQ=32,AO=3 ,∴在△OQB 中,BQ≥OQ ﹣OB=32﹣3 , 即OC 最小值是32﹣3;(3)如图③中,作AQ ⊥OA ,使得AQ=43OA ,连接OQ ,BQ ,OB .∵∠QAO=∠BAC=90°,∠QAB=∠OAC ,∵QA AB OA AC =43, ∴△QAB ∽OAC ,∴BQ=43OC , 当BQ 最小时,OC 最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ ﹣OB ,∴OQ≥2,] ∴BQ 的最小值为2,∴OC 的最小值为34×2=32, 故答案为32. 【点睛】本题主要考查的圆、旋转、相似等知识,能根据题意正确的添加辅助线是解题的关键.6.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ;(1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【答案】(1)详见解析;(2)详见解析;【解析】【分析】()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论.【详解】()1证明:OD BC ⊥,BD CD ∴=, CBD DCB ∴∠=∠,90DFE EDF ∠+∠=,90EDF DFE ∴∠=-∠,OD OA =,()111809022ODA AOD AOD ∴∠=-∠=-∠, 190902DFE AOD ∴-∠=-∠, 12DEF AOD ∴∠=∠, DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠; ()2解:OD BC ⊥,BE CE ∴=,BD CD =,BD CD ∴=,OA OD =,ADO OAD ∴∠=∠,PA 切O 于点A ,90PAO ∴∠=,90OAD DAP ∴∠+∠=,PFA DFE ∠=∠,90PFA ADO ∴∠+∠=,PAF PFA ∴∠=∠,PA PF ∴=.【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.7.如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的⊙O 与AD 、AC 分别交于点E 、F ,且∠ACB =∠DCE .(1)判断直线CE 与⊙O 的位置关系,并说明理由;(2)若AB =2,BC =2,求⊙O 的半径.【答案】(1)直线CE 与⊙O 相切,理由见解析;(2)⊙O 6【解析】【分析】 (1)首先连接OE ,由OE=OA 与四边形ABCD 是矩形,易求得∠DEC+∠OEA=90°,即OE ⊥EC ,即可证得直线CE 与⊙O 的位置关系是相切;(2)首先易证得△CDE ∽△CBA ,然后根据相似三角形的对应边成比例,即可求得DE 的长,又由勾股定理即可求得AC 的长,然后设OA 为x ,即可得方程2223)6)x x -=,解此方程即可求得⊙O 的半径.【详解】解:(1)直线CE 与⊙O 相切.…理由:连接OE ,∵四边形ABCD 是矩形,∴∠B =∠D =∠BAD =90°,BC ∥AD ,CD =AB ,∴∠DCE +∠DEC =90°,∠ACB =∠DAC ,又∠DCE =∠ACB ,∴∠DEC +∠DAC =90°,∵OE =OA ,∴∠OEA =∠DAC ,∴∠DEC +∠OEA =90°,∴∠OEC =90°,∴OE ⊥EC ,∵OE 为圆O 半径,∴直线CE 与⊙O 相切;…(2)∵∠B =∠D ,∠DCE =∠ACB ,∴△CDE ∽△CBA ,∴ BC AB DC DE =, 又CD =AB =2,BC =2,∴DE =1根据勾股定理得EC =3,又226AC AB BC =+=,…设OA 为x ,则222(3)(6)x x +=-,解得64x =, ∴⊙O 的半径为6.【点睛】此题考查了切线的判定与性质,矩形的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意辅助线的作法.8.在平面直角坐标系xOy 中,对于点P 和图形W ,如果以P 为端点的任意一条射线与图形W 最多只有一个公共点,那么称点P 独立于图形W .(1)如图1,已知点A(-2,0),以原点O为圆心,OA长为半径画弧交x轴正半轴于点 B.在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,独立于AB的点是;(2)如图2,已知点C(-3,0),D(0,3),E(3,0),点P是直线l:y=2x+8上的一个动点.若点P独立于折线CD-DE,求点P的横坐标x p的取值范围;(3)如图3,⊙H是以点H(0,4)为圆心,半径为1的圆.点T(0,t)在y轴上且t>-3,以点T为中心的正方形KLMN的顶点K的坐标为(0,t+3),将正方形KLMN在x轴及x轴上方的部分记为图形W.若⊙H上的所有点都独立于图形W,直接写出t的取值范围.【答案】(1)P2,P3;(2)x P<-5或x P>-53.(3)-3<t<2或2<t<2【解析】【分析】(1)根据点P独立于图形W的定义即可判断;(2)求出直线DE,直线CD与直线y=2x+8的交点坐标即可判断;(3)求出三种特殊位置时t的值,结合图象即可解决问题.【详解】(1)由题意可知:在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,独立于AB的点是P2,P3.(2)∵C(-3,0),D(0,3),E(3,0),∴直线CD的解析式为y=x+3,直线DE的解析式为y=-x+3,由283y xy x+⎧⎨+⎩==,解得52xy-⎧⎨-⎩==,可得直线l与直线CD的交点的横坐标为-5,由283y xy x+⎧⎨-+⎩==,解得53143xy⎧-⎪⎪⎨⎪⎪⎩==,可得直线l与直线DE的交点的横坐标为-53,∴满足条件的点P的横坐标x p的取值范围为:x P<-5或x P>-5.3(3)如图3-1中,当直线KN与⊙H相切于点E时,连接EH,则EH=EK=1,HK=2,∴OT=KT+HK-OH=3+2-4=2-1,∴T(0,1-2),此时t=1-2,∴当-3<t<1-2时,⊙H上的所有点都独立于图形W.如图3-2中,当线段KN与⊙H相切于点E时,连接EH.22∴T(0,22如图3-3中,当线段MN与⊙H相切于点E时,连接EH.OT=OM+TM=4-2+3=7-2,∴T(0,7-2),此时t=7-2,∴当1+2<t<7-2时,⊙H上的所有点都独立于图形W.综上所述,满足条件的t的值为-3<t<1-2或1+2<t<7-2.【点睛】本题属于圆综合题,考查了切线的性质,一次函数的应用,点P独立于图形W的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用特殊位置解决实际问题.9.如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=12∠P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C 为顶点的三角形与△BFM相似,求DH的长度.【答案】(1)证明见解析;(2)PM=43﹣2;(3)满足条件的DH的值为632-或1223+.【解析】【分析】(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD,PD即可解决问题;(3)分两种情形①当△CDH∽△BFM时,DH CD FM BF=.②当△CDH∽△MFB时,DH CDFB MF=,分别构建方程即可解决问题;【详解】(1)证明:如图1中,作PH⊥FM于H.∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,∵∠C=12∠FPM,∴∠HPF=∠HPM,∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,∵OF=OC,∴∠C=∠OFC,∵∠C+∠CMD=∠C+∠PMF=∠C+∠PFH=90°,∴∠OFC+∠PFC=90°,∴∠OFP=90°,∴直线PA是⊙O的切线.(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,∵⊙O的半径为4,DM=1,∴OA=2OF=8,CD33,∴OD=OC﹣CD=43,∴AD=OA+OD=8+43=123,在Rt △ADP 中,DP =AD•tan30°=(12﹣3 )×3 =43 ﹣1, ∴PM =PD ﹣DM =4 3﹣2.(3)如图2中,由(2)可知:BF =12BC =4,FM 3BF =3,CM =2DM =2,CD 3 , ∴FM =FC ﹣CM =3﹣2, ①当△CDH ∽△BFM 时,DH CD FM BF = , ∴34432=- ,∴DH 63- ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =-,∴DH =12311+ , ∵DN ()22443833--=-,∴DH <DN ,符合题意,综上所述,满足条件的DH 63-1223+. 【点睛】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.10.如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C .(1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线.【答案】(1) B(,2).(2)证明见解析.【解析】试题分析:(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可试题解析:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.。

圆精典培优竞赛题(含详细答案)

圆精典培优竞赛题(含详细答案)

.圆培优竞赛1.如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C、D,若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A【答案】B.【解析】试题分析:如答图,连接PO,AO,取AO中点G,连接AG,过点A作AH⊥PO于点H,∵PA、PB切⊙O于A、B两点,CD切⊙O于点E,∴PA=PB,CA=CE,DB=DE,∠APO=∠BPO,∠OAP=90º.∵△PCD的周长等于3r,∴∵⊙O的半径为r,∴在Rt△APO∴,即故选B.考点:1.切线的性质;2.切线长定理;3.勾股定理;4.相似三角形的判定和性质;5.锐角三角函数定义;6.直角三角形斜边上中线的性质;7.转换思想的应用.ABCD 的顶点A 、B 在大圆上,小圆在正方形的外部且与边CD 切于点Q.若正方形的边长为有理数,则R 、r 的值可能是( ).A.R=5,r=2B.R=4,r=3/2C.R=4,r=2D.R=5,r=3/2 【答案】D 【解析】本题考查圆和勾股定理的综合应用,在竞赛思维训练中有典型意义。

可以将选项中的数据代入圆中,看是否满足条件。

做圆心O '和正方形中心O 。

设正方形边长为a 。

设AB 中点为H ,连接OH 并延长,交大圆于点JP则连接OA .由勾股定理有OH =JH R =-所以22r a R R ++=。

将各个选项数据代入,知D 正确。

3.如图,Rt △ABC 中,∠C=90°,AB=5,AC=3,点E 在中线AD 上,以E 为圆心的⊙E 分别与AB 、BC 相切,则⊙E 的半径为( ).B.【答案】B.【解析】试题分析:作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连结EB,EC,设⊙E的半径为R,如图,∵∠C=90°,AB=5,AC=3,∴AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=R,∴HC=R,AH=3-R,∵EH∥BC,∴△AEH∽△ADC,∴EH:CD=AH:AC,即∵S△ABE+S△BCE+S△ACE=S△ABC,×4×33×4,故选B.考点:切线的性质.4.如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63 º,那么∠B= .【答案】18°【解析】连接ED,CE,由图可知∠B=∠DEB, ∠ECD=∠EDC=2∠B∵∠A=63 º,∴∠ECA=63 º∴∠A+∠ECA+∠ECD+∠B=180º∴∠B=18°5.如图,在以O为圆心的两个同心圆图2中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP= 1,MA=AB=BC,则△MBQ的面积为 .【答案】【解析】小圆方程x 2 +y 2 =1 MC 方程 y = k(x+2), x =2y k - 解y 1y 2= 221k k -+,12y y= 21-3k 2=49此时MC =2B 点坐标为(1449) MBQ 面积=32493/2 = 278= 386.如图,已知⊙O 的半径为,射线PM 经过点O ,OP =15 cm ,射线PN 与⊙O 相切于点Q .动点A 自P 的速度沿射线PM 方向运动,同时动点B 也自P 点以2cm/s 方向运动,则它们从点P 出发 s 后AB 所在直线与⊙O 相切..【答案】0.5s或10.5s.【解析】试题分析:PN与⊙O相切于点Q,OQ⊥PN,即∠OQP=90°,在直角△OPQ中根据勾股定理就可以求出PQ的值,过点O作OC⊥AB,垂足为C.直线AB与⊙O相切,则△PAB∽△POQ,根据相似三角形的对应边的比相等,就可以求出t的值.试题解析: 连接OQ,∵PN与⊙O相切于点Q,∴OQ⊥PN,即∠OQP=90°,∵OP=15,OQ=9,∴cm).过点O作OC⊥AB,垂足为C,∵点A,点B的运动速度为2cm/s,运动时间为ts,∴,PB=2t,∵PO=15,PQ=12,∵∠P=∠P,∴△PAB∽△POQ,∴∠PBA=∠PQO=90°,∵∠BQO=∠CBQ=∠OCB=90°,∴四边形OCBQ为矩形.∵⊙O的半径为,∴BQ=OC=9时,直线AB与⊙O相切.①当AB运动到如图1所示的位置,BQ=PQ-PB=12-2t,∵BQ=9,∴8-4t=9,∴t=0.25(s).②当AB运动到如图2所示的位置,BQ=PB-PQ=2t-12,∵BQ=9,∴2t-12=9,∴t=10.5(s).∴当t为0.5s或10.5s时直线AB与⊙O相切.考点: 1.切线的判定;2.勾股定理;3.矩形的性质;4.相似三角形的判定与性质.7.(本题满分13分)在平面直角坐标系xOy中,点M,以点M为圆心,OM长为半径作⊙M ,使⊙M与直线OM的另一交点为点B,与x轴、y轴的另一交点分别为点D,A(如图),连接AM点P是弧AB上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP·OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S,求S与t的函数关系式及S的取值范围.【答案】(1)90°;(20);②.试题分析:(1)首先过点M作MH⊥OD于点H,由点M,可得∠MOH=45°,OM=AM,可得△AOM是等腰直角三角形,继而可求得∠AMB的度数;(2)①由MH⊥OD,即可求得OD与OM的值,继而可得OB的长,又由动点P与点B重合时,OP•OQ=20,可求得OQ的长,继而求得答案;②由Q的纵坐标为t,即可得P与B点重合时,过点Q作QF⊥x轴,垂足为F点,与当动点P与A点重合时,Q点在y轴上,去分析求解即可求得答案.(1)过点M作MH⊥OD于点H,∵点M,∴∴∠MOD=45°,试题解析:∵∠AOD=90°,∴∠AOM=45°,∵OM=AM,∴∠OAM=∠AOM=45°,∴∠AMO=90°,∴∠AMB=90°;(2)①∵MH⊥OD,∴,OB=4,∵动点P与点B重合时,OP•OQ=20,∴OQ=5,∵∠OQE=90°,∠POE=45°,∴∴E0);②∵Q的纵坐标为t,∴如图2,当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,∵OP=4,OP•OQ=20,∴OQ=5,∵∠OFC=90°,∠QOD=45°,∴;如图3,当动点P与A点重合时,Q点在y轴上,∴∵OP•OQ=20,∴此时;∴S的取值范围为5≤S≤10.考点:圆的综合题. 8.(本题满分10分)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若(1)求⊙O 的半径;(2)求图中阴影部分的面积. 【答案】(1)2;(2)2π-. 【解析】试题分析:(1)根据垂径定理得CE 的长,再根据已知DE 平分AO 得,解直角三角形求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.试题解析:(1)∵直径AB ⊥DE ,∴DE 平分AO ,∴.又∵∠OCE=90°,∴sin ∠∴∠CEO=30°.在Rt △COE 中,cos30==2,∴⊙O 的半径为2;(2)连接OF .在Rt △DCP 中,∵∠DPC=45°,∴∠D=90°﹣45°=45°,∴∠EOF=2∠D=90°, ∴OEF S 扇形=π. ∵∠EOF=2∠D=90°,OE=OF=2,∴Rt OEF S ∆=∴S 阴影=Rt OEF OEF S S ∆-扇形=2π-..9.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t为何值时,四边形APQD为矩形.(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?【答案】(1)4;(2)t为4s时,⊙P与⊙Q外切.【解析】试题分析:(1)四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可;(2)主要考虑有四种情况,一种是P在AB上,一种是P在BC上时.一种是P在CD上时,又分为两种情况,一种是P在Q右侧,一种是P在Q左侧.并根据每一种情况,找出相等关系,解即可.试题解析:(1)根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20-t,解得t=4(s).答:t为4时,四边形APQD为矩形(2)当PQ=4时,⊙P与⊙Q外切.①如果点P在AB上运动.只有当四边形APQD为矩形时,PQ=4.由(1),得t=4(s);②如果点P在BC上运动.此时t≥5,则CQ≥5,PQ≥CQ≥5>4,∴⊙P与⊙Q外离;③如果点P在CD上运动,且点P在点Q的右侧.可得CQ=t,CP=4t-24.当CQ-CP=4时,⊙P与⊙Q外切.此时,t-(4t-24)=4,解得s);④如果点P在CD上运动,且点P在点Q的左侧.当CP-CQ=4时,⊙P与⊙Q外切.此时,4t-24-t=4,解得s),∵点P从A开始沿折线A-B-C-D移动到D需要11s,点Q从C开始沿CD边移动到D需要20s,∴当t为时,⊙P与⊙Q外切.考点:1.矩形的性质;2.圆与圆的位置关系.10.(10分)如图,以线段AB为直径的⊙O交线段AC于点E,点D是AE的中点,连接OD并延长交⊙O于点M,∠BOE=60°,∠的度数;(1)求A(2)求证:BC是⊙O的切线;(3)求弧AM的长度.【答案】(1)30°;(2)证明见试题解析;(3)π.【解析】试题分析:(1)根据三角函数的知识即可得出∠A的度数.(2)要证BC是⊙O的切线,只要证明AB⊥BC即可.(3)根据垂径定理求得∠AOM=60°,运用三角函数的知识求出OA的长度,即可求得弧AM的长度.试题解析:(1)∵OA=OE,∴∠A=∠OEA,∵∠BOE=∠A+∠OEA=2∠A,∴∠×60°=30°;(2)在△ABC中,∵∴∠C=60°,又∵∠A=30°,∴∠ABC=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(3)∵点D是AE的中点,∴OM⊥AE,∵∠A=30°,∴∠AOM=60°,在RT△ABC中,tanC=∵,∴,∴弧AM的长=π.考点:切线的判定.11.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)b=2+a或2﹣a;(3)时,以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.【解析】试题分析:(1)连接PM,PN,运用△PMF≌△PNE证明.(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解.(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t:.∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0).∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1,0).∴OQ=1t.由(1)得△PMF≌△PNE ,∴NE=MF=t,∴OE=t﹣1.当△OEQ∽△MPF.当△OEQ∽△MFP.(Ⅱ)如答图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1,0)∴﹣1,由(1)得△PMF≌△PNE ∴NE=MF=t.∴OE=t﹣1.当△OEQ∽△MPF.当△OEQ∽△MFPQ、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.试题解析:解:(1)证明:如答图1,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN∴∠PMF=∠PNE=90°且∠NPM=90°.∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE.在△PMF和△PNE中,NPE MPF PN PMPNE PMF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△PMF≌△PNE(ASA).∴PE=PF.(2)①当t>1时,点E在y轴的负半轴上,如答图1,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1.∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a.②0<t≤1时,如答图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.考点:1.单动点和轴对称问题;2.切线的性质;3.全等三角形的判定和性质;4.相似三角形的判定和性质;5.分类思想和方程思想的应用.12.如图(1)x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).(1)求此抛物线的解析式;(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由..(2)①;②存在,(4,3)或或. 【解析】试题分析:(1)把A 的坐标代入抛物线的解析式,即可得到关于c 的方程,求的c 的值,则抛物线的解析式即可求解.(2)①连接MC 、MD ,证明△COM ∽△MED ,根据相似三角形的对应边的比相等即可求解. ②分四种情况进行讨论,根据平行四边形的性质即可求解.试题解析:解:(1)∵点A (﹣2,0(2)①令D (x ,y ),(x >0,y >0),则E (x ,0),M0), 由(1)知C (0,3), 如答图1,连接MC 、MD∵DE 、CD 与⊙O 相切,∴∠CMD=90°.∴△COM ∽△MED.又∵x >0,∴∴D②假设存在满足条件的点G(a,b).若构成的四边形是□ACGF,(答图2)则G与C关于直线x=2对称,∴G点的坐标是:(4,3).-,若构成的四边形是□ACFG,(答图3,4)则由平行四边形的性质有b=3G点的坐标是:.若构成的四边形是□AGCF,(答图5)则CG FA,∴G点的坐标是:(4,3).显而易见,AFCG不能构成平行四边形.综上所述,在抛物线上存在点G,使A、C、G、F四点为顶点的四边形是平行四边形,点G的坐标为(4,3.考点:1.单动点问题;2.二次函数综合题;3.曲线上点的坐标与方程的关系;4.直线与圆相切的性质;5.相似三角形的判定和性质;6. 平行四边形的性质;7.分类思想的应用.13.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE 为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【答案】(1)证明见解析;(2)①存在,矩形EFCG的面积最大值为12,.【解析】试题分析:(1)只要证到三个内角等于90°即可.(2)①易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE然后只需求出CF的范围就可求出S矩形ABCD的范围.②根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.试题解析:解:(1)证明:如图,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.如答图1,连接OD,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB∵AD=4,AB=3,∴BD=5.∴S矩形ABCD=2S△CFE∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如答图1所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如答图2所示,此时⊙O与射线BD 相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如答图3所示.S△BCDBD•CF″′.∵S矩形ABCD∴矩形EFCG的面积最大值为12②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴点G考点:1.圆的综合题;2.单动点问题;3.垂线段最短的性质;4.直角三角形斜边上的中线的性质;5.矩形的判定和性质;6.圆周角定理;7.切线的性质;8.相似三角形的判定和性质;9.分类思想的应用.14.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=,AD=4cm.若⊙O与矩形ABCD沿l1同时..向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连接OA,AC,则∠OAC的度数为°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)【答案】(1)105;(2(3t【解析】试题分析:(1)⊙O与l1,l2都相切,连接圆心和两个切点,等正方向.OA即为正方形的对角线,得到∠OAD=450,再在Rt△ADC中,由锐角三角函数求∠DAC=600,从而求得∠OAC的度数1050..(2)连接O 1与切点E ,则O 1E=2,O 1E ⊥l 1,利用△O 1EA 1∽△D 1C 1E 1,求A 12+O 1O+A 1E=AA 1,可求t ,进而求得圆心移动的距离(3)圆心O 到对角线AC 的距离d <2,即d <r.说明⊙O 与AC 相交,所以出找两个临界点的t 值,即⊙O 与AC 相切.运动中存在两个相切的位置.分别求两个相切时t 的值,即可得出d <r 时,t 的取值试题解析:解:(1)1050.(2)O 1,A 1,C 1恰好在同一直线上时,设⊙O 与AC 的切点为E ,连接O 1E ,如答图1, 可得O 1E=2,O 1E ⊥l 1,在Rt △A 1D 1C 1中,∵A 1D 1=4,D 1C∴tan ∠C 1A 1D 1C 1A 1D 1=600.在Rt △A 1O 1E 中, ∠O 1A 1E=∠C 1A 1D 1∵111A E AA OO 2t 2=--=-,∴∴OO 1(3)如答图2,①当直线AC 与⊙O 第一次相切时,设移动时间为t 1.如位置一,此时⊙O 移动到⊙O 2的位置,矩形ABCD 移动到A 2B 2C 2D 2的位置.设⊙O 2与直线l 1、A 2C 2分别相切于点F 、G, 连接O 2 F 、O 2 G 、O 2 A 2, ∴O 2 F ⊥l 1、O 2 G ⊥A 2C 2.又由(2)可得∠C 2A 2D 2=600于,∴∠GA 2F=1200.∴∠O 2A 2F=600.在Rt △O 2A 2F∵OO 2=3t 1, ②当点O 1,A 1,C 1恰好在同一直线上时为位置二,设移动时间为t 2.由(2)可得③当直线AC 与⊙O 第二次相切时,设移动时间为t 3.如位置3,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等.∴2132t t t t -=-,即综上所述,当d<2时,t t考点:1.双面动平移问题;2.直线与圆的位置关系;3.锐角三角函数定义;4.特殊角的三角函数值; 5.分类思想的应用.15.在平面直角坐标系xOy 中,点M ,以点M 为圆心,OM 长为半径作⊙M ,使⊙M 与直线OM 的另一交点为点B ,与x 轴,y 轴的另一交点分别为点D ,A (如图),连接AM.点P 是AB 上的动点.(1)写出∠AMB 的度数;(2)点Q 在射线OP 上,且OP·OQ=20,过点Q 作QC 垂直于直线OM ,垂足为C ,直线QC 交x 轴于点E.①当动点P 与点B 重合时,求点E 的坐标;②连接QD ,设点Q 的纵坐标为t ,△QOD 的面积为S ,求S 与t 的函数关系式及S 的取值范围..【答案】(1)90°;(2)①(0);②【解析】试题分析:(1)首先过点M作MH⊥OD于点H,由点M,可得∠MOH=45°,OM=AM,可得△AOM是等腰直角三角形,继而可求得∠AMB的度数:如答图3,过点M作MH⊥OD于点H,∵点M,∴∴∠MOD=45°.∵∠AOD=90°,∴∠AOM=45°.∵OA=OM,∴∠OAM=∠AOM=45°.∴∠AMO=90°.∴∠AMB=90°.(2)①由MH⊥OD,即可求得OD与OM的值,继而可得OB的长,又由动点P与点B重合时,OP•OQ=20,可求得OQ的长,继而求得答案.②由Q的纵坐标为t,即可得P与B点重合时,过点Q作QF⊥x轴,垂足为F点,与当动点P与A点重合时,Q点在y轴上,去分析求解即可求得答案.试题解析:解:(1)90°.(2)①由题意,易知:OM=2,OB=4.当动点P与点B重合时,∵OP·OQ=20,∴OQ=5.∵∠OQE=90°,∠POE=45°,∴∴E点坐标为(0).②∵Q的纵坐标为t,∴如答图1,当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,∵OP=4,OP•OQ=20,∴OQ=5,∵∠OFC=90°,∠QOD=45°,∴此时如答图2,当动点P与A点重合时,Q点在y轴上,∴∵OP•OQ=20,∴此时∴S的取值范围为5≤S≤10.考点:1.圆的综合题;2.单动点问题;3.等腰直角三角形的判定和性质;4.点的坐标;5.由实际问题列函数关系式;6.数形结合思想、分类思想和方程思想的应用.16.在平面直角坐标系xOy中,二次函数的图像与x轴交于点A,B(点B在点A的左侧),与y轴交于点C,过动点H(0, m)作平行于x轴的直线,直D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由...【答案】(1)(4,0)和(-1,0);(2(3)存在,m=2-或4-或3或1-.【解析】试题分析:(1)A 、B 两点的纵坐标都为0,所以代入y=0,求解即可.(2)由圆和抛物线性质易得圆心Q 位于直线与抛物线对称轴的交点处,则Q 的横坐标D 、ED 、E 都在抛物线上,代入一点即可得m .(3)使得△ACF 是等腰直角三角形,重点的需要明白有几种情形,分别以三边为等腰三角形的两腰或者底,则共有3种情形;而三种情形中F 点在AC 的左下或右上方又各存在2种情形,故共有6种情形.求解时.利用全等三角形知识易得m 的值.试题解析:解:(1)当y=0,解之得:12x 4,x 1==- ,∴A 、B 两点的坐标分别为(4,0)和(-1,0).(2)∵⊙Q 与x 轴相切,且与D 、E 两点,∴圆心O 位于直线与抛物线对称轴的交点处,且⊙Q 的半径为H 点的纵坐标m (m 0>).∴D 、E 两点的坐标分别为:且均在二次函数.舍去).(3)存在.①当∠ACF=90°,AC=FC 时,如答图1,试卷第22页,总60页过点F 作FG ⊥y 轴于G ,∴∠AOC=∠CGF=90°.∵∠ACO+∠FCG=90°,∠GFC+∠FCG=90°,∴∠ACO=∠CFG. ∴△ACO ≌△∠CFG ,∴CG=AO=4. ∵CO=2,∴()m OG 422=-=--=-或m =OG=2+4=6.②当∠CAF=90°,AC=AF 时,如答图2,过点F 作FP ⊥x 轴于P ,∴∠AOC=∠APF=90°.∵∠ACO+∠OAC=90°,∠FAP+∠OAC=90°,∴∠ACO=∠FAP. ∴△ACO ≌△∠FAP ,∴FP =AO=4. ∴m FP 4=-=-或m =FP =4.③当∠AFC=90°,FA=FC 时,如答图3,则F 点一定在AC 的中垂线上,此时存在两个点分别记为F ,F′, 分别过F ,F′两点作x 轴、y 轴的垂线,分别交于E ,G ,D ,H . ∵∠DFC+∠CFE=∠CFE+∠EFA=90°,∴∠DFC=∠EFA. ∵∠CDF=∠AEF ,CF=AF ,∴△CDF ≌△AEF. ∴CD=AE ,DF=EF.∴四边形OEFD 为正方形. ∴OA=OE+AE=OD+AE=OC+CD+AE=OC+2CD. ∴4=2+2•CD.∴CD=1,∴m=OC+CD=2+1=3.∵∠HF′C+∠CGF′=∠CGF′+∠GF′A,∴∠HF′C=∠GF′A.∵∠HF′C=∠GF′A,CF′=AF′.∴△HF′C≌△GF′A.∴HF′=GF′,CH=AG. ∴四边形OHF′G 为正方形.∴OH CH CO AG CO AO OG CO AO OHCO 4OH 2=-=-=--=--=--.∴OH=1. ∴m=1-.y∵直线l 与抛物线有两个交点,∴m m 可取值为m=2-或4-或3或1-.综上所述,m 的值为m=2-或4-或3或1-...考点:1.二次函数综合题; 2.单动点问题;3.等腰直角三角形存在性问题;4.二次函数的性质;5.曲线上点的坐标与方程的关系;6.直线与圆的位置关系;7.全等三角形的判定和性质;8.正方形的判定和性质;9.分类思想的应用.17.如图甲,四边形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,顶点在B 点的抛物线交x 轴于点A 、D ,交y 轴于点E ,连结AB 、AE 、BE .已知tan ∠A(3,0),D(-1,0),E(0,3).(1)求抛物线的解析式及顶点B 的坐标; (2)求证:CB 是△ABE 外接圆的切线;(3)试探究坐标轴上是否存在一点P ,使以D 、E 、P 为顶点的三角形与△ABE 相似,若存在,直接写出....点P 的坐标;若不存在,请说明理由; (4)设△AOE 沿x 轴正方向平移t 个单位长度(0<t ≤3)时,△AOE 与△ABE 重叠部分的面积为s ,求s 与t 之间的函数关系式,并指出t 的取值范围.【答案】(1)y=-x 2+2x +3.B(1,4).(2)证明见解析;(3)P 1(0,0),P 2(9,0),P 3(0.(4)【解析】试题分析:(1)利用两根式列出二次函数解析式y=a(x -3)(x +1),把将E(0,3)代入即可求出a 的值,继而可求顶点B 的坐标;(2)过点B 作BM ⊥y 于点M ,利用已知条件先证明AB 是△ABE 外接圆的直径.再证CB ⊥AB 即可.试卷第24页,总60页(3)存在;(4)分两种情况进行讨论即可.试题解析:(1)解:由题意,设抛物线解析式为y=a(x -3)(x +1). 将E(0,3)代入上式,解得:a=-1.∴y=-x 2+2x +3. 则点B(1,4).(2)如图,证明:过点B 作BM ⊥y 于点M ,则M(0,4). 在Rt △AOE 中,OA=OE=3,∴∠1=∠2=45°,在Rt △EMB 中,EM=OM -OE=1=BM ,∴∠MEB=∠MBE=45°,∴∠BEA=180°-∠1-∠MEB=90°. ∴AB 是△ABE 外接圆的直径. 在Rt △ABE 中,tan ∠∠CBE , ∴∠BAE=∠CBE .在Rt △ABE 中,∠BAE +∠3=90°, ∴∠CBE +∠3=90°.∴∠CBA=90°,即CB ⊥AB . ∴CB 是△ABE 外接圆的切线.(4)解:设直线AB 的解析式为y=kx +b .将A(3,0),B(1,4)代入,得30,4.k b k b +=⎧⎨+=⎩解得2,6.k b =-⎧⎨=⎩∴y=-2x+6.过点E 作射线EF∥x 轴交AB 于点F ,当y=3时,得∴3). 情况一:如图7,当0<t AOE 平移到△DNM 的位置,MD 交AB 于点H ,MN 交AE 于点G .则ON=AD=t ,过点H 作LK ⊥x 轴于点K ,交EF 于点L .由△AHD ∽△FHM HK=2t.∴S 阴=S △MND -S △GNA -S △HAD3×3-t)2·2t=+3t ...情况二:如图8t ≤3时,设△AOE 平移到△PQR 的位置,PQ 交AB 于点I ,交AE 于点V .由△IQA ∽△IPFIQ=2(3-t). ∴S 阴=S △IQA -S△(3-t)×2(3-t)-3t 综上所述:考点:二次函数综合题.18.y=ax 2+bx+c (a ,b ,c 是常数,a≠0)的对称轴为y 轴,且经过(0,0)和两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A (0,2).(1)求a ,b,c 的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交; (3)设⊙P 与x 轴相交于M (x 1,0),N (x 2,0)(x 1<x 2)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.【答案】(1)b=c=0;(2)证明见解析;(3)P 的纵坐标为0或4﹣ 【解析】 试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a ,b ,c 的值即可;(2)设P (x ,y ),表示出⊙P 的半径r ,进而与2比较得出答案即可; (3)分别表示出AM ,AN 的长,进而分别利用当AM=AN 时,当AM=MN 时,当AN=MN时,求出a的值,进而得出圆心P的纵坐标即可.试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0∴抛物线的一般式为:y=ax2,2,解得:∵图象开口向上,∴∴抛物线解析式为:2,故b=c=0;(2)设P(x,y),⊙P的半径又∵2,则化简得:2,∴点P在运动过程中,⊙P始终与x轴相交;(3)设P(a2),∵作PH⊥MN于H,则又∵2,则,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴当AM=AN解得:a=0,当AM=MN,解得:2当AN=MN,试卷第26页,总60页..解得:a=﹣2=4﹣综上所述,P 的纵坐标为0或4﹣考点:二次函数综合题.19.木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O 1,O 2分别在CD ,AB 上,半径分别是O 1C ,O 2A ,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC 将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆; 方案四:锯一块小矩形BCEF 拼接到矩形AEFD 下面,并利用拼成的木板锯一个尽可能大的圆。

中考数学 圆的综合 培优练习(含答案)含详细答案

中考数学 圆的综合 培优练习(含答案)含详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,在ABC ∆中,90,BAC ∠=︒ 2,AB AC == AD BC ⊥,垂足为D ,过,A D 的⊙O 分别与,AB AC 交于点,E F ,连接,,EF DE DF .(1)求证:ADE ∆≌CDF ∆; (2)当BC 与⊙O 相切时,求⊙O 的面积.【答案】(1)见解析;(2)24π.【解析】 分析:(1)由等腰直角三角形的性质知AD =CD 、∠1=∠C =45°,由∠EAF =90°知EF 是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得;(2)当BC 与⊙O 相切时,AD 是直径,根据∠C =45°、AC =2可得AD =1,利用圆的面积公式可得答案.详解:(1)如图,∵AB =AC ,∠BAC =90°,∴∠C =45°.又∵AD ⊥BC ,AB =AC ,∴∠1=12∠BAC =45°,BD =CD ,∠ADC =90°. 又∵∠BAC =90°,BD =CD ,∴AD =CD . 又∵∠EAF =90°,∴EF 是⊙O 的直径,∴∠EDF =90°,∴∠2+∠4=90°.又∵∠3+∠4=90°,∴∠2=∠3.在△ADE 和△CDF 中.∵123C AD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ).(2)当BC 与⊙O 相切时,AD 是直径.在Rt △ADC 中,∠C =45°,AC 2,∴sin ∠C =AD AC ,∴AD =AC sin ∠C =1,∴⊙O 的半径为12,∴⊙O 的面积为24π. 点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.2.如图1O ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC ,∠=,过点P 作PD OP ⊥交O 于点D .()1如图2,当//PD AB 时,求PD 的长;()2如图3,当DC AC =时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O 的切线;②求PC 的长.【答案】(1)26;(2)333-①见解析,②.【解析】 分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长; ()2①首先得出OBD 是等边三角形,进而得出ODE OFB 90∠∠==,求出答案即可; ②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案. 详解:()1如图2,连接OD ,//OP PD PD AB ⊥,,90POB ∴∠=,O 的直径12AB =,6OB OD ∴==,在Rt POB 中,30ABC ∠=,3tan306233OP OB ∴=⋅=⨯= 在Rt POD 中, 22226(23)26PD OD OP =-=-=;()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,DC AC =,30DBC ABC ∴∠=∠=,60ABD ∴∠=,OB OD =,OBD ∴是等边三角形,OD FB ∴⊥, 12BE AB =, OB BE ∴=,//BF ED ∴,90ODE OFB ∴∠=∠=,DE ∴是O 的切线;②由①知,OD BC ⊥,3cos306332CF FB OB ∴==⋅=⨯=, 在Rt POD 中,OF DF =, 13(2PF DO ∴==直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=-.点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出OBD 是等边三角形是解题关键.3.已知:如图,△ABC 中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC 的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.4.如图,正三角形ABC内接于⊙O,P是BC上的一点,且PB<PC,PA交BC于E,点F 是PC延长线上的点,CF=PB,AB=13,PA=4.(1)求证:△ABP≌△ACF;(2)求证:AC2=PA•AE;(3)求PB和PC的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC,再利用圆的内接四边形的性质得∠ACF=∠ABP,于是可根据“SAS”判断△ABP≌△ACF;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC,于是可判断△ACE∽△APC,然后利用相似比即可得到结论;(3)先利用AC2=PA•AE计算出AE=134,则PE=AP-AE=34,再证△APF为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP ∽△CEP ,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB 和PC 看作方程x 2-4x+3=0的两实数解,再解此方程即可得到PB 和PC 的长.试题解析:(1)∵∠ACP+∠ABP=180°,又∠ACP+∠ACF=180°,∴∠ABP=∠ACF在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB =∴ABP ∆≌ACF ∆.(2)在AEC ∆和ACP ∆中,∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º,∴∠ACE =∠APC .又∠CAE =∠PAC ,∴AEC ∆∽ACP ∆ ∴AC AE AP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆,∴∠BAP=∠CAF , CF PB =∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°.∴APF ∆是等边三角形∴AP=PF∴4PB PC PC CF PF PA +=+===在PAB ∆与CEP ∆中,∵∠BAP=∠ECP ,又∠APB=∠EPC=60°,∴PAB ∆∽CEP ∆ ∴PB PA PE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅, ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴22222243PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解.解这个方程,得11x =, 23x =.∵PB<PB ,∴PB=11x =,PC=23x =,∴PB 和PC 的长分别是1和3。

九年级数学圆的综合的专项培优练习题(含答案)附答案解析

九年级数学圆的综合的专项培优练习题(含答案)附答案解析

九年级数学圆的综合的专项培优练习题(含答案)附答案解析一、圆的综合1.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE 为菱形.(1)求证:AC=CE ;(2)求证:BC 2﹣AC 2=AB•AC ;(3)已知⊙O 的半径为3.①若AB AC =53,求BC 的长; ②当AB AC为何值时,AB•AC 的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)2;②32【解析】 分析:(1)由菱形知∠D=∠BEC ,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC ,据此得证;(2)以点C 为圆心,CE 长为半径作⊙C ,与BC 交于点F ,于BC 延长线交于点G ,则CF=CG=AC=CE=CD ,证△BEF ∽△BGA 得BE BG BF BA =,即B F•BG=BE•AB ,将BF=BC-CF=BC-AC 、BG=BC+CG=BC+AC 代入可得; (3)①设AB=5k 、AC=3k ,由BC 2-AC 2=AB•AC 知6k ,连接ED 交BC 于点M ,Rt △DMC 中由DC=AC=3k 、MC=126k 求得22CD CM -3,可知OM=OD-3,在Rt △COM 中,由OM 2+MC 2=OC 2可得答案.②设OM=d ,则MD=3-d ,MC 2=OC 2-OM 2=9-d 2,继而知BC 2=(2MC )2=36-4d 2、AC 2=DC 2=DM 2+CM 2=(3-d )2+9-d 2,由(2)得AB•AC=BC 2-AC 2,据此得出关于d 的二次函数,利用二次函数的性质可得答案. 详解:(1)∵四边形EBDC 为菱形,∴∠D=∠BEC ,∵四边形ABDC 是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC ,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴6k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=126k,∴223CD CM k-=,∴OM=OD﹣DM=33k,在Rt△COM中,由OM2+MC2=OC2得(33)2+6k)2=32,解得:k=33或k=0(舍),∴62;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC 2=(2MC )2=36﹣4d 2,AC 2=DC 2=DM 2+CM 2=(3﹣d )2+9﹣d 2,由(2)得AB•AC=BC 2﹣AC 2=﹣4d 2+6d+18=﹣4(d ﹣34)2+814, ∴当d=34,即OM=34时,AB•AC 最大,最大值为814, ∴DC 2=272, ∴AC=DC=362, ∴AB=964,此时32AB AC =. 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.2.已知AB ,CD 都是O e 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=o ;()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;()3如图3,在()2的条件下,当DG 3CE 4=时,在O e 外取一点H ,连接CH 、DH 分别交O e 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)37【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O Q e 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=o ,D E 90∠∠∴+=o ,2D 2E 180∠∠∴+=o ,AOD COB ∠∠=Q ,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=o .()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===o Q ,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR V 和ODG V 中,A AOD ∠∠=Q ,ARO OGD 90∠∠==o ,OA DO =,AOR ∴V ≌ODG V ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===o Q ,AF//OC//BT ∴,OA OB =Q ,CT CF 3m ∴==,ET m ∴=,CD Q 为直径,CBD CND 90CBE ∠∠∠∴===o ,E 90EBT CBT ∠∠∠∴=-=o ,tan E tan CBT ∠∠∴=,BT CT ET BT∴=, BT 3m m BT∴=, BT 3m(∴=负根已经舍弃),3m tan E 3∠∴== E 60∠∴=o ,CWD HDE H ∠∠∠=+Q ,HDE HCE ∠∠=,H E 60∠∠∴==o ,MON 2HCN 60∠∠∴==o ,OM ON =Q ,OMN ∴V 是等边三角形,MN ON ∴=,QM OB OM ==Q ,MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=o o Q ,MQO P 180H 120∠∠∠+=-=o o , PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN V 中,2222CN CD DN 501448=-=-=,在Rt CHN V 中,CN 48tan H 3HN HN∠===, HN 163∴=,在Rt KNH V 中,1KH HN 832==,3NK HN 24==, 在Rt NMK V 中,2222MK MN NK 25247=-=-=,HM HK MK 837∴=+=+.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.3.已知O e 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______o ;()2如图②,若m 6=.①求C ∠的正切值;②若ABC V 为等腰三角形,求ABC V 面积.【答案】()130;()2C ∠①的正切值为34;ABC S 27=V ②或43225. 【解析】【分析】 ()1连接OA ,OB ,判断出AOB V 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==,AB m 5==Q ,OB OC AB ∴==,AOB ∴V 是等边三角形,AOB 60∠∴=o , 1ACB AOB 302∠∠∴==o , 故答案为30;()2①如图2,连接AO 并延长交O e 于D ,连接BD ,AD Q 为O e 的直径,AD 10∴=,ABD 90∠=o ,在Rt ABD V 中,AB m 6==,根据勾股定理得,BD 8=,AB 3tan ADB BD 4∠∴==, C ADB ∠∠=Q ,C ∠∴的正切值为34; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =Q ,AO BO =,CE ∴为AB 的垂直平分线,AE BE 3∴==,在Rt AEO V 中,OA 5=,根据勾股定理得,OE 4=,CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=V ; Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =Q ,OC OB =,AO ∴是BC 的垂直平分线,过点O 作OG AB ⊥于G ,1AOG AOB 2∠∠∴=,1AG AB 32==, AOB 2ACB ∠∠=Q ,ACF AOG ∠∠∴=,在Rt AOG V 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=, 在Rt ACF V 中,3sin ACF 5∠=, 318AF AC 55∴==,24CF 5∴=, ABC 111824432S AF BC 225525∴=⨯=⨯⨯=V ; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432S 25=V .【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.4.如图,AB 为O e 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O e 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O e 的切线,理由见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE V V ∽即可解决问题.【详解】()1解:结论:DE 是O e 的切线.理由:连接OD .CDB ADE ∠=∠Q ,ADC EDB ∴∠=∠,//CD AB Q ,CDA DAB ∴∠=∠,OA OD =Q ,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠,AB Q 是直径,90ADB ∴∠=o ,90ADB ODE ∴∠=∠=o ,DE OD ∴⊥,DE ∴是O e 的切线.()2//CD AB Q ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,AC BD ∴=n n, AC BD ∴=,DCB DAB ∠=∠Q ,EDB DAB ∠=∠,EDB DCB ∴∠=∠,CDB ∴V ∽DBE V ,CD DB BD BE∴=, 2BD CD BE ∴=⋅,2AC CD BE ∴=⋅.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.5.在⊙O 中,点C 是AB u u u r 上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是»AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI,理由见解析(3)23【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.6.如图,AB是⊙O的直径,PA是⊙O的切线,点C在⊙O上,CB∥PO.(1)判断PC与⊙O的位置关系,并说明理由;(2)若AB=6,CB=4,求PC的长.【答案】(1)PC是⊙O的切线,理由见解析;(235 2【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.试题解析:(1)结论:PC是⊙O的切线.证明:连接OC∵CB∥PO∴∠POA=∠B,∠POC=∠OCB∵OC=OB∴∠OCB=∠B∴∠POA=∠POC又∵OA=OC,OP=OP∴△APO≌△CPO∴∠OAP=∠OCP∵PA是⊙O的切线∴∠OAP=90°∴∠OCP=90°∴PC是⊙O的切线.(2)连接AC∵AB是⊙O的直径∴∠ACB=90°(6分)由(1)知∠PCO=90°,∠B=∠OCB=∠POC∵∠ACB=∠PCO∴△ACB∽△PCO∴∴.点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.7.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF ,BG ,由三角形AED 与三角形BFD 全等,得到ED =FD ,进而得到三角形DEF 为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE =BF =1,在直角三角形BEF 中,利用勾股定理求出EF 的长,利用锐角三角形函数定义求出DE 的长,利用两对角相等的三角形相似得到三角形AED 与三角形GEB 相似,由相似得比例,求出GE 的长,由GE +ED 求出GD 的长,根据三角形的面积公式计算即可.详解:(1)连接BD .在Rt △ABC 中,∠ABC =90°,AB =BC ,∴∠A =∠C =45°. ∵AB 为圆O 的直径,∴∠ADB =90°,即BD ⊥AC ,∴AD =DC =BD =12AC ,∠CBD =∠C =45°,∴∠A =∠FBD .∵DF ⊥DG ,∴∠FDG =90°,∴∠FDB +∠BDG =90°.∵∠EDA +∠BDG =90°,∴∠EDA =∠FDB .在△AED 和△BFD 中,A FBD AD BD EDA FDB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED ≌△BFD (ASA ),∴AE =BF ; (2)连接EF ,BG . ∵△AED ≌△BFD ,∴DE =DF .∵∠EDF =90°,∴△EDF 是等腰直角三角形,∴∠DEF =45°. ∵∠G =∠A =45°,∴∠G =∠DEF ,∴GB ∥EF ,∴∠FEB =∠GBA . ∵∠GBA =∠GDA ,∴∠FEB =∠GDA ;(3)∵AE =BF ,AE =2,∴BF =2.在Rt △EBF 中,∠EBF =90°,∴根据勾股定理得:EF 2=EB 2+BF 2.∵EB =4,BF =2,∴EF∵△DEF 为等腰直角三角形,∠EDF =90°,∴cos ∠DEF =DEEF. ∵EF=∴DE=2. ∵∠G =∠A ,∠GEB =∠AED ,∴△GEB ∽△AED ,∴GE AE =EBED,即GE •ED =AE •EB ,∴GE =8,即GE,则GD =GE +ED∴11192252S GD DF GD DE =⨯⨯=⨯⨯==.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.8.如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【答案】(1) B(,2).(2)证明见解析.【解析】试题分析:(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可试题解析:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.9.在平面直角坐标系中,已知点A(2,0),点B(0,),点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.(Ⅰ)如图1,A'B'恰好经过点A时,求此时旋转角α的度数,并求出点B'的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,求证:AA'⊥BB';(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).【答案】(Ⅰ)α=60°,B'(3,);(Ⅱ)见解析;(Ⅲ)点P纵坐标的最小值为﹣2.【解析】【分析】(Ⅰ)作辅助线,先根据点A(2,0),点B(0,),确定∠ABO=30°,证明△AOA'是等边三角形,得旋转角α=60°,证明△COB'是30°的直角三角形,可得B'的坐标;(Ⅱ)依据旋转的性质可得∠BOB'=∠AOA'=α,OB=OB',OA=OA',即可得出∠OBB'=∠OA'A=(180°﹣α),再根据∠BOA'=90°+α,四边形OBPA'的内角和为360°,即可得到∠BPA'=90°,即AA'⊥BB';(Ⅲ)作AB的中点M(1,),连接MP,依据点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,即可得到当PM∥y轴时,点P纵坐标的最小值为﹣2.【详解】解:(Ⅰ)如图1,过B'作B'C⊥x轴于C,∵OA=2,OB=2,∠AOB=90°,∴∠ABO=30°,∠BAO=60°,由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°,∵OB=OB'=2,∠COB'=90°﹣60°=30°,∴B'C =OB’=,∴OC=3,∴B'(3,),(Ⅱ)证明:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为-2.理由是:如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,除去点(2,2),∴当PM⊥x轴时,点P纵坐标的最小值为﹣2.【点睛】本题属于几何变换综合题,主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和以及圆周角定理的综合运用,解决问题的关键是判断点P的轨迹为以点M为圆心,以MP 为半径的圆.10..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A重合),⊙D与AB相切,切点为E,⊙D交射线..BC于..DC于点F,过F作FG⊥EF交直线点G,设⊙D的半径为r.(1)求证AE=EF;(2)当⊙D与直线BC相切时,求r的值;(3)当点G落在⊙D内部时,直接写出r的取值范围.【答案】(1)见解析,(2)r=3,(3)63 3r<<【解析】【分析】(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.【详解】解:设圆的半径为r;(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,∴AE=EF;(2)如图2所示,连接DE,当圆与BC相切时,切点为F∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理得:(3r)2+9=36,解得:3(3)①当点F 在线段AC 上时,如图3所示,连接DE 、DG ,333,3933FC r GC FC r =-==- ②当点F 在线段AC 的延长线上时,如图4所示,连接DE 、DG ,333,3339FC r GC FC r ===-两种情况下GC 符号相反,GC 2相同,由勾股定理得:DG 2=CD 2+CG 2,点G 在圆的内部,故:DG2<r2, 即:22(332)(339)2r r r +-<整理得:25113180r r -+<6335r <<【点睛】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.11.如图,⊙O 是△ABC 的外接圆,AB 是直径,过点O 作OD ⊥CB ,垂足为点D ,延长DO 交⊙O 于点E ,过点E 作PE ⊥AB ,垂足为点P ,作射线DP 交CA 的延长线于F 点,连接EF ,(1)求证:OD=OP;(2)求证:FE是⊙O的切线.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(2)证明△POE≌△ADO可得DO=EO;(3)连接AE,BE,证出△APE≌△AFE即可得出结论.试题解析:(1)∵∠EPO=∠BDO=90°∠EOP=∠BODOE=OB∴△OPE≌△ODB∴OD="OP"(2)连接EA,EB∴∠1=∠EBC∵AB是直径∴∠AEB=∠C=90°∴∠2+∠3=90°∵∠3=∠DEB∵∠BDE=90°∴∠EBC+∠DEB=90°∴∠2=∠EBC=∠1∵∠C=90°∠BDE=90°∴CF∥OE∴∠ODP=∠AFP∵OD=OP∴∠ODP=∠OPD∵∠OPD=∠APF∴∠AFP=∠APF∴AF=AP 又AE=AE∴△APE≌△AFE∴∠AFE=∠APE=90°∴∠FED=90°∴FE是⊙O的切线考点:切线的判定.12.如图,点B在数轴上对应的数是﹣2,以原点O为原心、OB的长为半径作优弧AB,使点A在原点的左上方,且tan∠AOB=3,点C为OB的中点,点D在数轴上对应的数为4.(1)S扇形AOB=(大于半圆的扇形);(2)点P是优弧AB上任意一点,则∠PDB的最大值为°(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O为旋转中心,将△OPD顺时针旋转α(0°≤α≤360°)①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;②当PD∥AO时,求AD2的值;③直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.【答案】(1)103π(2)30(3)①AD=2PC②20+83或20+83③1≤d≤3【解析】【分析】(1)利用扇形的面积公式计算即可.(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.解直角三角形即可解决问题.(3)①结论:AD=2PC.如图2中,连接AB,AC.证明△COP∽△AOD,即可解决问题.②分两种情形:如图3中,当PD∥OA时,设OD交⊙O于K,连接PK交OC于H.求出PC即可.如图④中,当PA∥OA时,作PK⊥OB于K,同法可得.③判断出PC的取值范围即可解决问题.【详解】(1)∵tan∠AOB=3,∴∠AOB=60°,∴S扇形AOB=23002103603ππ⋅⋅=(大于半圆的扇形),(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.∵PD是⊙O的切线,∴OP⊥PD,∴∠OPD =90°, ∵21sin 42OP PDO OD ∠=== ∴∠PDB =30°, 同法当DP ′与⊙O 相切时,∠BDP ′=30°,∴∠PDB 的最大值为30°.故答案为30.(3)①结论:AD =2PC .理由:如图2中,连接AB ,AC .∵OA =OB ,∠AOB =60°,∴△AOB 是等边三角形,∵BC =OC ,∴AC ⊥OB ,∵∠AOC =∠DOP =60°,∴∠COP =∠AOD ,∵2AO OD OC OP==, ∴△COP ∽△AOD , ∴2AD AO PC OC==, ∴AD =2PC . ②如图3中,当PD ∥OA 时,设OD 交⊙O 于K ,连接PK 交OC 于H .∵OP =OK ,∠POK =60°,∴△OPK 是等边三角形,∵PD∥OA,∴∠AOP=∠OPD=90°,∴∠POH+∠AOC=90°,∵∠AOC=60°,∴∠POH=30°,∴PH=12OP=1,OH=3PH=3,∴PC=2222PH CH1(13)523+=++=+,∵AD=2PC,∴AD2=4(5+23)=20+83.如图④中,当PA∥OA时,作PK⊥OB于K,同法可得:PC2=12+(3﹣1)2=5﹣23,AD2=4PC2=20﹣83.③由题意1≤PC≤3,∴在旋转过程中,点C到PD所在直线的距离d的取值范围为1≤d≤3.【点睛】本题属于圆综合题,考查了切线的性质,相似三角形的判定和性质,旋转变换,勾股定理,等边三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.13.如图,已知AB是⊙O的直径,BC是弦,弦BD平分∠ABC交AC于F,弦DE⊥AB于H,交AC于G.①求证:AG=GD;②当∠ABC满足什么条件时,△DFG是等边三角形?③若AB=10,sin∠ABD=35,求BC的长.【答案】(1)证明见解析;(2)当∠ABC=60°时,△DFG是等边三角形.理由见解析;(3)BC 的长为145. 【解析】【分析】 (1)首先连接AD ,由DE ⊥AB ,AB 是O e 的直径,根据垂径定理,即可得到¶¶AD AE =,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE =∠ABD ,又由弦BD 平分∠ABC ,可得∠DBC =∠ABD ,根据等角对等边的性质,即可证得AG=GD ;(2)当∠ABC=60°时,△DFG 是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;(3)利用三角函数先求出tan ∠ABD 34=,cos ∠ABD =45,再求出DF 、BF ,然后即可求出BC.【详解】(1)证明:连接AD ,∵DE ⊥AB ,AB 是⊙O 的直径,∴¶¶AD AE =,∴∠ADE =∠ABD ,∵弦BD 平分∠ABC ,∴∠DBC =∠ABD ,∵∠DBC =∠DAC ,∴∠ADE =∠DAC ,∴AG =GD ;(2)解:当∠ABC =60°时,△DFG 是等边三角形.理由:∵弦BD 平分∠ABC ,∴∠DBC =∠ABD =30°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB =90°﹣∠ABC =30°,∴∠DFG =∠FAB+∠DBA =60°,∵DE ⊥AB ,∴∠DGF =∠AGH =90°﹣∠CAB =60°,∴△DGF 是等边三角形;(3)解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵∠DAC =∠DBC =∠ABD ,∵AB =10,sin ∠ABD =35, ∴在Rt △ABD 中,AD =AB•sin ∠ABD =6,∴BD8,∴tan ∠ABD =34AD BD ,cos ∠ABD =4=5BD AB , 在Rt △ADF 中,DF =AD•tan ∠DAF =AD•tan ∠ABD =6×34=92, ∴BF =BD ﹣DF =8﹣92=72, ∴在Rt △BCF 中,BC =BF•cos ∠DBC =BF•cos ∠ABD =72×45=145. ∴BC 的长为:145.【点睛】此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.14.如图,AB 是半圆⊙O 的直径,点C 是半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.(1)如图1,连接FA ,FC ,若∠AFC =2∠BAC ,求证:FA ⊥AB ;(2)如图2,过点C 作CD ⊥AB 于点D ,点G 是线段CD 上一点(不与点C 重合),连接FA ,FG ,FG 与AC 相交于点P ,且AF =FG .①试猜想∠AFG 和∠B 的数量关系,并证明;②连接OG ,若OE =BD ,∠GOE =90°,⊙O 的半径为2,求EP 的长.【答案】(1)见解析;(2)①结论:∠GFA =2∠ABC .理由见解析;②PE 3. 【解析】【分析】 (1)证明∠OFA =∠BAC ,由∠EAO +∠EOA =90°,推出∠OFA +∠AOE =90°,推出∠FAO =90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为»»=,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.AG AG②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵»»AG AG=,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB =90°,∵CD ⊥AB ,∴∠ABC +∠BCA =90°,∵∠BCD +∠ACD =90°,∴∠ABC =∠ACG ,∴∠GFA =2∠ABC .②如图2﹣1中,连接AG ,作FH ⊥AG 于H .∵BD =OE ,∠CDB =∠AEO =90°,∠B =∠AOE ,∴△CDB ≌△AEO (AAS ),∴CD =AE ,∵EC =EA ,∴AC =2CD .∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 22221AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=,∴1342333PE,∴PE=36.【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.15.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=12AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.【答案】(1)26;(2)①证明见解析;②33﹣3.【解析】试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.试题解析:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===;(2)①如图3,连接OD,交CB于点F,连接BD,∵,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.考点:圆的综合题。

圆培优竞赛大全(含详细解答过程)

圆培优竞赛大全(含详细解答过程)

圆培优竞赛大全1.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若AE=2,求⊙O的半径.2.(本题满分13分)在平面直角坐标系xOy中,点M,以点M为圆心,OM长为半径作⊙M ,使⊙M与直线OM的另一交点为点B,与x轴、y轴的另一交点分别为点D,A(如图),连接AM点P是弧AB上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP²OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S,求S与t的函数关系式及S的取值范围.3.(本题满分10分)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若(1)求⊙O的半径;(2)求图中阴影部分的面积.4.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t为何值时,四边形APQD为矩形.(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?5.(10分)如图,以线段AB为直径的⊙O交线段AC于点E,点D是AE的中点,连接OD并延长交⊙O于点M,∠BOE=60°,∠的度数;(1)求A(2)求证:BC是⊙O的切线;(3)求弧AM的长度.6.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.7.如图(1)x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).(1)求此抛物线的解析式;(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由.8.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE 为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.9.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=,AD=4cm.若⊙O与矩形ABCD沿l1同时..向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连接OA,AC,则∠OAC的度数为°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)10.在平面直角坐标系xOy中,点M,以点M为圆心,OM长为半径作⊙M ,使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是AB上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP²OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S,求S与t的函数关系式及S的取值范围.11.在平面直角坐标系xOy中,二次函数的图像与x轴交于点A,B(点B在点A的左侧),与y轴交于点C,过动点H(0, m)作平行于x轴的直线,直D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由.12.如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠A(3,0),D(-1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;在,直接写出....点P 的坐标;若不存在,请说明理由; (4)设△AOE 沿x 轴正方向平移t 个单位长度(0<t ≤3)时,△AOE 与△ABE 重叠部分的面积为s ,求s 与t 之间的函数关系式,并指出t 的取值范围.13.y=ax 2+bx+c (a ,b ,c 是常数,a≠0)的对称轴为y 轴,且经过(0,0)和两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A (0,2).(1)求a ,b ,c 的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交;(3)设⊙P 与x 轴相交于M (x 1,0),N (x 2,0)(x 1<x 2)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.14.木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O 1,O 2分别在CD ,AB 上,半径分别是O 1C ,O 2A ,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC 将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆; 方案四:锯一块小矩形BCEF 拼接到矩形AEFD 下面,并利用拼成的木板锯一个尽可能大的圆。

圆培优试题

圆培优试题

圆培优试题(一)一、选择题1.如图在⊙O 中,弦AB =8,OC ⊥AB ,垂足为C ,且OC =3,则⊙O 的半径( )A .5B .10C .8D .62.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面宽AB 为( )A .4m B .5m C .6m D .8m3.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )A .6B .5C .4D .34.如图,⊙O 的半径是3,点P 是弦AB 延长线上的一点,连接OP ,若OP =4,∠APO =30°,则弦AB 的长为( )A .2 B . C .2 D .5.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( )A .B .C .D .6.如图,在半径为5的⊙O 中,AB 、CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3D .47.对下列生活现象的解释其数学原理运用错误的是( )A .把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B .木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C .将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D .将车轮设计为圆形是运用了“圆的旋转对称性”的原理8.已知AB 是半径为5的圆的一条弦,则AB 的长不可能是( )A .4B .8C .10D .129.在⊙O 内有一点P ,已知OP =,且圆内过点P 的最短弦长为6,则⊙O 的面积是( ) A .6π B .8π C .10π D .12π第6题 第1题 第2题 第3题 第5题 第4题10.已知⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8cm ,则AC 的长为( )A .2cmB .4cmC .2cm 或4cmD .2cm 或4cm11.如图,一条公路的转弯处是一段圆弧(),点O 是这段弧所在圆的圆心,AB =40m ,点C 是的中点,点D 是AB 的中点,且CD =10m ,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m12.如图,⊙O 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE =OB ,已知∠DOB =72°,则∠E 等于( )A .36°B .30°C .18°D .24°二、填空题13.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为 . 14.⊙O 的直径为10,弦AB =6,P 是弦AB 上一动点,则OP 的取值范围是 .15.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为 .16.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为 寸.17.如图,方格纸上每个小正方形的边长均为1个单位长度,点O ,A ,B ,C 在格点(两条网格线的交点叫格点)上,以点O 为原点建立直角坐标系,则过A ,B ,C 三点的圆的圆心坐标为 .18.如图,一下水管道横截面为圆形,直径为100cm ,下雨前水面宽为60cm ,一场大雨过后,水面宽为80cm ,则水位上升 cm .19. 已知⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =16cm ,CD =12cm ,则弦AB 和CD 之间的距离是 cm .第11题第13题 第12题 第16题 第17题 第15题20.如图,AB 是⊙O 的直径,BC 是弦,点E 是的中点,OE 交BC 于点D .连接AC ,若BC =6,DE =1,则AC 的长为 . 21.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 cm .22.如图,AB 、AC 是⊙O 的弦,OE ⊥AB 、OF ⊥AC ,垂足分别为E 、F .如果EF =3.5,那么BC = .23.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =16厘米,则球的半径为 厘米.24.如图,在⊙O 中,弦AB =1,点C 在AB 上移动,连结OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为 .三、解答题25.如图,在⊙O 中,半径OC ⊥AB ,AC=2,CD=2,求⊙O 的半径OA 的长.第21题 第18题 第20题第24题 第23题 第22题26.如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.。

备战中考数学 圆的综合 培优练习(含答案)附详细答案

备战中考数学 圆的综合 培优练习(含答案)附详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.3.如图,已知Rt△ABC中,C=90°,O在AC上,以OC为半径作⊙O,切AB于D点,且BC=BD.(1)求证:AB为⊙O的切线;(2)若BC=6,sinA=35,求⊙O的半径;(3)在(2)的条件下,P点在⊙O上为一动点,求BP的最大值与最小值.【答案】(1)连OD,证明略;(2)半径为3;(3)最大值5,5【解析】分析:(1)连接OD,OB,证明△ODB≌△OCB即可.(2)由sinA=35且BC=6可知,AB=10且cosA=45,然后求出OD的长度即可.(3)由三角形的三边关系,可知当连接OB交⊙O于点E、F,当点P分别于点E、F重合时,BP分别取最小值和最大值.详解:(1)如图:连接OD、OB.在△ODB和△OCB中:OD=OC,OB=OB,BC=BD;∴△ODB≌△OCB(SSS).∴∠ODB=∠C=90°.∴AB为⊙O的切线.(2)如图:∵sinA=35,∴CB3AB5,∵BC=6,∴AB=10,∵BD=BC=6,∴AD=AB-BD=4,∵sinA=35,∴cosA=45,∴OA=5,∴OD=3,即⊙O的半径为:3.(3)如图:连接OB,交⊙O为点E、F,由三角形的三边关系可知:当P 点与E 点重合时,PB 取最小值.由(2)可知:OD=3,DB=6,∴OB=223635+=.∴PB=OB-OE=353-.当P 点与F 点重合时,PB 去最大值,PB=OP+OB=3+35.点睛:本题属于综合类型题,主要考查了圆的综合知识.关键是对三角函数值、勾股定理、全等三角形判定与性质的理解.4.如图1O ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC ,∠=,过点P 作PD OP ⊥交O 于点D .()1如图2,当//PD AB 时,求PD 的长;()2如图3,当DC AC =时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O 的切线;②求PC 的长.【答案】(1)262)333①见解析,②.【解析】分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长; ()2①首先得出OBD 是等边三角形,进而得出ODE OFB 90∠∠==,求出答案即可; ②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案.详解:()1如图2,连接OD ,//OP PD PD AB ⊥,,90POB ∴∠=, O 的直径12AB =,6OB OD ∴==,在Rt POB 中,30ABC ∠=, 3tan30623OP OB ∴=⋅=⨯=, 在Rt POD 中, 22226(23)26PD OD OP =-=-=;()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,DC AC =,30DBC ABC ∴∠=∠=,60ABD ∴∠=,OB OD =,OBD ∴是等边三角形,OD FB ∴⊥,12BE AB =, OB BE ∴=,//BF ED ∴,90ODE OFB ∴∠=∠=,DE ∴是O 的切线;②由①知,OD BC ⊥,3cos306332CF FB OB ∴==⋅=⨯=, 在Rt POD 中,OF DF =, 13(2PF DO ∴==直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=-.点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出OBD 是等边三角形是解题关键.5.已知:如图,AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,∠APB 是平分线分别交BC ,AB 于点D 、E ,交⊙O 于点F ,∠A=60°,并且线段AE 、BD 的长是一元二次方程 x 2﹣kx+23 =0的两根(k 为常数).(1)求证:PA•BD=PB•AE ;(2)求证:⊙O 的直径长为常数k ;(3)求tan ∠FPA 的值.【答案】(1)见解析;(2)见解析;(3)tan ∠FPA=2﹣3 .【解析】试题分析:(1)由PB 切⊙O 于点B ,根据弦切角定理,可得∠PBD=∠A ,又由PF 平分∠APB ,可证得△PBD ∽△PAE ,然后由相似三角形的对应边成比例,证得PA•BD=PB•AE ;(2)易证得BE=BD ,又由线段AE 、BD 的长是一元二次方程 x 2﹣kx+2=0的两根(k 为常数),即可得AE+BD=k ,继而求得AB=k ,即:⊙O 的直径长为常数k ;(3)由∠A=60°,并且线段AE 、BC 的长是一元二次方程 x 2﹣kx+2=0的两根(k 为常数),可求得AE 与BD 的长,继而求得tan ∠FPB 的值,则可得tan ∠FPA 的值. 试题解析:(1)证明:如图,∵PB 切⊙O 于点B ,∴∠PBD=∠A ,∵PF 平分∠APB ,∴∠APE=∠BPD ,∴△PBD ∽△PAE ,∴PB :PA=BD :AE ,∴PA•BD=PB•AE ;(2)证明:如图,∵∠BED=∠A+∠EPA ,∠BDE=∠PBD+∠BPD .又∵∠PBD=∠A ,∠EPA=∠BPD ,∴∠BED=∠BDE .∴BE=BD .∵线段AE 、BD 的长是一元二次方程 x 2﹣kx+2=0的两根(k 为常数),∴AE+BD=k ,∴AE+BD=AE+BE=AB=k ,即⊙O 直径为常数k .(3)∵PB 切⊙O 于B 点,AB 为直径.∴∠PBA=90°.∵∠A=60°.∴PB=PA•sin60°=PA , 又∵PA•BD=PB•AE ,∴BD=AE ,∵线段AE 、BD 的长是一元二次方程 x 2﹣kx+2=0的两根(k 为常数). ∴AE•BD=2, 即AE 2=2,解得:AE=2,BD=,∴AB=k=AE+BD=2+,BE=BD=,在Rt △PBA 中,PB=AB•tan60°=(2+)×=3+2.在Rt △PBE 中,tan ∠BPF===2﹣, ∵∠FPA=∠BPF ,∴tan ∠FPA=2﹣. 【点睛】此题考查了切线的性质、等腰三角形的判定与性质、相似三角形的判定与性质以及根与系数的关系等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.6.已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =.(1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=25;(2)m=23812n n - ;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论;(2)解Rt △POH ,得到Rt 3m OH OCH =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =中,=,,∴2OH =.∵AB =6,∴3OC =. 由勾股定理得: 5CH =∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况:① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n -=,解得9n :=. 即圆心距等于O 、1O 的半径的和,就有O 、1O 外切不合题意舍去.ii )11O P OO =,由22233m m n m -+-()() n =, 解得:23m n =,即23n 23812n n-=,解得9155n :=. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=. ∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得955n :=. 综上所述:n 的值为955或9155. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.7.如图,□ABCD 的边AD 是△ABC 外接圆⊙O 的切线,切点为A ,连接AO 并延长交BC 于点E ,交⊙O 于点F ,过点C 作直线CP 交AO 的延长线于点P ,且∠BCP =∠ACD . (1)求证:PC 是⊙O 的切线;(2)若∠B =67.5°,BC =2,求线段PC ,PF 与弧CF 所围成的阴影部分的面积S .【答案】(1)见解析;(2)14π-【解析】 【分析】(1) 过C 点作直径CM ,连接MB ,根据CM 为直径,可得∠M+∠BCM =90°,再根据AB ∥DC 可得∠ACD =∠BAC ,由圆周角定理可得∠BAC =∠M ,∠BCP =∠ACD ,从而可推导得出∠PCM =90°,根据切线的判定即可得;(2)连接OB ,由AD 是⊙O 的切线,可得∠PAD =90°,再由BC ∥AD ,可得AP ⊥BC ,从而得BE =CE = 12BC =1,继而可得到∠ABC =∠ACB =67.5°,从而得到∠BAC =45°,由圆周角定理可得∠BOC=90°,从而可得∠BOE =∠COE =∠OCE = 45°,根据已知条件可推导得出OE=CE=1,PC=OC=22OE CE2+=,根据三角形面积以及扇形面积即可求得阴影部分的面积.【详解】(1)过C点作直径CM,连接MB,∵CM为直径,∴∠MBC=90°,即∠M+∠BCM=90°,∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠ACD=∠BAC,∵∠BAC=∠M,∠BCP=∠ACD,∴∠M=∠BCP,∴∠BCP+∠BCM=90°,即∠PCM=90°,∴CM⊥PC,∴PC与⊙O相切;(2)连接OB,∵AD是⊙O的切线,切点为A,∴OA⊥AD,即∠PAD=90°,∵BC∥AD,∠AEB=∠PAD=90°,∴AP⊥BC.∴BE=CE=12BC=1,∴AB=AC,∴∠ABC=∠ACB=67.5°,∴∠BAC=180°-∠ABC-∠ACB=45°,∴∠BOC=2∠BAC=90°,∵OB=OC,AP⊥BC,∴∠BOE=∠COE=∠OCE= 45°,∵∠PCM=90°,∴∠CPO=∠COE=∠OCE= 45°,∴OE=CE=1,PC=OC=22OE CE2+=,∴S=S△POC-S扇形OFC=()245π21π221 23604⨯⨯⨯-=-.【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.8.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,∴0 tan30ODPD=,解得OD=1,∴PO,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.9.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.(1)求证:EF与⊙O相切;(2)若AE=6,sin∠CFD=35,求EB的长.【答案】(1)见解析(2)3 2【解析】【分析】()1如图,欲证明EF与O相切,只需证得OD EF⊥.()2通过解直角AEF可以求得AF10.=设O的半径为r,由已知可得△FOD∽△FAE,继而得到OF ODAF AE=,即10r r106-=,则易求15AB AC2r2===,所以153EB AB AE622 =-=-=.【详解】(1)如图,连接OD,OC OD =,OCD ODC ∠∠∴=.AB AC =,ACB B ∠∠∴=,ODC B ∠∠∴=,OD //AB ∴,ODF AEF ∠∠∴=,EF AB ⊥,ODF AEF 90∠∠∴==,OD EF ∴⊥, OD 是O 的半径,EF ∴与O 相切;()2由()1知,OD//AB ,OD EF ⊥.在Rt AEF 中,AE 3sin CFD AF 5∠==,AE 6=, 则AF 10=, OD //AB ,∴△FOD ∽△FAE ,OF OD AF AE∴=, 设O 的半径为r ,10r r 106-∴=, 解得,15r 4=, 15AB AC 2r 2∴===, 153EB AB AE 622∴=-=-=. 【点睛】本题考查了切线的判定、相似三角形的判定与性质、解直角三角形的应用等,正确添加辅助线、灵活应用相关知识是解题的关键.10.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线上的一点,过⊙O上一点C作⊙O的切线交DF于点E,CE⊥DF.(1)求证:AC平分∠FAB;(2)若AE=1,CE=2,求⊙O的半径.【答案】(1)证明见解析;(2)5 2【解析】试题分析:(1)连接OC,根据切线的性质和圆周角定理,得出∠OCA=∠OAC与∠CAE=∠OCA,然后根据角平分线的定义可证明;(2)由圆周角定理得到∠BCA=90°,由垂直的定义,可求出∠CEA=90°,从而根据两角对应相等的两三角形相似可证明△ACB∽△AEC,再根据相似三角形的对应边成比例求得AB的长,从而得到圆的半径.试题解析:(1)证明:连接OC.∵CE是⊙O的切线,∴∠OCE =90°∵CE⊥DF,∴∠CEA=90°,∴∠ACE+∠CAE=∠ACE+∠OCA=90°,∴∠CAE=∠OCA∵OC=OA,∴∠OCA=∠OAC.∴∠CAE=∠OAC,即AC平分∠FAB(2)连接BC.∵AB是⊙O的直径,∴∠ACB =∠AEC =90°.又∵∠CAE=∠OAC,∴△ACB∽△AEC,∴AB AC AC AE=.∵AE=1,CE=2,∠AEC =90°,∴2222125AC AE CE+=+∴22551ACABAE===,∴⊙O的半径为52.。

圆培优专题(含解答)

圆培优专题(含解答)

圆的培优专题1 ――与圆有关的角度计算一运用辅助圆求角度1、 如图,△ ABC 内有一点 D , DA = DB = DC ,若乙 DAB = 20,/ DAC = 30 ,1贝U • BDC = . ( • BDC = — . BAC = 100 )2、 如图,AE = BE = DE = BC = DC ,若.C = 100,则.BAD = . ( 50 )3、 如图,四边形 ABCD 中,AB = AC = AD , . CBD = 20 , . BDC = 30,贝U解题策略:通过添加辅助圆,把问题转化成同弧所对的圆周角与圆心角问题,思维更明朗!4、 如图,口 ABCD 中,点E 为AB 、BC 的垂直平分线的交点,若 • D = 60 ,贝U 乙 AEC =.(乙 AEC = 2^B = 2^D = 120 )5、 如图,O 是四边形 ABCD 内一点,OA = OB = OC , / ABC = Z ADC = 70 ,则乙 DAO + 乂 DCO =.(所求=360 —乙 ADC —乙 AOC = 150 ) 6、 如图,四边形 ABCD 中, ACB = ■ ADB = 90 , - ADC = 25,则 ABC =.Z BAD= •(/第1题第3题 ( ABC = ADC = 25 )第4题 第5题 第6题解题策略:第6题有两个直角三角形共斜边,由直角所对的弦为直径,易得到ACBD共圆.解题策略:第6题有两个直角三角形共斜边,由直角所对的弦为直径,易得到 ACBD 共圆.第10题 第11题第12题 解题策略:在连接半径时,时常会伴随出现特殊三角形一一等腰三角形或直角三角形或等运用圆周角和圆心角相互转化求角度7、如图,AB 为O O 的直径,C 为AB 的中点,D 为半圆AB 上一点,则.ADC =. 8、如图,AB 为O O 的直径,CD 过OA 的中点E 并垂直于 OA ,则.ABC =. 9、如图,AB 为O O 的直径, BC = 3AC ,则 ABC =.答案:7、 45 ; 8、30 ; 9、22.5 ; 10、 40 ; 11、 150 ; 12、 110解题策略: 以弧去寻找同弧所对的圆周角与圆心角是解决这类问题的捷径!10、如图, AB 为O O 的直径,点 C 、D 在O O 上,.BAC = 50,则.ADC =.11、如图, O O 的半径为 1,弦 AB = \ 2,弦 AC = '\'3,则—BOC =.12、如图,PAB 、PCD 是O O 的两条割线,PAB 过圆心O ,若AC =CD ,/ P = 30 ,则・BDC =.(设• ADC = x ,即可展开解决问题)第7题C第9题直角三角形或等边三角形,是解题的另一个关键点!圆的四接四边形的外角等于内对角,是一个非常好用的一个重要性质!圆的培优专题2――与垂径定理有关的计算1、如图,AB是O O的弦,0D _ AB,垂足为C,交O O于点D,点E在O O上,若.BED=30 , O 0的半径为4,则弦AB的长是.略解:••• OD _AB ,••• AB = 2AC,且.ACO = 90 ,••• . BED = 30 ,• . AOC = 2 BED = 60•—0AC= 30, 0C= ~ OA = 2,贝V AC = 2、.f 3,因此AB = 4』3 .2、如图,弦AB垂直于O O的直径CD , OA = 5, AB = 6,贝U BC =.1略解:•••直径CD _ 弦AB ,• AE = BE = ? AB=3• OE =、52 -32=4,贝y CE = 5+ 4= 93、如图,O O的半径为2-、5,弦AB _ CD,垂足为P, AB = 8, CD = 6,贝U OP=. 略解:如图,过点O作OE_AB , OF_CD,连接OB , OD.则BE = AB = 4, DF = | CD = 3,且OB = OD = 2 . 5第1题第2题第3题OE = ,(2 ,5)2-42=2 , OF=、一(2、,5)2-32「一石又AB _CD,则四边形OEPF是矩形,则OP= ; 22(11)^ 154、如图,在O O 内,如果OA = 8, AB = 12, . A = . B = 60,则O O 的半径为•1略解:如图,过点 O 作 OD_AB ,连接 OB 」AD =1 AB = 4,因此,BD = 8 , OD =4、 一3••• OB = \(4:3厂82 =4.7 •5、 如图,正△ ABC 内接于O O ,D 是O O 上一点,.DCA = 15,CD = 10,贝U BC =略解:如图,连接 OC ,OD ,则.ODC = . OCD•/△ ABC 为等边三角形,则 .OCA = . OCE = 30,• . ODC = . OCD = 45• △ OCD 是等腰三角形,则 OC = 5、2 第4题 第5题 第6题6、 如图,O O 的直径AB = 4,C 为AB 的中点,E 为OB 上一点,.AEC = 60,CE 的延 长线交O O 于点D ,则CD =略解:如图,连接 OC ,贝U OC = 2•/ C 为 AB 的中点,贝 y OC_AB ,又.AEC = 60,二OCE = 30如图,过点 O 作 OF — CD ,贝U OF =1 OC = 1,CF = -.3 : 过点 O 作 OE BC ,贝U BC = 2CE = 5、」67、如图,A地测得台风中心在城正西方向300千M的B处,并以每小时10'、7千M的速度沿北偏东60的BF方向移动,距台风中心200千M范围内是受台风影响的区域•问:A地是否受到这次台风的影响?若受到影响,请求出受影响的时间?解:如图,过点A作AC — BF交于点C,••• . ABF = 30,贝V AC = 2 AB = 150:::200,因此A 地会受到这次台风影响; 如图,以A 为圆心200千M 为半径作O A 交BF 于D 、E 两点,连接 AD , 则 DE = 2CD = 22002匚1502 = 100、一 7 ,所以受影响的时间为100J--10.7 =10 (时)圆的培优专题3――圆与全等三角形1、如图,O O 的直径 AB = 10,弦AC = 6, . ACB 的平分线交O O于D ,求CD 的长.解:如图,连接 AB , BD ,在CB 的延长线上截取 BE = AC••• . ACD = . BCD ,••• AD = BD又 CAD = EBD , AC = BE • △ CAD ◎△ EBD ( SAS )• CD = DE , . ADC = . BDE •/ AB 为O O 的直径,则.ACB = . ADB = 90• BC = ,102 -62 =8 ; ADC + CDB = CDB + BDE = 90 ,即 CDE = 90MA = MD ,若 CM =、2,求 BD 的长. 解:如图,连接 AC ,贝U AC = BC , • C = 90,即△ ABC 是等腰直角三角形过点 M 作 MN // AD ,则乙 NMA = Z MAD则厶CMN 也是等腰直角三角形,则 MN =、、. 2 CM = 2• . ANC = . MBD = 135 ,又 MA = MD ,• • D = ■ NMA = ■ MAD• △ AMN ◎△ BMD (AAS )• BD = MN = 2• △ CDE 是等腰直角三角形且CE = 14,「. CD = 7.2 2、如图,AB 是O O 的直径,C 是半圆的中M 、D 分别是连接DE3、如图,AB为O O的直径,点N是半圆的中点,点C为AN上一点,NC = 3 .求BC —AC的值.解:如图,连接AN , BN,则△ ABN是等腰直角三角形在BC上截取BD = AC,连接DN•/ AN = BN , CAN = . DBN , AC = BD •••△ ACN ◎△ BDN (SAS )••• CN = DN , / CNA = Z DNB ,•匚 CND = / CNA + Z AND = / ADN + Z DNB = 90 ,即△ CND 是等腰直角三角形• CD = .2 NC =、.6 ,• BC — AC = BC — BD = CD =、、64、如图,点 A 、B 、C 为O O 上三点, AC 二BC ,点M 为BC 上一点,CE_AM 于E , AE = 5, ME = 3,求 BM 的长.解:如图,在 AM 上截取 AN = BM ,连接CN , CM.•/ AC = BC ,• AC = BC ,又.A = . B• △ ACN ◎△ BCM ( SAS )• CN = CM ,又 CE _AM• NE = ME = 3,BM = AN = AE — NE = 2PD _CD , CD 交O O 于 A ,若 AC = 3, AD = 1 ,求AB 的长.解:如图,连接 BP 、CP ,贝U BP = CP , . B = . C过点P 作PE _AB 于点E ,又PD _CD• BEP = CDP• △ BEP ◎△ CDP (AAS )• BE = CD = 3+1 = 4, PE = PD连接 AP ,贝U Rt △ AEP 也 Rt △ ADP ( HL ),贝U AE = AD = 1• AB = AE+BE = 5 6、如图,AB 是 O 的直径,MN 是弦,AE —MN 于 E , BF — MN 于 F , AB = 10, MN = 8.求BF — AE 的值.解:••• AE _ MN , BF _ MN ,贝U AE // BF ,• . A = . B 5、如图,在如图,延长EO交BF于点G,贝养AOE = Z BOG , AO = BO•••△ AOE ◎△ BOG (AAS ),贝U OE= OG过点O 作OH _ MN , FG = 2OH , HN = 4连接ON,贝U ON = 5, OH= .52—42 3,贝U BG- AE = FG = 6.圆的培优专题4――圆与勾股定理1、如图,O O是厶BCN的外接圆,弦AC _ BC,点N是AB的中点,.BNC = 60 ,的值•解:如图,连接AB,贝U AB为直径,•/ BNA = 90连接AN,则BN = AN,则△ ABN是等腰直角三角形•- BN = AB ;又BAC = BNC = 60 ,BN .6BC = 一(方法2,过点B作BD_CN,即可求解) 22、如图,O O 的弦AC _BD,且AC = BD,若AD = 2、、2,求O O 半径.解:如图,作直径AE,连接DE,则/ ADE = 90又AC _ BD,则乙ADB + 乙DAC = Z ADB + 乙EDB = 90 •••乙DAC=匕EDB,则CD = BE,• DE = BC,••• AC = BD,• AC 二CD,贝y AD 二BC 二DE• AD = DE^P A ADE是等腰直角三角形• AE = .2 AD = 4,即O O的半径为2 3、如图,AB为O O的直径,C为O O上一点,D为CB延长线上一点,且Z CAD = 45°CE _AB 于点E,DF _AB 于点F.(1)求证:CE= EF;( 2)若DF = 2,EF = 4,求AC.(1)证:T AB 为O O 的直径,/ CAD = 45,则厶ACD是等腰直角三角形,即AC = DC又CE _ AB,则.CAE = . ECB如图,过点C作CG垂直DF的延长线于点G又CE_AB , DF_AB,则四边形CEFG 是矩形,乙AEC = Z DGC = 90 ••• EF = CG, CE // DG,则.ECB = . CDG = . CAE•••△ ACE ◎△ DCG (AAS ),贝U CE = CG = EF(2)略解:AC = CD = , 4262=2.13.4、如图,AB为O O的直径,CD_AB于点D, CD交AE于点F, AC二CE .(1)求证:AF = CF;(2)若O O的半径为5, AE = 8,求EF的长(1 )证:如图,延长CD交O O于点G,连接AC•••直径AB _CG,贝y AG = AC =CE• / CAE = Z ACG,贝U AF = CF(2)解:如图,连接OC交AE于点H,贝U OC_AE ,•- OH =\ 5 ~4 - 3,贝V CH = 5 —3= 2设HF = x,贝y CF = AF = 4 —x"x)2 ,•,即HF = 32 2O中,直径CD —弦AB于E, AM _ BC于M,交CD于N,连接AD.5、如图,在O(1)求证:AD = AN ;(2)若AB = 4 2 , ON = 1,求O O 的半径.(1)证:T CD _ AB , AM _ BC• C+ CNM = C + B = 90••乙B = Z CNM ,又 B = D, - AND = CNM •匚D = Z AND,即AD = AN(2)解:•••直径CD _ 弦AB,贝U AE = 2、、2又AN = AD,贝U NE = ED如图,连接OA,设OE = x,贝U NE = ED = x 1OA = OD = 2x 1••• x2(2 ,2)2 =(2x 1)2,则x =1•••O O的半径OA = 3圆的培优专题5――圆中两垂直弦的问题1、在O O 中,弦AB_CD 于E,求证:AOD + BOC =证:如图,连接AC,•/ AB _ CD,则.CAB + . ACD = 90又.AOD = 2 ACD , ■ BOC = 2 BACAC2+ BD2= 4R2.••乙AOD + Z BOC = 180 .2、在O O中,弦AB _ CD于点E,若O O的半径为R,求证:证:••• AB _CD,则.CAB + . ACD = 90如图,作直径AM,连接CM贝"ACM = / ACD + Z DCM = 90•乙CAB =乙DCM ,•BC 二DM•CM 二BD ,• CM = BD•/ AC2+ CM2= AM• AC 2+ BD2= 4R23、在O O中,弦AB — CD于点E,若点M为AC的中点,求证ME — BD.证:如图,连接ME,并延长交BD于点F••• AB _CD,且点M为AC的中点C • ME为Rt△ AEC斜边上的中线••• AM = ME ••• £A = / AEM = / BEF又匚B = Z C,乙A +乙C = 90•E BEF + / B = 90 ,即£ BFE = 90• ME _ BD.14、在O O中,弦AB _ CD于点E,若ON _ BD于N,求证:ON = — AC.2证:如图,作直径BF,连接DF,贝U DF _ BD,又ON _ BD ,• ON // FD,又OB = OF• ON = —DF2连接AF,贝U AF _ AB,又CD _ AB• AF // CD•AC =FD,贝y AC = FD1• ON = — AC25、在O O 中,弦AB — CD 于点E,若AC = BD , ON — BD 于N , OM — AC 于M.(1)求证:ME//ON ;(2)求证:四边形OMEN为菱形.证:(1)如图,延长ME交OD于点F••• OM _ AC,则点M为AC的中点••• AB _CD,贝U ME为Rt△ ACE的斜边上中线• AM = EM,•乙A = Z AEM = Z BEF又.B = C, A + C= 90•乙B + Z BEF = 90 ,则/ BFE = 90• MF _ BD,又ON _ BD解:如图,在 CA 的延长线上截取 AE = BC ,连DE ,•/ CD 平分.ACB , • AD = BD又 DAE = DBC , AE = BC• △ DAE ◎△ DBC ( SAS )• CD = DE ,又.ACD = 60• △ CDE 是等边三角形• CD = CE = CA + BC ,即卩= 1••• MF // ON(2)由(1 )知 MF // ON ,同理可证 OM // NE ,•四边形OMEN 是平行四边形•/ AC = BD , • OM = ON •四边形OMEN 为菱形. 圆的培优专题6――圆与内角(外角)平分线圆与内角平分线问题往往与线段和有关,实质是对角互补的基本图形 1、如图,O O ABC 的外接圆,弦 CD 平分.ACB , ■ ACB = 90 . 求证:CA + CB = .. 2 CD.证:如图,在 CA 的延长线上截取 AE = BC ,连 •/ CD 平分 ACB , • AD = BD 又 DAE = DBC , AE = BC • △ DAE ◎△ DBC ( SAS ) • CD = DE ,又.ACD = 45 DE,是等腰直角三角形,则 CA + CB = CE = . 2 CD. 2、如图,O O ABC 的外接圆,弦 CD 平分.ACB , ■ ACB = 120,求 CA+CB 的值•3、如图,过O 、M (1,1)的动圆O O 1交y 轴、 x 轴于点 A 、B ,求 OA + OB 的值.O /解:如图,过点M作ME _ y轴,MF _ X轴,连AM、BM由M (1, 1)知:四边形OFME是正方形OE = OF = 4, EM = FM,又三MBF = Z MAE ,•••△ AEM ◎△ BFM (AAS ),贝U AE = BF.OA + OB = AE + OE + OF —BF = 8.圆中的外角问题往往与线段的差有关4、如图,O O ABC的外接圆,弦CP平分△ ABC的外角/ ACQ,/ ACB = 90 .求证:(1) PA=PB ; ( 2) AC —BC =、、2 PC.证:(1)如图,连接AP,则/ PCQ= / PAB又.PCQ= • PCA,则.PAB = ■ PCA•PA =PB(2)连接BP,由(1)得,PA = PB在AC 上截取AD = BC ,连PD,又.PAD = . PBC•△ PADPBC ( SAS),贝U PD= PC又/ PCD= 45 ,则• PCD是等腰直角三角形, AC —BC = CD = 、、2 PC.5、如图,O O ABC的外接圆,弦CP平分△ ABC的外角• ACQ , - ACB = 120 .的值.解:如图,在BC上截取BD = AC,连AP、BP、DPv Z PCB = Z PCQ = Z PBA•AP = BP,又乙CAP = DBP•△ CAPDBP (SAS),贝U CP = DP又.ACB = 120 • PCD= 30BC —ACPC6、如图,A (4,0) , B(0,4) , O O1经过A、B、O三点,点这P为OA上动点(异于O、y山PCPOA<5求P BP6PA 的值. 解:如图,在BP 上截取BC = AP•/ A (4,0) , B (0,4),贝U OA = OB = 4又.OAP = ■ OBC•••△ OAP ◎△ OBC( SAS )圆的培优专题7――与切线有关的角度计算切线与一个圆 答案:1、70 ; 2、20 ; 3、80 ; 4、120 ; 5、130 ; 6、451、如图,AD 切O O 于A , BC 为直径,若/ ACB = 20,则乙CAD =.2、如图,AP 切O O 于P , PB 过圆心,B 在O O 上,若.ABP = 35,则.APB =.3、如图,PA 、PB 为O O 的切线,C 为ACB 上一点,若 乙BCA = 50,则三APB =.• OC = OP ,且 £ COP = £ AOB =90,则 4、如图,PA 、PB 为O O 的切线,C 为AB 上一点,若 / BCA = 150,则乙 APB =. 5、如图,点 O 是厶ABC 的内切圆的的圆心,若/ BAC = 80 ,则乙 BOC =.6、如图,PA 切O O 于A ,若PA = AB , PD 平分-APB 交AB 于D ,则.ADP =.(设元,列方程) 切线与两个圆7、如图,两同心圆的圆心为 O ,大圆的弦 AB 、AC分别切小圆于D 、E ,小圆的DE 的度数为110 ,则大圆的BC 的度数为. 第6题第5题第1题 第2题 第3题 第4题8、如图,O O i和。

中考数学 圆的综合 培优练习(含答案)含答案

中考数学 圆的综合 培优练习(含答案)含答案

中考数学圆的综合培优练习(含答案)含答案一、圆的综合1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过»BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253 8.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出»»AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴»»AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G=AHHC=34,∵AH=33,∴HC=43,在Rt△HOC中,∵OC=r,OH=r﹣33,HC=43,∴222(33)(43)r r-+=,∴r=2536,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HCEM OE=,∴33432536=,∴EM=253.点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.2.(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.【答案】(1)证明见解析;(2)25°.【解析】试题分析:(1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O e 的直径,PA 与O e 相切于点A ,∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒. 3.如图,四边形ABCD 是⊙O 的内接四边形,AB=CD .(1)如图(1),求证:AD ∥BC ;(2)如图(2),点F 是AC 的中点,弦DG ∥AB,交BC 于点E,交AC 于点M,求证:AE=2DF ;(3)在(2)的条件下,若DG 平分∠ADC,GE=53,tan ∠ADF=43,求⊙O 的半径。

北师大版六年级上册数学第一单元圆培优测试卷附答案

北师大版六年级上册数学第一单元圆培优测试卷附答案

北师大版六年级上册数学第一单元圆培优测试卷一.选择题1.圆的周长为15.7cm,那么画圆时,圆规两脚间的距离为()。

A.2.5cmB.5cmC.15.7cm2.两个圆的半径相差2cm,它们的周长相差()。

A.2cmB.4cmC.6.28cmD.12.56cm3.圆的对称轴有()。

A.1条B.5条C.无数条4.同圆中的直径是半径的()。

A.2倍B.一半C.1.2倍5.周长相等的正方形和圆,它们的面积相比较,()。

A.正方形的面积大B.圆的面积大C.一样大D.无法比较6.将一个圆剪拼成一个近似的长方形,这个转化过程中,()。

A.面积没变,周长变了B.面积变了,周长没变C.面积和周长都变了D.面积和周长都没变二.判断题1.圆的一部分就是扇形。

()2.直径就是两端都在圆上的线段。

()3.半圆的周长等于它所在圆的周长的一半。

()4.两个半圆可以拼成一个整圆。

()5.一个圆的周长总是它的直径的π倍。

()6.周长相等的长方形、正方形和圆,面积最大的是圆。

()三.填空题1.一个圆的半径是3厘米,这个圆的直径是()厘米,周长是()厘米。

2.画一个直径是5厘米的圆,圆规两脚之间的距离是()厘米。

如果要画一个周长是12.56厘米的圆,圆规两脚之间的距离应该是()厘米,这个圆的面积是()平方厘米。

3.一个圆的周长是12.56厘米,它的直径是()厘米,半径是()厘米。

4.一个直径为4米的半圆,它的周长是()米。

5.画圆时,用到的常规工具有()。

6.如图,圆上A、B两点之间的部分叫做(),读作()。

四.作图题1.操作题(1)把圆移到圆心是(8,2)的位置上。

(2)把图形A绕O点逆时针旋转90°。

(3)请画出轴对称图形B的另一半。

五.解答题1.在一个周长是24厘米的正方形内画一个最大的圆,这个圆的面积是多少平方厘米?2.如图。

一只小狗拴在等边三角形的墙角,墙边长3米。

绳长4米,求这只小狗最多能看护的面积。

3.小华量得一根树干的周长是75.36厘米,这根树干的横截面大约是多少平方厘米?4.砂子堆在地面上占地正好是圆形,量出它一周的长度是15.7米,那么直径是多少米?5.已知圆的周长,求圆的直径和半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级上册圆培优题

☞易错题
1、两个圆的半径比是2:3,他们的直径比是( ),周长比是( )。

2、一个圆的直径扩大到原来的2倍,它的半径就扩大到原来( )倍,它的周长扩大到原来的( )倍。

3、一座石英钟的时针长6cm ,经过6小时,这时针的尖端所走的路程是( )cm ,经过12小时,这时针的尖端所走的路程是( )cm
4、周长相等的正方形,长方形和圆,面积最大的是( ),最小的是( )。

5、将一个圆,沿半径剪开,得到若干个小扇形,然后拼成一个近似的长方形。

这个长方形的长是圆的( ),宽是圆的( )。

如果这个长方形的宽是3cm ,那么这个长方形的长是( )cm,周长是( )cm ,面积是( )平方厘米。

如果拼成的长方形的长为12.56dm ,那么原来圆的面积是( )cm 2
6、小圆的半径是大圆半径的3
1,小圆的面积是大圆面积的( )。

7、一张正方形的周长是16分米,把它剪成一个最大的圆,剪去部分的面积是( )平方分米。

8、有一半圆的周长是25.7cm ,它的面积是( )平方厘米。

9、在一块直径是1.2米的圆形桌布周围缝在一条花边,接头处长6厘米,这条花边长( )米。

10、用一根12.56dm 长的铁丝弯成一个圆形铁环,这个铁环的直径是( )dm ,面积是( )dm 2
求阴影部分的面积与周长
例1、求下面图形中阴影部分的面积与周长。

练2、.如图,四个扇形的半径相等, 3、如图所示,正方形的面积是18dm²,求阴影部分的面积。

(单位:厘米) 求圆的面积。

4、.如图,大正方形的边长为6厘米,小正方形的边长为4厘米求阴影部分的面积。

5、求阴影部分的面积。

(单位:厘米)
半圆的周长
例1、有一个半圆形的零件如图所示,周长是25.7厘米,求这个半圆形零件的面积。

练1、如图所示,这个四分之一园的周长是17.85厘米,求它的面积。

2、一个半圆形的周长是51.4厘米,求这个半圆形的面积。

钟表问题
例1、一个时钟的分针长5厘米,当它走过一圈时,它的尖端走了多少厘米?分针扫过的面积是多少平方厘米?
1、一座石英钟的时针长6cm,经过6小时,这时针的尖端所走的路程是多少厘米,经过过12小时,这时针的尖端所走的路程又是多少厘米?
2、学校圆形大钟的时钟长40厘米,分针长50厘米,经过一昼夜,分针尖端走过的路程是多少?时钟扫过了多少平方厘米?
车轮问题
题型1例1、一辆自行车轮胎的外直径70cm,如果每分钟转100圈,通过一座1099m 的大桥,大约需要几分钟?
练1、为倡导“节能减排,绿色出行”,李叔叔每天骑自行车上班。

李叔叔的自行车车轮直径是0.6米,平均每分钟转120圈,李叔叔骑车上班需10分钟。

李叔叔到单位大约有多远?
2、一台压路机滚筒长2m,直径是1.2m,如果它滚动10周,压路的面积是多少?
1,大轮题型2 例1、如下图,两个轮用皮带连在了一起,小轮直径是大轮直径的
3
转6圈,则小轮转多少圈?
练1、一台拖拉机,后轮的直径是前轮的2倍,后轮转动8圈,前轮需要转动多少圈?
截圆问题
例1、在一个长20厘米,宽2厘米的长方形纸板上能剪下几个最大的圆?每个圆的面积是多大?剩下部分的面积是多少?
练1、一张长方形纸片长14厘米,宽10厘米,在这张纸片上剪下一个最大的圆,剪下的最大的圆的半径是()厘米,圆的面积是()平方厘米,长方形的面积是()平方厘米,剩下的部分的面积是()平方厘米。

练2、在一个长为25cm,宽为13cm的长方形中,最多能剪下多少个半径为2的圆形?
环形问题
例1、一个圆形花坛,直径是6米,在它周围有一条宽1米的环形鹅卵石小路,小路的面积是多少平方米?
练1、一根钢管的横截面是环形,内圆半径是5cm,外圆半径8cm。

钢管的横截面积是多少平方厘米?
2、一个圆形养鱼池的周长是100.48米,中间有一个圆形的小岛,小岛的半径是6分米。

这个养鱼池的水域面积是多少平方米?
圆的切拼问题
例1、将一个圆沿半径剪开,得到若干个小扇形,然后拼成一个近似的长方形,这个长方形的长是圆的(),宽是圆的()。

如果这个长方形的宽是2厘米,那么这个长方形的长是()厘米,周长是()厘米
练1、把一个圆平均分成若干份,沿着它的半径剪开,拼成一个近似的长方形,长方形的长是62.8厘米。

原来圆的面积是多少?
2、将圆切拼成一个近似的长方形后,周长增加8厘米,求圆的周长和面积?
3、把圆切拼成一个近似长方形,长方形的长是12.56 cm那么圆的面积是多少?
圆中,牛吃草问题
例1、一头牛被一条长3m的绳子拴在草地上,它能吃到草的最大面积是多少平方米?(绳子结头长度忽略不计)
2、如图,一只羊被4米长的绳子拴在长为3米,宽为2米的长方形水泥台的一个顶点上,水泥台周围都是草地,问这头羊能吃到草的草地面积是多少?(结果精确到0.01平方米)
3、有一块正方形的草地,如图所示,边长是4米,A,C两个顶点处各拴一只羊,每只羊的羊绳长4米。

那么,两只羊都能吃到草的区域面积是多少?
课后培优作业
A
B
D
C
一、求阴影部分的面积
1、正方形面积是7平方厘米,
2、求阴影部分的面积
求阴影部分的面积。

(单位:厘米)
3、正方形边长为2厘米,求阴影部分的面积。

4、图中圆的半径为5厘米,
求阴影部分的面积。

(单位:厘米)
二、解决问题
1、停车场上有小汽车和三轮摩托车共24辆,共有86个车轮,问这些车中,汽车和三轮摩托车各有多少?
2、六二班今天早上请假人数是出席人数的91,下午又有1人请假,请假人数是出席人数的,53
7这个班共有学生多少人?。

相关文档
最新文档