反比例函数图像中的面积问题
反比例函数中的面积问题(共26张PPT)
课后精练
解:(1)如图,过点 D 作 DH⊥x 轴于点 H, ∵直线 AB 的解析式为 y=-2x+4,∴B 点坐标为(0,4), A 点坐标为(2,0). ∵∠OAB+∠DAH=90°,∠ADH+∠DAH=90°, ∴∠BAO=∠ADH. 又∵∠BOA=∠AHD,∴△AOB∽△DHA. ∴ADOH=ABOH=AADB=12.∴D2H=A4H=12,解得 DH=4,AH=8. ∴D(10,4),则 k=10×4=40. 故答案为:40.
③若 M 点的横坐标为 1,△OAM 为等边三角形,则 k=2+ 3;
7.如图,函数 y=kx(k 为常数,k>0)的图象与过原点的 O 的直线 相交于 A,B 两点,点 M 是第一象限内双曲线上的动点(点 M 在点 A 的左侧),直线 AM 分别交 x 轴,y 轴于 C,D 两点,连接 BM 分别 交 x 轴,y 轴于点 E,F.现有以下四个结论:
课后精练
∵D(10,4),∴D′(10,-4). 设直线 CD′的解析式为 y=ax+d, 则180a+a+dd==8- ,4,解得da==-566. , 故直线 CD′的解析式为 y=-6x+56. 当 y=0 时,x=238,故 P 点坐标为238,0. 延长 CD 交 x 轴于 Q,此时|QC-QD|的值最大, ∵CD∥AB,D(10,4),∴直线 CD 的解析式为 y=-2x+24. ∴Q(12,0).∴PQ=12-238=83. 故 P 点坐标为238,0,Q 点坐标为(12,0),线段 PQ 的长为83.
专题2 反比例函数中的面积问题
考点解读
反比例函数中的面积类问题是最能体现数形结合思想 方法的一类问题,几何中的函数问题使图形性质代数 化,函数中的几何问题使代数知识图形化,利用“数”
反比函数图像上四种三角形的面积
反比函数图像上的四种三角形的面积函数是解决实际生活问题的重要模型,在近几年各省市的考题中,对于函数的考查比例占有相当重的份量,绝大部分是考查考生对其基本概念、图象性质的理解和应用,甚至成为中考压轴题的大类。
反比例函数的图像经常与三角形的面积联系在一起,下面就举例说明。
结论1、过反比例函数图像上一点,向x 轴作垂线,则以图像上这个点、垂足,原点为顶点的三角形的面积等于反比例函数k 的绝对值的一半。
设P (a ,b )是反比例函数y=xk(k ≠0)图像上的一点,过点P 作PA ⊥x轴,垂足为A ,三角形PAO 的面积是S ,则S k 2=结论2、过反比例函数图像上一点,向y 轴作垂线,则以图像上这个点、垂足,原点为顶点的三角形的面积等于反比例函数k 的绝对值的一半。
设P (a ,b )是反比例函数y=x k(k ≠0)图像上的一点,过点P 作PB ⊥y 轴,垂足为B ,三角形PBO 的面积是S ,则S k 2=。
结论3、正比例函数y=k 1x (k 1>0)与反比例函数y=xk(k >0)的图像交于A 、kx 襄樊市第四十七中学 熊沙 图(1)2)B 两点,过A 点作AC ⊥x 轴,垂足是C ,三角形ABC 的面积设为S ,则S=|k|,与正比例函数的比例系数k 1无关。
证明:I因为,正比例函数y=k 1x (k 1>0)与反比例函数y=x k(k >0)的图像交于A 、B 两点,所以,x k xk1=,所以,x=±111k kk k k =, 当x=11k kk 时,y= k 1x=1kk ,所以,点A 的坐标是(11k kk ,1kk ),当x =-11k kk 时,y= k 1x =-1kk ,所以,点B 的坐标是(-11k kk ,-1kk ),所以,OC 的长度是11k kk ,三角形ABC 的面积=三角形AOC 的面积+三角形BOC 的面积=21×OC ×AC+21×OC ×BD =21×11k kk ×1kk +21×11k kk ×|-1kk | =21k+21k=k 。
如何求反比例函数图象中相关图形的面积
因为
S△AOB=
1 2
OB·AB= 1 2
x
·y
= 1 x y= 1 , 所以 S 22
= ABCD 4S△AOB=2.
责 任编 辑 / 沈红艳 czsshy@
的 我
世
界
我
36
喜 欢
数 学 .com
★
分析: 在坐标平面上求矩形的面积可借用坐标, 应用 坐标的特点找到矩形各顶点坐标, 再利用矩形面积公式,
原点 O 对称为的任意两点, AC∥y 轴, BC∥x 轴, 记
△ABC 的面积为 S, 则
.
A.S=1 B.1<S<2 C.S=2 D.S>2
分析: 应用对称点坐标的特点分别找出 A, B, C
各点坐标, 然后再根据求得的坐标求三角形的面积.
图5
解 : 设 A( x0, y0) , 则 B( - x0, - y0) .
责 任 编辑 / 沈红艳 czsshy@
的 我
世
界
我
38
喜 欢
例3
如图
3,
Rt△AOB
的 顶点
A
在双 曲 线
y=
m x
上,
且
S△AOB=3 ,
求
m
的 值.
思 路
分 析 : 利 用 S△AOB=3 这 个 条 件 确 定 m , 然 后 再 根 据 双 曲 线 所 在 象 限 确 定 m 方
的 符号 .
法
解: 设 A( x , y ) , 则 OB= x , AB= y ,
A. S= k
B. S= k
C. S=k D. S>k
Q
4
2
分析: 由于此三角形的面积为过 P 作两坐标 轴的垂
反比例函数中的面积问题
解得 k=2 评注:第①小题中由图形所在象限可确定k>0,应用结论可直接求k值。 第②小题首先应用三角形面积的计算方法分析得出四个三角形面积相 等,列出含k的方程求k值。
例2(2008贵州省黔南州)如图,矩形ABOD的顶点A是函数 与函数 在第二象限的交点, 轴于B, 轴于D,且矩形ABOD的பைடு நூலகம்积为3. (1)求两函数的解析式. (2)求两函数的交点A、C的坐标.
图象上,∴
解得x=1从而所求面积为π 评注:对于较复杂的图形面积计算问题,先应观察图形的特征,若具有 对称特征,则应用对称关系可以简化解题过程。
四、 讨论与面积有关的综合问题 例8.(2008山东省)(1)探究新知:
如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD的位置关系,并说明理由. (2)结论应用:
与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4. (1)试确定反比例函数的关系式; (2)求△AOC的面积.
.解:(1)∵点A(-2,4)在反比例函数图象上 ∴k=-8 ∴反比例函数解析式为y=
(2)∵B点的横坐标为-4, ∴纵坐标为y=2 ∴B(-4,2) ∵点A(-2,4)、 点B(-4,2)在直线y=kx+b上 ∴ 4=-2k+b 且2=-4k+b 解得 k=1 b=6 ∴直线AB为y=x+6 与x轴的交点坐标C(-6,0)
(3)若点P是y轴上一动点,且 , 求点P的坐标.
解:(1)由图象知k<0,由结论及已知条件得 -k=3 ∴
∴反比例函数的解析式为 ,一次函数的解析式为 (2)由 ,解得 ,
∴点A、C的坐标分别为(
,3),(3, ) (3)设点P的坐标为(0,m) 直线 与y轴的交点坐标为M(0,2) ∵
反比例函数背景下的应用题(面积问题)
反比例函数背景下的应用题(面积问题)
反比例函数背景下与面积相关的问题往往围绕着以下三个结论展开:①反比例函数上任意一点与坐标轴围成的矩形面积;②反比例函数上任意一点与坐标轴围成的三角形面积;③反比例函数上任意两点与原点围成的三角形面积.
解法分析:对于平面直角坐标系中三角形面积的求法问题有如下的解法策略:①当三角形的一边在坐标轴上或平行于坐标轴上时,可以直接求三角形面积;②当三角形中的任意一边不在坐标轴或不平行于坐标轴时,利用割补法(补成/分割成规则图形)面积进行求解。
本题中的△ABC的一边AC//x轴,则可以直接求解,需要注意的是当用点表示线段长度时,要加上绝对值。
解法分析:本题可以直接求三角形的面积,△MPQ的底PQ是可求的定值,而高是点M和点P横坐标差的绝对值,要注意M点可能在第二象限,也可能在第四象限,加上绝对值后就可以避免漏解了。
解法分析:本题首先需要联立正比例函数和反比例函数的解析式求出A、B两点的坐标,然后过A、B两点作x轴垂线构造梯形,求梯形面积即可。
解法分析:本题可以用代数法或几何法解决。
综合利用直角三角形的性质,三角形的面积比解决。
同时还要能够利用点的坐标表示线段的长度,灵活运用。
解法分析:本题主要考察了反比例函数上的点与坐标轴围成的矩形面积。
对于第2、3问,需要分类讨论,即P在B左侧或P在B右侧,进行计算。
解法分析:本题是反比例函数和正方形背景下的问题。
△BCE的面积可以直接求解,主要表示出E的坐标,再求出B'E的长度,即可求出△BCE的面积。
反比例函数与图形面积题
①求这个一次函数的解析式;
②求 的面积
图1
2.如图2,已知一次函数 的图象与x轴、y轴分别交于A、B两点,且与反比例函数 的图象在第一象限交于点C,CD垂直于x轴,垂足为D,
①求点A、B、D的坐标;
②求这一次函数和反比例函数的解析式;
③求
图2
(1)一次函数的解析式
(2) 的面积
图10
三.反比例函数与平行四边形面积
例9.如图(11),正比例函数 与反比例函数 的图象相交于A、C两点,过A点作x轴的垂线,交x轴于B,过C作x轴的垂线,交x轴于D,则四边形ABCD的面积为____________。
图11
例10.如图(12),A、C是双曲线上关于原点O对称的任意两点,AB垂直y轴于B,CD垂直y轴于D,且四边形ABCD的面积为6,则这个函数的解析式为________。
(1)求B点坐标和k的值;
(2)当 时,求点P的坐标;
图3
二.反比例函数与三角形面积
1.反比例函数与直角三角形面积
例3.如图(4),点A在反比例函数 的图象上,AB垂直于x轴,若 ,那么这个反比例函数的解析式为_____________。
图4
例4.如图(6),过反比例函数 的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连结OA、OB。设AC与OB的交点为E, 与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()
反比例函数与图形面积
一.反比例函数与矩形面积
例1.如图(1),P是反比例函数 的图象上一点,过P点分别向x轴、y轴作垂线,所得到的图中阴影部分的面积为6,则这个反比例函数的解析式为()
专题:反比例函数中的面积问题
微专题 反比例函数中的面积问题
模型一 一点一垂线
反比例函数图象上一点与坐标轴垂线、另一坐标轴上一点(含原点)围成的三 角形面积= |k|.
1
S△ABC= 2 |k|
S△ABC=12 |k|
1
S△AOC= 2 |k|
1. 如图,点A在反比例函数y=- 4 的图象上,AM⊥y轴于点M,点P是x轴上的一
方法一:S△EOF=S△EOD-S△FOD. 方法二:作EM⊥x轴于点M,交OF于点B,FA⊥x轴于点A,则S△OEB=S四边形 BMAF(划归到模型一),则S△EOF=S直角梯形EMAF.
类型一 两交点在反比例函数同一支上
Байду номын сангаас
方法一:当
BE CE
或
BFFA=m时,则S四边形OFBE=m|k|.
方法二:作EM⊥x轴于点M,
A. 1
B. m-1
C. 2
D. m
第3题图
模型四 两点两垂线
反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形 面积=2|k|.
SABC 2 | k |
易得四边形ANBM是平行四边形, ∴S四边形ANBM=AM·NM=AM·2OM=2|k|
模型四 两点两垂线 反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形
= =
1
2
1
OM·AM+12 OM·BC |k|+1 |k|=|k|
22
S△ABM=S△ADM+S△MDB
=
1 2
MD·|yB-yA|
S△ABM=S△BMO+S△AMO
=
1 2
MO·|xB-xA|
3. 如图,直线y=mx与双曲线y=k (k≠0)交于点A,B,过点A作
例谈与反比例函数有关的图形面积问题
2022年8月下半月㊀解法探究㊀㊀㊀㊀例谈与反比例函数有关的图形面积问题◉湖北省建始县教学研究室㊀李翠芝㊀㊀摘要:反比例函数是初中数学的重点内容,也是中考考点之一.其中与反比例函数有关的图形面积问题又是重中之重,几乎年年考.有关解决反比例函数与图形面积问题的两种常用方法,一是直接利用反比例函数解析式中k 的几何意义求解,二是利用反比例函数关系式巧设点的坐标求解,这也是数形结合思想在初中数学中最直观的运用.关键词:反比例函数;图形面积;数形结合1引言反比例函数的学习是初中数学的一大难点,也是重点,是每年必考的内容.而数形结合思想是解决初中数学问题最重要㊁最基础的数学思想方法.如,借助数轴求不等式组的解集㊁借助画线段图解行程问题等都是运用数形结合思想.解决与反比例函数有关的图形面积问题时,如果我们也能运用数形结合思想,往往可以使复杂的问题简单化.下面举例说明.2基础题型引例㊀如图1,双曲线y =kx上点P 的坐标为(a ,b ),过点P 分别作x 轴,y 轴的垂线,垂足分别为M ,N .则有下列结论:①S 矩形P M O N =a b =a b =k ;②连接P O ,则S әP O M =S әP O N =12k.图1㊀㊀㊀图23简单应用例1㊀如图2,已知反比例函数y =6x和反比例函数y =3x在第一象限内的图象分别是C 1和C 2,点P 在C 1上,P A 垂直于x 轴于点A ,交C 2于点B ,则әP O B 的面积为㊀㊀㊀.解析:S әP O B =S әP O A -S әB O A=12ˑ6-12ˑ3=32.故填:32.变式㊀如图3,直线A B 平行于x 轴,与函数y =k 1x (k 1>0,x >0)的图象交于点A ,与y =k 2x(k 2>0,x >0)的图象相交于点B ,点A 在点B 的右侧,与y 轴交于点D ,点C 为x 轴上的一个动点,若әA B C 的面积为3,则k 1-k 2的值为㊀㊀.图3图4图5解析:如图4,连接O A ,O B ,则S әA B C =S әA B O =S әA O D -S әB O D=12k 1-12k 2=12(k 1-k 2)=3.所以,k 1-k 2=6.故填:6.例2㊀如图5,已知双曲线y 1=1x(x >0),y 2=4x (x >0),点P 为双曲线y 2=4x 上的一点,且P A 垂直于x 轴于点A ,P B 垂直于y 轴于点B ,P A ,P B 分别交双曲线y 1=1x于D ,C 两点,则әP C D 的面积为㊀㊀㊀.解析:设点P 的坐标为a,4a æèçöø÷,则点C 的坐标为a 4,4a æèçöø÷,点D 的坐标为a ,1a æèçöø÷.所以,S әP C D =12P D P C=124a -1a æèçöø÷a -a 4æèçöø÷=98.故填:98.4常考类型与中点相关这类题主要是利用线段的中点得到图形之间的35Copyright 博看网 . All Rights Reserved.解法探究2022年8月下半月㊀㊀㊀面积关系,一般只需直接应用k 的几何意义求解,但有时设坐标求解也比较简单.图6例3㊀如图6,A ,B 是双曲线y =kx上的两点,过点A 作A C 垂直于x 轴,交O B 于点D ,垂足为点C .若әA D O 的面积为1,D 为O B 的中点,则k 的值为(㊀㊀).A.43㊀㊀㊀B .83㊀㊀㊀C .3㊀㊀㊀D.4图7分析:如图7,过点B 作x 轴的垂线,垂足为E .由条件可知,S әC O D =14S әB O E =14ˑ12k =18k =18k ,而S әA O C -S әC O D =S әA O D ,即12k -18k =1,所以k =83.故选:B .点评:此题也可以设A ,D ,B 中任意一点的坐标,表示出另外两点的坐标,再根据面积求解.图8拓展㊀如图8,四边形O A B C 是矩形,边O A 在x 轴上,边O C 在y 轴上,双曲线y =kx与边B C 交于点D ,与对角线O B 交于点E ,且E 是O B 的中点,若әO B D 的面积为5,则k 的值是㊀㊀.解析:如图9,过点E 作E F 垂直于y 轴于点F.图9易证әO E F ʐәO B C .由中点条件易得S әB O C =4S әE O F =4ˑ12k =-2k .S әB O C -S әC O D =S әB O D ,即-2k -12ˑ(-k )=5.解得,k =-103.故填:-103.图10提升㊀如图10,在平面直角坐标系中,矩形A B C D 的顶点A ,B 在x 轴的正半轴上,反比例函数y =kx(k >0,x >0)的图象经过顶点D ,分别与对角线A C ,边B C 交于点E ,F ,连接E F ,A F ,若E 为A C 的中点,әA E F 的面积为2,则k 的值为(㊀㊀).A.245B .3C .4D.6分析:此题的矩形和三角形顶点都不在原点,不能直接用k 值表示图形面积,适合设坐标求解.解析:设A (a ,0).由四边形A B C D 是矩形,点D 在y =k x 上,得D a ,k a æèçöø÷,则点C 的纵坐标为k a .因为E 为A C 的中点,所以点E 的纵坐标为k2a,E 2a,k 2a æèçöø÷.于是,C 3a ,k a æèçöø÷,F 3a ,k 3a æèçöø÷.由әA E F 的面积为2,A E =E C ,得S әA C F =4,即12ˑk a -k 3a æèçöø÷ˑ2a =4,解得k =6.故选:D .5直击中考综合题举例图11例4㊀如图11,在平面直角坐标系中,坐标原点O 是R t әA O B的直角顶点,øO A B =30ʎ,若点A 在反比例函数y =12x(x >0)的图象上.(1)求经过点B 的反比例函数解析式;(2)设点B 的坐标为(-2,a ),过点B 作B E 平行于x 轴,与反比例函数y =12x(x >0)交于点E ,求әA O E 的面积.图12分析:(1)如图12,分别过点A 和点B 作x 轴的垂线,垂足分别为D ,C .易证әA O D ʐәO B C ,于是S әO B C ʒS әA O D =(O B ʒO A )2=(1ʒ3)2=1ʒ3.所以,S әO B C =13S әA O D =13ˑ12k =16ˑ12=2.因此,经过点B 的反比例函数的解析式为y =-4x.(2)先求点B 的纵坐标,由此可得点E 的纵坐标,再把点E 的纵坐标代入y =12x可求得点E 的坐标,利用A ,E 的坐标可求әA O E 的面积.点评:第(1)问也可设点A 的坐标,利用三角形相似,由线段之间的关系表示出点B 的坐标再求函数关系式.写反比例函数关系式时要注意k 值的正负.第(2)问的解答要过点E 作x 轴的垂线,关键是把求三角形的面积转化成直角梯形的面积问题.6结语综上所述,在解与反比例函数有关的图形面积问题时,一般有两种途径:一是直接利用反比例函数解析式中k 的值求解;二是利用函数解析式和图形中的点之间的特殊关系巧设点的坐标求解.即要解决形的问题,我们抓住形的特征,以及形和数之间的特殊关系,把形的问题直接转化成数的问题来求解.这里转化的桥梁就是反比例函数图象上点的坐标.Z45Copyright 博看网 . All Rights Reserved.。
人教版反比例函数图象中的面积问题
思考
图中的这些矩形面积相等吗?
结论:
y
过双曲线上任意一点作x轴、 y轴的垂线,所得矩形的面 积S为定值,即S=|k|.
y k x
O
x
如图,已知点P(m,n)在函数y= k (k>0)
x
的图像上,PB⊥y轴,垂足为B,O’A在x轴
反比例函数图象中的面积问题
y
y
0
x
0
x
探究1 反比例函数与矩形的面积
k 已的象足知图(上 分2点像)点过 的 别上PPP 一是((分 m,点点m,那n,A,过)、么别 在n点x)Bm函轴 P,是分n,数作 则y反=别轴 yS比y向2矩=形例xO的 轴函kAxP、B数.,=垂 y_垂 轴y_|_作k_kx|_足 垂(线 _k_≠线_0.),分 垂图A,B,别
B P(m,n)
(或y轴)的垂线,所得直 O’ O
x
角三角形的面积S为定值,
即S=
1 2
|k|
.
探究3
任意正比例函数与反比例函数 图象交于A、B两点,那么
y k (k 0) x
△ABC的面积为多少呢?
y
A
C
D
图7
x
B
反比例函数与正比例函数围成的图形面积
变式:任意正比例函数与反比例函数 y= k 图像相交,
则a-b的值是多少?(中考题)
⊿AOB的面积。
图中面积相等的图形有哪些?
y
y k x
O
x
学会寻找图像中的基本构图、寻找单位面积 矩形或三角形、寻找变化中的不变量
拓展.如图,已知点A,C在反比例函数 y 的图象上,点B,D在反比例函数 y b(b
反比例函数图象的面积问题
下列选项中,阴影部分面积最小的是(
)
A.
B.
C.
D.
图中面积相等的图形有哪些?
如果B是RE的中点,那么哪些三角形面 积相等?
k 如图,反比例函数y= (x>0)的图象经过 x
矩形OABC对角线的交点M,分别与AB、BC 相交于点D、E.若四边形ODBE的面积为6, 则k的值为( )
k 如图,A,C是函数y= (k≠0)的图象 x
上关于原点对称的任意两点,AB,CD垂直 于x轴,垂足分别为B,D,那么四边形 ABCD的面积S=_______
2 如图,正比例函数 y kx( k 0)与反比例函数 y x 相交于A、B两点.过 A作x轴的垂线、过B 作y轴的 垂线,垂足分别为D、C,设四边形ABCD的面积为S, y 则( ) B
反比例函数图象中的面积问题
面积不变性
任意一组变量的乘积是一个定值,即xy=k
k 反比例函数 y x
S长方形=︳x y︱ =︳k︱
三角形的面积
SAOP SBOP
k 2
练习1:用含k的代数式表示下列阴影部分的面积
k
2k
k
2k
练习
1
练习
方法1:k的几何意义 方法2:坐标
练习
三角形ABC
方法1:k的几何意义 方法2:坐标
练习
方法1:k的几何意义 方法2:坐标
练习
ABC
方法1:k的几何意义 方法2:坐标
练习1:用含k的代数式表示下列阴影部分的面积
4k
2k
4k
2k
如图,点A在双曲线y=
4 上,点B在双曲线y= x
9.2 反比例函数图象中的面积问题
图象上的面积1
☞
y
过P分别作x轴, y轴的垂线, 垂足分别为A, B,
B
P(m,n) A
o
x
S矩形OAPB= k
图象上的面积2
☞
k 设P(m, n)是双曲线y (k 0)上任意一点, x 过P作x轴的垂线, 垂足为A, 则
y P(m,n) o A x y
A
o
P(m,n)
,它们的横坐标依次为1,2,3,4.分别过这些点作
x 轴与y
轴的垂线,图中所构成的阴影部分的面积从左到右依次为
S1,S2,S3 ,则
y
3 S1 S 2 S3 2 .
思考:1.你能求出S2和S3的值吗? 1 1 3 6 2.S1呢? 1
O
2 y (x>0) x
P1 P2
P3 3
P4 4 x
k (2) 在双曲线 y (X>0) 上 x
y
O
x
3 (3)如图3,点A、B是双曲线y 上的点, x 分别经过A、B两点向x轴、y轴作垂线段, 若S阴影 1,则S1 S 2
y
A
S1 S2
O
图3
B
x
2 (x>0) 的图象上,有点 P (4) 如图,在反比例函数 y x 1,P 2,P 3,P 4
如图,矩形OABC的两边在坐标轴上,且与反比例
函数
的图像交于点E、F,其中点E、
F分别是BC、AB的中点,若四边形OFBE的面积
S四边形 OFBE 2 ,
则k的值_______
y
C
E
B F
O
A
x
变式一
反比例函数中的面积问题专题课程教案
反比例函数中的面积问题专题课程教案第一章:反比例函数的概念与性质1.1 反比例函数的定义引导学生回顾反比例函数的定义,即形如y = k/x (k ≠0) 的函数。
强调反比例函数中k 的作用,k 表示函数在x 轴和y 轴上的截距。
1.2 反比例函数的性质分析反比例函数的图像特征,如双曲线、渐近线等。
探讨反比例函数的单调性、奇偶性等性质。
第二章:反比例函数图像的绘制2.1 绘制反比例函数图像的基本方法介绍利用坐标轴、点斜式等方法绘制反比例函数图像。
强调反比例函数图像的中心对称性和轴对称性。
2.2 利用尺规作图绘制反比例函数图像引导学生运用尺规作图的方法,绘制特定k 值的的反比例函数图像。
讨论不同k 值对图像形状和位置的影响。
第三章:反比例函数中的面积问题3.1 反比例函数图像的面积计算引入反比例函数图像中任意三角形、四边形的面积计算方法。
强调利用函数值和坐标轴围成的封闭区域的面积计算公式。
3.2 反比例函数图像与坐标轴围成的面积引导学生探讨反比例函数图像与坐标轴围成的封闭区域的面积。
分析不同k 值对封闭区域形状和面积的影响。
第四章:反比例函数图像的交点问题4.1 反比例函数图像与直线交点的求解引导学生运用解析几何方法,求解反比例函数图像与直线的交点。
强调运用韦达定理、判别式等工具解题。
4.2 反比例函数图像与圆的交点问题探讨反比例函数图像与圆的交点个数和位置关系。
引导学生运用代数方法解反比例函数与圆的交点问题。
第五章:反比例函数图像的应用问题5.1 反比例函数图像在实际问题中的应用引入实际问题,如面积、距离、速度等,运用反比例函数图像解决。
强调反比例函数图像在实际问题中的直观性和实用性。
5.2 反比例函数图像的综合应用问题引导学生运用反比例函数图像解决综合应用问题,如平面几何、物理等。
强调运用反比例函数图像解决问题的方法和技巧。
第六章:反比例函数图像的变换6.1 反比例函数图像的平移讲解反比例函数图像如何通过平移实现变换,包括上下左右平移。
反比例函数的面积问题的解题技巧
反比例函数的面积问题的解题技巧
反比例函数是指一种具有如下形式的函数:y=k/x,其中k是常数。
在解决反比例函数的面积问题时,有以下几种解题技巧:
1. 确定函数图像:反比例函数的图像通常是一条双曲线。
确定函数图像可以帮助我们更好地理解函数的性质和规律,从而更好地解决面积问题。
2. 确定积分区间:反比例函数的积分区间通常是有限的,因为函数在x = 0处不存在。
在解决面积问题时,需要确定积分区间以便进行积分计算。
3. 利用对称性:反比例函数具有对称性,即在y轴和x轴上对称。
在解决面积问题时,可以利用对称性简化计算。
4. 利用换元法:在进行积分计算时,可以利用换元法将反比例函数变形成容易积分的形式,从而简化计算。
5. 利用图形面积计算公式:反比例函数的面积可以用图形面积计算公式求解。
这种方法适用于简单的反比例函数图形,但对于复杂的反比例函数图形不太实用。
总之,在解决反比例函数的面积问题时,需要充分理解函数性质和规律,灵活运用解题技巧,才能得到准确的答案。
- 1 -。
69 反比例函数中的有关面积问题
反比例函数中的有关面积问题一、反比例函数k 的几何意义1.反比例函数k 的几何意义:如图,在反比例函数图象上任选一点,向两坐标轴作垂线,垂线与坐标轴所围成矩形的面积为k 。
如图二,所围成三角形的面积为2k二、利用k 的几何意义进行面积转化1.如图,直线AB 与反比例函数k y x =(0k ≠)交于A 、B 两点,与x 、y 轴的交点分别为C 、D ,那么OAB OCD OBD OAC S S S S ∆∆∆∆=--,此方法是绝大部分学生选用的方法。
但是,从效率来讲,就比较低2.如图,过点A 、B 作x 轴的垂线,垂足分别为E 、F ,则根据k 的几何意义可得,OBF OAE S S ∆∆=,而OBF OAB OAE ABFE S S S S ∆∆∆+=+梯形,所以OAB ABFE S S ∆=梯形,此方法的好处,在于方便,快捷,不易出错。
【针对训练】1、如图,△BOD 都是等腰直角三角形,过点B 作AB ⊥OB 交反比例函数y =(x >0)于点A ,过点A 作AC ⊥BD 于点C ,若S △BOD ﹣S △ABC =3,则k 的值为.解:设A 点坐标为(a ,b ),∵△ABC 和△BOD 都是等腰直角三角形,∴BC =AC ,OD =BD∵S △BOD ﹣S △ABC =3,OD 2﹣AC 2=3,OD 2﹣AC 2=6,∴(OD +AC )(OD ﹣AC )=6,∴a •b =6,∴k =6.故答案为6.2、如图,△OAC 和△BAD 都是等腰直角三角,∠ACO =∠ADB =90°,反比例函数y =的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD =.解:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B 的坐标为(a +b ,a ﹣b ).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=8.∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×8=4.故答案为:4.3、如图,一次函数y=x﹣3的图象与反比例函数y═kx(k≠0)的图象交于点A与点B(a,﹣4).(1)求反比例函数的表达式;(2)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,且过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【答案】(1)y=4x;(2)点P的坐标为(5,45)或(1,4)或(2,2).【解析】解:(1)将B(a,﹣4)代入一次函数y=x﹣3中得:a=﹣1∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y═kx(k≠0)中得:k=4∴反比例函数的表达式为y=4x;(2)如图:设点P的坐标为(m,4m)(m>0),则C(m,m﹣3)∴PC=|4m﹣(m﹣3)|,点O到直线PC的距离为m∴△POC的面积=12m×|4m﹣(m﹣3)|=3解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4又∵m>0∴m=5或1或2∴点P的坐标为(5,45)或(1,4)或(2,2).4、如图所示,函数y1=kx+b的图象与函数(x<0)的图象交于A(a﹣2,3)、B(﹣3,a)两点.(1)求函数y 1、y 2的表达式;(2)过A 作AM ⊥y 轴,过B 作BN ⊥x 轴,试问在线段AB 上是否存在点P ,使S △PAM =3S △PBN ?若存在,请求出P 点坐标;若不存在,请说明理由.【详解】解:(1)∵A 、B 两点在函数(x <0)的图象上,∴3(a ﹣2)=﹣3a =m ,∴a =1,m =﹣3,∴A (﹣1,3),B (﹣3,1),∵函数y 1=kx+b 的图象过A 、B 点,∴,解得k =1,b =4∴y 1=x+4,y 2=;(2)由(1)知A (﹣1,3),B (﹣3,1),∴AM =BN =1,∵P 点在线段AB 上,∴设P 点坐标为(x ,x+4),其中﹣1≤x≤﹣3,则P 到AM 的距离为h A =3﹣(x+4)=﹣x ﹣1,P 到BN 的距离为h B =3+x ,∴S △PBN =BN•h B =×1×(3+x )=(x+3),S △PAM =AM•h A =×1×(﹣x ﹣1)=﹣(x+1),=3S△PBN,∵S△PAM∴﹣(x+1)=(x+3),解得x=﹣,且﹣1≤x≤﹣3,符合条件,∴P(﹣,),综上可知存在满足条件的点P,其坐标为(﹣,).【点睛】本题主要考查一次函数和反比例函数的交点问题,在(1)中掌握交点坐标满足两函数解析式是解题的关键,在(2)中用P点坐标分别表示出△PBN和△PAM的面积是解题的关键.5、如图,直线y1=k1x+b与双曲线y2=在第一象限内交于A、B两点,已知A(1,m),B(2,1).(1)k1=,k2=,b=.(2)直接写出不等式y2>y1的解集;(3)设点P是线段AB上的一个动点,过点P作PD⊥x轴于点D,E是y轴上一点,求△PED的面积S 的最大值.解:(1)∵A(1,m),B(2,1)在双曲线y2=上,∴k2=m=2×1=2,∴A(1,2),则,解得:,∴k1=﹣1,k2=2,b=3;故答案为:﹣1,2,3;(2)由图象得:不等式y2>y1的解集是:0<x<1或x>2;(3)设点P(x,﹣x+3),且1≤x≤2,∵PD=﹣x+3,OD=x,则,∵,∴当时,S有最大值,最大值为.6、如图,在平面直角坐标系xOy中,函数y=﹣x+5的图象与函数y=(k<0)的图象相交于点A,并与x轴交于点C,S△AOC=15.点D是线段AC上一点,CD:AC=2:3.(1)求k的值;(2)根据图象,直接写出当x<0时不等式>﹣x+5的解集;(3)求△AOD的面积.解:(1)y=﹣x+5,当y=0时,x=5,即OC=5,C点的坐标是(5,0),过A作AM⊥x轴于M,=15,∵S△AOC∴=15,解得:AM=6,即A点的纵坐标是6,把y=6代入y=﹣x+5得:x=﹣1,即A点的坐标是(﹣1,6),把A点的坐标代入y=得:k=﹣6;(2)当x<0时不等式>﹣x+5的解集是﹣1<x<0;=15,(3)∵CD:AC=2:3,S△AOC==5.∴△AOD的面积=S△AOC7、如图,反比例函数y=经过点D,且点D的坐标为(﹣,2).(1)求反比例函数的解析式;(2)如图,直线AB交x轴于点B,交y轴于点A,交反比例函数图象于另一点C,若3OA=4OB,求△BOC的面积.解:(1)∵反比例函数y=经过点D(﹣,2).∴k=﹣=﹣1,∴反比例函数的解析式为y=﹣;(2)设直线AB的解析式为y=ax+b,∴A(0,b),B(﹣,0),∴OA=b,OB=,∵3OA=4OB,∴3b=,∴a=,∴y=x+b,∵直线AB经过D(﹣,2),∴2=×(﹣)+b,∴b=,∴y=x+,B(﹣2,0),解得或,∴C(﹣,),=2×=.∴S△BOC8、如图,在平面直角坐标系中,反比例函数y=的图象过等边三角形BOC的顶点B,OC=2,点A在反比例函数图象上,连接AC、AO.(1)求反比例函数解析式;(2)若四边形ACBO的面积为3,求点A的坐标.解:(1)作BD⊥OC于D,如图,∵△BOC为等边三角形,∴OD=CD=OC=1,∴BD=OD=,∴B(﹣1,﹣),把B(﹣1,﹣)代入y=得k=﹣1×(﹣)=,∴反比例函数解析式为y=;(2)设A(t,),∵四边形ACBO的面积为3,∴×2×+×2×=3,解得t=,∴A点坐标为(,2).9、如图,△AOB在平面直角坐标xOy中,反比例函数y1=的图象经过点A,反比例函数y2=的图象经过点B,作直线x=1分别交y1,y2于C,D两点,已知A(2,3),B(3,1).(1)求反比例函数y1,y2的解析式;(2)求△COD的面积.解:(1)∵反比例函数y1=的图象经过点A(2,3),反比例函数y2=的图象经过点B(3,1),∴k1=2×3=6,k2=3×1=3,∴y1=,y2=.(2)由(1)可知两条曲线与直线x=1的交点为C(1,6),D(1,3),∴CD=6﹣3=3,=1=.∴S△COD10、正方形ABCD的顶点A(1,1),点C(3,3),反比例函数y=(x>0).(1)如图1,双曲线经过点D时求反比例函数y=(x>0)的关系式;(2)如图2,正方形ABCD向下平移得到正方形A′B′C′D′,边A'B'在x轴上,反比例函数y=(x>0)的图象分别交正方形A′B′C′D′的边C'D′、边B′C′于点F、E,①求△A'EF的面积;②如图3,x轴上一点P,是否存在△PEF是等腰三角形,若存在直接写出点P坐标,若不存在明理由.解:(1)∵点A(1,1),点C(3,3),∴点D(1,3),将点D的坐标代入反比例函数表达式得:k=3,故反比例函数表达式为:y=;(2)平移后点A′、B′、C′、D′的坐标分别为:(1,0)、(3,0),(3,2)、(1,2),则平移后点E纵坐标为3,则点E(3,1),同理点F(,2),﹣S△A′B′E﹣S△A′D′F﹣S△EFC′=2×2×2×﹣2×1﹣××1=;△A'EF的面积=S正方形A′B′C′D′(3)点E、F的坐标分别为:(3,1)、(,2),设点P(m,0),则EF2=(3﹣)2+(2﹣1)2=,EP2=(m﹣3)2+1,PF2=(m﹣)2+4,当EF=EP时,即=(m﹣3)2+1,解得:m=或;当EF=PF时,同理可得:m=(舍去负值);当EP=PF时,同理可得:m=,故点P的坐标为(,0)或(,0)或(,0)或(,0).11、如图,单位长度为1的网格坐标系中,一次函数y=kx+b与坐标轴交于A、B两点,反比例函数y=(x>0)经过一次函数上一点C(2,a).(1)求反比例函数解析式,并用平滑曲线描绘出反比例函数图象;(2)依据图象直接写出当x>0时不等式kx+b>的解集;(3)若反比例函数y=与一次函数y=kx+b交于C、D两点,使用直尺与2B铅笔构造以C、D为顶点的矩形,且使得矩形的面积为10.解:(1)∵一次函数y=kx+b过点A(0,4),点B(8,0),∴,∴,∴一次函数解析式为:y=﹣x+4;∵点C在一次函数图象上,∴a=﹣×2+4=3,∵反比例函数y=(x>0)经过点C(2,3),∴m=6,∴反比例函数解析式为:y=,图象如图所示:(2)∵反比例函数y=与一次函数y=﹣x+4交于C、D两点,∴=﹣x+4,∴x1=2,x2=6,∴点D(6,1),由图象可得:当2<x<6时,y=kx+b的图象在y=图象的上方,∴不等式kx+b>的解集为2<x<6;(3)如图,若以CD为边,则矩形ABDC,矩形A'B'DC为所求,若以CD为对角线,则矩形DEDF为所求.12、如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)若点P在y轴上,是否存在点P,使△ABP是以AB为一直角边的直角三角形?若存在,求出所有符合条件的P点坐标;若不存在,请说明理由.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2),把A(1,2)代入反比例函数,∴k=1×2=2;∴反比例函数的表达式为;(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),设P(x,0),∴PC=|3﹣x|,=|3﹣x|×2=5,∴S△APC∴x=﹣2或x=8,∴P的坐标为(﹣2,0)或(8,0);(3)存在,理由如下:联立,解得:或,∴B点坐标为(2,1),∵点P在y轴上,∴设P(0,m),∴AB==,AP=,PB=,若BP为斜边,∴BP2=AB2+AP2,即=2+,解得:m=1,∴P(0,1);若AP为斜边,∴AP2=PB2+AB2,即=+2,解得:m=﹣1,∴P(0,﹣1);综上所述:P(0,1)或P(0,﹣1).13、如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,∴S △AEO =S △ACE =,∵AD =2DE ,∴AE =DE ,∴S △AOD =2S △AOE =3;(3)作EF ⊥x 轴于F ,作AH ⊥x 轴于H ,则EF ∥AH ,∵AD =2DE ,∴DE =EA ,∵EF ∥AH ,∴==1,∴DF =FH ,∴EF 是△DHA 的中位线,∴EF =AH ,∵S △OEF =S △OAH =﹣,∴OF •EF =OH •HA ,∴OH =OF ,∴OH =HF ,∴DF =FH =HO =DO ,∴S △OAH =S △ADO =3=1,∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).。
反比例函数面积问题
反比例函数面积问题
反比例函数面积问题通常是指与反比例函数相关的图形面积的计算
问题。
例如,给定反比例函数y=k/x的图像与坐标轴所围成的区域,要求该区域的面积。
解决这类问题通常需要应用积分学知识,因为反比例函数的图像通常是一个双曲线,与坐标轴围成的区域是一个不规则图形。
通过积分,我们可以求出这个不规则图形的面积。
具体地,如果要求反比例函数y=k/x在第一象限内与x轴、y轴所围成的区域面积,可以先求出该函数在第一象限内的图像与x轴之间的面积,然后再乘以2(因为反比例函数在第一、三象限内是对称的)。
这个面积可以通过定积分来计算,积分区间是从0到正无穷大,被积函数是y=k/x。
需要注意的是,由于反比例函数的图像在x轴和y轴上都趋于无穷大,
因此所求得的面积也是无穷大的。
但是,在某些特定情况下,例如给定一个特定的矩形区域,我们可以通过计算该矩形区域内反比例函数图像的面积来得到一个有限的数值。
总之,反比例函数面积问题需要根据具体情况进行具体分析,通常需要应用积分学知识和几何知识来解决。
以上是对于反比例函数面积问题5的回答,希望对你有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随堂巩固
☞
12 5.如图,已知反比例函数y 的图象与一次函数 x y kx 4的图象相交于P, Q两点, 并且P点的 纵坐标是6.
y
(1)求这个一次函数的解析 式; (2)求POQ的面积.
M
Q
N
o
P
x
直击中考
☞
如图,直线AB过点A(m, 0)、B(0, n)(其中
p m>0, n>0).反比例函数 y (p>0) x
C.S1<S3<S2 D.S1=S2=S3
图2
小试牛刀
☞
3 (3)如图3,点A、B是双曲线y 上的点, x 分别经过A、B两点向x轴、y轴作垂线段, 若S阴影 1,则S1 S 2
y
A
S1 S2
O
图3
B
x
小试牛刀
☞
k y x
(4)如图4,矩形OABC的两边在坐标轴上,且与反比例函数 的图像交于点E、F,其中点E、
反比例函数图象中的 面积问题
图象上的面积
☞
k 设P(m, n)是双曲线y (k 0)上任意一点 , x 过P作x轴的垂线, 垂足为A, 则
y
S OAP
P(m,n) o A x
1 k 2
y A P(m,n)
o
x
图象上的面积
☞
y
过P分别作x轴, y轴的垂线 , 垂足分别为A, B,
S 矩形OAPB= k
P/
o
P(m,n)
x
A
小试牛刀
☞
(1)如图1,反比例函数图像上一点A 与坐标轴围成的矩形ABOC的面积是8 , 则该反比例函数的解析式 为 .
B
A y
O C
x
图1
小试牛刀
☞
(2)如图2,P1、P2、P3是双曲线上的三点.过这 三点分别作y轴的垂线,得到三个三角形P1A10、 P2A20、P3A30,设它们的面积分别是S1、S2、S3,则 ( ). A.S1<S2<S3 B.S2<S1<S3
B
o
P(m,n) A
x
图象上的面积
☞
PB⊥y轴于点B,直线PC经过原点。
sPBC k
P、C两点关于原点对称, PO CO S PBO S PBC 1 S CBO k 2 S PBO S CBO k
图象上的面积
☞
y
S PPA 2 k
解:设P(m,n),则P(-m,-n). AP | 2m|,AP | 2n|; 1 S | AP AP| ΔPAP 2 1 | 2m|| 2n| 2 2|k|
F分别是BC、AB的中点,若四边形OFBE的面积
S四边形OFBE 2
,则k
的值
.
y
Eห้องสมุดไป่ตู้
C
B F
O
A
图4
x
例题精讲
☞
8 例已知如图, 反比例函数y 与一次函数y x 2的 x 图像交于A,B两点。 y 求(1) A,B两点的坐标; (2)AOB的面积。
A N
M D C O B x
的图象与直线AB交于C、D两点,连结OC、OD. (1)已知m+n=10,△AOB的面积为S, 问:当n何值时,S取最大值?并求这个最大值;
(2)若m=8,n=6,当△AOC、 △COD、△DOB的面积都相等 时,求p的值。
.