同角三角函数的基本关系式

合集下载

同角三角函数的基本关系

同角三角函数的基本关系

1.2.2 同角三角函数的基本关系 学习目标 1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.知识点 同角三角函数的基本关系式1.同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α ⎝⎛⎭⎫α≠k π+π2,k ∈Z . 2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式sin 2α=1-cos 2α;cos 2α=1-sin 2α.(2)tan α=sin αcos α⎝⎛⎭⎫α≠k π+π2,k ∈Z 的变形公式 sin α=cos αtan α;cos α=sin αtan α.1.sin 2α+cos 2β=1.( × )提示 在同角三角函数的基本关系式中要注意是“同角”才成立,即sin 2α+cos 2α=1.2.sin 2θ2+cos 2θ2=1.( √ ) 提示 在sin 2α+cos 2α=1中,令α=θ2可得sin 2θ2+cos 2θ2=1. 3.对任意的角α,都有tan α=sin αcos α成立.( × ) 提示 当α=π2+k π,k ∈Z 时就不成立. 4.若cos α=0,则sin α=1.( × )题型一 利用同角三角函数的关系式求值命题角度1 已知角α的某一三角函数值及α所在象限,求角α的其余三角函数值例1 (1)若sin α=-513,且α为第四象限角,则tan α的值为( ) A.125 B .-125 C.512 D .-512考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 D解析 ∵sin α=-513,且α为第四象限角,∴cos α=1213, ∴tan α=sin αcos α=-512,故选D. (2)已知sin α+cos α=713,α∈(0,π),则tan α= . 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 -125解析 ∵sin α+cos α=713, ∴(sin α+cos α)2=49169, 即2sin αcos α=-120169<0, 又α∈(0,π),则sin α>0,cos α<0,∴α∈⎝⎛⎭⎫π2,π,故sin α-cos α=(sin α+cos α)2-4sin αcos α=1713, 可得sin α=1213,cos α=-513,tan α=-125. 反思感悟 (1)同角三角函数的关系揭示了同角三角函数之间的基本关系,其常用的用途是“知一求二”,即在sin α,cos α,tan α三个值之间,知道其中一个可以求其余两个.解题时要注意角α的象限,从而判断三角函数值的正负.(2)已知三角函数值之间的关系式求其它三角函数值的问题,我们可利用平方关系或商数关系求解,其关键在于运用方程的思想及(sin α±cos α)2=1±2sin αcos α的等价转化,找到解决问题的突破口.跟踪训练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值. 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值解 由tan α=sin αcos α=43,得sin α=43cos α.① 又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,∴cos α=-35,sin α=43cos α=-45. 命题角度2 已知角α的某一三角函数值,未给出α所在象限,求角α的其余三角函数值例2 已知cos α=-817,求sin α,tan α的值. 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值解 ∵cos α=-817<0,且cos α≠-1, ∴α是第二或第三象限角.(1)当α是第二象限角时,则sin α=1-cos 2α=1-⎝⎛⎭⎫-8172=1517, tan α=sin αcos α=1517-817=-158. (2)当α是第三象限角时,则sin α=-1-cos 2α=-1517,tan α=158. 反思感悟 利用同角三角函数关系式求值时,若没有给出角α是第几象限角,则应分类讨论,先由已知三角函数的值推出α的终边可能在的象限,再分类求解.跟踪训练2 已知cos α=-45,求sin α和tan α. 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值解 sin 2α=1-cos 2α=1-⎝⎛⎭⎫-452=925, 因为cos α=-45<0, 所以α是第二或第三象限角,当α是第二象限角时,sin α=35, tan α=sin αcos α=-34; 当α是第三象限角时,sin α=-35, tan α=sin αcos α=34. 题型二 齐次式求值问题例3 已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α. 考点 运用基本关系式化简和证明题点 运用基本关系式化简、求值解 (1)原式=4tan α-25+3tan α=611. (2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330. 反思感悟 (1)关于sin α,cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(2)假如代数式中不含分母,可以视分母为1,灵活地进行“1”的代换,由1=sin 2α+cos 2α代换后,再同除以cos 2α,构造出关于tan α的代数式.跟踪训练3 已知sin α+cos αsin α-cos α=2,计算下列各式的值. (1)3sin α-cos α2sin α+3cos α; (2)sin 2α-2sin αcos α+1.考点 运用基本关系式化简和证明题点 运用基本关系式化简、求三角函数值解 由sin α+cos αsin α-cos α=2,化简,得sin α=3cos α, 所以tan α=3.(1)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89. (2)原式=sin 2α-2sin αcos αsin 2α+cos 2α+1 =tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=1310. 三角函数式的化简与证明典例 (1)化简:sin 2αtan α+cos 2αtan α+2sin αcos α. 考点 运用基本关系式化简和证明题点 运用基本关系式化简解 原式=sin 2α·sin αcos α+cos 2α·cos αsin α+2sin αcos α =sin 4α+cos 4α+2sin 2αcos 2αsin αcos α=(sin 2α+cos 2α)2sin αcos α=1sin αcos α. (2)求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α. 考点 运用基本关系式化简和证明题点 运用基本关系式证明证明 ∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α=左边, ∴原等式成立.[素养评析] (1)三角函数式的化简技巧①化切为弦,即把正切函数都化为正弦、余弦函数,从而减少函数名称,达到化繁为简的目的.②对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的. ③对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.(2)证明三角恒等式的过程,实质上是化异为同的过程,证明恒等式常用以下方法: ①证明一边等于另一边,一般是由繁到简.②证明左、右两边等于同一个式子(左、右归一).③比较法:即证左边-右边=0或左边右边=1(右边≠0). ④证明与已知等式等价的另一个式子成立,从而推出原式成立.(3)掌握逻辑推理的基本形式,学会有逻辑地思考问题;形成重论据、有条理、合乎逻辑的思维品质,提升逻辑推理的数学核心素养.1.若sin α=45,且α是第二象限角,则tan α的值为( ) A .-43 B.34 C .±34 D .±43考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 A解析 ∵α为第二象限角,sin α=45, ∴cos α=-35,tan α=-43. 2.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-35 B .-15 C.15 D.35考点 运用基本关系式求三角函数值题点 运用基本关系式化简、求三角函数值答案 A解析 sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-(1-sin 2α)=2sin 2α-1=2×⎝⎛⎭⎫552-1=-35. 3.(2018·江西上高第二中学高二期末)若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( )A .3B .-3C .1D .-1考点 运用基本关系式化简和证明题点 运用基本关系式化简答案 B解析 ∵α为第三象限角,∴cos α<0,sin α<0,∴原式=-cos αcos α-2sin αsin α=-3. 4.已知tan x =-12,则sin 2x +3sin x cos x -1的值为( ) A.13B .2C .-2或2D .-2考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 D5.已知:tan αtan α-1=-1,则sin α-3cos αsin α+cos α= . 答案 -53解析 由已知得:tan α=12, ∴sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.1.利用同角三角函数的基本关系式,可以由一个角的一个三角函数值,求出这个角的其他三角函数值.2.利用同角三角函数的关系式可以进行三角函数式的化简,结果要求:(1)项数尽量少;(2)次数尽量低;(3)分母、根式中尽量不含三角函数;(4)能求值的尽可能求值.3.在三角函数的变换求值中,已知sin α+cos α,sin αcos α,sin α-cos α中的一个,可以利用方程思想,求出另外两个的值.4.在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当地选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.利用同角三角函数的基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法.5.在化简或恒等式证明时,注意方法的灵活运用,常用技巧:(1)“1”的代换;(2)减少三角函数名的个数(化切为弦、化弦为切等);(3)多项式运算技巧的应用(如因式分解、整体思想等);(4)对条件或结论的重新整理、变形,以便于应用同角三角函数关系来求解.一、选择题1.已知α是第二象限角,tan α=-12,则cos α等于( ) A .-55 B .-15C .-255D .-45考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 C解析 ∵α是第二象限角,∴cos α<0.又sin 2α+cos 2α=1,tan α=sin αcos α=-12,∴cos α=-255.2.下列四个结论中可能成立的是( )A .sin α=12且cos α=12B .sin α=0且cos α=-1C .tan α=1且cos α=-1D .α是第二象限角时,tan α=-sin αcos α考点 同角三角函数基本关系题点 运用基本关系式求值答案 B3.已知cos ⎝⎛⎭⎫α+π4=13,0<α<π2,则sin ⎝⎛⎭⎫α+π4等于( )A .-223 B .-23 C.23 D.223考点 运用基本关系式求值题点 运用基本关系式求值答案 D解析 ∵0<α<π2,∴π4<α+π4<3π4,∴sin ⎝⎛⎭⎫α+π4= 1-⎝⎛⎭⎫132=223.4.已知α是锐角,且tan α是方程4x 2+x -3=0的根,则sin α等于() A.45 B.35 C.25 D.15考点 同角三角函数基本关系题点 运用基本关系式求值答案 B解析 由4x 2+x -3=0得x =-1或x =34.又∵α是锐角,∴tan α>0,sin α>0, ∴tan α=34.又∵tan α=sin αcos α=34,且sin 2α+cos 2α=1,∴sin 2α+⎝⎛⎭⎫43sin α2=1,解得sin α=35.5.已知θ是第三象限角,且sin 4θ+cos 4θ=59,则sin θcos θ的值为() A.23 B .-23 C.13 D .-13考点 运用基本关系式化简、求值题点 运用基本关系式化简、求值答案 A解析 由sin 4θ+cos 4θ=59,得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,∴sin 2θcos 2θ=29,∵θ是第三象限角,∴sin θ<0,cos θ<0, ∴sin θcos θ=23.6.已知sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( ) A.34 B .±310 C.310 D .-310考点 运用基本关系式化简、求值题点 运用基本关系式化简、求值答案 C解析 由条件得sin θ+cos θ=2sin θ-2cos θ, 即3cos θ=sin θ,tan θ=3,∴sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θ1+tan 2θ=31+32=310. 7.若α为第二象限角,化简tan α·1sin 2α-1等于( ) A .1 B .2 C .-1 D.12考点 运用基本关系式化简题点 运用基本关系式化简答案 C解析 tan α·1sin 2α-1=tan α·1-sin 2αsin 2α=sin αcos α·|cos α||sin α|. 因为α为第二象限的角,所以cos α<0,sin α>0,原式=sin αcos α·-cos αsin α=-1. 二、填空题8.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α= . 考点 运用基本关系式化简、求值 题点 运用基本关系式化简、求值答案 -13解析 1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)2sin 2α-cos 2α=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=12-32=-13. 9.已知α为第二象限角,则cos α·1+tan 2α+sin α·1+1tan 2α= . 考点 运用基本关系式化简题点 运用基本关系式化简答案 0解析 原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α·1|cos α|+sin α·1|sin α|. 因为α是第二象限角,所以sin α>0,cos α<0,所以cos α·1|cos α|+sin α·1|sin α|=-1+1=0,即原式=0.10.(2018·九江高一检测)若sin α+cos α=2,则tan α+1tan α的值为 . 考点 运用基本关系式化简、求值题点 运用基本关系式化简、求值答案 2 11.在△ABC 中,2sin A = 3cos A ,则角A = .考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 π3解析 由题意知cos A >0,即A 为锐角.将2sin A =3cos A 两边平方得2sin 2A =3cos A .∴2cos 2A +3cos A -2=0,解得cos A =12或cos A =-2(舍去), ∴A =π3. 三、解答题12.化简:1-2sin α2cos α2+1+2sin α2cos α2⎝⎛⎭⎫0<α<π2. 考点 运用基本关系式化简和证明题点 运用基本关系式化简解 原式=sin 2α2-2sin α2cos α2+cos 2α2+sin 2α2+2sin α2cos α2+cos 2α2 =⎝⎛⎭⎫cos α2-sin α22+⎝⎛⎭⎫cos α2+sin α22=⎪⎪⎪⎪cos α2-sin α2+⎪⎪⎪⎪cos α2+sin α2. ∵α∈⎝⎛⎭⎫0,π2,∴α2∈⎝⎛⎭⎫0,π4, ∴cos α2-sin α2>0,cos α2+sin α2>0, ∴原式=cos α2-sin α2+cos α2+sin α2=2cos α2. 13.已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1.考点 运用基本关系式化简和证明题点 运用基本关系式化简证明 因为tan 2α=2tan 2β+1,所以tan 2α+1=2tan 2β+2,所以sin 2αcos 2α+1=2⎝⎛⎭⎫sin 2βcos 2β+1, 所以1cos 2α=2cos 2β,即cos 2β=2cos 2α, 所以1-sin 2β=2(1-sin 2α),即sin 2β=2sin 2α-1.14.若sin α+cos α=1,则sin n α+cos n α(n ∈N *)的值为 . 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 1解析 ∵sin α+cos α=1,∴(sin α+cos α)2=1,又sin 2α+cos 2α=1,∴sin αcos α=0,∴sin α=0或cos α=0.当sin α=0时,cos α=1,此时有sin n α+cos n α=1;当cos α=0时,sin α=1,也有sin n α+cos n α=1,∴sin n α+cos n α=1.15.已知sin α,cos α为方程4x 2-4mx +2m -1=0的两个实根,α∈⎝⎛⎭⎫-π2,0,求m 及α的值.考点 运用基本关系式求三角函数值 题点 运用基本关系式求三角函数值 解 因为sin α,cos α为方程4x 2-4mx +2m -1=0的两个实根, 所以Δ=16(m 2-2m +1)≥0且sin α+cos α=m ,sin αcos α=2m -14. 代入(sin α+cos α)2=1+2sin αcos α,解得m =1±32. 又因为α∈⎝⎛⎭⎫-π2,0, 所以sin α·cos α=2m -14<0,m <12, 所以sin α+cos α=m =1-32, 所以sin α=-32,cos α=12. 又因为α∈⎝⎛⎭⎫-π2,0,所以α=-π3. 所以m =1-32,α=-π3.。

届高三数学同角三角函数的基本关系

届高三数学同角三角函数的基本关系
()
4 A.5 C.±45
B.-45 3
D.5
三基能力强化
解析:选 A.由 sin(π+α)=35,得 sinα
=-35. 又 α 为第四象限角,
所以 cos(α-2π)=cos(2π-α)=cosα
= 1-sin2α=
1-(-35)2=45.
三基能力强化
4.如果 cosα=15,且 α 是第四象限的
(2)为达到利用条件tanα=2的目 的,将分母1变为sin2α+cos2α,创造 分母以达到利用(1)的解法一的方法求 值.
课堂互动讲练
【 解 】 (1) 法 一 : ∵tanα = 2 , ∴cosα≠0,
∴45ssiinnαα-+23ccoossαα=54cssoiinsnααα-+32cccooosssααα cosα cosα
课堂互动讲练
课堂互动讲练
sin2α+3cos2α=2,
∴cos2α=12.
又∵α∈(-π2,π2),∴α=π4或 α=-
π 4.
5分
将α=π 4来自代入④

cosβ =
3 2
.

β∈(0,π),
∴β=π6,代入③可知符合. 8 分
课堂互动讲练
将 α=-π4代入④得 cosβ= 23.又 β∈(0,π), 11 分
角,那么 cos(α+π2)=________. 解析:α 是第四象限的角且
cosα=15,
∴sinα = - 1-cos2α = -
2 5
6,
于是
cos(α+
π2)=-
sinα=25
6 .
答案:25 6
三基能力强化
5.tan300°+sin450°=________.

高三第一轮复习--同角三角函数的关系式及诱导公式

高三第一轮复习--同角三角函数的关系式及诱导公式

/ 彩99下载
开咯万丈光芒.东舌闭目凝神感受着万物,壹切都变得那么の清新整齐,没什么半分の紊乱否均.正自思绪纷飞之时,身后响起咯壹阵轻快の脚步声,东舌本能の回过头去长望.走来の否是别人,正是吐茂公.东舌淡然壹笑,转而问道:"吐军师,有什么事情吗?"吐茂公轻摇手中羽扇,掀起无数尘 埃飘散开来,在阳光の耀射之下格外の显眼,沉静如水地说道:"殿下,在下已经召集咯全部人在正堂集中,还望殿下无事の话速速前去."听咯吐茂公の话,东舌心中突然有种否好の预感,旋即问道:"军师,莫否是出咯什么事情?"吐茂公警觉地环扫四周,点咯点头,匆匆转身离去.从吐茂公の表 现,东舌便猜测出咯事情の重要性.也否多问什么,随着吐茂公壹起朝正堂走去..半响过后,钱塘王府正堂.东舌端坐在王座之上,台下文武按顺序摆开,已经颇有壹番******の样子.右侧武将之中走出壹人,只见身高七尺有余.身挂金甲,背披紫袍,长得却是有些异于常人.此人便是日行千里,神 驹子马灵,马灵早在半个月前就被东舌派出到各地搜罗情报,如今归来定是情况有变.马灵上前壹步,拱手说道:"殿下,末将在隋朝廷打听到咯壹个消息."东舌否假思索の问道:"什么消息,尽管说来便是.""北方罗艺军团全线崩溃.被其部下完颜阿骨打所杀,如今完颜阿骨打拥兵五万坐守幽州, 罗艺之子罗成报仇心切,领着七万兵力投降北方の神秘人,否过北方突降数百年否遇の大雪,怕是壹年半载否能作战."马灵将北方情况壹壹道来.东舌思酌着情报,用手抚着下颚の须绒,点咯点头说道:"那汤广有没什么什么动静?"马灵顿咯顿语气.旋即说道:"汤广派高颎带兵十五万出兵北方, 平定幽州之乱.并派出十万大军企图企图."马灵说到另外壹支大军之时,突然语气变得迟钝起来,好像有点难以启齿壹般.东舌眼

同角三角函数的基本关系式与诱导公式

同角三角函数的基本关系式与诱导公式
答案:4
课堂互动讲练
考点一
诱导公式的应用
应用诱导公式进行化简或证明时, 首先根据题意选准公式再用,一般是负 变正、大变小的思想.
在使用诱导公式时,α可为任意角, 并不一定要为锐角,只不过是在运用的 过程中把它“看作”是锐角而已.“奇 变偶不变,符号看象限”同样适用于正 切和余切.如tan(270°-α)=cotα等.
cos2x-1 sin2x=
cos2x+sin2x cos2x-sin2x
,想法
使分
子分
母都出现 tanx 即可.
课堂互动讲练
【解】 (1)法一:联立方程:
sinx+cosx=15, sin2x+cos2x=1.
① 2分

①式两边平方得:sin2x+cos2x+2sinxcosx
=215,
∴2sinxcosx=-2245.4 分 ∵-π2<x<0,∴sinx<0,cosx>0. ∴sinx-cosx=- sin2x-2sinxcosx+cos2x
三基能力强化
5.已知scions2θθ++14=2,那么(cosθ + 3)(sinθ+1)的值为________.
解析:∵scions2θθ++14=2,∴sin2θ+4= 2cosθ+2,
∴cos2θ+2cosθ-3=0,解得 cosθ= 1 或 cosθ=-3(舍去),由 cosθ=1 得 sinθ =0,∴(cosθ+3)(sinθ+1)=4.
规律方法总结
公式中 k·π2+α 的整数 k 来讲的.“象
限”指在 k·π2+α 中,将 α 看作锐角时 k·π2+
α
所在的象限,如将
cos(32π+α)写成
π cos(3·2

高考数学第一轮复习:《同角三角函数的基本关系与诱导公式》

高考数学第一轮复习:《同角三角函数的基本关系与诱导公式》

高考数学第一轮复习:《同角三角函数的基本关系与诱导公式》最新考纲1.理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin xcos x =tan x .2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.【教材导读】1.同角三角函数的基本关系中,对任意角均成立吗?提示:在tan α=sin αcos α的关系中,须保证tan α有意义,所以须使α≠π2+k π,k ∈Z . 2.诱导公式的功能是什么?提示:负角化正角,大角化小角,再求值.1.同角三角函数的基本关系式 (1)平方关系 sin 2 α+cos 2 α=1; (2)商数关系 tan α=sin αcos α. 2.诱导公式 组序 一 二 三 四 五 六 角 2k π+α(k ∈Z )π+α -α π-α π2-α π2+α 正弦 sin α -sin α -sin α sin α cos α cos_α 余弦 cos α -cos α cos α -cos_α sin α -sin α 正切tan αtan α-tan α-tan_α诱导公式可简记为:奇变偶不变,符号看象限.“奇”与“偶”指的是诱导公式k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限.1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( ) (A)-32 (B)32 (C)-12(D)12D 解析:因为α和β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ).又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.故选D.2.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f ⎝ ⎛⎭⎪⎫-25π3的值为( )(A)12 (B)-12 (C)32(D)-32A 解析:∵f (α)=sin αcos α(-cos α)·(-tan α)=sin αtan α=cos α,∴f (-25π3)=cos(-25π3)=cos ⎝ ⎛⎭⎪⎫-π3=12.故选A.3.若α=11π3,则tan α·cos α等于( ) (A)12 (B)-12 (C)-32(D)32C 解析:若α=113π,tan α·cos α=sin αcos α·cos α=sin α=sin 113π=sin ⎝ ⎛⎭⎪⎫4π-π3=-sin π3=-32.故选C.4.已知a ∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,则tan α=________.解析:因为a ∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-1-sin 2α=-35,所以tan α=sin αcos α=-43. 答案:-435.已知sin x cos x =38,且x ∈π4,π2,则cos x -sin x =________. 解析:因为x ∈π4,π2, 所以sin x >cos x , 即cos x -sin x <0,所以(cos x -sin x )2=1-2sin x cos x =14,所以cos x -sin x =-12. 答案:-12考点一 同角三角函数的基本关系(1)已知α∈⎝ ⎛⎭⎪⎫π,3π2,tan α=2,则cos α=________.(2)已知sin α+3cos α3cos α-sin α=5,则sin 2 α-sin αcos α的值是( )(A)25 (B)-25 (C)-2(D)2解析:(1)依题意得⎩⎨⎧tan α=sin αcosα=2,sin 2 α+cos 2 α=1,由此解得cos 2 α=15;又α∈⎝ ⎛⎭⎪⎫π,3π2,因此cos α=-55.(2)由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,即tan α=2.所以sin2α-sin αcos α=sin2α-sin αcos αsin2α+cos2α=tan2α-tan αtan α+1=25.答案:(1)-55(2)A【反思归纳】同角三角函数关系式的应用技巧(1)利用sin2α+cos2α=1可实现α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)关系式的逆用及变形用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.(3)sin α,cos α的齐次式的应用:分式中分子与分母是关于sin α,cos α的齐次式,或含有sin2α,cos2α及sin αcos α的式子求值时,可将所求式子的分母看作“1”,利用“sin2α+cos2α=1”代换后转化为“切”后求解.【即时训练】已知角α的始终与x轴的非负半轴重合,顶点与坐标原点重合,终边过点P(3,4),则sin α+2cos αsin α-cos α=________.答案:10考点二三角函数的诱导公式(1)化简sin(kπ-α)·cos[(k-1)π-α]sin[(k+1)π+α]·cos(kπ+α),k∈Z;(2)已知sin α=255,求tan(α+π)+sin⎝⎛⎭⎪⎫5π2+αcos⎝⎛⎭⎪⎫5π2-α;(3)化简tan(π-α)cos(2π-α)sin⎝⎛⎭⎪⎫-α+3π2 cos(-α-π)sin(-π-α).解:(1)当k=2n+1(n∈Z)时,原式=sin(2nπ+π-α)·cos(2nπ-α)sin(2nπ+2π+α)·cos(2nπ+π+α)=sin(π-α)·cos αsin α·cos(π+α)=sin α·cos αsin α·(-cos α)=-1;当k =2n (n ∈Z )时,原式=sin (2n π-α)·cos (2n π-π-α)sin (2n π+π+α)·cos (2n π+α)=-sin α·(-cos α)-sin α·cos α=-1.所以原式=sin (k π-α)·cos[(k -1)π-α]sin[(k +1)π+α]·cos (k π+α)=-1.(2)∵sin α=255>0,∴α为第一或第二象限角.当α是第一象限角时,cos α=1-sin 2 α=55,tan(α+π)+sin ⎝ ⎛⎭⎪⎫5π2+αcos ⎝ ⎛⎭⎪⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α=52.当α是第二象限角时,cos α=-1-sin 2 α=-55,原式=1sin αcos α=-52.(3)方法一:原式=(-tan α)·cos[π+(π-α)]·sin ⎝ ⎛⎭⎪⎫π+π2-αcos (π+α)·[-sin (π+α)]=(-tan α)·[-cos (π-α)]·⎣⎢⎡⎦⎥⎤-sin ⎝ ⎛⎭⎪⎫π2-α(-cos α)·sin α=-tan α·cos α·(-cos α)-cos α·sin α=-tan α·cos αsin α=-sin αcos α·cos αsin α=-1.方法二:原式=-tan α·cos (-α)·sin ⎝ ⎛⎭⎪⎫-α-π2cos (π-α)·sin (π-α)=tan α·cos α·sin ⎝ ⎛⎭⎪⎫α+π2-cos α·sin α=sin αcos α·cos α-sin α=-1.【反思归纳】 利用诱导公式化简三角函数的思路和要求(1)思路方法:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.【即时训练】 已知sin(3π+θ)=13, 求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ的值.答案:18考点三 诱导公式与同角关系的综合应用 (高频考点)已知sin θ、cos θ是关于x 的方程x 2-ax +a =0(a ∈R )的两个根.求: (1)cos 3⎝ ⎛⎭⎪⎫π2-θ+sin 3⎝ ⎛⎭⎪⎫π2+θ的值;(2)tan(π-θ)-1tan θ的值. 解:由已知原方程判别式Δ≥0,即(-a )2-4a ≥0,∴a ≥4或a ≤0.又⎩⎪⎨⎪⎧sin θ+cos θ=a ,sin θcos θ=a ,∴(sin θ+cos θ)2=1+2sin θcos θ,即a 2-2a -1=0, ∴a =1-2或a =1+2(舍去), ∴sin θ+cos θ=sin θcos θ=1- 2. (1)cos 3⎝ ⎛⎭⎪⎫π2-θ+sin 3⎝ ⎛⎭⎪⎫π2+θ=sin 3 θ+cos 3 θ=(sin θ+cos θ)(sin 2 θ-sin θcos θ+cos 2 θ) =(1-2)[1-(1-2)]=2-2.(2)tan(π-θ)-1tan θ=-tan θ-1tan θ=-⎝ ⎛⎭⎪⎫tan θ+1tan θ=-⎝ ⎛⎭⎪⎫sin θcos θ+cos θsin θ=-1sin θcos θ=-11-2=2+1.答案:(1)2-2 (2)2+1【反思归纳】 熟练运用诱导公式和同角三角函数基本关系,并确定相应三角函数值的符号是解题的关键.另外,切化弦是常用的规律技巧.【即时训练】 (1)若α为三角形的一个内角,且sin α+cos α=23,则这个三角形是( ) (A)正三角形 (B)直角三角形 (C)锐角三角形(D)钝角三角形(2)若sin α+π6=-513,且α∈π2,π,则sin α+2π3=________. 解析:(1)因为(sin α+cos α)2=1+2sin αcos α=49, 所以sin αcos α=-518<0,所以α为钝角.故选D. (2)因为π2<α<π,所以2π3<α+π6<7π6, cos α+π6=-1--5132=-1213,而sin α+2π3=sin π2+α+π6=cos α+π6=-1213. 答案:(1)D (2)-1213同角关系与诱导公式结合解题教材源题:化简: (1)cos α-π2sin 52π+α·sin(α-2π)·cos(2π-α);(2)cos 2(-α)-tan (360°+α)sin (-α).解:(1)原式=cos π2-αsin π2+α·sin α·cos α=sin αcos α·sin α·cos α=sin 2α.(2)原式=cos 2α-tan α-sin α=cos 3α+1cos α.【规律总结】 三角函数式化简目标方向 (1)用同角关系中切弦互化,统一函数名. (2)用诱导公式统一角.(3)用因式分解将式子变形,化为最简.【源题变式】已知f (x )=sin (2π-x )·cos 32π+xcos (3π-x )·sin 112π-x ,则f -21π4=________.解析:因为f (x )=sin (-x )·sin xcos (π-x )·sin6π-π2+x=sin 2xcos x -sin π2+x =sin 2x -cos 2x =-tan 2x . 所以f -214π=-tan 2-214π=-tan 2-5π-π4=-tan 2-π4=-1.答案:-1课时作业基础对点练(时间:30分钟)1.已知α∈⎝ ⎛⎭⎪⎫π,32π,tan(α+π)=43,则cos ⎝ ⎛⎭⎪⎫α+π4=( )(A)210 (B)-210 (C)7210(D)-7210A 解析:由α∈⎝ ⎛⎭⎪⎫π,32π,tan(α+π)=43,即tan α=43,得sin α=-45,cos α=-35∴cos ⎝ ⎛⎭⎪⎫α+π4=22(cos α-sin α)=22⎝ ⎛⎭⎪⎫-35+45=210.故选A.2.已知sin ⎝ ⎛⎭⎪⎫5π2+α=15,那么cos α=( ) (A)-25(B)-15(C)15 (D)25答案:C3.已知sin ⎝ ⎛⎭⎪⎫x -π4=35,则cos ⎝ ⎛⎭⎪⎫x +π4=( )(A)45 (B)35 (C)-45(D)-35 D 解析:cos ⎝ ⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫x -π4+π2=-sin ⎝ ⎛⎭⎪⎫x -π4=-35,故选D.4.已知sin α是方程5x 2-7x -6=0的根,且α是第三象限角,则sin ⎝ ⎛⎭⎪⎫-α-3π2cos ⎝ ⎛⎭⎪⎫3π2-αtan 2(π-α)cos ⎝ ⎛⎭⎪⎫π2-αsin ⎝ ⎛⎭⎪⎫π2+α=( )(A)916 (B)-916 (C)-34 (D)34答案:B5.已知α是第二象限角,则cos α1+tan 2α+sin α·1+1tan 2α的值为( ) (A)-2 (B)2 (C)0(D)3C 解析:原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α|cos α|+sin α|sin α|,∵α为第二象限角,∴sin α>0,cos α<0,∴cos α|cos α|+sin α|sin α|=-1+1=0.故选C.6.在△ABC 中,3sin π2-A =3sin(π-A ),且cos A =-3cos(π-B ),则C 等于( ) (A)π3 (B)π4 (C)π2(D)2π3C 解析:因为3sin π2-A =3sin(π-A ), 所以3cos A =3sin A ,所以tan A =33, 又0<A <π,所以A =π6.又因为cos A =-3cos(π-B ), 即cos A =3cos B , 所以cos B =13cos π6=12,又0<B <π, 所以B =π3.所以C =π-(A +B )=π2.故选C. 7.设f (sin x )=3-cos2x ,则f (cos x )=________. 解析:方法一:f (cos x )=f ⎝ ⎛⎭⎪⎫sin ⎝ ⎛⎭⎪⎫π2-x=3-cos 2⎝ ⎛⎭⎪⎫π2-x =3-cos(π-2x )=3+cos 2x .方法二:f (sin x )=3-(1-2sin 2 x )=2+2sin 2 x , ∴f (x )=2+2x 2,∴f (cos x )=2+2cos 2x =3+2cos 2x -1=3+cos 2x . 答案:3+cos 2x8.化简sin ⎝ ⎛⎭⎪⎫4n -14π-α+cos ⎝ ⎛⎭⎪⎫4n +14π-α(n ∈Z )的结果为________. 解析:n 为偶数时,原式=sin ⎝ ⎛⎭⎪⎫-π4-α+cos ⎝ ⎛⎭⎪⎫π4-α =-cos ⎝ ⎛⎭⎪⎫π4-α+cos ⎝ ⎛⎭⎪⎫π4-α=0. n 为奇数时,原式=sin ⎝ ⎛⎭⎪⎫3π4-α+cos ⎝ ⎛⎭⎪⎫5π4-α =cos ⎝ ⎛⎭⎪⎫π4-α-cos ⎝ ⎛⎭⎪⎫π4-α=0. 答案:09.已知cos π6-α=23,则sin α-2π3=________.解析:sin α-2π3=sin -π2-π6-α=-sin π2+π6-α=-cos π6-α=-23.答案:-2310.已知f (α)=sin ⎝ ⎛⎭⎪⎫-α+π2·cos ⎝ ⎛⎭⎪⎫3π2-α·tan (α+5π)tan (-α-π)·sin (α-3π)(1)化简f (α);(2)若α是第三象限角,且cos ⎝ ⎛⎭⎪⎫α-3π2=15,求f (α)的值; (3)若α=-31π3,求f (α)的值.解:(1)f (α)=cos α·(-sin α)·tan α(-tan α)·(-sin α)=-cos α;(2)∵cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α, ∴sin α=-15,cos α=-52-15=-25 6.∴f (α)=25 6.(3)∵-31π3=-6×2π+5π3,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-6×2π+5π3 =-cos 5π3=-cos π3=-12.11.已知2sin 2α+sin αcos α-3cos 2α=75,求tan α的值.解:由题意得2sin 2α+sin αcos α-3cos 2αsin 2α+cos 2α=75, 所以2tan 2α+tan α-3tan 2α+1=75, 所以10tan 2α+5tan α-15=7tan 2α+7,所以3tan 2α+5tan α-22=0,所以(3tan α+11)(tan α-2)=0,所以tan α=-113或tan α=2.能力提升练(时间:15分钟)12.设f (x )=⎩⎨⎧ s in πx , (x <0),f (x -1)+1, (x ≥0)和g (x )=⎩⎪⎨⎪⎧ cosπx ,(x <12),g (x -1)+1,(x ≥12),则g ⎝ ⎛⎭⎪⎫14+f ⎝ ⎛⎭⎪⎫13+g ⎝ ⎛⎭⎪⎫56+f ⎝ ⎛⎭⎪⎫34的值为( ) (A)2(B)3 (C)4 (D)5 B 解析:∵g (14)=22,g (56)=cos(-16π)+1=32+1,f (13)=sin(-23π)+1=-32+1,f (34)=sin(-π4)+1=-22+1,∴原式=3.故选B.13.已知sin θ=13,θ∈(-π2,π2),则sin(π-θ)·sin(32π-θ)的值为( )(A)229(B)-229 (C)19(D)-19B 解析:∵θ∈(-π2,π2),∴cos θ=1-sin 2θ=223, ∴sin(π-θ)sin(3π2-θ)=-sin θcos θ=-13×223 =-229.故选B.14.在△ABC 中,已知2cos 2A -3cos(B +C )=2,则A =________. 解析:由2cos 2A -3cos(B +C )=2,得2cos 2A -3cos(π-A )=2,即2cos 2A +3cos A -2=0, 得cos A =12或cos A =-2(舍去),则在△ABC 中,A =π3.答案:π315.在三角形ABC 中,求cos 2A +B 2+cos 2C 2的值. 解:在△ABC 中,A +B =π-C ,所以A +B 2=π2-C 2, 所以cos A +B 2=cos π2-C 2=sin C 2,所以cos 2A +B 2+cos 2C 2=sin 2C 2+cos 2C 2=1. 16.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π),求:(1)sin θ1-1tan θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)由根与系数的关系可知⎩⎪⎨⎪⎧ sin θ+cos θ=3+12 ①sin θcos θ=m 2 ②而sin θ1-1tan θ+cos θ1-tan θ=sin 2 θsin θ-cos θ+cos 2 θcos θ-sin θ =sin 2 θ-cos 2 θsin θ-cos θ=sin θ+cos θ=3+12. (2)由①式平方得1+2sin θcos θ=2+32.∴sin θcos θ=34.由②得m 2=34,∴m =32. (3)当m =32时,原方程变为2x 2-(3+1)x +32=0,解得x 1=32,x 2=12,∴⎩⎪⎨⎪⎧ sin θ=32cos θ=12或⎩⎪⎨⎪⎧ cos θ=32sin θ=12. 又∵θ∈(0,2π),∴θ=π3或θ=π6.。

同角三角函数的基本关系与诱导公式(经典)

同角三角函数的基本关系与诱导公式(经典)

同角三角函数的基本关系与诱导公式一、基础知识:1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α=tan α. (3)倒数关系:1cot tan =⋅αα2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k其中k ∈Z .公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(-α)=-sin_α,cos(-α)=cos_α.公式四:sin(π-α)=sin α,cos(π-α)=-cos_α.公式五:sin ⎝ ⎛⎭⎪⎫π2-α=cos_α,cos ⎝ ⎛⎭⎪⎫π2-α=sin α. 公式六:sin ⎝ ⎛⎭⎪⎫π2+α=cos_α,cos ⎝ ⎛⎭⎪⎫π2+α=-sin_α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时原.函数值的符号作为结果的符号. 二、方法与要点一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦. (2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=…. (4)齐次式化切法:已知k =αtan ,则nmk b ak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负——脱周——化锐. 特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.(3)注意求值与化简后的结果一般要尽可能有理化、整式化.。

高考数学一轮复习考点知识专题讲解27---同角三角函数基本关系式及诱导公式

高考数学一轮复习考点知识专题讲解27---同角三角函数基本关系式及诱导公式

高考数学一轮复习考点知识专题讲解 同角三角函数基本关系式及诱导公式考点要求1.理解同角三角函数的基本关系式sin 2α+cos 2α=1,sin αcos α=tan α.2.掌握诱导公式,并会简单应用.知识梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .2.三角函数的诱导公式公式一 二三四五 六角2k π+α(k ∈Z )π+α-απ-απ2-απ2+α 正弦sin α-sin α-sin αsin α cos α cos α余弦cos α-cos α cos α-cos αsin α-sin α正切tan αtan α-tan α-tan α口诀奇变偶不变,符号看象限常用结论同角三角函数的基本关系式的常见变形 sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.(×) (2)若α∈R ,则tan α=sin αcos α恒成立.(×) (3)sin(π+α)=-sin α成立的条件是α为锐角.(×) (4)若sin ⎝⎛⎭⎪⎫3π2-α=13,则cos α=-13.(√)教材改编题1.已知α是第二象限角,sin α=55,则cos α的值为. 答案-255解析∵sin α=55,α是第二象限角, ∴cos α=-1-sin 2α=-255.2.已知sin α-2cos α3sin α+5cos α=-5,那么tan α的值为.答案-2316解析由sin α-2cos α3sin α+5cos α=-5,知cos α≠0,等式左边分子、分母同时除以cos α,可得tan α-23tan α+5=-5,解得tan α=-2316.3.化简cos ⎝⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫5π2+α·sin(α-π)·cos(2π-α)的结果为.答案-sin 2α解析原式=sin αcos α·(-sin α)·cos α=-sin 2α.题型一 同角三角函数基本关系 例1(1)已知cos α=-513,则13sin α+5tan α=. 答案0解析∵cos α=-513<0且cos α≠-1, ∴α是第二或第三象限角.①若α是第二象限角, 则sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-5132=1213, ∴tan α=sin αcos α=1213-513=-125.此时13sin α+5tan α=13×1213+5×⎝ ⎛⎭⎪⎫-125=0. ②若α是第三象限角, 则sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-5132=-1213,∴tan α=sin αcos α=-1213-513=125,此时,13sin α+5tan α=13×⎝ ⎛⎭⎪⎫-1213+5×125=0.综上,13sin α+5tan α=0.(2)已知tan α=12,则sin α-3cos αsin α+cos α=;sin 2α+sin αcos α+2=.答案-53135解析已知tan α=12,所以sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.sin 2α+sin αcos α+2 =sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.(3)已知sin θ+cos θ=713,θ∈(0,π),则tan θ=. 答案-125解析由sin θ+cos θ=713,得sin θcos θ=-60169, 因为θ∈(0,π),所以sin θ>0,cos θ<0, 所以sin θ-cos θ=1-2sin θcos θ=1713,联立⎩⎪⎨⎪⎧sin θ+cos θ=713,sin θ-cos θ=1713,解得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513,所以tan θ=-125. 教师备选1.(2022·平顶山联考)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin2α等于()A.35 B .-35C .-3D .3答案A解析由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35. 2.若α∈(0,π),sin(π-α)+cos α=23,则sin α-cos α的值为() A.23 B .-23 C.43 D .-43 答案C解析由诱导公式得sin(π-α)+cos α=sin α+cos α=23, 所以(sin α+cos α)2=1+2sin αcos α=29,则2sin αcos α=-79<0,因为α∈(0,π),所以sin α>0, 所以cos α<0,所以sin α-cos α>0, 因为(sin α-cos α)2=1-2sin αcos α=169,所以sin α-cos α=43.思维升华 (1)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二. (2)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.跟踪训练1(1)(2021·新高考全国Ⅰ)若tan θ=-2,则sin θ(1+sin2θ)sin θ+cos θ等于()A .-65B .-25 C.25 D.65答案C解析方法一因为tan θ=-2, 所以角θ的终边在第二或第四象限, 所以⎩⎪⎨⎪⎧sin θ=25,cos θ=-15或⎩⎪⎨⎪⎧sin θ=-25,cos θ=15,所以sin θ(1+sin2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θ =45-25=25. 方法二(弦化切法)因为tan θ=-2, 所以sin θ(1+sin2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θ1+tan 2θ=4-21+4=25.(2)已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为.答案-105解析由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1,得109cos 2α=1, 所以cos 2α=910,易知cos α<0, 所以cos α=-31010,sin α=1010,故sin α+cos α=-105. 题型二 诱导公式例2(1)已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α的值为()A.223 B .-223 C.13 D .-13答案D解析cos ⎝⎛⎭⎪⎫π4+α=cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π4 =-sin ⎝⎛⎭⎪⎫α-π4=-13. 延伸探究本例(1)改为已知θ是第二象限角,且sin ⎝⎛⎭⎪⎫θ+π4=45,则tan ⎝ ⎛⎭⎪⎫θ-π4=. 答案34解析∵θ是第二象限角,且sin ⎝⎛⎭⎪⎫θ+π4=45, ∴θ+π4为第二象限角,∴cos ⎝ ⎛⎭⎪⎫θ+π4=-35,∴tan ⎝⎛⎭⎪⎫θ-π4=sin ⎝⎛⎭⎪⎫θ-π4cos ⎝ ⎛⎭⎪⎫θ-π4=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫θ+π4-π2cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫θ+π4-π2=-cos ⎝⎛⎭⎪⎫θ+π4sin ⎝ ⎛⎭⎪⎫θ+π4=-⎝ ⎛⎭⎪⎫-3545=34.(2)tan(π-α)cos(2π-α)sin⎝⎛⎭⎪⎫-α+3π2cos(-α-π)sin(-π-α)的值为()A.-2B.-1C.1D.2 答案B解析原式=-tanα·cosα·(-cosα)cos(π+α)·[-sin(π+α)]=tanα·cos2α-cosα·sinα=-sinαcosα·cosαsinα=-1.教师备选1.已知函数f(x)=a x-2+2(a>0且a≠1)的图象过定点P,且角α的始边与x轴的正半轴重合,终边过点P,则cos⎝⎛⎭⎪⎫11π2-αsin⎝⎛⎭⎪⎫9π2+α+sin2αcos⎝⎛⎭⎪⎫π2+αsin(-π-α)等于()A.23B.-23C.32D.-32答案B解析易知函数f(x)=a x-2+2(a>0且a≠1)的图象过定点P(2,3),故tanα=3 2,则cos⎝⎛⎭⎪⎫11π2-αsin⎝⎛⎭⎪⎫9π2+α+sin2αcos⎝⎛⎭⎪⎫π2+αsin(-π-α)=cos ⎝ ⎛⎭⎪⎫3π2-αsin ⎝ ⎛⎭⎪⎫π2+α+sin2αcos ⎝ ⎛⎭⎪⎫π2+αsin α =-sin αcos α+2sin αcos α-sin αsin α=-cos αsin α=-1tan α=-23. 2.若sin x =3sin ⎝ ⎛⎭⎪⎫x -π2,则cos x ·cos ⎝⎛⎭⎪⎫x +π2等于() A.310 B .-310 C.34 D .-34答案A解析易知sin x =3sin ⎝⎛⎭⎪⎫x -π2=-3cos x , 所以tan x =-3,所以cos x cos ⎝⎛⎭⎪⎫x +π2 =-sin x cos x =-sin x cos x sin 2x +cos 2x=-tan x tan 2x +1=310. 思维升华 (1)诱导公式的两个应用①求值:负化正,大化小,化到锐角为终了;②化简:统一角,统一名,同角名少为终了.(2)诱导公式的应用步骤任意负角的三角函数―――――→利用诱导公式三或一任意正角的三角函数――――――→利用诱导公式一0~2π内的角的三角函数――――――→利用诱导公式二或四或五或六锐角三角函数.跟踪训练2(1)已知cos(75°+α)=13,求cos(105°-α)+sin(15°-α)=. 答案0解析因为(105°-α)+(75°+α)=180°,(15°-α)+(α+75°)=90°,所以cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=-13, sin(15°-α)=sin[90°-(α+75°)]=cos(75°+α)=13. 所以cos(105°-α)+sin(15°-α)=-13+13=0. (2)(2022·盐城南阳中学月考)设tan(5π+α)=2,则sin (-3π+α)+cos (α-π)cos ⎝ ⎛⎭⎪⎫α-112π+sin ⎝ ⎛⎭⎪⎫9π2+α=. 答案3解析由已知tan(5π+α)=tan α=2,sin (-3π+α)+cos (α-π)cos ⎝ ⎛⎭⎪⎫α-112π+sin ⎝ ⎛⎭⎪⎫9π2+α=sin (π+α)+cos (π-α)cos ⎝ ⎛⎭⎪⎫α+π2+sin ⎝ ⎛⎭⎪⎫π2+α =-sin α-cos α-sin α+cos α=sin α+cos αsin α-cos α=tan α+1tan α-1=3. 题型三 同角三角函数基本关系式和诱导公式的综合应用例3已知f (α)=sin (α-3π)cos (2π-α)sin ⎝ ⎛⎭⎪⎫-α+3π2cos (-π-α)sin (-π-α). (1)化简f (α);(2)若α=-31π3,求f (α)的值; (3)若cos ⎝ ⎛⎭⎪⎫-α-π2=15,α∈⎣⎢⎡⎦⎥⎤π,3π2,求f (α)的值. 解(1)f (α)=sin (α-3π)cos (2π-α)sin ⎝ ⎛⎭⎪⎫-α+3π2cos (-π-α)sin (-π-α)=-sin α×cos α×(-cos α)-cos α×sin α=-cos α.(2)若α=-31π3, 则f (α)=-cos ⎝⎛⎭⎪⎫-31π3=-cos π3=-12. (3)由cos ⎝⎛⎭⎪⎫-α-π2=15, 可得sin α=-15, 因为α∈⎣⎢⎡⎦⎥⎤π,3π2, 所以cos α=-265, 所以f (α)=-cos α=265. 教师备选设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0). (1)化简f (α);(2)若α=-23π6,求f (α)的值. 解(1)f (α)=(-2sin α)·(-cos α)-(-cos α)1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(2sin α+1)sin α(2sin α+1)=cos αsin α=1tan α. (2)当α=-23π6时,f (α)=f ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝⎛⎭⎪⎫-4π+π6 =1tan π6=133= 3. 思维升华 (1)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.(2)注意角的范围对三角函数符号的影响.跟踪训练3(1)(2022·聊城模拟)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是()A.355B.377C.31010D.13答案C解析由已知得⎩⎨⎧ 3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1, 化简得sin 2α=910,则sin α=31010(α为锐角). (2)已知-π<x <0,sin(π+x )-cos x =-15,则sin2x +2sin 2x 1-tan x=. 答案-24175解析由已知,得sin x +cos x =15, 两边平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425. ∴(sin x -cos x )2=1-2sin x cos x =4925, 由-π<x <0知,sin x <0,又sin x cos x =-1225<0, ∴cos x >0,∴sin x -cos x <0,故sin x -cos x =-75. ∴sin2x +2sin 2x 1-tan x =2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175. 课时精练1.cos ⎝ ⎛⎭⎪⎫-19π3等于()A .-32 B .-12 C.12 D.32答案C解析cos ⎝ ⎛⎭⎪⎫-19π3=cos 19π3=cos ⎝ ⎛⎭⎪⎫6π+π3=cos π3=12.2.若cos165°=a ,则tan195°等于()A.1-a 2B.1-a 2a C .-1-a 2a D .-a 1-a 2答案C解析若cos165°=a ,则cos15°=cos(180°-165°)=-cos165°=-a ,sin15°=1-a 2,所以tan195°=tan(180°+15°)=tan15°=sin15°cos15°=-1-a 2a .3.若cos ⎝ ⎛⎭⎪⎫α-π5=513,则sin ⎝ ⎛⎭⎪⎫7π10-α等于()A .-513 B .-1213 C.1213 D.513 答案D解析因为7π10-α+⎝ ⎛⎭⎪⎫α-π5=π2,所以7π10-α=π2-⎝⎛⎭⎪⎫α-π5, 所以sin ⎝ ⎛⎭⎪⎫7π10-α=cos ⎝⎛⎭⎪⎫α-π5=513. 4.(2022·天津西青区模拟)已知sin α+cos α=-2,则tan α+1tan α等于()A .2 B.12 C .-2 D.-12答案A解析由已知得1+2sin αcos α=2,∴sin αcos α=12,∴tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=112=2.5.在△ABC 中,下列结论不正确的是()A .sin(A +B )=sin CB .sin B +C 2=cos A 2C .tan(A +B )=-tan C ⎝ ⎛⎭⎪⎫C ≠π2D .cos(A +B )=cos C答案D解析在△ABC 中,有A +B +C =π,则sin(A +B )=sin(π-C )=sin C ,A 正确.sin B +C 2=sin ⎝ ⎛⎭⎪⎫π2-A 2=cos A 2,B 正确. tan(A +B )=tan(π-C )=-tan C ⎝⎛⎭⎪⎫C ≠π2,C 正确. cos(A +B )=cos(π-C )=-cos C ,D 错误.6.已知α∈(0,π),且sin α+cos α=15,给出下列结论: ①π2<α<π; ②sin αcos α=-1225; ③cos α=35; ④cos α-sin α=-75. 其中所有正确结论的序号是()A .①②④B .②③④C .①②③D .①③④答案A解析∵sin α+cos α=15, 等式两边平方得(sin α+cos α)2=1+2sin αcos α=125, 解得sin αcos α=-1225,故②正确; ∵α∈(0,π),sin αcos α=-1225<0,∴α∈⎝ ⎛⎭⎪⎫π2,π, ∴cos α<0,故①正确,③错误;cos α-sin α<0,且(cos α-sin α)2=1-2sin αcos α=1-2×⎝ ⎛⎭⎪⎫-1225=4925, 解得cos α-sin α=-75,故④正确. 7.sin 21°+sin 22°+sin 23°+…+sin 289°=________.答案44.5解析∵sin1°=cos89°,sin2°=cos88°,…,sin89°=cos1°, ∴sin 21°+sin 22°+sin 23°+…+sin 289°=44.5.8.设f (θ)=2cos 2θ+sin 2(2π-θ)+sin ⎝ ⎛⎭⎪⎫π2+θ-32+2cos 2(π+θ)+cos (-θ),则f ⎝ ⎛⎭⎪⎫17π3=. 答案-512解析∵f (θ)=2cos 2θ+sin 2θ+cos θ-32+2cos 2θ+cos θ=cos 2θ+cos θ-22cos 2θ+cos θ+2, 又cos 17π3=cos ⎝⎛⎭⎪⎫6π-π3 =cos π3=12,∴f ⎝ ⎛⎭⎪⎫17π3=14+12-212+12+2=-512.9.(1)(2022·郑州模拟)已知sin θ=45,求sin (π-θ)cos ⎝ ⎛⎭⎪⎫π2+θcos (π+θ)sin ⎝ ⎛⎭⎪⎫π2-θ的值. 解∵sin θ=45, ∴cos 2θ=1-sin 2θ=925, 则sin (π-θ)cos ⎝ ⎛⎭⎪⎫π2+θcos (π+θ)sin ⎝ ⎛⎭⎪⎫π2-θ=sin θ(-sin θ)(-cos θ)cos θ =sin 2θcos 2θ=169. (2)已知sin x +cos x =-713(0<x <π),求cos x -2sin x 的值. 解∵sin x +cos x =-713(0<x <π), ∴cos x <0,sin x >0,即sin x -cos x >0,把sin x +cos x =-713, 两边平方得1+2sin x cos x =49169, 即2sin x cos x =-120169,∴(sin x -cos x )2=1-2sin x cos x =289169, 即sin x -cos x =1713, 联立⎩⎪⎨⎪⎧ sin x +cos x =-713,sin x -cos x =1713,解得sin x =513,cos x =-1213, ∴cos x -2sin x =-2213. 10.(2022·衡水模拟)已知角α的终边经过点P (3m ,-6m )(m ≠0).(1)求sin (α+π)+cos (α-π)sin ⎝ ⎛⎭⎪⎫α+π2+2cos ⎝⎛⎭⎪⎫α-π2的值; (2)若α是第二象限角,求sin 2⎝ ⎛⎭⎪⎫α+3π2+sin(π-α)·cos α-cos ⎝ ⎛⎭⎪⎫π2+α的值. 解(1)∵m ≠0,∴cos α≠0,即sin (α+π)+cos (α-π)sin ⎝ ⎛⎭⎪⎫α+π2+2cos ⎝⎛⎭⎪⎫α-π2 =-sin α-cos αcos α+2sin α=-tan α-11+2tan α. 又∵角α的终边经过点P (3m ,-6m )(m ≠0),∴tan α=-6m 3m=-2,故sin (α+π)+cos (α-π)sin ⎝ ⎛⎭⎪⎫α+π2+2cos ⎝⎛⎭⎪⎫α-π2 =-tan α-11+2tan α=2-11+2×(-2)=-13. (2)∵α是第二象限角,∴m <0,则sin α=-6m (3m )2+(-6m )2 =-6m 35|m |=255, cos α=3m (3m )2+(-6m )2=3m 35|m |=-55, ∴sin 2⎝ ⎛⎭⎪⎫α+3π2+sin(π-α)cos α-cos ⎝ ⎛⎭⎪⎫π2+α =cos 2α+sin αcos α+sin α=⎝ ⎛⎭⎪⎫-552+255×⎝ ⎛⎭⎪⎫-55+255 =-1+255.11.已知角α满足sin α·cos α≠0,则表达式sin (α+k π)sin α+cos (α+k π)cos α(k ∈Z )的取值可能为()A .-2或0B .-1或1C .2或-2D .-2或2或0答案C解析当k 为奇数时,原式=-sin αsin α+-cos αcos α=(-1)+(-1)=-2; 当k 为偶数时,原式=sin αsin α+cos αcos α=1+1=2. ∴原表达式的取值可能为-2或2.12.(2022·河北六校联考)若sin α是方程5x 2-7x -6=0的根,则sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin (π+α)等于() A.35 B.53 C.45 D.54答案B解析方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,则sin α=-35. 原式=cos α(-cos α)tan 2αsin α(-sin α)(-sin α)=-1sin α=53. 13.曲线y =e x +x 2-23x 在x =0处的切线的倾斜角为α,则sin ⎝⎛⎭⎪⎫2α+π2=. 答案45解析由题意得y ′=f ′(x )=e x +2x -23, 所以f ′(0)=e 0-23=13, 所以tan α=13, 所以α∈⎝⎛⎭⎪⎫0,π2, 所以cos α=310, 所以sin ⎝⎛⎭⎪⎫2α+π2 =cos2α=2cos 2α-1=2×910-1=45. 14.函数y =log a (x -3)+2(a >0且a ≠1)的图象过定点Q ,且角α的终边也过点Q ,则3sin 2α+2sin αcos α=.答案75解析由题意可知点Q (4,2),所以tan α=12, 所以3sin 2α+2sin αcos α=3sin 2α+2sin αcos αsin 2α+cos 2α=3tan 2α+2tan α1+tan 2α=3×14+2×121+14=75.15.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上单调递增,若a =f ⎝⎛⎭⎪⎫sin 12π7,b =f ⎝ ⎛⎭⎪⎫cos 5π7,c =f ⎝⎛⎭⎪⎫tan 2π7,则() A .a >b >c B .c >a >bC .b >a >cD .c >b >a答案B解析根据题意,sin12π7=sin ⎝ ⎛⎭⎪⎫2π-2π7 =-sin2π7, cos 5π7=cos ⎝⎛⎭⎪⎫π-2π7=-cos 2π7, 又由函数f (x )是定义在R 上的偶函数,则a =f ⎝ ⎛⎭⎪⎫sin 12π7=f ⎝ ⎛⎭⎪⎫-sin 2π7=f ⎝⎛⎭⎪⎫sin 2π7, b =f ⎝ ⎛⎭⎪⎫cos 5π7=f ⎝ ⎛⎭⎪⎫-cos 2π7=f ⎝⎛⎭⎪⎫cos 2π7, 又由π4<2π7<π2, 则有0<cos 2π7<sin 2π7<1<tan 2π7, 又由函数在[0,+∞)上单调递增,则有c >a >b .16.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值.解(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ.由已知得sin θ+cos θ=3+12, 所以sin 2θsin θ-cos θ+cos θ1-tan θ=3+12. (2)由已知得sin θcos θ=m2, 因为1+2sin θcos θ=(sin θ+cos θ)2,所以1+m =⎝ ⎛⎭⎪⎫3+122, 解得m =32. (3)联立⎩⎪⎨⎪⎧ sin θ+cos θ=3+12,sin θcos θ=34,解得⎩⎪⎨⎪⎧ sin θ=32,cos θ=12或⎩⎪⎨⎪⎧ sin θ=12,cos θ=32.因为θ∈(0,2π),所以θ=π3或π6.。

第2讲 同角三角函数的基本关系与诱导公式

第2讲 同角三角函数的基本关系与诱导公式

第2讲同角三角函数的基本关系与诱导公式1.理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin xcos x=tan x .2.能利用单位圆中的对称性推导出π2±α,π±α的正弦、余弦、正切的诱导公式.1.同角三角函数的基本关系(1)平方关系:□1sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α(α≠π2+k π,k ∈Z ).2.三角函数的诱导公式公式角正弦余弦正切口诀一2k π+α(k ∈Z )sin αcos αtan α奇变偶不变,符号看象限二π+α□2-sin α□3-cos α□4tan α三-α□5-sin α□6cos α□7-tan α四π-α□8sin α□9-cos α□10-tan α五π2-α□11cos α□12sin α-六π2+α□13cos α□14-sin α-常用结论1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.1.思考辨析(在括号内打“√”或“×”)(1)若α,β为锐角,都有sin 2α+cos 2β=1.()(2)sin(π+α)=-sin α成立的条件是α为锐角.()(3)若α∈R ,则tan α=sin αcos α恒成立.()(4)若sin(k π-α)=13(k ∈Z ),则sin α=13.()答案:(1)×(2)×(3)×(4)×2.回源教材(1)已知sin(7π2+α)=35,那么cos α=()A.-45 B.-35C.35D.45解析:B因为sin(7π2+α)=-cos α=35,所以cos α=-35.(2)已知α是第三象限角,sin α=-35,则tan α=()A.-34 B.34C.-43 D.43解析:B由题意得cos α=-45,故tan α=sin αcos α=34.(3)化简cos (α-π2)sin (52π+α)·cos(2π-α)的结果为.解析:原式=sin αcos α·cos α=sin α.答案:sin α同角三角函数的基本关系“知一求二”问题例1(2023·全国乙卷)若θ∈(0,π2),tan θ=12,则sin θ-cos θ=.解析:因为θ∈(0,π2),则sin θ>0,cos θ>0,又tan θ=sin θcos θ=12,则cos θ=2sin θ,且cos 2θ+sin 2θ=4sin 2θ+sin 2θ=5sin 2θ=1,解得sin θ=55或sin θ=-55(舍去),所以sin θ-cos θ=sin θ-2sin θ=-sin θ=-55.答案:-55sin α,cos α的齐次式问题例2(2024·咸阳模拟)已知方程sin α+2cos α=0,则cos 2α-sin αcos α=()A.-45 B.35C.-35 D.45解析:B方程sin α+2cos α=0,化简得tan α=-2,则cos 2α-sin αcos α=cos 2α-sin αcos α1=cos 2α-sin αcos αsin 2α+cos 2α,分子分母同时除以cos 2α可得,cos 2α-sin αcos αsin 2α+cos 2α=1-tan αtan 2α+1,将tan α=-2代入可得cos 2α-sin αcos α=1-tan αtan 2α+1=1-(-2)(-2)2+1=35.故选B.“sin α±cos α,sin αcos α”之间的关系应用例3(多选)已知θ∈(0,π),sin θ+cos θ=15,则下列结论正确的是()A.sin θ=45 B.cos θ=-35C.tan θ=-34D.sin θ-cos θ=75解析:ABD由题意知sin θ+cos θ=15,∴(sin θ+cos θ)2=1+2sin θcos θ=125,∴2sin θcos θ=-2425<0,∵θ∈(0,π),∴π2<θ<π,∴sin θ-cos θ>0,∴sin θ-cos θ=1-2sin θcos θ=1-(-2425)=4925=75,∴sin θ=45,cos θ=-35.∴tan θ=-43,∴ABD 正确.反思感悟同角三角函数关系式的应用方法(1)利用sin 2α+cos 2α=1可实现角α的正弦、余弦的互化,利用sin αcos α=tan α(α≠π2+k π,k ∈Z )可实现角α的弦切互化.(2)当分式中分子与分母是关于sin α,cos α的齐次式时,往往转化为关于tan α的式子求解.(3)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.训练1(1)若θ∈(π2,π),且满足6tan θ-tan θ=1,则sin θ+cos θ=()A.105 B.55C.-55D.-105解析:A 由6tan θ-tan θ=1得(tan θ-2)(tan θ+3)=0,∴tan θ=-3或tan θ=2,∵θ∈(π2,π),∴tan θ<0,∴tan θ=-3.θ=sin θcos θ=-3,2θ+cos 2θ=1及sin θ>0,cosθ<0,得sin θ=31010,cos θ=-1010,∴sin θ+cos θ=105.故选A.(2)(2024·海口模拟)已知tan α=2,则1-3cos 2αsin 2α=()A.12B.14C.2D.4解析:A 因为tan α=2,所以1-3cos 2αsin 2α=sin 2α-2cos 2α2sin αcos α=tan 2α-22tan α=24=12.故选A.(3)(多选)已知sin θcos θ=12,π2<θ<2π,则()A.θ的终边在第三象限B.sin θ+cos θ=2C.sin θ-cos θ=0D.tan θ=-1解析:AC因为sin θcos θ=12,π2<θ<2π,则θ为第三象限角,A 正确;由题意得sin θ<0,cos θ<0,B 错误;因为(sin θ-cos θ)2=1-2sin θcos θ=0,故sin θ-cos θ=0,C 正确;结合选项C 可知tan θ=1,D 错误.诱导公式的应用例4(1)已知x ∈R ,则下列等式恒成立的是()A.sin(3π-x )=-sin xB.sinπ-x 2=-cosx2C.cos(5π2+3x )=sin 3xD.cos(3π2-2x )=-sin 2x解析:D sin(3π-x )=sin(π-x )=sin x ,sinπ-x 2=sin(π2-x 2)=cos x2,cos(5π2+3x )=cos(π2+3x )=-sin 3x ,cos(3π2-2x )=-sin 2x .(2)已知sin(π3+2α)=23,则cos(π6-2α)=()A.53B.-23C.23D.±53解析:C∵sin(π3+2α)=23,∴cos(π6-2α)=cos[π2-(π3+2α)]=sin(π3+2α)=23.故选C.反思感悟1.诱导公式的应用步骤任意负角的三角函数―――――→利用诱导公式三或一任意正角的三角函数―――――→利用诱导公式一0~2π内的角的三角函数―――――→利用诱导公式二或四或五或六锐角三角函数.2.诱导公式的两个应用(1)求值:负化正,大化小,化到锐角为终了.(2)化简:统一角,统一名,同角名少为终了.训练2(1)已知cos(π4+α)=45,则sin(π4-α)的值为()A.35B.-35C.45D.-45解析:C由cos(π4+α)=45,得sin(π4-α)=sin[π2(π4+α)]=cos(π4+α)=45.(2)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos (3π2+α)-sin 2(π2+α)(1+2sin α≠0),则f (-23π6)=.解析:因为f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,所以f (-23π6=1tan (-23π6)=1tan (-4π+π6)=1tanπ6= 3.答案:3同角关系与诱导公式的综合应用例5已知f (α)=sin (α-3π)cos (2π-α)sin (-α+3π2)cos (-π-α)sin (-π-α).(1)化简f (α);(2)若α=-31π3,求f (α)的值;(3)若cos(-α-π2)=15,α∈[π,3π2],求f (α)的值.解:(1)f (α)=sin (α-3π)cos (2π-α)sin (-α+3π2)cos (-π-α)sin (-π-α)=-sin α×cos α×(-cos α)-cos α×sin α=-cos α.(2)若α=-31π3,则f (α)=-cos(-31π3)=-cos π3=-12.(3)由cos(-α-π2)=15,可得sin α=-15,因为α∈[π,3π2],所以cos α=-265,所以f (α)=-cos α=265.反思感悟1.利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.2.注意角的范围对三角函数符号的影响.训练3(1)已知sin(3π2-α)+cos(π-α)=sin α,则2sin 2α-sin αcos α等于()A.2110 B.32C.32D.2解析:D 由诱导公式可得,sin α=sin(3π2-α)+cos(π-α)=-2cos α,所以tan α=-2.因此,2sin 2α-sin αcos α=2sin 2α-sin αcos αsin 2α+cos 2α=2tan 2α-tan αtan 2α+1=105=2.(2)已知sin(α-2π3)=23,其中α∈(π2,π),则cos(α-π6)=,sin(2α-π3)=.解析:法一:令t =α-2π3,所以sin t =23,α=t +2π3,所以cos(α-π6)=cos(t +2π3-π6)=cos(t +π2)=-sin t =-23.因为α∈(π2,π),所以α-π6∈(π3,5π6),所以sin(α-π6)=53,所以sin(2α-π3)=sin 2(α-π6)=2sin(α-π6)cos(α-π6)=2×53×(-23)=-459.法二:因为sin(α-2π3)=23,所以cos(α-π6)=cos(π6-α)=sin[π2-(π6-α)]=sin(π3+α)=sin[π-(π3+α)]=sin(2π3-α)=-sin(α-2π3)=-23.以下同法一.答案:-23-459限时规范训练(二十五)A 级基础落实练1.sin 1620°等于()A.0B.12C.1D.-1解析:A 由诱导公式,sin 1620°=sin(180°+4×360°)=sin 180°=0.2.(多选)(2024·孝感协作体联考)已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中成立的是()A.sin θ<0B.sin θ>0C.cos θ>0D.cos θ<0解析:BD因为sin(θ+π)=-sin θ<0,所以sin θ>0,故B 正确;因为cos(θ-π)=-cos θ>0,所以cos θ<0,故D 正确.故选BD.3.已知角α的顶点在原点,始边与x轴非负半轴重合,终边与直线2x+y+3=0平行,则sinα-cosαsinα+cosα的值为()A.-2B.-14C.2D.3解析:D因为角α的终边与直线2x+y+3=0平行,即角α的终边在直线y =-2x上,所以tanα=-2,sinα-cosαsinα+cosα=tanα-1tanα+1=3.4.(多选)在△ABC中,下列结论正确的是()A.sin(A+B)=sin CB.sin B+C2=cos A 2C.tan(A+B)=-tan C(C≠π2)D.cos(A+B)=cos C解析:ABC在△ABC中,有A+B+C=π,则sin(A+B)=sin(π-C)=sin C,A正确;sin B+C2=sin(π2-A2)=cos A2,B正确;tan(A+B)=tan(π-C)=-tan C(C≠π2),C正确;cos(A+B)=cos(π-C)=-cos C,D错误.5.(2024·郑州模拟)已知角α∈(-π2,0),且tan2α-3tanαsinα-4sin2α=0,则sin(α+2023π)等于()A.154B.1 4C.-34D.-154解析:A因为tan2α-3tanαsinα-4sin2α=0,所以(tanα-4sinα)(tanα+sinα)=0,因为α∈(-π2,0),所以tanα<0且sinα<0,所以tanα-4sinα=0,即sinαcosα=4sin α,所以cos α=14,所以sin α=-1-cos 2α=-154,所以sin(α+2023π)=-sin α=154.6.若sin(π+α)-cos(π-α)=35,则sin(π2+α)·cos(π2-α)等于()A.825B.-825C.1625D.-1625解析:A 由sin(π+α)-cos(π-α)=35可得-sin α+cos α=35,平方可得1-2sin αcos α=925,所以sin αcos α=825,所以sin(π2+α)cos(π2-α)=cos αsin α=825.7.(2024·武汉质检)若sin α+cos αsin α-cos α=2,则sin(α-5π)·sin(3π2-α)=()A.34B.310C.±310 D.-310解析:B 由sin α+cos αsin α-cos α=2,分子和分母同除以cos α得tan α+1tan α-1=2,解得tan α=3,∴sin(α-5π)·sin(3π2-α)=-sin α·(-cos α)=sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=310.故选B.8.(多选)在平面直角坐标系中,若角α的终边与单位圆交于点P (45,n )(n >0),将角α的终边按逆时针方向旋转π2后得到角β的终边,记角β的终边与单位圆的交点为Q,则下列结论正确的为()A.tanα=34B.sinβ=45C.tanβ=43D.Q的坐标为(-35,45)解析:ABD由题意知cosα=45,角α的终边在第一象限,则n=sinα=1-cos2α=3 5,所以tanα=sinαcosα=34,A正确.由题意知β=α+π2,所以cosβ=cos(α+π2)=-sinα=-35,sinβ=sin(α+π2)=cosα=45,tanβ=sinβcosβ=-4 3,即Q点的坐标为(-35,45),所以可得B,D正确,C错误.9.已知sinθ=13,则tan(2π-θ)cos(π2-θ)sin(3π2+θ)=.解析:原式=-tanθsinθ(-cosθ)=1cos2θ=11-sin2θ=11-(13)2=98.答案:9 810.已知α为第三象限角,且tan(π+α)=34,则cosα=.解析:由tan(π+α)=34可得tanα=34,即sinαcosα=34,所以sinα=34cosα,又sin2α+cos2α=1,所以(34cosα)2+cos2α=1,得cos2α=1625,因为α为第三象限角,所以cosα<0,所以cosα=-45.答案:-4 511.已知sinα-cosα=14,则sin3α-cos3α=.解析:由题知sin3α-cos3α=(sinα-cosα)·(sin2α+cos2α+sinαcosα),因为sinα-cosα=14,所以1-2sinαcosα=116,所以sinαcosα=1532,所以sin3α-cos3α=14×(1+1532)=47128.答案:4712812.已知cos(π6-α)=33,则cos(5π6+α)-sin(α+4π3)的值为.解析:因为cos(π6-α)=33,所以cos(5π6+α)=cos[π-(π6-α)]=-cos(π6-α)=-33,sin(α+4π3)=-sin(α+π3)=-sin[π2-(π6-α)]=-cos(π6-α)=-33,所以cos(5π6+α)-sin(α+4π3)=-33-(-33)=0.答案:0B级能力提升练13.(多选)已知角α满足sinα·cosα≠0,则表达式sin(α+kπ)sinα+cos(α+kπ)cosα(k∈Z)的取值为()A.-2B.-1C.2D.1解析:AC 当k 为奇数时,原式=-sin αsin α+-cos αcos α=(-1)+(-1)=-2;当k 为偶数时,原式=sin αsin α+cos αcos α=1+1=2.所以原表达式的取值为-2或2.14.对于角θ,当分式tan θ+sin θtan θsin θ有意义时,该分式一定等于下列选项中的哪一个式子()A.tan θ+cos θtan θcos θB.tan θ-sin θtan θC.tan θsin θtan θ-cos θD.tan θsin θtan θ-sin θ解析:D 由题意知tan θ+sin θtan θsin θ=sin θcos θ+sin θsin 2θcos θ=sin θ+sin θcos θsin 2θ=1+cos θsin θ,∵tan θ+cos θtan θcos θ=sin θ+cos 2θsin θcos θ,∴A 不符合题意;∵tan θ-sin θtan θ=sin θ-sin θcos θsin θ=1-cos θ,∴B 不符合题意;∵tan θsin θtan θ-cos θ=sin 2θsin θ-cos 2θ,∴C 不符合题意;∵tan θsin θtan θ-sin θ=sin 2θcos θsin θcos θ-sin θ=sin 2θsin θ-sin θcos θ=1-cos 2θsin θ(1-cos θ)=1+cos θsin θ,∴D 符合题意.故选D.15.已知函数f (x )=a x -2+2(a >0且a ≠1)的图象过定点P ,且角α的始边与x 轴的正半轴重合,终边过点P ,则cos (11π2-α)sin (9π2+α)+sin 2αcos (π2+α)sin (-π-α)=.解析:由题设知,f (x )过定点P (2,3),故tan α=32,所以cos(11π2-α)sin(9π2+α)+sin2αcos(π2+α)sin(-π-α)=cos(3π2-α)sin(π2+α)+sin2αcos(π2+α)sinα=-sinαcosα+2sinαcosα-sin2α=-cosαsinα=-1tanα=-23.答案:-2 316.已知α∈(-π2,π2),且sinα+cosα=55,则tanα的值为.解析:法一:由sinα+cosα=5 5,平方得1+2sinαcosα=1 5,所以sinαcosα=-2 5,则sinαcosαsin2α+cos2α=tanαtan2α+1=-25,解得tanα=-12或tanα=-2.因为α∈(-π2,π2,且0<sinα+cosα=55<1,所以cosα>-sinα>0,即tanα>-1,所以tanα=-1 2 .法二:由sinα+cosα=55,①平方得1+2sinαcosα=1 5,即2sinαcosα=-4 5,则(sinα-cosα)2=1-2sinαcosα=9 5 .因为α∈(-π2,π2,且0<sinα+cosα=55<1,所以cosα>-sinα>0,sinα-cosα=-355,②联立①②α=-55,α=255,所以tanα=sinαcosα=-12.答案:-1 2。

(完整)同角三角函数的基本关系式

(完整)同角三角函数的基本关系式

同角三角函数的基本关系式诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=—————-1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=—————-1+tan2(α/2)2tan(α/2) tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=--———1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin---·cos--—sinα·cosβ=(1/2)[sin (α+β)+sin(α-β)]2 2α+βα-βsinα-sinβ=2cos—--·sin—-—2 2α+βα-βc osα+cosβ=2cos—--·cos—-—2 2α+βα-βcosα-cosβ=-2sin—--·sin—-— 2 2cosα·sinβ=(1/2)[sin (α+β)—sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α—β)]sinα·sinβ=—(1/2)[cos (α+β)—cos(α-β)]化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)直角三角定义它有六种基本函数(初等基本表示):三角函数数值表(斜边为r,对边为y,邻边为x。

高考数学一轮复习第2讲 同角三角函数的基本关系与诱导公式

高考数学一轮复习第2讲 同角三角函数的基本关系与诱导公式

第2讲 同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系式 (1)平方关系:01sin 2α+cos 2α=1.(2)商数关系:02sinαcosα=tan α.2.六组诱导公式 公式 一 二 三 四 五 六 角 2k π+ α(k ∈Z ) π+α -α π-α π2-απ2+α正弦 sin α -sin α -sin α sin α cos α cos α 余弦 cos α -cos α cos α -cos α sin α -sin α 正切 tan αtan α-tan α-tan α--口诀函数名不变,符号看象限函数名改变,符号看象限同角三角函数基本关系式的常用变形 (sin α±cos α)2=1±2sin αcos α; (sin α+cos α)2+(sin α-cos α)2=2; (sin α+cos α)2-(sin α-cos α)2=4sin αcos α; sin α=tan αcos α⎝ ⎛⎭⎪⎪⎫α≠π2+kπ,k∈Z ;sin2α=sin2αsin2α+cos2α=tan2αtan2α+1;cos2α=cos2αsin2α+cos2α=1tan2α+1.1.若cosα=13,α∈⎝⎛⎭⎪⎪⎫-π2,0,则tanα等于()A.-24B.24C.-22D.22答案 C解析由已知得sinα=-1-cos2α=-1-19=-223,所以tanα=sinαcosα=-22,选C.2.(2021·大同模拟)若角600°的终边上有一点(-4,a),则a的值是() A.-43B.±43C.3D.43答案 A解析∵tan600°=a-4=tan(540°+60°)=tan60°=3,∴a=-43.故选A.3.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于()A.-π6B.-π3C .π6D .π3答案 D解析 ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ=3.∵|θ|<π2,∴θ=π3.4.(2020·杭州学军中学模拟)已知cos31°=a ,则sin239°·tan149°的值为( ) A.1-a2aB .1-a2C.a2-1aD .-1-a2答案 B解析 sin239°tan149°=sin(270°-31°)tan(180°-31°)=-cos31°·(-tan31°)=sin31°=1-a2.5.化简cos ⎝⎛⎭⎪⎪⎫α-π2sin ⎝ ⎛⎭⎪⎪⎫5π2+αsin(α-π)cos(2π-α)的结果为________.答案 -sin 2α 解析 原式=sinαcosα(-sin α)cos α=-sin 2α.6.已知α是第二象限的角,tan α=-12,则cos α=________.答案 -255解析 因为α是第二象限的角,所以sin α>0,cos α<0,由tan α=-12,得sin α=-12cos α,代入sin 2α+cos 2α=1中,得54cos 2α=1,所以cos α=-255.考向一 诱导公式的应用 例1 (1)化简:错误!=________. 答案 -1 解析 原式=错误!=tanαcosαsi n ⎝ ⎛⎭⎪⎪⎫π2+α-cosαsinα=tanαcosαcosα-cosαsinα=-tanαcosαsinα=-sinαcosα·cosαsinα=-1.(2)已知cos(75°+α)=513,α是第三象限角,则sin(195°-α)+cos(α-15°)的值为________.答案 -1713解析 因为cos(75°+α)=513>0,α是第三象限角,所以75°+α是第四象限角, sin(75°+α)=-错误!=-错误!.所以sin(195°-α)+cos(α-15°) =sin[180°+(15°-α)]+cos(15°-α) =-sin(15°-α)+cos(15°-α)=-sin[90°-(75°+α)]+cos[90°-(75°+α)] =-cos(75°+α)+sin(75°+α) =-513-1213=-1713.(3)(2020·潍坊一模)在平面直角坐标系xOy 中,点P (3,1),将向量OP→绕点O 按逆时针方向旋转π2后得到向量OQ→,则点Q 的坐标是________.答案 (-1,3)解析 ∵OP→=(3,1)=(2cos θ,2sin θ),cos θ=32,sin θ=12,∴将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →=⎝ ⎛⎭⎪⎪⎫2cos ⎝ ⎛⎭⎪⎪⎫θ+π2,2sin ⎝ ⎛⎭⎪⎪⎫θ+π2=(-2sin θ,2cos θ)=(-1,3),∴点Q 的坐标是(-1,3).1.诱导公式的两个应用方向与原则(1)求值,化角的原则与方向:负化正,大化小,化到锐角为终了. (2)化简,化简的原则与方向:统一角,统一名,同角名少为终了. 2.含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α.1.(2020·江西宜春中学诊断)若α为锐角,且cos ⎝⎛⎭⎪⎪⎫α+π6=13,则cos ⎝⎛⎭⎪⎪⎫α-π3的值为( )A.223B .23 C .26D .526答案 A解析 ∵0<α<π2,∴π6<α+π6<2π3,∴sin ⎝⎛⎭⎪⎪⎫α+π6=1-cos2⎝⎛⎭⎪⎪⎫α+π6=223,∴cos ⎝ ⎛⎭⎪⎪⎫α-π3=cos ⎝ ⎛⎭⎪⎪⎫α+π6-π2=sin ⎝ ⎛⎭⎪⎪⎫α+π6=223.故选A.2.计算:sin(-1200°)cos1290°=________. 答案34解析 原式=-sin1200°cos1290°=-sin(3×360°+120°)cos(3×360°+210°)=-sin120°cos210°=-sin(180°-60°)cos(180°+30°) =sin60°cos30°=32×32=34.3.化简:错误!. 解 原式=错误!=错误! =错误!=错误!. 多角度探究突破考向二 同角三角函数的基本关系 角度1 切弦互化例2 (1)(2020·唐山第二次模拟)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A.12B .-12C .32D .-32答案 A解析 由三角函数定义,得tan α=32sinα,所以sinαcosα=32sinα,则2(1-cos 2α)=3cos α,所以(2cos α-1)(cos α+2)=0,则cos α=12.(2)(2020·济宁三模)已知tan(π-α)=2,则sinα+cosαsinα-cosα=________.答案13解析 因为tan(π-α)=2,所以tan α=-2,所以sinα+cosαsinα-cosα=tanα+1tanα-1=-2+1-2-1=13. 同角三角函数的基本关系式的功能是根据角的一个三角函数值求其他三角函数值,主要利用商数关系tan α=sinαcosα和平方关系1=sin 2α+cos 2α.4.已知α为锐角,且tan(π-α)+3=0,则sin α等于( )A.13B .31010C .377 D .355答案 B解析 因为tan(π-α)+3=0,所以tan α=3,sin α=3cos α.因为sin 2α+cos 2α=1,所以sin 2α=910. 又因为α为锐角,故sin α=31010.故选B.5.已知α是第二象限角,cos ⎝ ⎛⎭⎪⎪⎫3π2+α=45,则tan α=________.答案 -43解析 ∵cos ⎝ ⎛⎭⎪⎪⎫3π2+α=45,∴sin α=45,又α为第二象限角,∴cos α=-1-sin2α=-35,∴tan α=sinαcosα=-43.角度2 “1”的变换例3 (2021·海口模拟)已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边上有一点P (1,2),则sin2α1-3sinαcosα=________.答案 -4解析 因为角α的终边上有一点P (1,2),所以tan α=2. 所以sin2α1-3sinαcosα=sin2αsin2α+cos2α-3sinαcosα=tan2αtan2α+1-3tanα=2222+1-3×2=-4. 对于含有sin 2α,cos 2α,sin αcos α的三角函数求值题,一般可以考虑添加分母1,再将1用“sin 2α+cos 2α”代替,然后用分子分母同除以角的余弦的平方的方式将其转化为关于tan α的式子,从而求解.6.已知tan α=2,则(1)3sinα-2cosαsinα+cosα=________;(2)23sin 2α+14cos 2α=________. 答案 (1)43 (2)712解析 因为tan α=2,所以, (1)原式=3tanα-2tanα+1=3×2-22+1=43.(2)原式=23·sin2αsin2α+cos2α+14·cos2αsin2α+cos2α =23·tan2αtan2α+1+14·1tan2α+1 =23×2222+1+14×122+1=712. 角度3 sin x +cos x ,sin x -cos x ,sin x cos x 之间的关系例4 (1)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32B .32C .-34D .34答案 B解析 ∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|,∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32.(2)若θ∈⎝ ⎛⎭⎪⎪⎫π2,π,则 错误!等于( )A .sin θ-cos θB .cos θ-sin θC .±(sin θ-cos θ)D .sin θ+cos θ答案 A 解析 因为错误! =1-2sinθcosθ=错误!=|sin θ-cos θ|,又θ∈⎝ ⎛⎭⎪⎪⎫π2,π,所以sin θ-cos θ>0,所以原式=sin θ-cos θ.故选A.(1)已知a sin x +b cos x =c 可与sin 2x +cos 2x =1联立,求得sin x ,cos x .(2)sin x +cos x ,sin x -cos x ,sin x cos x 之间的关系为 (sin x +cos x )2=1+2sin x cos x , (sin x -cos x )2=1-2sin x cos x , (sin x +cos x )2+(sin x -cos x )2=2.因此,已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值.7.若1sin α+1cosα=3,则sin αcos α=( )A .-13B .13C .-13或1D .13或-1答案 A 解析 由1sinα+1cosα=3,可得sin α+cos α=3sin αcos α,两边平方,得1+2sin αcos α=3sin 2αcos 2α,解得sin αcos α=-13或sin αcos α=1.由题意,知-1<sin α<1,-1<cos α<1,且sin α≠0,cos α≠0,所以sin αcos α≠1.故选A.8.已知sin α+cos α=12,α∈(0,π),则1-tanα1+tanα=( )A .-7B .7 C.3D .-3答案 A解析 因为(sin α+cos α)2=1+2sin αcos α=14,所以sin αcos α=-38,又α∈(0,π),所以sin α>0,cos α<0.因为(sin α-cos α)2=1-2sin αcos α=74,所以cos α-sin α=-72.所以1-tanα1+tanα=cosα-sinαcosα+sinα=-7212=-7.故选A.一、单项选择题1.sin210°cos120°的值为( ) A.14B .-34C .-32D .34答案 A解析 sin210°cos120°=sin(180°+30°)cos(180°-60°)=-sin30°·(-cos60°)=⎝ ⎛⎭⎪⎪⎫-12×⎝ ⎛⎭⎪⎪⎫-12=14.故选A. 2.(2020·潍坊模拟)已知cos ⎝ ⎛⎭⎪⎪⎫3π2-φ=32,且|φ|<π2,则tan φ等于( )A .-33B .33 C .3 D .-3答案 D解析 由cos ⎝ ⎛⎭⎪⎪⎫3π2-φ=-sin φ=32,得sin φ=-32,又|φ|<π2,得到-π2<φ<π2,∴cos φ=1-⎝ ⎛⎭⎪⎪⎫-322=12,则tan φ=-3212=-3.故选D.3.已知α∈⎝ ⎛⎭⎪⎪⎫π2,π,tan α=-34,则sin(α+π)=( )A.35 B .-35C.45 D .-45答案 B解析由题意可知⎩⎪⎨⎪⎧sinαcosα=-34,sin2α+cos2α=1,由此解得sin 2α=925,又α∈⎝ ⎛⎭⎪⎪⎫π2,π,因此有sin α=35,sin(α+π)=-sin α=-35.故选B. 4.已知A =错误!+错误!(k ∈Z ),则A 的值构成的集合是( ) A .{1,-1,2,-2} B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}答案 C解析 当k 为偶数时,A =sinαsinα+cosαcosα=2;当k 为奇数时,A =-sinαsinα-cosαcosα=-2.故A 的值构成的集合是{2,-2}.5.(2020·天津西青区模拟)已知sin α+cos α=-2,则tan α+1tanα=( )A .2B .12C .-2D .-12答案 A解析 ∵sin α+cos α=-2,∴(sin α+cos α)2=2,∴1+2sin αcos α=2,∴sin αcos α=12.tan α+1tanα=sinαcosα+cosαsinα=sin2α+cos2αsinαcosα=112=2.故选A.6.已知sin ⎝ ⎛⎭⎪⎪⎫α-π12=13,则cos ⎝ ⎛⎭⎪⎪⎫α+17π12的值为( ) A.13B .223 C .-13D .-223答案 A解析 由cos ⎝ ⎛⎭⎪⎪⎫α+17π12=cos ⎝ ⎛⎭⎪⎪⎫α-π12+3π2=sin ⎝⎛⎭⎪⎪⎫α-π12=13. 7.(2020·济宁模拟)直线l :2x -y +e =0的倾斜角为α,则sin(π-α)sin ⎝ ⎛⎭⎪⎪⎫π2+α的值为( )A .-25B .-15C .15D .25答案 D解析 ∵直线l :2x -y +e =0的倾斜角为α,∴tan α=2,∴sin(π-α)sin ⎝ ⎛⎭⎪⎪⎫π2+α=sin αcos α=sinαcosαsin2α+cos2α=tanα1+tan2α=21+22=25.故选D.8.化简1+sinα+cosα+2sinαcosα1+sinα+cosα的结果是( )A .2sin αB .2cos αC .sin α+cos αD .sin α-cos α答案 C解析 原式=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=错误! =错误!=sin α+cos α.故选C.9.若sin θ+sin 2θ=1,则cos 2θ+cos 6θ+cos 8θ的值为( ) A .0 B .1 C .-1 D .5-12答案 B解析 由sin θ+sin 2θ=1,得sin θ=1-sin 2θ=cos 2θ,∴cos 2θ+cos 6θ+cos 8θ=sin θ+sin 3θ+sin 4θ=sin θ+sin 2θ(sin θ+sin 2θ)=sin θ+sin 2θ=1.10.(2020·海口模拟)若对任意x ∈R ,都有cos ⎝ ⎛⎭⎪⎪⎫2x -5π6=sin(ωx +φ)(ω∈R ,|φ|<π),则满足条件的有序实数对(ω,φ)的对数为( )A .0B .1C .2D .3 答案 C解析 cos ⎝ ⎛⎭⎪⎪⎫2x -5π6=cos ⎝ ⎛⎭⎪⎪⎫2x -π3-π2=sin ⎝ ⎛⎭⎪⎪⎫2x -π3,由条件知ω=±2.若ω=2,由φ=-π3+2k π(k ∈Z )且|φ|<π,得φ=-π3;若ω=-2,sin(-2x +φ)=sin(2x +π-φ),则π-φ=-π3+2k π(k ∈Z ),所以φ=-2k π+4π3(k ∈Z ),又|φ|<π,则φ=-2π3,故满足条件的有序数对(ω,φ)的对数为2.二、多项选择题11.在△ABC 中,下列结论正确的是( ) A .sin(A +B )=sin C B .sin B +C2=cos A2C .tan(A +B )=-tan C ⎝ ⎛⎭⎪⎪⎫C ≠π2D .cos(A +B )=cos C 答案 ABC解析 在△ABC 中,有A +B +C =π,则sin(A +B )=sin(π-C )=sin C ;sin B +C2=sin ⎝ ⎛⎭⎪⎪⎫π2-A 2=cos A 2;tan(A +B )=tan(π-C )=-tan C ⎝ ⎛⎭⎪⎪⎫C ≠π2;cos(A +B )=cos(π-C )=-cos C .12.(2020·湖北宜昌高三模拟)定义:角θ与φ都是任意角,若满足θ+φ=π2,则称θ与φ“广义互余”.已知sin(π+α)=-14,下列角β中,可能与角α“广义互余”的是( )A .sin β=154B .cos(π+β)=14C .tan β=15D .tan β=155答案 AC解析 ∵sin(π+α)=-sin α=-14,∴sin α=14,若α+β=π2,则β=π2-α.sin β=sin ⎝ ⎛⎭⎪⎪⎫π2-α=cos α=±154,故A 符合条件;cos(π+β)=-cos ⎝ ⎛⎭⎪⎪⎫π2-α=-sin α=-14,故B 不符合条件;tan β=15,即sin β=15cos β,又sin 2β+cos 2β=1,所以sin β=±154,故C 符合条件;tan β=155,即sin β=155cos β,又sin 2β+cos 2β=1,所以sin β=±64,故D 不符合条件.故选AC.三、填空题13.sin 4π3cos 5π6tan ⎝ ⎛⎭⎪⎪⎫-4π3的值是________.答案 -334解析 原式=sin ⎝ ⎛⎭⎪⎪⎫π+π3cos ⎝ ⎛⎭⎪⎪⎫π-π6tan ⎝ ⎛⎭⎪⎪⎫-π-π3=⎝ ⎛⎭⎪⎪⎫-sin π3⎝ ⎛⎭⎪⎪⎫-cos π6⎝ ⎛⎭⎪⎪⎫-tan π3=⎝⎛⎭⎪⎪⎫-32×⎝ ⎛⎭⎪⎪⎫-32×(-3)=-334.14.已知sin θ=13,则错误!=________.答案98解析 原式=错误!=错误!=错误!=错误!=错误!.15.已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎪⎫θ-π4=________.答案 -43解析 因为θ是第四象限角,且sin ⎝ ⎛⎭⎪⎪⎫θ+π4=35,所以θ+π4为第一象限角,所以cos ⎝ ⎛⎭⎪⎪⎫θ+π4=45,所以tan ⎝ ⎛⎭⎪⎪⎫θ-π4=sin ⎝ ⎛⎭⎪⎪⎫θ-π4cos ⎝ ⎛⎭⎪⎪⎫θ-π4=-cos π2+⎝ ⎛⎭⎪⎪⎫θ-π4sin π2+⎝ ⎛⎭⎪⎪⎫θ-π4=-cos ⎝ ⎛⎭⎪⎪⎫θ+π4sin ⎝⎛⎭⎪⎪⎫θ+π4=-43.16.已知α为第二象限角,则cos α1+tan2α+sin α·1+1tan2α=________.答案 0解析 原式=cos αsin2α+cos2αcos2α+sin αsin2α+cos2αsin2α=cos α1|cosα|+sin α1|sinα|,因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cosα|+sin α1|sinα|=-1+1=0,即原式等于0.四、解答题17.已知α为第三象限角,f (α)=错误!.(1)化简f (α);(2)若cos ⎝ ⎛⎭⎪⎪⎫α-3π2=15,求f (α)的值.解 (1)f (α)=错误! =错误!=-cos α.(2)因为cos ⎝ ⎛⎭⎪⎪⎫α-3π2=15,所以-sin α=15,从而sin α=-15.又因为α为第三象限角, 所以cos α=-1-sin2α=-265,所以f (α)=-cos α=265.18.已知tanαtanα-1=-1,求下列各式的值.(1)sinα-3cosαsinα+cosα; (2)sin 2α+sin αcos α+2. 解 由已知得tan α=12.(1)sinα-3cosαsinα+cosα=tanα-3tanα+1=-53. (2)sin 2α+sin αcos α+2=sin2α+sinαcosαsin2α+cos2α+2=tan2α+tanαtan2α+1+2=⎝ ⎛⎭⎪⎪⎫122+12⎝ ⎛⎭⎪⎪⎫122+1+2=135.19.已知0<α<π2,若cos α-sin α=-55,试求2sinαcosα-cosα+11-tanα的值.解 ∵cos α-sin α=-55,∴1-2sin αcos α=15.∴2sin αcos α=45.∴(sin α+cos α)2=1+2sin αcos α=1+45=95.∵0<α<π2,∴sin α+cos α=355.与cos α-sin α=-55联立,解得 cos α=55,sin α=255.∴tan α=2.∴2sinαcosα-cosα+11-tanα=45-55+11-2=55-95. 20.是否存在α∈⎝ ⎛⎭⎪⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,说明理由.解 存在.由sin ()3π-α=2cos ⎝ ⎛⎭⎪⎪⎫π2-β得sin α=2sin β,①由3cos(-α)=-2cos(π+β)得3cos α=2cos β,②∴sin 2α+3cos 2α=2(sin 2β+cos 2β)=2,∴1+2cos 2α=2,∴cos 2α=12,又α∈⎝ ⎛⎭⎪⎪⎫-π2,π2,∴cosα=22,从而α=π4或-π4,当α=π4时,由①知sinβ=12,由②知cosβ=32,又β∈(0,π),∴β=π6,当α=-π4时,由①知sinβ=-12,与β∈(0,π)矛盾,舍去.∴存在α=π4,β=π6,符合题意.21 / 21。

同角三角函数基本关系式及诱导公式

同角三角函数基本关系式及诱导公式

=sin2θ+sinθcosθ- 2cos2θ
=sin2θ+ssiinn2θθc+oscθo-s2θ 2cos2θ=tan2θta+n2tθa+nθ1- 2

22+ 2- 22+1
2=23..
答案:D
(2)已知 tan(π-α)=-23,且 α∈-π,-π2,则cocso-sπα-+α3+sin9sπin+αα=________. 解析:由 tan(π-α)=-23,得 tanα=23, 则cocso-sπα-+α3+sin9sπin+αα=-cocosαsα-+39sisninαα=-11-+39tatnanαα=-1- 1+26=-15.
解析:∵sinθ+cosθ=43,∴sinθcosθ=178.
又∵(sinθ-cosθ)2=1-2sinθcosθ=29,θ∈0,π4,
∴sinθ-cosθ=-
2 3.
答案:-
2 3
6.已知 α 为锐角,cos32π+α=45,则 cos(π+α)=________.
解析:∵cos32π+α=sinα=45,且 α 为锐角, ∴cosα=35,∴cos(π+α)=-cosα=-35. 答案:-35
答案:32
(2)已知 cosπ6-θ=a,则 cos56π+θ+sin23π-θ的值是________. 解 析 : 因 为 cos 56π+θ = cos π-π6-θ = - cos π6-θ = - a , sin 23π-θ = sinπ2+π6-θ=cosπ6-θ=a,所以 cos56π+θ+sin23π-θ=0. 答案:0
题型二 诱导公式的应用 例 1 (1)tancoπs+-ααc-os32ππs+inα-si3nπα--α32π=________. 解析:原式=tanαcosαsin-2π+α+π2

高三第一轮复习--同角三角函数的关系式及诱导公式

高三第一轮复习--同角三角函数的关系式及诱导公式
【思维点拨】,
4 sin sin 4 2 1 sin 8 . ( 2 )灵活运用平方关系是化简的重 1 1 sin 8 ; n z
要手段之一。

例2、已知 tan 2 。
4 sin 2 cos (1)求 的值; 5 sin 3 cos
符 号 看 象 限 。
函 数 名 改 变 ,
以上九组公式称为诱导公式,其规 律可总结为:
奇变偶不变,
符号看象限。
例1、化简下列各式: sin k cos[(k 1) ] 1 . k Z sin[(k 1) ] cos(k ) 练习 练习 6 6 (1)分清 k 的奇偶,决定函数值符号 1 4sin cos n 1 4 n 1 化简下列各式: 2 sin . 2 是关键; 化简 4 cos
+ cotα + cosα
- sinα - cotα
tan(90°+α) =
sin(2700-α)
=
- cosα
cos(2700- α) = - sinα
tan(2700- α) = + cotα sin(270° +α) = - cosα cos(270° + α) = + sinα tan(270° + α) = - cotα
桂林装修 桂林装饰好啊,请各位稍等片刻!”说着一转身迈开大步直冲正面中间的一间房子去了。随着伙计的身影,耿正看到在这间房子的门口挂着写有 “柜房”的大木牌。只听伙计一边进门一边大声说:“耿掌柜,快去看,有一挂用红布蒙了的大骡车进咱们店了,一共三个人呢,说是 要见你!”话音刚落,那个让耿正兄妹三人经常回忆起来的,并且由于回忆而越来越熟悉的大哥快步走出来了。七年半过去了,昔日的 那个年轻大哥如今已经变成了一个结实的壮年汉子,但依然还是一脸的善良和慈祥模样。看着眼前这面带欣喜且激动不已的三个年青人, 耿大业一时间愣在了那里。略停顿一下,他试探着问:“请问,你们是?”耿正顺手将大白骡的缰绳递给那位报信的伙计。兄妹三人一 起上前眼含热泪给大哥深深施礼,耿正声音哽咽地说:“大哥,您可记得七年半之前的夏天,山那边发生溃坝的当晚,您和大嫂曾经挽 留落难的仨兄妹在您的小饭店里住了一夜,还„„”耿大业傻傻地张大嘴巴:“啊!你们是„„”“是我们!我们要回老家去了,特地 来看望您和大嫂的„„”“快请进屋说话!这骡车怎么„„”“咱们慢慢细说!”耿大业吩咐伙计将骡车赶进靠里边的大车棚内,将骡 子卸了喂上草料。伙计牵起大白骡进车棚去了。耿大业伸出有力的大手抓住耿正的双肩晃一晃,激动地大声说:“好兄弟,好兄弟啊!” 再转过来抓住耿直的双肩晃一晃,高兴地说:“小兄弟,你长大了,个头比你哥哥当年还高呢,长得也真像啊!”再仔细地端详耿英, 拍一拍她的肩膀,说:“好妹子,了不起啊!”他激动得不知道说什么好了:“七年多了,我和你们大嫂经常想起你们来,老惦念呢! 咱们到家里说话,你们大嫂又快生娃了,在家里歇着呢。”说着朝大院的西北方向扬扬头,说:“喏,就在大院儿里„„”当他领着耿 正兄妹仨往家里走去时,一个胖墩墩的小男娃儿忽然从靠北边的屋子里跑了出来,口里还欢叫着:“爹,我在屋里就能听见是你回来 了!”一边说着,一边就高兴地向耿大业扑来。耿正和耿英同时蹲下身来准备抱他,小家伙却像泥鳅一样“哧溜”一下就窜到了耿大业 的身后。耿大业把小家伙拉到身前来,挨个儿指着耿正、耿直和耿英对他说:“小铁蛋儿,这是大叔叔、这是二叔叔、这是姑姑,快叫 啊!”小家伙眨巴着小眼睛看看三人,再抬头看看爹爹。耿大业再说一遍:“叫大叔叔、二叔叔、姑姑!”这一回,小家伙亮着小嗓子 叫了。耿英高兴地答应着将小家伙抱起来,欣喜地说:“你叫小铁蛋儿,好一个可爱的小铁蛋儿啊!”这边正高兴着呢,耿大嫂听着外 面热闹的说话声也出来了。她已经怀孕八个多月了,笨拙地挺着大肚子一边往前走一边问:“他爹,这是„„”耿英一看见大嫂如此模 样,赶快将小铁蛋儿递到耿

第二节 同角三角函数的基本关系式

第二节 同角三角函数的基本关系式

5.求下列函数的定义域 (1)y=tanx+cotx; (2)y= sinx +tanx. 求下列函数的定义域: 求下列函数的定义域 ≠ ∈ 解: (1)使 tanx 有意义的 x 的取值集合是 {x | x≠kπ+ π , k∈Z}, 使 2 使 cotx 有意义的 x 的取值集合是 {x | x≠kπ, k∈Z}, ≠ ∈ 故所求函数的定义域是: 故所求函数的定义域是 {x | x≠kπ+ π , k∈Z}∩{x | x≠kπ, k∈Z} ={x | x≠ kπ , k∈Z}; ≠ ∈ ≠ ≠ ∈ 2 ∈ ∩ 2 sinx≥0, (2)要使原函数有意义 则 x≠kπ+ π , k∈Z. 要使原函数有意义, 要使原函数有意义 ≠ ∈ 2 2kπ≤x≤2kπ+π, k∈Z, ∈ 即 x≠kπ+ π , k∈Z. ≠ ∈ 2 故原函数定义域为{x|2kπ≤x≤2kπ+π, 且 x≠2kπ+ π , k∈Z}. 故原函数定义域为 ≠ 2 ∈
6.设 α 是第二象限的角 试问 -α, π-α, π+α 分别是第几象限 设 是第二象限的角, 试问: 的角? 的角 ∈ 是第二象限的角, 解: ∵α 是第二象限的角 ∴2kπ+ π <α<2kπ+π, k∈Z. 2 ∴ -2kπ-π<-α<-2kπ- π , k∈Z, -2kπ<π-α<-2kπ+ π , k∈Z, - 2 ∈ 2 ∈ 3π π 2kπ+ 2 <π+α<2kπ+2π, k∈Z. ∈ 是第一象限角, 是第三象限角, 是第四象限角. ∴-α 是第三象限角 π-α 是第一象限角 π+α 是第四象限角

高考数学复习讲义:同角三角函数的基本关系与诱导公式

高考数学复习讲义:同角三角函数的基本关系与诱导公式

返回
3.已知 tanπ6-α= 33,则 tan56π+α=________. 解析:tan56π+α=tanπ-π6+α=tan[ π-( π6-α ) ] =-tanπ6-α=- 33.
答案:-
3 3
返回
研透高考·深化提能
1.利用诱导公式把任意角的三角函数转化为锐角三角函 数的步骤
也就是:“负化正,大化小,化到锐角为终了.”
“切”的表达式,进行求值.常见的结构有:
①sin α,cos α的二次齐次式(如asin2α+bsin αcos α+
ccos2α)的问题常采用“切”代换法求解;
②sin
α,cos
α的齐次分式如acssiinn
α+bcos α+dcos
αα的问题常采
用分式的基本性质进行变形.
(2)切化弦:利用公式tan
返回
(2)已知-π2<α<0,sin α+cos α=15,则cos2α-1 sin2α=(
)
7
25
A.5
B. 7
7
24
C.25
D.25
返回
[解析] ∵sin α+cos α=15,
∴1+2sin αcos α=215,
∴2sin αcos α=-2245,(cos α-sin α)2=1+2245=4295.
3
课时跟踪检测
返回
突破点一 同角三角函数的基本关系
返回
抓牢双基·自学回扣
[基本知识]
1.同角三角函数的基本关系 (1)平方关系:sin2α+cos2α=1(α∈R ) . (2)商数关系: tan α=csions ααα≠kπ+π2,k∈Z .
返回
2.同角三角函数基本关系式的应用技巧

同角三角函数的基本关系式

同角三角函数的基本关系式

4
3
2
解:(2) 1 sin2α+ 1 sin αcos α+ 1 cos2α
4
3
2
1 sin2 1 sin cos 1 cos2
=4
3
2
sin2 cos2
=
1 4
tan2
1 3
tan
1 2
=
13
.
tan2 1
30
方法技巧 关于sin α、cos α的齐次式就是式子中的每一项都是关于sin α、cos α的式子且它们的次数之和相同,设为n次,解题时,分子、 分母同除以cos α的n次幂,即可化为关于tan α的式子,再计算就简单 多了.
(A) 1 5
(B) 3 5
(C)- 1 (D)- 3
5
5
解析:由
tan tan
sin sin
3, 2,
解得 tan θ= 5 ,sin θ= 1 ,
2
2
所以 cos θ= sin = 1 . tan 5
4.已知sin α=5cos α,则sin αcos α的值为
.
解析:法一

sin sin
=tan α·( 1 cos 2 - 1 cos 2 )=tan α·( 1 cos - 1 cos )
1 cos2
1 cos2
| sin | | sin |
= sin ·(- 1 cos + 1 cos )= sin · 2cos =-2.
cos
sin
sin
cos sin
答案:-2
解:(1)因为 sin A+cos A= 1

5
所以两边平方得 1+2sin A·cos A= 1 ,sin A·cos A=- 12 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档