线性静力学分析实例

线性静力学分析实例
线性静力学分析实例

学号:p1******* 姓名:朱四海

线性静力学分析实例

1.1 问题的描述

一部件结构如图1-1所示,一端面受固定约束,另一端A、B两点受相反方向切向力,求受载后的Mises应力、位移分布。

ν

材料性质:弹性模量E=2e5,泊松比3.0

=

图1-1 部件模型

1.2 启动ABAQUS

启动ABAQUS有两种方法,用户可以任选一种。

(1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 -- ABAQUS/CAE。

(2)在操作系统的DOS窗口中输入命令:abaqus cae。

启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。

1.3 创建部件

在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建部件的几何模型。

(1)创建部件。对于如上图1-1所示的部件模型,可以先画出二维截面,再通过拉伸得到。步骤如下:

单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。

图1-2 Create Part对话框

在Name(部件名称)后面输入ep2,Modeling Space(模型所在空间)设为3D,Shape选择Solid(实体),Type采用默认的Extrusion,在Approximate size里面输入600。单击Continue...按钮。

(2)绘制部件二维截面图。ABAQUS/CAE自动进入绘图环境,左侧的工具区显示出绘图工具按钮,视图区内显示栅格,视图区正中两条相互垂直的点划线即当前二维区域的X轴和Y轴。二者相交于坐标原点。

选择绘图工具箱中的工具,窗口提示区显示Pick a center point for the circle--or enter X,Y(选择一个中心点的圆,或输入X,Y的坐标),如图1-3所示。

图1-3 输入圆心坐标

输入圆上任意点坐标为(0,50),回车,第一个圆形就画出来了。继续画第二个圆,圆心坐标为(0,0),圆上任意一点(0,40)。

利用工具,以及和工具画出部件的二维截图,如图1-4所示.

图1-4 部件二维截图

(3)由于前面操作中,已经选择了Extrusion类型,在上一步退出后,ABAQUS 即弹出“编辑基本拉伸”对话框。在该窗口中,输入拉伸尺寸450,如图1-5所示。然后单击OK按钮,视图区就出现了部件的结构图,如图1-6所示。

图1-5“编辑基本拉伸”对话框

图1-6 形成的部件结构图

(4)保存模型。在下一步之前,单击窗口顶部工具栏中的按钮来保存所建立的模型。键入希望保存的文件名,ABAQUS/CAE会自动加上后缀.cae。用户还可以在主菜单中选择File--Save对所建立的模型进行保存操作。此处把该部件取名为eq2。

1.4 创建材料和截面属性

在窗口左上角Module(模块)列表中选择Property(特性)功能模块,按照以下步骤来定义材料。

(1)创建材料。单击工具区左侧的(Create Material)按钮,或者在主菜单中选择Material--Create,弹出Edit Material对话框(也可以双击左侧模型树中的Material来完成此操作),如图1-7所示。

图1-7 Edit Material对话框

在Name(材料名称)后面输入Steel,单击此对话框中的Mechanical(力学特性)--Elasticity(弹性)。在数据表中设置Young’s Modulus(弹性模量)为2e5,Poisson’s Ratio (泊松比)为0.3,其余参数不变,单击OK按钮。

(2)创建截面属性。单击左侧工具区的(Create Section)按钮,或者在主菜单中选择Section--Create,弹出Create Section对话框(也可以双击左侧模型树中的Section 来完成此操作),Name改为eq1Section,保持其他默认参数不变,单击Continue...按钮。

在弹出的Edit Section对话框(见图1-8)中,默认的参数(Material:Steel;Type:Solid,Homogeneous;Plane stress/strain thickness:1)不变,单击OK按钮。

图1-8 Edit Section对话框

(3)给部件赋予截面属性。单击左侧工具区中的(Assign Section)按钮,或者在主菜单中选择Assign--Section,单击视图区中的部件模型,ABAQUS/CAE以红色高亮显示被选中,在视图区单击鼠标中键,弹出Edit Section Assignment对话框,如图1-9所示,单击OK按钮。

图1-9 Edit Section Assignment对话框

1.5 定义装配件

整个分析模型是一个装配件,前面的Part功能模型中创建的各个部件将在Assembly 功能模块中装配起来。

具体的操作方式:在窗口左上角Module列表中选择Assembly(装配)功能模块。

单击左侧工具区的(Instance Part)按钮,在弹出的Create Instance对话框中,前面创建的部件自动被选中,默认参数为Instance Type:Dependent(mesh on part),单击OK 按钮。

1.6 设置分析步

ABAQUS/CAE会自动创建一个初始分析步(Initial step),可以在其中施加边界条件,用户必须自己创建后续分析步(analysis step),用来施加载荷。具体操作方法如下。

(1)在窗口左上角的Module列表中选择Step(分析步)功能模块。单击左侧工具区的(Create Step)按钮,或者在主菜单中选择Step--Create(也可以直接单击左侧模型树中的Steps来完成此项操作)。

(2)在弹出的Create Step对话框中,在Name后面输入分析步的名称,此处将默认值Step-1改为loadeq2。其余参数如图1-10 所示(Procedure type:General;选择Static General),单击Continue...按钮。

(3)

图1-10 Create Step对话框

(4)在弹出的Edit Step对话框(见图1-11)中,Description后面改为Load the top of the eq2,其余参数都保持默认值,单击OK按钮,完成操作。

图1-11 Edit Step对话框

1.7 定义边界条件和载荷

在窗口左上角的Module列表中选择Load(载荷)功能模块,定义边界条件和载荷。

(1)定义部件的边界条件

单击工具区左侧的(Create Boundary Condition)按钮,在弹出的Create Boundary Condition对话框中(见图1-12),在Name后面输入Fixed,将Step设为Initial,其他为默认值,单击Continue...按钮。

图1-12 Create Boundary Condition对话框

此时窗口底部的提示区信息变为Select regions for the boundary condition,选择部件左侧的面,ABAQUS/CAE以红色高亮度的显示选中的平面,在视图区中单击鼠标中键。弹出的窗口如图1-13所示,选择ENCASTRE(U1=U2=U3=UR1=UR2=UR3=0),单击OK 按钮,完成操作。

图1-13 Edit Boundary Condition对话框

(2)施加载荷

单击左侧工具区的(Create Load)按钮,创建load-1,Step设为loadeq2,单击Continue...按钮,在部件上选择受力点,单击,红色即为选中,点击鼠标中键,在弹出的Edit load对话框中输入CF2为50,单击OK按钮,完成操作(见图1-14、图1-15);同样方法创建load-2。

图1-14 Create Load对话框图1-15 Edit Load对话框

(3)定义边界条件和施加载荷后的部件模型如图1-16所示。

图1-16定义边界条件和施加载荷后的模型

1.8 划分网格

在窗口左上角的Module列表中选择Mesh(网格)功能模块,在窗口顶部的环境栏中把Object选项设为Part:eq2,如图1-17所示,即为部件eq2划分网格,而不是为整个装配件划分网格。

图1-17 把划分网格的对象设置为Part:eq2

(1)设置网格控制参数

在主菜单中选择Mesh--Controls命令,或单击左侧工具区的(Assign Mesh Controls)按钮,弹出Mesh Controls(网格控制参数)对话框,将Element Shape(单元形状)设置为Hex,如图1-18所示,单击OK按钮。

图1-18 Mesh Controls对话框

(2)设置单元类型

单击左侧工具区的(Assign Element Type)按钮,或者在主菜单中选择Mesh--Element Type,弹出Element Type对话框,如图1-19所示。

图1-19 Element Type对话框

单击Hex标签项,选择Reduced integration,对话框中就出现了C3D8R单元类型的信息提示。其余参数采用默认值,单击OK按钮。

(3)设置种子

在左侧工具区用鼠标单击(Seed Part)按钮,或者直接在主菜单中选择Seed--Part...,就会出现Global Seeds对话框,选择单元大小默认值:20,如图1-20所示,单击OK按钮。

图1-20 Global Seeds对话框

(4)划分网格

单击左侧工具区的(Mesh Part)按钮,或者在主菜单中选择Mesh--Part,窗口底部的提示区显示OK to mesh the part ?(为部件划分网格?),在视图区单击鼠标中键,或直接单击提示区中的Yes,得到如图1-21所示的网格。

图1-21 生成的网格

(5)检查网格

单击工具区中的Verify Mesh(检查模型)工具,在视图区选择部件,单击鼠标中键,弹出Verify Mesh对话框,如图1-22所示。在Type栏内选择Analysis checks(分析检查),单击Highlight按钮,显示没有任何错误或警告信息。

图1-22 检查模型网格划分

1.9 提交分析作业

在窗口的左上角的Module列表中选择Job(分析作业)功能模块。

(1)创建分析作业

单击左侧工具区的(Job Manager)按钮,或者在主菜单中选择Job--Manager,弹出Job Manager对话框,单击Create...(创建新的作业)按钮,在Name后面输入Deform,单击Continue...按钮,弹出Edit Job对话框,如图1-23所示,其他各参数保持默认值,单击OK按钮。

图1-23 Edit Job对话框

(2)提交分析

在Job Manager对话框中,如图1-24所示,单击Submit(提交分析)按钮。看到对话框中的Status(状态)提示依次变为Submitted,Running和Completed,这表明对模型的分析已经完成。单击此对话框中的Results(分析结果)按钮,自动进入Visualization 模块。

图1-24 Job Manager对话框

1.10 后处理

看到窗口左上角的Module列表已经自动变成Visualization功能模块,在视图区显示出模型未变形时的轮廓图。

(1)显示未变形图

单击左侧工具区的(Plot Undeformed Shape)按钮,或者在主菜单中选择Plot--Undeformed Shape,显示出未变形的网格模型,如图1-25所示。

图1-25 未变形的网格模型

(2)显示变形图

单击左侧工具区的(Plot Deformed Shape)按钮,或者在主菜单中选择Plot--Deformed Shape,显示出变形后的网格模型,如图1-26所示。

图1-26 变形后的网格模型

(3)显示云纹图

单击左侧工具区中的(Plot Contours on Deformed Shape)按钮,或者在主菜单中选择Plot--Contours,显示出Mises应力的云纹图,如图1-27所示。

图1-27 变形后的Mises应力分布

(4)显示动画

单击左侧工具区的(Animate:Scale Factor)按钮,可以显示缩放系数变化时的动画,再次单击此图标即可停止动画。

(5)显示节点的Mises应力值

单击窗口顶部工具栏中的(Query Information)按钮,或者在主菜单中选择Tools--Query(查询),在弹出的Query对话框(见图1-28)中,选择Probe values(查询值),然后单击OK按钮。

图1-28 查询分析结果

在弹出的Probe Values对话框(见图1-29)中,将Probe(查询对象)设为Nodes,选中S,Mises,然后将鼠标移至部件的任意位置处,此节点的Mises应力就会在Probe Values对话框中显示出来。

图1-29 Probe Values对话框

(6)查询节点的位移

在Probe Values对话框中点击Field output按钮,将输出变量改为Name:U(名称:位移)、Component:U2(变量:在方向3上的位移),如图1-30单击OK按钮,此时云纹图变成对U2的结果显示,如图1-31所示。将鼠标移至所关心的节点处,此处的U2就会在Probe Values对话框中显示出来,如图1-32所示,单击Cancel可以关闭此对话框。

图1-30 field output对话框

图1-31 云纹图:方向U2上的变形

图1-32 显示数值:节点49处在方向2上的位移U2

1.11 退出ABAQUS/CAE

至此,对此例题的完成分析过程已经完成。单击窗口顶部工具栏中的按钮来保存模型,在主菜单中选择File--Exit,退出ABAQUS/CAE。

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

非线性回归分析

SPSS—非线性回归(模型表达式)案例解析 2011-11-16 10:56 由简单到复杂,人生有下坡就必有上坡,有低潮就必有高潮的迭起,随着SPSS 的深入学习,已经逐渐开始走向复杂,今天跟大家交流一下,SPSS非线性回归,希望大家能够指点一二! 非线性回归过程是用来建立因变量与一组自变量之间的非线性关系,它不像线性模型那样有众多的假设条件,可以在自变量和因变量之间建立任何形式的模型非线性,能够通过变量转换成为线性模型——称之为本质线性模型,转换后的模型,用线性回归的方式处理转换后的模型,有的非线性模型并不能够通过变量转换为线性模型,我们称之为:本质非线性模型 还是以“销售量”和“广告费用”这个样本为例,进行研究,前面已经研究得出:“二次曲线模型”比“线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的趋势变化”,那么“二次曲线”会不会是最佳模型呢? 答案是否定的,因为“非线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的变化趋势” 下面我们开始研究: 第一步:非线性模型那么多,我们应该选择“哪一个模型呢?” 1:绘制图形,根据图形的变化趋势结合自己的经验判断,选择合适的模型 点击“图形”—图表构建程序—进入如下所示界面:

点击确定按钮,得到如下结果:

放眼望去, 图形的变化趋势,其实是一条曲线,这条曲线更倾向于"S" 型曲线,我们来验证一下,看“二次曲线”和“S曲线”相比,两者哪一个的拟合度更高! 点击“分析—回归—曲线估计——进入如下界面

在“模型”选项中,勾选”二次项“和”S" 两个模型,点击确定,得到如下结果: 通过“二次”和“S “ 两个模型的对比,可以看出S 模型的拟合度明显高于

有限元ansys静力分析的一个小例子

有限元 学院:机电学院 专业: 姓名: 学号:

一、问题描述 如图所示的平面,板厚为0.01m,左端固定,右端作用50kg的均布载荷,对其进行静力分析。弹性模量为210GPa,泊松比为0.25. 二、分析步骤 1.启动ansys,进入ansys界面。 2.定义工作文件名 进入ANSYS/Multiphsics的的程序界面后,单击Utility Menu菜单下File中Change Jobname的按钮,会弹出Change Jobname对话框,输入gangban为工作文件名,点击ok。 3.定义分析标题 选择菜单File-Change Title在弹出的对话框中,输入Plane Model作为分析标题,单击ok。 4.重新显示 选择菜单Plot-Replot单击该按钮后,所命令的分析标题工作文件名出现在ANSYS 中。 5.选择分析类型 在弹出的对话框中,选择分析类型,由于此例属于结构分析,选择菜单Main Menu:Preferences,故选择Structural这一项,单击ok。 6.定义单元类型 选择菜单Main Menu-Preprocessor-Element Type-Add/Edit/Delete单击弹出对话框中的Add按钮,弹出单元库对话框,在材料的单元库中选Plane82单元。即在左侧的窗口中选取Solid单元,在右侧选择8节点的82单元。然后单击ok。 7.选择分析类型 定义完单元类型后,Element Type对话框中的Option按钮被激活,单击后弹出一个对话框,在Elenment behavior中选择Plane strs w/ thk,在Extra Element output 中,选择Nodal stress,单击close,关闭单元类型对话框。 8.定义实常数 选择菜单Main Menu-Preprocessor-Real Constants Add/Edit/Delete执行该命令后,在弹出Real Constants对话框中单击Add按钮,确认单元无误后,单击ok,弹出Real Constants Set Number 1,for Plane 82对话框,在thickness后面输入板的厚度0.01单击ok,单击close。 9.定义力学参数 选择菜单Main Menu-Preprocessor-Material Props-Material Model 在弹出的对

非线性静力分析程序课堂教程

非线性静力分析程序课堂教程 第八章非线性静力分析程序Nonlinear Static Analysis Procedures 8.1 简介 本章将介绍用于评估已建结构性能或者检验抗震设计得分析方法。本章结构如下: 8.1 简介 8.2 简化非线性分析方法 8.2.1 确定能力(推覆)的步骤 8.2.2 确定需求(位移)的步骤 8.2.3 检查(确定)性能(点)的步骤 8.2.4 其它事项 8.3 程序示例 8.4 其它分析方法 8.5 结构动力学初步 不同的分析方法,包括弹性(线性)和非弹性(非线性),都可以用于分析已有结构。弹性分析方法适用于包括规规定的静侧向力程序(code static lateral force procedures),动侧向力程序(code dynamic lateral force procedures)和用需求能力比的弹性方法(elastic procedures using demand capacity ratios)。最基础的非线性分析方法是完全非线性时程分析方法,这种方法目前被认为是过于复杂且不切实际。简化的非线性分析方法,即非线性静力分析方法,包括能力谱方法(capacity spectrum method CSM),使用能力(推覆)曲线&折减的反应谱曲线的交点来估计(预测)最大位移;位移系数方法(例如,FEMA-273(ATC 1996a)),使用推覆分析&一个改进的等效位移估计方法来估计最大位移;割线方法(例如,洛杉矶 95(COLA 1995)),使用替代结构&割线刚度来估计最大位移。 本文着重讲述通用(in general)非线性静力(分析)方法,重点是能力谱方法。该方法之前从未被详细介绍,它提供了独特且严格的处理位移增大和地震需求折减的方法(??It provides a particularly rigorous treatment of the reduction of seismic demand for increasing displacement)。位移系数方法被作为另一个备选方法将在本章进行简要介绍。这些方法将在8.2节进行详细介绍,在8.3节将给出一个实例。其它可用的分析方法将在8.4节进行讨论。 尽管一个弹性分析可以就结构弹性能力给出一个很好的指标并且可以显示何处将首先发生屈服,但是它不能预测机构破坏也无法计算构件屈服后的结构力重分布(?)。非弹性分析方法通过确认模型破坏和累积倒塌的可能性(the potential for progressive collapse)帮助我们演示结构实际中是如何工作的。使用非弹性

SPSS线性回归分析案例

回归分析 实验内容:基于居民消费性支出与居民可支配收入的简单线性回归分析 【研究目的】 居民消费在社会经济的持续发展中有着重要的作用。影响各地区居民消费支出的因素很多,例如居民的收入水平、商品价格水平、收入分配状况、消费者偏好、家庭财产状况、消费信贷状况、消费者年龄构成、社会保障制度、风俗习惯等等。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的经济模型去研究。 【模型设定】 我们研究的对象是各地区居民消费的差异。由于各地区的城市与农村人口比例及经济结构有较大差异,现选用城镇居民消费进行比较。模型中被解释变量Y选定为“城市居民每人每年的平均消费支出”。从理论和经验分析,影响居民消费水平的最主要因素是居民的可支配收入,故可以选用“城市居民每人每年可支配收入”作为解释变量X,选取2010年截面数据。 1、实验数据 表1: 2010年中国各地区城市居民人均年消费支出和可支配收入

2、实验过程 作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图,如图1:

表2 模型汇总b 表3 相关性 从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立如下线性模型:Y=a+bX

表4 系数a 3、结果分析 表2模型汇总:相关系数为0.965,判定系数为0.932,调整判定系数为0.930,估计值的标准误877.29128 表3是相关分析结果。消费性支出Y与可支配收入X相关系数为0.965,相关性很高。 表4是回归分析中的系数:常数项b=704.824,可支配收入X的回归系数a=0.668。a的标准误差为0.034,回归系数t的检验值为19.921,P值为0,满足95%的置信区间,可认为回归系数有显著意义。得线性回归方程Y=0.668X+704.824. 【实验结论】 (1)结果显示,变量之间具有如下关系式:Y=0.668X+704.824.也就是说消费与收入之间存在稳定的函数关系。随着收入的增加,消费将增加,但消费的增长低于收入的增长。这与凯尔斯的绝对收入消费理论刚好吻合。但为了研究方便,这里假设边际消费倾向为常数。由公式知X每增长1个单位,Y增加0.668个单位。

一元线性回归模型案例分析

一元线性回归模型案例分析 一、研究的目的要求 居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。 因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。 影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 从2002年《中国统计年鉴》中得到表2.5的数据: 表2.52002年中国各地区城市居民人均年消费支出和可支配收入

111ANSYS进行有限元静力学分析

经典理论 一、设计大纲概述 1、设计目的 (1)熟悉有限元分析的基本原理和基本方法; (2)掌握有限元软件ANSYS的基本操作; (3)对有限元分析结果进行正确评价。 2、设计原理 利用ANSYS进行有限元静力学分析。 3、设计仪器设备 1)安装windows 2000以上版本的微机; 2)ANSYS 8.0以上版本软件。 4、实验内容与步骤 1)熟悉ANSYS的界面和分析步骤; 2)掌握ANSYS前处理方法,包括平面建模、单元设置、网格划分和约束设置; 3)掌握ANSYS求解和后处理的一般方法; 4)实际应用ANSYS软件对平板结构进行有限元分析。 二、题目: 如图试样期尺寸为100mm*5mm*5mm,下端固定,上端受拉 力10000N作用。已知该试样材料的应力-应变曲线如图 所示。计算试样的位移分布。

三、分析步骤: 分析:从应力-应变关系可以看出该材料的屈服极限是225MPa 左右,弹性部分曲线的斜率为常数75GPa。之后材料进入塑性变形阶段,应力-应变关系为非线性的。估计本题应力10000/(0.05*.005)=400MPa,因此材料屈服进入塑性,必须考虑材料非线性影响。 (1)建立关键点。单击菜单Main Menu>Preprocessor>Modeling>Create>Keypoints>In ActiveCS,建立两个关键点(0,0,0)和(0,100, 0)。 (2)建立直线。单击菜单Main Menu>Preprocessor>Modeling>Create>Lines>Staight Line,在关键点1、2之间建立直线。 (3)定义单元类型。单击菜单Main Menu>Preprocessor>ElementType>Add/Edit/Delete, 定义单元Structural>Link>2D spar1(LINK1) (4)定义单元常数。单击菜单Main Menu>Preprocessor>RealConstants>Add/Edit/Delete,

第三章 非线性分析

第三章非线性分析 在工程结构实际中,常常会遇到许多不符合小变形假设的问题,例如板和壳等薄壁结构在一定载荷作用F,尽管应变很小,甚至未超过弹性极限,但是位移较大,材料微单元会有较大的刚体转动位移。这时平衡条件应如实地建立在变形后的位形上,以考虑变形对平衡的影响。同时应变表达式也应包括位移的二次项。这样,结构的几何形变关系将是非线性的。这种由于大位移和大转动引起的非线性问题称为几何非线性问题。在涉及几何非线性问题的有限元方法中,可以采用两种不同的表达格式来建立有限元方程。一种格式是所有静力学和运动学变量总是参考于初始位形的完全拉格朗日格式,即在整个分析过程中参考位形保持不变。而另一种格式中,所有静力学和运动学的变量参考于每一载荷步增量或时间步长开始的位形,即在分析过程中参考位形是不断被更新的,这种格式就称为更新的拉格朗日格式。下面将分别具体讨论大变形情况下应变和应力度量,几何非线性有限元方程的建立以及系数矩阵的形成。 在涉及几何非线性问题的有限元方法中,可以采用两种不同的表达格式来建立有限元方程。一种格式是所有静力学和运动学变量总是参考于初始位形的完全拉格朗日格式,即在整个分析过程中参考位形保持不变。而另一种格式中,所有静力学和运动学的变量参考于每一载荷步增量或时间步长开始的位形,即在分析过程中参考位形是不断被更新的,这种格式就称为更新的拉格朗日格式。下面将分别具体讨论大变形情况下应变和应力度量,几何非线性有限元方程的建立以及系数矩阵的形成。 第三章非线性分析的数值计算方法 3.1概述 非线性问题一般包括三类:材料非线性、几何非线性和边界非线性;而在许多实际的结构中,常常是三种非线性问题的融合,因此其解析方法能够得到的解答是十分有限的。对于非线性问题的求解,可以采用有限元分析的方法,因此非线性方程组的解法也就成为非线性问题有限元分析涉及的基本问题,也就是通常所说的非线性分析的数值计算方法I”。常用的有Newton—Raphson法(简称N-R)和弧长法。本文将详细介绍Newton-Raphson法和弧长法,且依据不同的约束方程形式介绍各种不同形式的弧长法并比较其准确性和可靠性,这在非线性分析计算中是非常有意义的。 3.2牛顿一拉夫森法

非线性回归分析(教案)

1.3非线性回归问题, 知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。 能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。 情感目标:体会数学知识变化无穷的魅力。 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的 过程中寻找更好的模型的方法. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程: 一、复习准备: 对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课: 1. 探究非线性回归方程的确定: 1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的/y 个 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量. ③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为 0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究 例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数 x 与增大的容积y 之间的关系.

悬臂梁—有限元ABAQUS线性静力学分析实例-精选.pdf

线性静力学分析实例——以悬臂梁为例 线性静力学问题是简单且常见的有限元分析类型, 不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在 ABAQUS 中,该类问题通常采用静态通用( Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I 、C3D8I )的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 悬臂梁的线性静力学分析 1.1 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图 1-1所示,求梁受载后 的Mises 应力、位移分布。 材料性质:弹性模量32e E ,泊松比3.0均布载荷:F=103N 图1-1 悬臂梁受均布载荷图 1.2 启动ABAQUS 启动ABAQUS 有两种方法,用户可以任选一种。 (1)在Windows 操作系统中单击“开始” --“程序”--ABAQUS 6.10 --

ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 1.3 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。 图1-2 Create Part对话框 在Name(部件名称)后面输入Beam,Modeling Space(模型所在空间)设

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 1.1相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组(1.1.1)为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x ω=+

案例分析报告(一元线性回归模型)

案例分析报告(2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月

案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模

非线性回归分析

非线性回归问题, 知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。 能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。 情感目标:体会数学知识变化无穷的魅力。 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的 过程中寻找更好的模型的方法. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程: 一、复习准备: 对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课: 1. 探究非线性回归方程的确定: 1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量. ③ 在上式两边取对数,得21ln ln y c x c =+ ,再令ln z y =,则21ln z c x c =+, 可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-$,因此红铃虫的产卵数对温度的非线性回归方程为$0.272 3.843x y e -=. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究 例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数x 与增大的容积y 之间的关系.

AnsysWorkbench静力学分析详细实例

Ansys静力分析实例:  1 问题描述:  如图所示支架简图,支架材料为结构钢,厚度10mm,支架左侧的两 个通孔为固定孔,顶面的开槽处受均布载荷,载荷大小为500N/mm。  2 启动Ansys Workbench,在界面中选择Simulation启动DS模块。

3 导入三维模型,操作步骤按下图进行,单击“Geometry”,选择“From File”。  从弹出窗口中选择三维模型文件,如果文件格式不符,可以把三维图转换为“.stp”格式文件,即可导入,如下图所示。  4 选择零件材料:文件导入后界面如下图所示,这时,选择“Geometry”下的“Part”,在左下角的“Details of ‘Part’”中可以调整零件材料属性。

5 划分网格:如下图,选择“Project”树中的“Mesh”,右键选择“Generate Mesh”即可。【此时也可以在左下角的“Details of ‘Mesh’”对话框中调整划分网格的大小(“Element size”项)】。

生成网格后的图形如下图所示:

6 添加分析类型:选择上方工具条中的“New Analysis”,添加所需做的分析类型,此例中要做的是静力分析,因此选择“Static Structural”,如下图所示。  7 添加固定约束:如下图所示,选择“Project”树中的“Static Structural”,右键选择“Insert”中的“Fixed Support”。

这时左下角的“Details of ‘Fixed Support’”对话框中“Geometry”被选中,提示输入固定支撑面。本例中固定支撑类型是面支撑,因此 要确定图示6位置为“Face”,【此处也可选择“Edge”来选择“边”】 然后按住“CTRL”键,连续选择两个孔面为支撑面,按“Apply”确 认,如下图所示。

实验六-用SPSS进行非线性回归分析

实验六用SPSS进行非线性回归分析 例:通过对比12个同类企业的月产量(万台)与单位成本(元)的资料(如图1),试配合适当的回归模型分析月产量与单位成本之间的关系

图1原始数据和散点图分析 一、散点图分析和初始模型选择 在SPSS数据窗口中输入数据,然后插入散点图(选择Graphs→Scatter命令),由散点图可以看出,该数据配合线性模型、指数模型、对数模型和幂函数模型都比较合适。进一步进行曲线估计:从Statistic下选Regression菜单中的Curve Estimation命令;选因变量单位成本到Dependent框中,自变量月产量到Independent框中,在Models框中选择Linear、Logarithmic、Power和Exponential四个复选框,确定后输出分析结果,见表1。 分析各模型的R平方,选择指数模型较好,其初始模型为 但考虑到在线性变换过程可能会使原模型失去残差平方和最小的意义,因此进一步对原模型进行优化。 模型汇总和参数估计值 因变量: 单位成本 方程模型汇总参数估计值 R 方 F df1 df2 Sig. 常数b1 线性.912 104.179 1 10 .000 158.497 -1.727 对数.943 166.595 1 10 .000 282.350 -54.059 幂.931 134.617 1 10 .000 619.149 -.556 指数.955 212.313 1 10 .000 176.571 -.018 自变量为月产量。 表1曲线估计输出结果

二、非线性模型的优化 SPSS提供了非线性回归分析工具,可以对非线性模型进行优化,使其残差平方和达到最小。从Statistic下选Regression菜单中的Nonlinear命令;按Paramaters按钮,输入参数A:176.57和B:-.0183;选单位成本到Dependent框中,在模型表达式框中输入“A*EXP(B*月产量)”,确定。SPSS输出结果见表2。 由输出结果可以看出,经过6次模型迭代过程,残差平方和已有了较大改善,缩小为568.97,误差率小于0.00000001, 优化后的模型为: 迭代历史记录b 迭代数a残差平方和参数 A B 1.0 104710.523 176.570 -.183 1.1 5.346E+133 -3455.813 2.243 1.2 30684076640.87 3 476.032 .087 1.3 9731 2.724 215.183 -.160 2.0 97312.724 215.183 -.160 2.1 83887.036 268.159 -.133 3.0 83887.036 268.159 -.133 3.1 59358.745 340.412 -.102 4.0 59358.745 340.412 -.102 4.1 26232.008 38 5.967 -.065 5.0 26232.008 385.967 -.065 5.1 7977.231 261.978 -.038 6.0 797 7.231 261.978 -.038 6.1 1388.850 153.617 -.015 7.0 1388.850 153.617 -.015 7.1 581.073 180.889 -.019 8.0 581.073 180.889 -.019 8.1 568.969 182.341 -.019 9.0 568.969 182.341 -.019 9.1 568.969 182.334 -.019 10.0 568.969 182.334 -.019 10.1 568.969 182.334 -.019 导数是通过数字计算的。 a. 主迭代数在小数左侧显示,次迭代数在小数右侧显示。 b. 由于连续残差平方和之间的相对减少量最多为SSCON = 1.000E-008,因此在 22 模型评估和 10 导数评估之后,系统停止运行。

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

一般线性回归分析案例

一般线性回归分析案例 1、案例 为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康的影响,随机抽取了30个观测数据,基于多员线性回归分析的理论方法,对儿童体内几种必需元素与血红蛋白浓度的关系进行分析研究。这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu)。 表一血红蛋白与钙、铁、铜必需元素含量 (血红蛋白单位为g;钙、铁、铜元素单位为ug) case y(g)ca fe cu 17.0076.90295.300.840 27.2573.99313.00 1.154 37.7566.50350.400.700 48.0055.99284.00 1.400 58.2565.49313.00 1.034 68.2550.40293.00 1.044 78.5053.76293.10 1.322 88.7560.99260.00 1.197 98.7550.00331.210.900 109.2552.34388.60 1.023 119.5052.30326.400.823 129.7549.15343.000.926 1310.0063.43384.480.869 1410.2570.16410.00 1.190 1510.5055.33446.00 1.192 1610.7572.46440.01 1.210 1711.0069.76420.06 1.361 1811.2560.34383.310.915 1911.5061.45449.01 1.380 2011.7555.10406.02 1.300 2112.0061.42395.68 1.142 2212.2587.35454.26 1.771 2312.5055.08450.06 1.012 2412.7545.02410.630.899 2513.0073.52470.12 1.652 2613.2563.43446.58 1.230

非线性回归分析

非线性回归分析(转载) (2009-10-23 08:40:20) 转载 分类:Web分析 标签: 杂谈 在回归分析中,当自变量和因变量间的关系不能简单地表示为线性方程,或者不能表示为可化为线性方程的时侯,可采用非线性估计来建立回归模型。 SPSS提供了非线性回归“Nonlinear”过程,下面就以实例来介绍非线性拟合“Nonlinear”过程的基本步骤和使用方法。 应用实例 研究了南美斑潜蝇幼虫在不同温度条件下的发育速率,得到试验数据如下: 表5-1 南美斑潜蝇幼虫在不同温度条件下的发育速率 温度℃17.5 20 22.5 25 27.5 30 35 发育速率0.0638 0.0826 0.1100 0.1327 0.1667 0.1859 0.1572 根据以上数据拟合逻辑斯蒂模型: 本例子数据保存在DATA6-4.SAV。 1)准备分析数据 在SPSS数据编辑窗口建立变量“t”和“v”两个变量,把表6-14中的数据分别输入“温度”和“发育速率”对应的变量中。 或者打开已经存在的数据文件(DATA6-4.SAV)。 2)启动线性回归过程 单击SPSS主菜单的“Analyze”下的“Regression”中“Nonlinear”项,将打开如图5-1

所示的线回归对话窗口。 图5-1 Nonlinear非线性回归对话窗口 3) 设置分析变量 设置因变量:从左侧的变量列表框中选择一个因变量进入“Dependent(s)”框。本例子选“发育速率[v]”变量为因变量。 4) 设置参数变量和初始值 单击“Parameters”按钮,将打开如图6-14所示的对话框。该对话框用于设置参数的初始值。 图5-2 设置参数初始值

ABAQUS线性静力学分析实例

线性静力学分析实例 线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在ABAQUS 中,该类问题通常采用静态通用(Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I 、C3D8I )的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 一 悬臂梁的线性静力学分析 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises 应力、位移分布。 材料性质:弹性模量32e E =,泊松比3.0=ν 均布载荷:Mpa p 6.0= 图1-1 悬臂梁受均布载荷图

启动ABAQUS 启动ABAQUS有两种方法,用户可以任选一种。 (1)在Windows操作系统中单击“开始”--“程序”--ABAQUS -- ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。

相关文档
最新文档