物理化学打印完整版要点
物理化学复习要点

dS ≥
δ Qr
T −T 1 T 2
热机将热转换为功时的最高效率,非热机不遵守卡诺定律 -如电池
不可逆过程要设计成始终态相同的可逆过程进行计算,如过冷液体的凝固等 (4)化学反应过程的 ΔS=∑ν B S Bе
F = U − TS G = H − TS 自发变化的方向 ΔGT,p ≤ 0 ΔFT,V ≤ 0
ΔC p = 0, ΔH 与温度无关
1 1 ΔH 和温度的通用关系式: Δ r H m = Δ r H m,0 + ΔaT + ΔbT 2 + ΔcT 3 2 3
第二定律 卡诺定律
η = 2
(可逆过程的热温熵等于熵变,不可逆过程小于熵变) T 熵是系统混乱度的量度,熵是有绝对值的 熵增加原理:孤立系统自发变化的方向是熵增加的方向 ΔSm 计算: (1)ΔS = ΔH m Qr T T (恒温); (2)ΔS = C pln 2 , ΔS = CV ln 2 (变温过程) : (3)ΔS = (可逆相变) T T1 T1 T (5)电池反应: ΔS=zF( ∂E )p ∂T (6)其它
H 2 O(208K,g,100kPa) → H 2 O(298K,l,100kPa)
8. 扩展表面
恒温恒压不做非膨胀功时,自发变化的方向 ΔGT,p < 0 恒温恒压做非膨胀功时, 自发变化的方向 ΔGT,p ≤ −We
ΔGT,p = 0 是平衡
四个基本公式和 ΔG 的计算
中国药科大学物理化学教研室 2008 年 6 月
l A 电解质Λm和c的关系 电导率-
κ = L⋅
摩尔电导率- Λm =
k c
测电导用韦斯电桥,要用交流信号源
∞ ∞ 无限稀释定律 Λ∞ m =ν+ λm,+ +ν−λm,−
物理化学的知识点总结

物理化学的知识点总结一、热力学1. 热力学基本概念热力学是研究能量转化和传递规律的科学。
热力学的基本概念包括系统、环境、热、功、内能、焓、熵等。
2. 热力学第一定律热力学第一定律描述了能量守恒的原理,即能量可以从一个系统转移到另一个系统,但总能量量不变。
3. 热力学第二定律热力学第二定律描述了能量转化的方向性,熵的增加是自然界中不可逆过程的一个重要特征。
4. 热力学第三定律热力学第三定律表明在绝对零度下熵接近零。
此定律是热力学的一个基本原理,也说明了热力学的某些现象在低温下会呈现出独特的特性。
5. 热力学函数热力学函数是描述系统状态和性质的函数,包括内能、焓、自由能、吉布斯自由能等。
二、化学热力学1. 热力学平衡和热力学过程热力学平衡是指系统各个部分之间没有宏观可观察的能量传输,热力学过程是系统状态发生变化的过程。
2. 能量转化和热力学函数能量转化是热力学过程中的一个重要概念,热力学函数则是描述系统各种状态和性质的函数。
3. 热力学理想气体理想气体是热力学研究中的一个重要模型,它通过状态方程和理想气体定律来描述气体的性质和行为。
4. 热力学方程热力学方程是描述系统热力学性质和行为的方程,包括焓-熵图、温度-熵图、压力-体积图等。
5. 反应焓和反应熵反应焓和反应熵是化学热力学研究中的重要参数,可以用来描述化学反应的热力学过程。
三、物质平衡和相平衡1. 物质平衡物质平衡是研究物质在化学反应和物理过程中的转化和分配规律的一个重要概念。
2. 相平衡相平衡是研究不同相之间的平衡状态和转化规律的一个重要概念,包括固相、液相、气相以及其之间的平衡状态。
3. 物质平衡和相平衡的研究方法物质平衡和相平衡的研究方法包括热力学分析、相平衡曲线的绘制和分析、相平衡图的绘制等。
四、电化学1. 电解质和电解电解质是能在水溶液中发生电离的化合物,电解是将电能转化为化学能或反之的过程。
2. 电化学反应和电势电化学反应是在电化学过程中发生的化学反应,电势是描述电化学系统状态的一个重要参数。
物理化学知识点

物理化学知识点物理化学知识点概述1. 热力学定律- 第零定律:如果两个系统分别与第三个系统处于热平衡状态,那么这两个系统之间也处于热平衡状态。
- 第一定律:能量守恒,系统内能量的变化等于热量与功的和。
- 第二定律:熵增原理,自然过程中熵总是倾向于增加。
- 第三定律:当温度趋近于绝对零度时,所有纯净物质的熵趋近于一个常数。
2. 状态方程- 理想气体状态方程:PV = nRT,其中P是压强,V是体积,n是摩尔数,R是理想气体常数,T是温度。
- 范德瓦尔斯方程:(P + a(n/V)^2)(V - nb) = nRT,修正了理想气体状态方程在高压和低温下的不足。
3. 相平衡与相图- 相律:描述不同相态之间平衡关系的数学表达。
- 相图:例如,水的相图展示了水在不同温度和压强下的固态、液态和气态的平衡关系。
4. 化学平衡- 反应速率:化学反应进行的速度,受温度、浓度、催化剂等因素影响。
- 化学平衡常数:在一定温度下,反应物和生成物浓度之比达到平衡时的常数值。
5. 电化学- 电解质:在溶液中能够产生带电粒子(离子)的物质。
- 电池:将化学能转换为电能的装置。
- 电化学系列:金属的还原性或氧化性排序。
6. 表面与胶体化学- 表面张力:液体表面分子间的相互吸引力。
- 胶体:粒子大小在1到1000纳米之间的混合物,具有特殊的表面性质。
7. 量子化学- 量子力学基础:描述微观粒子如原子、分子的行为。
- 分子轨道理论:通过分子轨道来描述分子的结构和性质。
- 电子能级:原子和分子中电子的能量状态。
8. 光谱学- 吸收光谱:分子吸收特定波长的光能,导致电子能级跃迁。
- 发射线谱:原子或分子在电子能级跃迁时发出特定波长的光。
- 核磁共振(NMR):利用核磁共振现象来研究分子结构。
9. 统计热力学- 微观状态与宏观状态:通过系统可能的微观状态数来解释宏观热力学性质。
- 玻尔兹曼分布:描述在给定温度下,粒子在不同能量状态上的分布。
物理化学知识点总结

第一章 热力学第一定律一、基本概念系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。
二、基本定律热力学第一定律:ΔU =Q +W 。
焦耳实验:ΔU =f (T ) ; ΔH =f (T ) 三、基本关系式1、体积功的计算 δW = -p e d V恒外压过程:W = -p e ΔV可逆过程:1221ln ln p p nRT V V nRT W ==2、热效应、焓等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ; d H =d U +d(pV )焓与温度的关系:ΔH =⎰21d p T T T C3、等压热容与等容热容热容定义:V V )(T U C ∂∂=;p p )(T H C ∂∂=定压热容与定容热容的关系:nR C C =-V p 热容与温度的关系:C p =a +bT +c’T 2 四、第一定律的应用1、理想气体状态变化等温过程:ΔU =0 ; ΔH =0 ; W =-Q =⎰-p e d V 等容过程:W =0 ; Q =ΔU =⎰T C d V ; ΔH =⎰T C d p 等压过程:W =-p e ΔV ; Q =ΔH =⎰T C d p ; ΔU =⎰T C d V 可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p不可逆绝热过程:Q =0 ; 利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p2、相变化可逆相变化:ΔH =Q =n Δ_H ;W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W3、热化学物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。
摩尔反应热的求算:)298,()298(B H H m f B m r θθν∆=∆∑反应热与温度的关系—基尔霍夫定律:)(])([,p B C T H m p BB m r ∑=∂∆∂ν。
物理化学重要知识点总结及其考点说明

物理化学重要知识点总结及其考点说明
一、化学热力学
1、化学热力学的定义:化学热力学是研究化学反应中物质的热量及能量变化的学科。
2、热力学三定律:第一定律:能量守恒定律;第二定律:热力学第二定律确定有序
能可以被有度能转化;第三定律:热力学第三定律始终指出热力学反应的可能性和温度有关。
3、焓的概念:焓是衡量物质的热力学状态的量,它是物质的热力学特性连续变化的
测量,是物质拥有的热量能量,也可以视为物质拥有的有序能。
4、热力学平衡:热力学平衡是指在不变的温度、压力和其他条件下,恒定的化学反
应发生,直至反应物和生成物的物质形式和化学结构保持不变,热量吸积也变得稳定,这
种状态称为热力学平衡。
二、物理化学
1、物理化学的概念:物理化学是一门融合了物理学和化学的学科,通过应用物理方法,来研究化学性质的变化和分子间的作用及反应,其研究具有多学科的性质。
2、气体的特性:气体的物理性质有很多,如压强、体积、温度、熵、焓等。
质量和
体积的关系为:在一定温度下,气体的质量和体积都成正比。
3、溶质的溶解度:溶解度是衡量溶质溶解在溶剂中的性质,它是指在一定温度、压
力下,溶质在溶剂中的最高溶解量。
溶质的溶解度与温度,压强及溶剂特性有关。
4、化学均衡:化学均衡是指在特定温度和压强下,混合物中物质的各种浓度比例,
产物与原料之间的反应紊乱程度,变化状态的一种稳定平衡状态。
物理化学重点超强总结 doc

物理化学重点超强总结 doc物理化学一、物理性质1、中性:反应物在中性环境下,都呈中性,无味无色;2、不溶解:物质不被水溶解,或是被极性溶剂溶解;3、软硬:反应物可以为软物质,也可以是硬物质。
4、温和性:遇到微弱的酸碱度,反应物仍可稳定存在;5、耐热性:反应物耐温度较高,抗热性较强,热力学性质较好;6、抗寒性:反应物耐冷,能够长时间驻留在这种环境下,抗非温性的腐蚀活动。
二、化学性质1、反应物自身:反应物各自具有一定的化学性质,如碱金属、酸、碱、氧化剂等。
2、反应效应:在不同条件下考虑反应物之间的组成及活性强度,提高反应效率。
3、作用方式:主要是考虑物质凝固、溶解、混合及电离的化学反应和物质的各种性质等。
4、稳定性:考虑反应物的热力学、动力学活性,变成最稳定的化合物,增加反应的稳定性。
5、动力学:动力学说明了反应物之间相互转变时,反应速率随时间变化的规律,以及反应是否会达到较稳定的状态。
6、电化学:电化学研究反应物在电场中的表现,反应物如何受电场作用及其相互作用,表现出的特性。
三、实验方法1、量化:量化是测定反应物的实验方法,主要包括分析法,以量化的方式计算反应物的浓度;2、拉曼光谱:利用拉曼光谱的双光子散射,可以测定反应物的精细化学结构;3、红外光谱:利用红外光谱对反应物的结构和组成进行分析;4、核磁共振:核磁共振光谱是研究反应物基本结构和性质的常用实验方法;5、色谱:利用色谱法可以分析反应物的组成,和控制反应物各自的含量;6、吸收光谱:研究反应物和反应结果对它们吸收特定电子谱讯号之结果所产生的不同响应度。
总之,物理化学包括物理性质、化学性质及实验方法等,反应物的物理性质有:中性、不溶解、软硬、耐热性、抗寒性;反应物的化学性质主要有:反应物自身、反应效应、作用方式、稳定性、动力学和电化学;实验方法有量化、拉曼光谱、红外光谱、核磁共振、色谱和吸收光谱等。
物理化学知识点总结

物理化学每章总结 第1章 热力学第一定律及应用1.系统、环境及性质热力学中把研究的对象(物质和空间)称为系统,与系统密切相关的其余物质和空间称为环境。
根据系统与环境之间是否有能量交换和物质交换系统分为三类:孤立系统、封闭系统和敞开系统。
2.热力学平衡态系统的各种宏观性质不随时间而变化,则称该系统处于热力学平衡态。
必须同时包括四个平衡:力平衡、热平衡、相平衡、化学平衡。
3.热与功 (1) 热与功的定义热的定义:由于系统与环境间温度差的存在而引起的能量传递形式。
以Q 表示,Q>0 表示环境向系统传热。
功的定义:由于系统与环境之间压力差的存在或其它机、电的存在引起的能量传递形式。
以W 表示。
W>0 表示环境对系统做功。
(2) 体积功与非体积功功有多种形式,通常涉及到是体积功,是系统体积变化时的功,其定义为:V p Wd δe -=式中pe 表示环境的压力。
对于等外压过程 )(12e V V p W --=对于可逆过程,因ep p =,p 为系统的压力,则有Vp W V V d 21⎰-=体积功以外的其它功,如电功、表面功等叫非体积功,以W ′表示。
4.热力学能热力学能以符号U 表示,是系统的状态函数。
若系统由状态1变化到状态2,则过程的热力学增量为 12U U U -=∆对于一定量的系统,热力学能是任意两个独立变量的状态函数,即),(V T f U =则其全微分为VV U T T U U TV d d d ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=对一定量的理想气体,则有 0=⎪⎭⎫⎝⎛∂∂TV U 或 U =f (T )即一定量纯态理想气体的热力学能只是温度的单值函数。
5.热力学第一定律及数学表达式 (1) 热力学第一定律的经典描述① 能量可以从一种形式转变为另一种形式,但在转化和传递过程中数量不变 ② “不供给能量而可连续不断做功的机器称为第一类永动机,第一类永动机是不可能存在的。
(2) 数学表达式对于封闭系统,热力学第一定律的数学表达式为W Q U δδd += 或 W Q U +=∆即封闭系统的热力学能的改变量等于过程中环境传给系统的热和功的总和。
物理化学---知识点总结

《物理化学学习要点》热力学第一定律一、 本章框架二、 本章要求1、 了解热力学基本概念:系统、环境、功、热、平衡状态、状态函数、可逆过程等;2、 明确热力学第一定律和热力学能的概念;3、 明确焓、标准摩尔反应焓、标准摩尔生成焓和燃烧焓的定义;4、 熟练掌握在理想气体单纯pVT 变化、相变化及化学变化过程中计算热、功、△U 、△H 的原理和方法;三、考核要求:1.热力学概论1.1 热力学的目的、内容和方法 (了解) 1.2 热力学的一些基本概念1.2.1 体系与环境,体系的性质 (理解)温过程 压过程 容过程 pVT 都变化过程热过程逆相变过程 可逆相变过程准摩尔反应焓 准摩尔燃烧焓 准摩尔生成焓等温反应 流膨胀1.2.2 热力学平衡态和状态函数(理解)2.热力学第一定律2.1 热和功(掌握)2.2 热力学能(掌握)2.3 热力学第一定律的表述与数学表达式(应用)3.体积功与可逆过程3.1 等温过程的体积功(应用)3.2 可逆过程与最大功(理解)4.焓与热容4.1 焓的定义(了解)4.2 焓变与等压热的关系(应用)4.3 等压热容和等容热容(理解)5.热力学第一定律对理想气体的应用5.1 理想气体的热力学能和焓(掌握)5.2 理想气体的C p与C v之差(理解)5.3 理想气体的绝热过程(掌握)6.热力学第一定律对实际气体的应用6.1 节流膨胀与焦耳-汤姆逊效应(了解)7.热力学第一定律对相变过程的应用(掌握)8.化学热力学8.1 化学反应热效应8.1.1 等压热效应与等容热效应(掌握)8.1.2 反应进度(了解)8.2 赫斯定律与常温下反应热效应的计算8.2.1 赫斯定律(应用)8.2.2 标准摩尔生成焓与标准摩尔燃烧焓(掌握)8.3 标准反应焓变与温度的关系—基尔霍夫定律(应用)四、重要概念1、系统与环境;2、 隔离系统、封闭系统、敞开系统;注意:隔离系统Q=0,W=03、 广度性质(加和性:V ,U ,H ,S ,A ,G )强度性质(物质的量,T ,p ); 4、 功W 和热Q ;注意W 与Q 的符号;W 与Q 均为途径函数(非状态函数) 5、 热力学能; 6、 焓; 7、 热容;8、 状态与状态函数; 9、 平衡态; 10、可逆过程;11、 节流过程; 12、 真空膨胀过程; 13、 标准态;14、标准摩尔反应焓,标准摩尔生成焓,标准摩尔燃烧焓五、重要公式与适用条件1. 体积功:W = -p 外dV (封闭系统,计算体积功)2. 热力学第一定律:∆ U = Q +W , d U =Q +W (封闭系统) 3.焓的定义: H =U + pV4.热容:定容摩尔热容 C V ,m =Q V /dT =(∂ U m /∂ T )V 定压摩尔热容 C p ,m = Q p /dT =(∂ H m /∂ T )P 理想气体:C p ,m - C V ,m =R ;凝聚态:C p ,m - C V ,m ≈0理想单原子气体C V ,m =3R /2,C p ,m = C V ,m +R =5R /2 5. 标准摩尔反应焓:由标准摩尔生成焓∆f H B (T )或标准摩尔燃烧焓∆c H B (T )计算 ∆ r H m = ∑ v B ∆ f H B (T )= -∑ v B ∆ c H B (T )6. 基希霍夫公式(适用于相变和化学反应过程)∆ r H m(T 2)= ∆ r H m(T 1)+21T r pm T C dT∆⎰7. 等压摩尔反应热与等容摩尔反应热的关系式Q p -Q V = ∆ r H m (T )-∆ r U m (T )=∑ v B (g )RT 8. 理想气体的可逆绝热过程方程:γγ2211V P V P = 122111--=γγV T V T γγγγ/)1(22/)1(11-=-P T P Tγ=Cvm Cpm /六、各种过程Q 、W 、∆ U 、∆ H 的计算1、 理想气体:等温过程dT =0, ∆ U =∆ H =0, Q =W ;非等温过程,∆ U = n C V ,m ∆ T , ∆ H = n C p ,m ∆ T , 单原子气体C V ,m =3R /2,C p ,m = C V ,m +R = 5R /22、对于凝聚相,状态函数通常近似认为与温度有关,而与压力或体积无关,即 ∆ U ≈∆ H = n C p ,m ∆ T3. 等压过程:p 外=p =常数,非体积功为零W '=0 (1) W = -p 外(V 2-V 1), ∆ H = Q p =dTnC T Tm p ⎰2,, ∆ U =∆ H -∆(pV ),Q =∆ U -W(2) 真空膨胀过程p 外=0,W =0,Q =∆ U理想气体结果:d T =0,W =0,Q =∆ U =0,∆ H =0 (3) 等外压过程:W = -p 外(V 2-V 1) 4. 等容过程 :d V =0 W =0,Q V =∆ U =dTnC T Tm v ⎰2,, ∆ H =∆ U +V ∆ p5.绝热过程:Q =0 (1)绝热可逆过程 W =dVp T T ⎰2= ∆ U =dTnC T Tm v ⎰2,,∆ H =∆ U +∆ pV理想气体:γγ2211V P V P = 122111--=γγV T V T γγγγ/)1(22/)1(11-=-P T P T(2)绝热一般过程:由方程WdVp T T外⎰2= ∆ U = dTnC T Tm v ⎰2, 建立方程求解。
考研必备物理化学核心知识点

考研必备物理化学核心知识点关键信息姓名:____________________________考研年份:______________________1、热力学第一定律11 基本概念111 系统与环境112 热力学平衡态113 状态函数114 过程与途径12 热力学第一定律的表述121 内能的变化与热和功的关系122 热力学第一定律的数学表达式13 体积功的计算131 恒外压过程体积功132 可逆过程体积功14 热的计算141 定容热142 定压热143 绝热过程热的计算2、热力学第二定律21 热力学第二定律的表述211 克劳修斯表述212 开尔文表述22 熵的概念221 熵的定义222 熵的物理意义23 熵变的计算231 简单物理变化过程熵变的计算232 相变过程熵变的计算233 化学反应熵变的计算24 热力学第三定律241 热力学第三定律的表述242 规定熵和标准熵3、多组分系统热力学31 偏摩尔量311 偏摩尔量的定义312 偏摩尔量的集合公式32 化学势321 化学势的定义322 化学势的判据33 理想气体混合物331 道尔顿分压定律332 阿马格分体积定律34 稀溶液的两个经验定律341 拉乌尔定律342 亨利定律35 理想稀溶液351 溶剂的化学势352 溶质的化学势36 非理想溶液361 活度和活度系数362 超额函数4、化学平衡41 化学反应的等温方程411 标准摩尔反应吉布斯函数412 化学反应的等温方程的推导42 平衡常数的表达式421 气相反应平衡常数422 液相反应平衡常数43 平衡常数的测定和计算431 平衡组成的测定432 平衡常数的计算方法44 温度对平衡常数的影响441 范特霍夫方程442 平衡常数与温度的关系图45 其他因素对化学平衡的影响451 压力的影响452 惰性气体的影响453 反应物配比的影响5、相平衡51 相律511 相律的表达式512 相律的应用52 单组分系统相图521 水的相图522 二氧化碳的相图53 二组分系统相图531 气液平衡相图532 液固平衡相图533 生成稳定化合物的相图534 生成不稳定化合物的相图54 三组分系统相图541 等边三角形坐标表示法542 部分互溶三组分系统的相图6、电化学61 电解质溶液611 法拉第定律612 离子的电迁移613 电导、电导率和摩尔电导率614 离子独立运动定律和离子的摩尔电导率615 电导的测定及其应用62 可逆电池621 可逆电池的条件622 可逆电池的热力学623 常见的可逆电池63 不可逆电池631 不可逆电池的热力学632 电极极化633 电解时的电极反应7、表面现象71 表面张力和表面能711 表面张力的定义和单位712 表面能的概念72 弯曲液面的附加压力721 附加压力的产生原因722 拉普拉斯方程73 毛细现象731 毛细现象的原理732 毛细现象的应用74 吸附741 物理吸附和化学吸附742 吸附等温线743 朗缪尔吸附理论8、化学动力学81 化学反应速率的表示方法811 反应进度812 反应速率的定义82 浓度对反应速率的影响821 速率方程822 反应级数823 一级反应824 二级反应825 零级反应83 温度对反应速率的影响831 阿仑尼乌斯方程832 活化能84 催化剂对反应速率的影响841 催化剂的特点842 催化作用的原理9、胶体化学91 胶体的制备和净化911 分散法912 凝聚法913 胶体的净化方法92 胶体的性质921 丁达尔效应922 布朗运动923 电泳和电渗93 胶体的稳定性和聚沉931 胶体稳定性的原因932 胶体的聚沉方法933 电解质对胶体聚沉的影响以上内容涵盖了考研物理化学的核心知识点,您应根据自身实际情况有针对性地进行学习和掌握。
物理化学知识点(全)

物理化学知识点(全)第⼆章热⼒学第⼀定律内容摘要热⼒学第⼀定律表述热⼒学第⼀定律在简单变化中的应⽤ ?热⼒学第⼀定律在相变化中的应⽤ ?热⼒学第⼀定律在化学变化中的应⽤⼀、热⼒学第⼀定律表述U Q W ?=+ d U Q W δδ=+适⽤条件:封闭系统的任何热⼒学过程说明:1、amb W p dV W '=-+?2、U 是状态函数,是⼴度量W 、Q 是途径函数⼆、热⼒学第⼀定律在简单变化中的应⽤----常⽤公式及基础公式2、基础公式热容 C p .m =a+bT+cT 2 (附录⼋) ●液固系统----Cp.m=Cv.m ●理想⽓体----Cp.m-Cv.m=R ●单原⼦: Cp.m=5R/2 ●双原⼦: Cp.m=7R/2● Cp.m / Cv.m=γ理想⽓体状态⽅程 pV=nRT过程⽅程恒温:1122p V p V = ? 恒压: 1122//V T V T = ? 恒容: 1122/ / p T p T = ? 绝热可逆: 1122 p V p V γγ= 111122 T p T p γγγγ--= 111122 TV T V γγ--= 三、热⼒学第⼀定律在相变化中的应⽤----可逆相变化与不可逆相变化过程1、可逆相变化 Q p =n Δ相变H mW = -p ΔV⽆⽓体存在: W = 0有⽓体相,只需考虑⽓体,且视为理想⽓体ΔU = n Δ相变H m - p ΔV凝华H m (T) = -Δ升华H m (T)(有关⼿册提供的通常为可逆相变焓)3、不可逆相变化 Δ相变H m (T 2) = Δ相变H m (T 1) +∫Σ(νB C p.m )dT解题要点: 1.判断过程是否可逆;2.过程设计,必须包含能获得摩尔相变焓的可逆相变化步骤;3.除可逆相变化,其余步骤均为简单变化计算.4.逐步计算后加和。
四、热⼒学第⼀定律在化学变化中的应⽤ 1、基础数据标准摩尔⽣成焓 Δf H θm,B (T) (附录九)标准摩尔燃烧焓 Δc H θm.B (T)(附录⼗)2、基本公式反应进度ξ=△ξ= △n B /νB = (n B -n B.0) /νB ?由标准摩尔⽣成焓计算标准摩尔反应焓 Δr H θm.B (T)= ΣνB Δf H θm.B (T) ?由标准摩尔燃烧焓计算标准摩尔反应焓 Δr H θm.B (T)=-ΣνB Δc Hθm.B (T)(摩尔焓---- ξ=1时的相应焓值)恒容反应热与恒压反应热的关系Q p =Δr H Q v =Δr U Δr H =Δr U + RT ΣνB (g) ?Kirchhoff 公式微分式 d Δr H θm (T) / dT=Δr C p.m积分式 Δr Hθm (T 2) = Δr H θm (T 1)+∫Σ(νB C p.m )dT本章课后作业:教材p.91-96(3、4、10、11、16、17、38、20、23、24、28、30、33、34)第三章热⼒学第⼆定律内容摘要1、导出三个新的状态函数——熵、亥姆霍兹函数、吉布斯函数2、过程⽅向和限度的判断依据——熵判据;亥⽒函数判据;吉⽒函数判据⼀、卡诺循环(热功转换的理论模型)1、卡诺循环的组成1、恒温可逆膨胀 Q 1 = —W 1= nRT 1 ln (V 2/V 1)2、绝热可逆膨胀 Q ’=0 W ’=nC v.m (T 2—T 1)3、恒温可逆压缩 Q 2 = —W 2 = nRT 2 ln (V 4/V 3)4、绝热可逆压缩 Q ’’ = 0 W ’’ = nC v.m (T 1—T 2)∵△U = 0 (V 2/V 1) = —(V 4/V 3)∴-W = Q = Q 1 + Q 22、热机效率通式 1211 = -=+W Q Q Q Q η可逆热机 122111= -==1-Q Q T W Q Q T η+ 讨论:1、可逆热机效率只取决于⾼、低温热源的温度 2、低温热源和⾼温热源温度之⽐越⼩,热机效率越⾼ 3、温度越⾼,热的品质越⾼结论:1、卡诺热机效率最⼤2、卡诺循环的热温商之和等于零 ∑(Q/T )=03、卡诺定理“在⾼低温两个热源间⼯作的所有热机中,以可逆热机的热机效率为最⼤。
物理化学复习重点

物理化学总复习 第一章 热力学第一定律δWe= - p e d V d U =δQ +δW基本要求1 熟悉基本概念,系统与环境、状态与状态函数、过程与途径、热和功、准静态过程与可逆过程、能与焓等。
2 掌握各种过程Q 、W 、U ∆和H ∆的计算。
3 掌握应用Hess 定律、生成焓及燃烧焓计算反应热的方法。
4 熟悉反应热与温度的关系,能用基尔霍夫定律求算各温度的反应热。
容提要第二节 热力学基本概念1系统与环境:敞开系统、封闭系统、孤立系统。
2系统的性质 3热力学平衡态 4状态函数与状态方程 5过程与途径 6热和功第三节 热力学第一定律1热力学第一定律 2 热力学能3 热力学第一定律的数学表达式第四节 可逆过程与体积功1体积功 2功与过程 3可逆过程 第五节 焓1焓的定义H=U+ pV2恒容热效应和恒压热效应V Q U =∆ p Q H =Δ 第六节 热容1 热容的定义。
2 定容热容与定压热容V C p C 第七节 热力学第一定律的应用1 热力学第一定律应用于理想气体 2理想气体的C p 与V C 之差 3 理想气体的绝热过程 第八节 热化学1化学反应的热效应 2 反应进度 3 热化学方程式第九节 化学反应热效应的计算1Hess 定律2生成焓和燃烧焓 O mf H ∆ Om c H ∆3反应热与温度的关系——基尔霍夫定律第二章 热力学第二定律d 0Q S Tδ-≥2221,,1112ln ln ln ln V m p m T V T p S nC nR nC nR T V T p ∆=+=+基本要求1理解热力学第二定律的建立过程,S 的引入及引入F 和G 的原因; 2掌握克劳修斯不等式,过程可逆性判断; 3掌握∆S 、∆F 、∆G 在各种变化过程中的计算;变化过程单纯状态函数变化相变化学变化恒温过程恒压过程恒容过程绝热过程恒温恒压可逆相变恒压过程恒容过程可逆过程不可逆过程4理解热力学第三定律及规定熵,掌握在化学变化中标准状态函数的计算;5 掌握吉布斯-亥姆霍兹公式; 容提要第一节自发过程的特征 第二节 热力学第二定律克劳修斯表述“热量由低温物体传给高温物体而不引起其它变化是不可能的”。
大学课程《物理化学》各章节知识点汇总

A (p1V1)
p
D
A S1(等 温)C S2 (等容) B
S
S1
S2
nR ln
V2 V1
C T2
T1 V
dT T
A S '1(等温) D S '2(等压) B
S S '1 S '2 nR ln
p1 p2
C T2
T1 p
dT T
B (p2V2)
T2
C T1
V
dU TdS pdV
dH TdS Vdp (
dU TdS pdV
U S
V ,ni
T
,
U V
S ,ni
p
G U pV TS
dU dG pdV Vdp TdS SdT
dG SdT Vdp BdnB
B
dU TdS pdV BdnB
B
dU TdS pdV
U
nB
dnB
S ,V ,n j B
U B
某系统经一过程由状态1变为状态2之后,如果采用任何 方法都无法使系统和环境都完全复原,则该过程为不可 逆过程。
准静态压或膨胀过程,如果没有因摩擦而造成能量 损失等情况下就是一可逆过程。
可逆过程的主要特点: 1.可逆过程是以无限小的变化进行,系统始终无限接近 平衡态。 2.系统在可逆过程中作最大功,环境在可逆过程中作最 小功即可逆过程效率最高。
B
dH TdS Vdp BdnB
B
dF SdT pdV BdnB
B
dG SdT Vdp BdnB
B
纯理想气体的化学势
p
T
Gm p
T
Vm
d Vmdp
(T , p) (T ) RT ln p
物理化学复习要点

R:独立的化学平衡数 R’:同一相中不同物种组成之间的独立关系数(浓度 限制条件), 一相中各物质的摩尔分数之和为1这个 关系除外
2. 相律: f +Φ=C + 2 (重点)
(只适用于平衡体系)
式中“2”是指影响体系的外界因素只有T和P 两个因素。
Φ = C +2 – f f = 0, Φ最多
三、毛细现象
在一定温度下,毛细管越细, 液体的密度越小,液体对管壁 润湿越好,那么液体在毛细管 内上升越高
h 2 cos 液 gR
当 9 ,0 co s 0 ,h 0液体能润湿管壁,
形成凹液面,管内液体将上升。
当 9 ,0 co 0 s,h 0 液体不能润湿管壁,
凝固点降低(析出固态纯溶剂)
ΔT = k b b B
nB mA
f
fB
沸点升高
mol
kg
ΔT 1
b
=
kbbB
bB
nB mA
mol kg 1
渗透压 πV=nBRT , π=CBRT 浓度一样是否意味着变化量一致?
第六章 相平衡
一、相律(重点)
1.明确相、相数Φ、独立组分数 C 、自由度
f 等的含义及如何确定它们的数值
★等容过程: W=0, Qv =ΔU=CV(T2-T1) ΔH=CP(T2-T1)
★等压过程: W=-P外(V2﹣V1), ΔU=CV(T2-T1) QP=ΔH=CP(T2-T1)
2.等温等压相变(重点)
等温等压可逆相变: W= -P(V2﹣V1), QP=Δ相变H=nΔ相变Hm, ΔU=QP﹣W 等温等压不可逆相变----一般设计一个可逆过程计算
等温等压可逆相变 ΔS=Δ相变H/T ΔG=0
物理化学知识点(全)(良心出品必属精品)

吁瑟沂奄佯幌皋宦赃嘎浓虚敌隧记超碟橇授敢匹塞娩伟诚垒桅检瞅置停簧伪靖铲叹箩舷买磺鸵晚浊鲸赎弘绅显伪房拘抄溪法红酱钦傻晃晾泻羌述授臃图墅狈霖棒购叙力辅刚汉万莫造麦林罚播袍呐镶略秤络亿特览姿祈蛮桔淡锣畴掀抛骑握胁嘻莎振讹娥必缅吨北瓶橙赁痔抄敝剖拭毕徊嘶舟母纬造俐县滋绰凝肺韦匈嘿袁肃厚眉咎猿蚤苹踏宵卤横准安镊絮庄魂存跳斥摧辆城瘴借屑垫摇他呀鲜散规瞄饵今予槽惯纲海铅翅耙垣辩畴葬叭沉辕剂龙琅朔危透茶阎赵望咬罩熄衙软求霜谈森痕燕剑帮童咽糜鳃环莉防啪声硫弃必针猾床条迄结谋讥哄贤谚著惨逼钱弘垂勉盒勋难欢醉咸扰瑞吨伪蚜必悼既1第二章热力学第一定律 内容摘要热力学第一定律表述热力学第一定律在简单变化中的应用 热力学第一定律在相变化中的应用 热力学第一定律在化学变化中的应用 一、热力学第一定律表述U Q W ∆=+ dU Q W δδ=+适用条件:封闭系统的任何热力学过程 说明:1、amb W p dV W '=-+⎰ 2、U 是状态函数,是广度量W 、Q 是途径函数 二、热力学第一定律在简单变化中的应用----常用公式及基础公式2、基础公式热容 C p .m =a+bT+cT 2 (附录八) ● 液固系统----Cp.m=Cv.m ● 理想气体----Cp.m-Cv.m=R ● 单原子: Cp.m=5R/2 ● 双原子: Cp.m=7R/2 ● Cp.m / Cv.m=γ理想气体• 状态方程 pV=nRT• 过程方程 恒温:1122p V p V = • 恒压: 1122//V T V T = • 恒容: 1122/ / p T p T = • 绝热可逆: 1122 p V p V γγ= 111122 T p T p γγγγ--=111122 TV T V γγ--= 三、热力学第一定律在相变化中的应用----可逆相变化与不可逆相变化过程 1、 可逆相变化 Q p =n Δ相变H mW = -p ΔV无气体存在: W = 0有气体相,只需考虑气体,且视为理想气体ΔU = n Δ相变H m - p ΔV2、相变焓基础数据及相互关系 Δ冷凝H m (T) = -Δ蒸发H m (T)Δ凝固H m (T) = -Δ熔化H m (T) Δ凝华H m (T) = -Δ升华H m (T)(有关手册提供的通常为可逆相变焓)3、不可逆相变化 Δ相变H m (T 2) = Δ相变H m (T 1) +∫Σ(νB C p.m )dT解题要点: 1.判断过程是否可逆;2.过程设计,必须包含能获得摩尔相变焓的可逆相变化步骤;3.除可逆相变化,其余步骤均为简单变化计算.4.逐步计算后加和。
最新物理化学打印完整版

物理化学核心教程1 P132 2. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。
3 试问,这两容器中气体的温度是否相等?4 答:不一定相等。
根据理想气体状态方程,若物质的量相同,则温度才会相等。
5 3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一6 汞滴将两边的气体分开。
当左球的温度为273 K ,右球的温度为293 K 时,汞滴7 处在中间达成平衡。
试问:8 (1)若将左球温度升高10 K ,中间汞滴向哪边移动? 9 (2)若两球温度同时都升高10 K, 中间汞滴向哪边移动? 10 答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。
11 (2)两球温度同时都升高10 K ,汞滴仍向右边移动。
因为左边起始温12 度低,升高10 K 所占比例比右边大,283/273大于303/293,所以膨胀的体积(或13 保持体积不变时增加的压力)左边比右边大。
14 P2415 1. 在两个容积均为V 的烧杯中装有氮气,烧瓶之间有细管相通,细管的体积16 可以忽略不计。
若将两烧杯均浸入373 K 的开水中,测得气体压力为60 kPa 。
17 若一只烧瓶浸在273 K 的冰水中,另外一只仍然浸在373 K 的开水中,达到平衡18 后,求这时气体的压力。
设气体可以视为理想气体。
19 解: 12n n n =+ 根据理想气体状态方程201221122p V p V p V RT RT RT =+ 化简得: 12112211()p p T T T =+ 21 221212732260 kPa 50.7 kPa 273373T p p T T =⨯=⨯⨯=++ 225. 有氮气和甲烷(均为气体)的气体混合物100 g ,已知含氮气的质量分数23 为0.31。
在420 K 和一定压力下,混合气体的体积为9.953dm 。
求混合气体的24 总压力和各组分的分压。
假定混合气体遵守Dalton 分压定律。
初三物理化学知识点(含目录,精编打印版)

第二章简单的运动 (1)第三章声现象 (1)第四章热现象 (1)第五章光的反射 (2)第六章光的折射 (3)第七章质量和密度 (4)第八章力 (4)第九章力和运动 (5)第一单元走进化学世界 (6)第二单元我们周围的空气 (6)第三单元自然界的水 (7)第四单元物质构成的奥秘 (7)第五单元化学方程式 (8)第六单元碳和碳的氧化物 (8)第七单元燃料及其利用 (8)第八单元金属和金属材料 (9)第九单元溶液 (10)第十单元酸和碱 (10)第十一单元盐化肥 (11)第十二单元化学与生活 (11)初中化学知识小辑 (11)基本概念: (13)基本知识、理论: (14)第二章简单的运动1机械运动:物体位置的变化。
2运动和静止都是相对的。
3参照物:研究机械运动时,所选择的标准物体。
4匀速直线运动:快慢不变、经过的路线是直线的运动。
5速度:在匀速直线运动中,速度等于运动物体单位时间内通过的路程。
速度是表示物体运动快慢的物理量。
速度计算公式是:v=s/t7变速运动:运动物体的速度是变化的,这样的运动叫--8平均速度:物体通过一段路程的平均快慢程度。
第三章声现象1声音的产生:声音是由物体的振动产生的。
人发声靠声带,鸟发声靠气管和支气管交界处的鸣膜的振动蟋蟀是靠左右翅的摩擦的振动发声的。
2声音的传播:必须有介质。
如空气、木、铁等。
3声音的场速度是340米/秒(声音在不同介质中传播速度不同)4人要能分辨出回声,则回声要比发声晚0.1秒以上。
最少也要0.1秒。
5乐音三要素:音调、响度、音色。
在响度和音调相近的情况下主要通过音色来判断发声体。
6音调:人们所感到的声音的高低。
它与频率有关:频率越大,音调越高7频率:物体在1秒内振动的次数叫频率。
8振幅:物体在振动时偏离原来位置的最大距离。
9响度:人耳感觉到的声音的大小。
它与振幅有关:振幅越大响度越大。
10四大污染:噪声污染、水污染、大气污染、固体废物污染。
11噪声:从物理角度上讲,噪声是物体杂乱无章的振动产生的。
物理化学内容要点

1.化学反应速率的定义(1)反应的转化速率的定义设有化学反应,其计量方程为该化学反应的转化速率可由下式定义为设反应的参与物的物质的量为n B时,因有,所以上式可改写成(2)定容反应的反应速率对于定容反应,反应系统的体积不随时间而变,则物质B的量浓度,于是有定义上式作为定容反应的反应速率的常用定义。
由上式对反应aA+bB → yY+zZ则有式中,叫作反应物A、B的消耗速率:分别为生成物Y、Z的增长速率。
在气相反应中,常用混合气体组分的分压的消耗速率或增长速率来表示反应速率,若为理想混合气体,则有p B=c B RT,于是有若定义 xA通常称为A的动力学转化率。
反应系统为定容时,则有c A=c A,0(1-x A)2.反应速率与浓度的关系(1)反应速率与浓度关系的经验方程对于反应:aA+bB →yY+zZ其反应速率与反应物的物质的量浓度的关系可通过实验测定得到:该式叫化学反应的速率方程或叫化学反应的动力学方程。
式中α,β分别叫对反应物A及B的反应级数,而α+β=n叫反应的总级数,k A叫对反应物A的宏观反应速率系数。
(2)反应速率方程的微分和积分形式①一级反应若实验确定某反应物A的消耗速率与反应物A的物质的量浓度一次方成正比,则为一级反应,其微分速率方程为其积分速率方程或一级反应的特征(i)反应速率系数kA的单位为[t]-1。
(ii)反应物A的半衰期与初始浓度cA,0无关;(iii) ln{cA}~{t}图为一直线。
②二级反应(i)反应物只有一种的情况若实验确定某反应物A的反应速率与A的物质的量浓度的二次方成正比,即为二级反应,其微分速率方程可表述为积分后,得或(ii)反应物有两种的情况如反应aA+bB→y+zZ若实验确定,反应物A的消耗速率与反应物A及B各自物质的量浓度的一次方成正比,则总反应级数为二级,其微分速率方程可表述为其积分速率方程为或当a=1,b=1,即反应的计量方程为A+B→Y+Z其积分速率方程为为或只有一种反应物的二级反应的特征(i)二级反应的速率系数kA的单位为[t]-1·[c]-1。
物理化学要点

热力学第一定律一、重要概念系统与环境、隔离系统、封闭系统、敞开系统、广度(延)性质或容量性质(加和性:V ,U ,H ,S ,A ,G ),强度性质(摩尔量,T ,p ),功W ,热Q ,热力学能,焓,热容,状态与状态函数,平衡态,过程函数(Q ,W ),可逆过程,真空膨胀过程,标准态(纯态,θp ),标准反应焓,标准摩尔生成焓[△f H Өm (B,β,T )],标准摩尔燃烧焓[△c H Өm (B,β,T )]。
二、重要公式与定义式1. 体积功:V p W d δe -=2. 热力学第一定律:W Q U +=∆,W Q U δδd +=3. 焓的定义: pV U H +=4. 热容等(恒)容摩尔热容:VV V V T U T U n Tn Q C ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂==m m ,1δd等(恒)压摩尔热容:pp p p T H T H n Tn Q C ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂==m m ,1δd 理想气体摩尔热容之间的关系:R C C V p =-m ,m ,; 凝聚态物质摩尔热容之间的关系:0m ,m ,≈-V p C C ; 单原子理想气体分子摩尔热容:R C V 23m ,=R Cp 25m,=双原子理想气体分子摩尔热容:RC V 25m ,= RCp 27m,=5. 标准摩尔反应焓:由标准摩尔生成焓[),(B,θmf T H β∆]或标准摩尔燃烧焓[),(B,Θm c T H β∆]计算标准摩尔反应焓:),(B ,),(B ,)(Θm c BB BΘm f BΘm r T H T H T H βνβν∆-=∆=∆∑∑6. 基希霍夫公式(适用于相变和化学反应过程)⎰∆+∆=∆21d )()(m ,r 1Θmr 2Θmr T T p TC T HT H7. 等(恒)压摩尔反应热(焓)与等容摩尔反应热(焓)的关系式Q p -Q V =r ∆H Өm (T )-r ∆U Өm (T ) =∑RT (g)B ν 8. 理想气体的可逆绝热过程方程:γγ2211V p V p =, p 1V 1/T 1 = p 2V 2/T 2,γ=C p ,m /C V ,m三、各种过程Q 、W 、U ∆、H ∆的计算1.解题时可能要用到的内容(1) 对于气体,题目没有特别声明,一般可认为是理想气体,如N 2,O 2,H 2等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理化学核心教程P132. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。
试问,这两容器中气体的温度是否相等?答:不一定相等。
根据理想气体状态方程,若物质的量相同,则温度才会相等。
3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边的气体分开。
当左球的温度为273 K ,右球的温度为293 K 时,汞滴处在中间达成平衡。
试问:(1)若将左球温度升高10 K ,中间汞滴向哪边移动?(2)若两球温度同时都升高10 K, 中间汞滴向哪边移动?答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。
(2)两球温度同时都升高10 K ,汞滴仍向右边移动。
因为左边起始温度低,升高10 K 所占比例比右边大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边比右边大。
P241. 在两个容积均为V 的烧杯中装有氮气,烧瓶之间有细管相通,细管的体积可以忽略不计。
若将两烧杯均浸入373 K 的开水中,测得气体压力为60 kPa 。
若一只烧瓶浸在273 K 的冰水中,另外一只仍然浸在373 K 的开水中,达到平衡后,求这时气体的压力。
设气体可以视为理想气体。
解: 12n n n =+ 根据理想气体状态方程 1221122p V p V p V RT RT RT =+ 化简得: 12112211()p p T T T =+ 221212732260 kPa 50.7 kPa 273373T p p T T =⨯=⨯⨯=++ 5. 有氮气和甲烷(均为气体)的气体混合物100 g ,已知含氮气的质量分数为0.31。
在420 K 和一定压力下,混合气体的体积为9.953dm 。
求混合气体的总压力和各组分的分压。
假定混合气体遵守Dalton 分压定律。
已知氮气和甲烷的摩尔质量分别为281g mol -⋅和161g mol -⋅。
解:()210.31100 g N 1.11 mol 28 g molm n M -⨯===⋅ 41(10.31)100 g (CH ) 4.31 mol 16 g mol n --⨯==⋅ 1133(1.11+4.31) mol 8.314 J mol K 420 K 1902 kPa 9.9510 mnRT p V ---⨯⋅⋅⨯===⨯ 2224(N ) 1.11(N )1902 kPa=389.5 kPa (N )(CH ) 1.11 4.31n p p n n =⨯=⨯++ 4(CH )(1902389.5) kPa=1512.5 kPa p =-P65一、思考题1. 判断下列说法是否正确,并简述判断的依据(1)状态给定后,状态函数就有定值,状态函数固定后,状态也就固定了。
答:是对的。
因为状态函数是状态的单值函数。
(2)状态改变后,状态函数一定都改变。
答:是错的。
因为只要有一个状态函数变了,状态也就变了,但并不是所有的状态函数都得变。
(3)因为ΔU =Q V ,ΔH =Q p ,所以Q V ,Q p 是特定条件下的状态函数? 这种说法对吗?答:是对的。
∆U ,∆H 本身不是状态函数,仅是状态函数的变量,只有在特定条件下与Q V ,Q p 的数值相等,所以Q V ,Q p 不是状态函数。
(4)根据热力学第一定律,因为能量不会无中生有,所以一个系统如要对外做功,必须从外界吸收热量。
答:是错的。
根据热力学第一定律U Q W ∆=+,它不仅说明热力学能(ΔU )、热(Q )和功(W )之间可以转化,有表述了它们转化是的定量关系,即能量守恒定律。
所以功的转化形式不仅有热,也可转化为热力学能系。
(5)在等压下,用机械搅拌某绝热容器中的液体,是液体的温度上升,这时ΔH =Q p =0答:是错的。
这虽然是一个等压过程,而此过程存在机械功,即W f ≠0,所以ΔH ≠Q p 。
(6)某一化学反应在烧杯中进行,热效应为Q 1,焓变为ΔH 1。
如将化学反应安排成反应相同的可逆电池,使化学反应和电池反应的始态和终态形同,这时热效应为Q 2,焓变为ΔH 2,则ΔH1=ΔH2。
答:是对的。
Q是非状态函数,由于经过的途径不同,则Q值不同,焓(H)是状态函数,只要始终态相同,不考虑所经过的过程,则两焓变值∆H1和∆H2相等。
5. 用热力学概念判断下列各过程中功、热、热力学能和焓的变化值。
第一定律数学表示式为ΔU = Q + W。
(1)理想气体自由膨胀(2) van der Waals气体等温自由膨胀(3) Zn(s)+ 2HCl(l)= ZnCl2 + H2 (g)进行非绝热等压反应(4) H2(g)+ Cl2(g)= 2HCl(g)在绝热钢瓶中进行(5)常温、常压下水结成冰(273.15 K,101.325kPa)答:(1)W = 0 因为自由膨胀外压为零。
Q = 0 理想气体分子间没有引力。
体积增大分子间势能不增加,保持温度不变,不必从环境吸热。
∆U = 0 因为温度不变,理想气体的热力学能仅是温度的函数。
∆H = 0 因为温度不变,理想气体的焓也仅是温度的函数。
(2)W = 0 因为自由膨胀外压为零。
Q> 0 范氐气体分子间有引力。
体积增大分子间势能增加,为了保持温度不变,必须从环境吸热。
∆U >0 因为从环境所吸的热使系统的热力学能增加。
∆H >0 根据焓的定义式可判断,系统的热力学能增加,焓值也增加。
(3)W <0 放出的氢气推动活塞,系统克服外压对环境作功。
Q <0 反应是放热反应。
∆U <0 系统既放热又对外作功,热力学能下降。
∆H < 0 因为这是不做非膨胀功的等压反应,∆H = Q p。
(4)W = 0 在刚性容器中是恒容反应,不作膨胀功。
Q = 0 因为用的是绝热钢瓶∆U = 0 根据热力学第一定律,能量守恒,热力学能不变。
∆H >0 因为是在绝热刚瓶中发生的放热反应,气体分子数没有减少,钢瓶内温度升高,压力也增高,根据焓的定义式可判断焓值是增加的。
(5)W <0 常温、常压下水结成冰,体积变大,系统克服外压对环境作功。
Q < 0 水结成冰是放热过程。
∆U < 0 系统既放热又对外作功,热力学能下降。
∆H < 0 因为这是等压相变,∆H = Q p 。
P683. 在373 K 恒温条件下,计算1 mol 理想气体在下列四个过程中所做的膨胀功。
已知始、终态体积分别为25 dm 3和100 dm 3 。
(1)向真空膨胀;(2)等温可逆膨胀;(3)在外压恒定为气体终态压力下膨胀;(4)先外压恒定为体积等于50 dm 3 时气体的平衡压力下膨胀,当膨胀到50 dm 3以后,再在外压等于100 dm 3 时气体的平衡压力下膨胀。
试比较四个过程的功,这说明了什么问题?解:(1)向真空膨胀,外压为零,所以20W =(2)等温可逆膨胀 1111225ln 1 mol 8.314 J mol K 373 K ln 4299 J 100V W nRT V --==⨯⋅⋅⨯⨯=- (3)恒外压膨胀 3e 21221212()()()nRT W p V V p V V V V V =--=--=-- 11331 mol 8.314 J mol K 373 K (0.10.025)m 2326 J 0.1 m--⨯⋅⋅⨯=-⨯-=- (4)分两步恒外压膨胀 4e,121e,232213223()()()()nRT nRT W p V V p V V V V V V V V =----=---- 12232550(11)(2)50100V V nRT nRT nRT V V =-+-=+-=- 111 mol 8.314 J mol K 373 K 3101 J --=-⨯⋅⋅⨯=-说明作功与过程有关,系统与环境压差越小,膨胀次数越多,做的功也越大。
8. 设有300 K 的1 mol 理想气体作等温膨胀,起始压力为1500kPa ,终态体积为10 dm 3。
试计算该过程的Q ,W ,∆U 和 ∆H 。
解:该过程是理想气体等温过程,故 ΔU =ΔH = 0始态体积 V 1为: 113111 1 mol 8.314 J mol K 300 K 1.66 dm 15100 kPanRT V p --⨯⋅⋅⨯===⨯ 1112 1.66 ln 1 mol 8.314 J mol K 300 K ln 4.48 kJ 10V W nRT V --==⨯⋅⋅⨯⨯=- 4.48 kJ Q W =-=11. 有1 m 3的单原子分子的理想气体,始态为273 K ,1000kPa 。
现分别经(1)等温可逆膨胀;(2)绝热可逆膨胀;(3)绝热等外压膨胀,到达相同的终态压力100 kPa 。
请分别计算终态温度T 2、终态体积V 2和所做的功。
解:(1)理想气体的等温可逆膨胀过程,pV =常数,则有: T 2=T 1=273K 32112m 010100011000..p V p V =⨯== mol 584402733148011010003111...RT V p n =⨯⨯⨯== W = -12ln V V nRT = -21ln p p nRT ∴ W = -440.58×8.314×273×1001000ln = -2302.6kJ (2)绝热可逆膨胀, Q =0,则有ΔU = W 。
R C m V 23=,,R C m p 25=,,则35==m V m p C C ,,γ 又 ∵ γγγγ221111T p T p --=,则11212T p p T γγ-⎪⎪⎭⎫ ⎝⎛= ∴ 11212T p p T γγ-⎪⎪⎭⎫ ⎝⎛==273100100035351⨯⎪⎭⎫ ⎝⎛-// = 108.6KW =ΔU = nC V,m ( T 2 -T 1) = 440.58×23×8.314×( 108.6 -273) = -903.3 kJ (3)绝热恒外压膨胀, Q =0,则有ΔU = W 。
即 -p e (V 2-V 1) = nC V,m ( T 2 -T 1)-2p (22p nRT -11p nRT ) = nC V,m ( T 2 -T 1) 则有:- (2T -112p T p ) = 23×( T 2 -T 1) - (2T -1000273100⨯) = 23×( T 2 -273) T 2 =174.7K 33222m 46101007174314858440....p nRT V =⨯⨯⨯== W =ΔU = nC V,m ( T 2 -T 1) = 440.58×23×8.314×( 174.7 -273) = -540.1 kJ 12.在373K 和101.325kPa 时,有1molH 2O (l )可逆蒸发成同温、同压的H 2O (g ),已知H 2O (l )的摩尔气化焓Δvap H m =40.66kJ·mol -1。