_解直角三角形(教案)
解直角三角形教案(完美版)
![解直角三角形教案(完美版)](https://img.taocdn.com/s3/m/6cea8745ff00bed5b9f31d95.png)
解直角三角形一、教育目标(一)知识与技能使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感态度与价值观 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、重、难点重点:直角三角形的解法. 难点:三角函数在解直角三角形中的灵活运用. 三、教学过程(一)明确目标1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sin ;cos ;t an ;cot b a b a B B B B c c a b ====; sin ;cos ;tan ;cot a b a bA A A A c c b a====如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二)整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.(三)重点、难点的学习与目标完成过程1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题例1 在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c=287.4,∠B=42°6′,解这个三角形.分析:解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解:(1)∠A=90°-∠B =90°-42°6′=47°54′,(2)cos ,aB c=∴a=c . cosB=28.74×0.7420≈213.3.(3) sin bB c=,∴b=c·sinB=287.4×0.6704≈192.7.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例2 在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. 在学生独立完成之后,选出最好方法,教师板书.(1)104.0tan 5.07620.49a b α=≈≈查表得A=78°51′;(2)∠B=90°-78°51′=11°9′(3)104.0sin ,.sin 0.9812106a a A c c A =∴==≈ .注意:例1中的b 和例2中的c 都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些.但先后要查两次表,并作一次加法(或减法).4.巩固练习解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.(四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.出示图表,请学生完成注:上表中“√”表示已知。
《解直角三角形》教案
![《解直角三角形》教案](https://img.taocdn.com/s3/m/9665f376bc64783e0912a21614791711cd797976.png)
《解直角三角形》教案一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
(2)能够将实际问题转化为数学问题,建立解直角三角形的数学模型,并运用解直角三角形的方法解决实际问题。
2、过程与方法目标(1)通过对解直角三角形的学习,培养学生分析问题和解决问题的能力,以及数学建模的思想。
(2)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高学生的运算能力和逻辑推理能力。
3、情感态度与价值观目标(1)让学生在学习过程中体会数学与实际生活的紧密联系,激发学生学习数学的兴趣。
(2)通过解决实际问题,培养学生的应用意识和创新精神,让学生在成功中获得自信,在挫折中锻炼意志。
二、教学重难点1、教学重点(1)直角三角形中五个元素之间的关系。
(2)解直角三角形的方法。
2、教学难点(1)将实际问题转化为数学问题,建立解直角三角形的数学模型。
(2)正确选择合适的锐角三角函数关系式解直角三角形。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过展示一些与直角三角形相关的实际问题,如测量建筑物的高度、计算斜坡的长度等,引出解直角三角形的概念,激发学生的学习兴趣。
2、知识讲解(1)直角三角形的五个元素直角三角形有三条边和两个锐角,共五个元素,分别是两条直角边a、b 和斜边 c,以及两个锐角 A 和 B。
(2)五个元素之间的关系①三边关系(勾股定理):a²+ b²= c²②锐角关系:∠A +∠B = 90°③边角关系:sin A = a/c,cos A = b/c,tan A = a/b(3)解直角三角形由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。
3、例题讲解例 1:在 Rt△ABC 中,∠C = 90°,a = 3,c = 5,求 b 和∠A、∠B 的度数。
解直角三角形单元教学设计
![解直角三角形单元教学设计](https://img.taocdn.com/s3/m/e8488661cdbff121dd36a32d7375a417876fc165.png)
解直角三角形单元教学设计
一、教学目标
1. 理解解直角三角形的概念,掌握解直角三角形的方法,能运用解直角三角形的方法解决实际问题。
2. 通过解直角三角形的学习,进一步感受数学与生活的密切联系,体会数学在解决实际问题中的作用。
二、教学内容
1. 解直角三角形的有关概念。
2. 解直角三角形的方法。
3. 运用解直角三角形解决实际问题。
三、教学重点与难点
重点:掌握解直角三角形的方法。
难点:运用解直角三角形解决实际问题。
四、教学准备
1. 教师准备教学课件、三角板等教具。
2. 学生准备直尺、计算器等学习工具。
五、教学过程
1. 导入新课
教师通过复习旧知或引入实际生活情境,引导学生进入新课学习。
2. 探索新知
教师引导学生通过观察、思考、小组合作等方式,探究解直角三角形的概念和方法,并进行适当讲解和补充。
学生要认真听讲,积极思考,勇于表达自己的想法和意见。
3. 练习巩固
教师布置相关练习题,学生独立或小组合作完成,并进行交流和展示。
教师对学生的练习进行点评和指导,帮助学生巩固所学知识。
4. 归纳小结
教师对本节课所学内容进行归纳总结,强调重点和难点,帮助学生形成完整的知识体系。
学生要认真听讲,积极思考,做好笔记。
5. 布置作业
教师布置适量作业,要求学生按时完成,并进行检查和批改。
学生要认真完成作业,积极思考,勇于挑战自己。
解直角三角形公开课教案
![解直角三角形公开课教案](https://img.taocdn.com/s3/m/5d25b344854769eae009581b6bd97f192379bf6e.png)
课程目标与要求
01
知识目标
掌握直角三角形的定义、性质 及解法。
02
能力目标
能够运用所学知识解决与直角 三角形相关的问题。
03
情感目标
培养学生对数学的兴趣和热爱 ,提高学生的数学素养。
教学方法与手段
01
教学方法
讲授法、讨论法、练习法。
02
教学手段
多媒体辅助教学、实物展示、板书演示等。
02
直角三角形基础知识回顾
解答:由$sin A = frac{BC}{AB}$得 ,$AB = frac{AC}{sin A} = frac{4}{sin 60^circ} = frac{8sqrt{3}}{3}cm$。又因为$cos A = frac{AC}{AB}$,所以$BC = AB times cos A = frac{8sqrt{3}}{3} times cos 60^circ = frac{4sqrt{3}}{3}cm$。最后,由直 角三角形内角和为$180^circ$得, $angle B = 180^circ - 90^circ 60^circ = 30^circ$。
锐角三角函数等。
解直角三角形的方法
02
掌握利用已知元素求解未知元素的方法,包括使用正弦、余弦
、正切等三角函数。
实际应用
03
了解解直角三角形在实际问题中的应用,如测量、航海、工程
等领域。
学生自我评价报告
知识掌握情况
学生能够准确理解解直角三角形的相关概念和方 法,并能够灵活运用所学知识解决实际问题。
学习态度和习惯
要点二
分析
此题考查了勾股定理和锐角三角函数 的定义。首先利用勾股定理求出AC的 长度,再利用锐角三角函数的定义求 出$angle A$和$angle B$的度数。
解直角三角形初中三年级教案
![解直角三角形初中三年级教案](https://img.taocdn.com/s3/m/b27014892dc58bd63186bceb19e8b8f67c1cef34.png)
教学目标:1.了解直角三角形的定义和性质;2.掌握直角三角形的判别方法;3.能够应用直角三角形的性质解决实际问题。
教学重点:1.直角三角形的定义和性质;2.直角三角形的判别方法。
教学难点:1.直角三角形的应用。
教学准备:教师:直角三角形的示意图、直角三角形的定义和性质的板书。
学生:直尺、量角器等。
教学过程:一、导入(10分钟)1.老师出示一张直角三角形的示意图,让学生观察并回答问题:你们看到这个图形有什么特点?2.学生回答后,教师引导学生总结:这个图形有一个直角和其他两个锐角。
3.教师板书直角三角形的定义:“一个三角形有一个角是直角,就叫做直角三角形。
”二、讲解直角三角形的性质(15分钟)1.教师出示直角三角形的定义的板书,解释直角三角形的性质:直角三角形的两条边相互垂直。
2.教师提问:在一个直角三角形中,直角和两条边的关系是什么?3.学生回答后,教师解释:直角和两条边的关系是直角三角形的基本性质之一,直角所对的边叫做斜边,其他两条边叫做直角边。
4.教师出示直角三角形的示意图,引导学生观察,总结直角边和斜边的关系。
三、直角三角形的判别方法(15分钟)1.教师出示几个图形,让学生观察并判断哪些是直角三角形。
2.学生回答后,教师引导学生总结直角三角形的判别方法:通过角的大小来判断。
3.教师出示两条边并标注角的示意图,解释判断直角三角形的方法:如果两条直角边的平方和等于斜边的平方,那么这个三角形就是直角三角形。
四、应用直角三角形的性质解决实际问题(30分钟)1.教师出示一些实际问题,让学生运用直角三角形的性质解决。
2.学生分小组或个人解答,并在黑板上展示答案。
3.教师对答案进行点评和讲解。
五、小结(10分钟)1.教师带领学生复习直角三角形的定义和性质。
2.教师总结本节课的重点和难点。
教学反思:通过本节课的教学,学生能够了解直角三角形的定义和性质,并掌握判断直角三角形的方法;同时,通过解决实际问题,学生能够应用直角三角形的性质解决实际问题。
解直角三角形的应用教案
![解直角三角形的应用教案](https://img.taocdn.com/s3/m/8880e6b8fbb069dc5022aaea998fcc22bdd14361.png)
解直角三角形的应用教案教案标题:解直角三角形的应用教学目标:1. 理解直角三角形的定义和性质。
2. 掌握解决直角三角形相关问题的方法和技巧。
3. 能够应用直角三角形的知识解决实际问题。
教学重点:1. 直角三角形的定义和性质。
2. 直角三角形的解题方法。
3. 直角三角形在实际问题中的应用。
教学难点:1. 将直角三角形的知识应用于实际问题的解决。
2. 理解并运用三角函数的概念和性质。
教学准备:1. 教材:包含直角三角形相关知识的教材。
2. 教具:直尺、量角器、计算器等。
3. 多媒体设备:投影仪、电脑等。
教学过程:一、导入(5分钟)1. 利用多媒体设备展示一张直角三角形的图像,引发学生对直角三角形的认知和兴趣。
2. 提出问题:你知道直角三角形的定义和性质吗?请简单介绍一下。
3. 学生回答问题,教师适时给予引导和补充。
二、知识讲解(15分钟)1. 通过多媒体设备展示直角三角形的定义和性质,并解释其含义。
2. 介绍三角函数的概念和性质,如正弦、余弦和正切等。
3. 通过示例演示如何利用三角函数求解直角三角形的边长和角度。
三、例题演练(20分钟)1. 提供一些直角三角形的例题,要求学生利用所学知识求解。
2. 学生独立完成例题,教师巡回指导和解答疑惑。
3. 学生互相交流解题思路和方法,加深对知识的理解。
四、应用拓展(15分钟)1. 提供一些实际问题,要求学生运用直角三角形的知识解决。
2. 学生独立或小组合作完成应用题,教师提供必要的指导和帮助。
3. 学生展示解题过程和结果,进行讨论和总结。
五、归纳总结(10分钟)1. 教师引导学生总结直角三角形的相关知识和解题方法。
2. 学生回答问题并进行讨论,教师进行点评和补充。
3. 教师给出解题技巧和注意事项,并提供相关练习题进行巩固。
六、作业布置(5分钟)1. 布置一些练习题,要求学生独立完成。
2. 强调作业的重要性,并提供解题思路和方法。
3. 确定下节课的教学内容和要求。
解直角三角形教案
![解直角三角形教案](https://img.taocdn.com/s3/m/c986f3fc2dc58bd63186bceb19e8b8f67d1cef78.png)
解直角三角形教案高一数学教案解三角形篇一一、趣味数学,创设问题悬念。
谁能用牛皮筋很快的拉出一个五角星?(学生动手)你知道五角星的五个内角的和是多少度吗?不知道没有关系,只要你这一节课用心的学习,你自己就能解决这个问题。
二、口述目标,板书课题。
这一节课我们主要研究两个问题1、三角形的外角和他的'内角有什么关系?2、三角形的外角和是多少度?三、学一学。
让学生自己阅读课本第54页的内容,然后结合老师课件上的图形,把你学到的新内容和大家交流一下,其他的学生可以补充。
(三角形的外角和他相邻的内角的关系简单,让学生自己完成)四、猜一猜。
通过自己的努力,知道了三角形的外角和他相邻的内角的关系,那我们下面该研究什么问题?五、动一动。
1、提出问题:∠A+∠C与∠ABD的大小有什么关系?你用什么方法验证你的结论?(小组讨论交流)2、小组:(1)度量的方法(2)叠合法3、小结:∠A+∠C=∠ABD4、你能用语言表述这个结论吗?(让学生互相补充)5、你选谁?∠ABD( )∠A ∠ABD( )∠C (用>,<填空) 6、你能用语言表述这个结论吗? 7、师生共同小结:三角形的外角与他不相邻的两个内角的关系。
六、小试身手七、阅读填空(多媒体) 1、介绍什么叫三角形的外角和? 2、学生通过阅读总结结论。
3、随堂练习。
八、小结让学生说一说自己的收获。
九、解决趣味数学。
十、拓展练习(课后作业) 用牛皮筋拉出其他的形状,并求出所有内角的和。
高一数学教案解三角形篇二目标: 1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、了解三角形的高,并能在具体的三角形中作出它们。
重点:在具体的三角形中作出三角形的高。
教学难点:画出钝角三角形的三条高。
活动准备:学生预先剪好三种三角形,一副三角板。
教学过程:过三角形的一个顶点A,你能画出它的对边BC的垂线吗?试试看,你准行!从而引出新课:1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。
九年级数学《解直角三角形》教案
![九年级数学《解直角三角形》教案](https://img.taocdn.com/s3/m/952a9dea690203d8ce2f0066f5335a8103d26661.png)
23.2解直角三角形
一、学习目标
1.知道直角三角形的边角关系,能利用它求直角三角形的边或角。
2.理解并掌握解直角三角形的概念。
3.能够根据所给条件解直角三角形。
小组展示各组指派
代表,师友
共同回答,
依次展示
各自的结
论,其他同
学适时补
充纠正。
检验学生自学和
互相学习的效
果,培养学生表
达和理解能力,
提高学生学习积
极性和主动性,
当堂检测1、出检测题(见右栏);
2、学生练习完,公布答案;
3、对没有达到要求的学生,教师要求组内解决,
及时进行订正。
4、教师适当进行点评组内合作
当堂检测学生自主
完成查缺补漏,课堂最后一次扫除学生的问题,及时补救
课堂小结 1.本节课我有什么收获?
2,通过本节课的学习我有什么感想?
3,你对自己今天的表现满意吗?
再次突破重难
点,进一步理解
知识运用知识。
28.2解直角三角形(教案)
![28.2解直角三角形(教案)](https://img.taocdn.com/s3/m/5f5c219b9fc3d5bbfd0a79563c1ec5da50e2d6e6.png)
-难点3:针对含有两个未知数的直角三角形问题,如已知斜边和一个锐角,求另外两个未知数。通过讲解和举例,让学生掌握解题步骤,如先求出另一个锐角,再利用三角函数求解未知边长。
其次,在新课讲授环节,我发现部分学生对三角函数的定义和应用掌握不够扎实。在讲解过程中,我可能过于注重理论推导,而忽略了与实际例子的结合。针对这一问题,我打算在接下来的课程中,增加。
此外,在实践活动环节,虽然学生分组讨论和实验操作进行得如火如荼,但我发现部分小组在讨论过程中偏离了主题,讨论了一些与课程内容关联性不强的问题。在今后的教学中,我需要加强对学生讨论方向的引导,确保实践活动紧扣课程内容。
今天我们在课堂上学习了解直角三角形这一章节,回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,关于导入新课环节,我通过提问方式引导学生思考日常生活中的直角三角形实例,但感觉学生的反应并不如预期。可能是我提出的问题不够具体,或者是学生的生活经验有限,导致他们难以快速进入学习状态。在今后的教学中,我需要更贴近学生生活实际,提出更具启发性的问题,激发他们的兴趣。
在学生小组讨论环节,我注意到有些学生发言不够积极,可能是他们对讨论主题不感兴趣或者缺乏自信。为了提高学生的参与度,我计划在下一节课中,鼓励学生提出自己的观点,并适时给予表扬和鼓励,让他们在讨论中找到成就感和自信心。
最后,关于课堂总结环节,我觉得自己总结得还不够到位,没有完全覆盖本节课的重点和难点。在今后的教学中,我需要更加注重课堂总结,明确指出重点和难点,帮助学生巩固所学知识。
(3)将实际问题抽象成直角三角形模型,运用三角函数解决生活问题。
28.2.1 解直角三角形教案
![28.2.1 解直角三角形教案](https://img.taocdn.com/s3/m/18b0122ca55177232f60ddccda38376baf1fe0b1.png)
28.2.1 解直角三角形本节是在学习锐角三角函数之后,结合已学过的三角形内角和定理和勾股定理,研究解直角三角形的问题,既能加深对锐角三角函数概念的理解,又为后续解决与其相关的实际问题打下基础.解直角三角形是结合三角形内角和定理、勾股定理等知识,利用锐角三角函数对直角三角形的三条边以及两锐角这五个要素进行求解,在解直角三角形时注意借助相应的直角三角形来寻找已知元素与未知元素的关系式.【情景导入】要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°(见教材第85页第10题图),现有一架长6 m 的梯子.(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1 m)?(2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角α等于多少(精确到1°)?这时人是否能够安全使用这架梯子?【说明与建议】 说明:用来源于学生身边的问题吸引他们的注意力,激发他们的好奇心,体会解直角三角形来源于生活,并服务于生活,诱发学生对新知识的渴求.建议:教师引导学生思考,为本节课学习解直角三角形做好铺垫. 【归纳导入】在Rt △ABC 中,∠C =90°,∠A =20°,c =10 cm. (1)根据“直角三角形两锐角互余”得∠B =70°. (2)由sinA =ac ,得a =c ·sinA =10sin20°cm.(3)由cosA =bc,得b =c ·cosA =10cos20°cm.通过以上填空,Rt △ABC 的三条边长及三个角全部知道了,这种由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.【说明与建议】 说明:通过解答此题说明已知直角三角形的一个锐角,可以求出另一个锐角,选择恰当的边角关系,还可以求出其他的边长.建议:让学生先自主探究,然后交流解题的方法并比较从中选择最合适的方法.命题角度1 在直角三角形中解直角三角形这类题目一般已知一边一角或两边求其他元素.注意以下知识和技巧的总结及运用: 理论依据:在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c. (1)三边之间的关系:a 2+b 2=c 2. (2)锐角之间的关系:∠A +∠B =90°.(3)边角之间的关系:sinA =a c =cosB ,cosA =b c =sinB ,tanA =a b =1tanB .(4)面积公式:S △ABC =12ab =12ch(h 为斜边上的高).提示:当所求的元素既可用乘法又可用除法求解时,一般用乘法,不用除法;既可用已知数据又可用中间数据求解时,最好用已知数据.技巧方法:1.(宜昌中考)如图,△ABC 的顶点是正方形网格的格点,则cos ∠ABC 的值为(B) A.23B.22C.43D.2232.(巴中中考)如图,点A ,B ,C 在边长为1的正方形网格格点上,下列结论错误的是(A)A .sinB =13B .sinC =255C .tanB =12D .sin 2B +sin 2C =1命题角度2 构造直角三角形再解直角三角形这类问题一般和三角形或圆的相关知识结合命题,题目没有直接告诉是直角三角形,通过条件或添加辅助线,可以证明或构造直角三角形,再根据解直角三角形的方法解答问题.3.(黑龙江中考)如图,在△ABC 中,sinB =13,tanC =2,AB =3,则AC 的长为(B)A. 2B.52C. 5D .24.如图,点A ,B 是以CD 为直径的⊙O 上的两点,分别在直径的两侧,其中点A 是CDB ︵的中点.若tan ∠ACB =2,AC =5,则BC 的长为(D)A. 5B .2 5C .1D .2命题角度3 分类讨论解不定三角形在解直角三角形问题时,如遇到直角或者某个锐角不确定时,特别是在没有给出图形的情况下,要注意分类讨论,防止漏解.5.(内江中考)已知,在△ABC 中,∠A =45°,AB =42,BC =5,则△ABC 的面积为2或14.双直角三角形所谓“双直角三角形”是指一条直角边重合,另一条直角边共线的两个直角三角形.其位置关系有两种:如图1,公共直角边为AD ,则AD =BC ·tan α·tan βtan β-tan α,我们把它叫做公式1.图1 图2 如图2,公共直角边为AD ,则AD =BC ·tan α·tan βtan β+tan α,我们把它叫做公式2.课题28.2.1 解直角三角形授课人素养目标1.了解解直角三角形的意义和条件.2.帮助学生理解直角三角形中五个元素(直角除外)的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.3.发展学生的数学应用意识,提高归纳能力,感受解直角三角形的策略.教学重点解直角三角形的意义以及一般方法.教学难点选择恰当的边角关系解直角三角形.授课类型新授课课时教学步骤师生活动设计意图回顾如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别是a,b,c,那么除直角∠C外的两个锐角和三条边之间有如下关系:两锐角之间的关系:∠A+∠B=90°.三边之间的关系:a2+b2=c2.边角之间的关系:sinA=ac,cosA=bc,tanA=ab.回顾以前所学内容,为本节课的教学内容做好准备.活动一:创设情境、导入新课【课堂引入】意大利比萨斜塔在落成时就已倾斜,其塔顶中心点为B,塔身中心线与垂直中心线的夹角为∠A,过点B向垂直中心线引垂线,垂足为C,如图.在Rt△ABC中,∠C=90°,BC=5.2 m,AB=54.5 m,求∠A的度数.师生活动:教师呈现问题并引导学生结合图形,观察已知条件和所求角之间的关系,分析得到通过求∠A的正弦来求∠A的度数.通过实际问题,激发学生的学习兴趣,把实际问题转化为数学问题,并一般化:已知直角三角形斜边和直角边,求它的锐角的度数,通过求解的过程,初步体会解直角三角形的内涵,引入课题.活动二:实践探究、交流新知【探究新知】1.解直角三角形的定义问题:将比萨斜塔问题推广为一般的数学问题该如何求解?师生活动:已知直角三角形的斜边和一条直角边,求它的锐角的度数,利用锐角的正弦(或余弦)的概念直接求解.问题:在活动一所述的Rt△ABC中,你还能求出其他未知的边和角吗?师生活动:学生思考并说明求解思路,教师把问题一般化,给出解直角三角形的内涵:一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.2.解直角三角形的方法问题:回想一下,刚才解直角三角形的过程中,用到了哪些知识?你能梳理一下直角三角形各个元素之间的关系吗?师生活动:如图,引导学生结合图形,梳理五个元素(直角除外)之间的关系,学生展示:(1)三边之间的关系:a2+b2=c2(勾股定理).(2)两锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sinA=ac,cosA=bc,tanA=ab,sinB=ba,cosB=ac,tanB=ba.问题:从上述问题来看,在直角三角形中,知道斜边和一条直角边这两个元素,可以求出其余的三个元素.一般地,已知五个元素(直角除外)中的任意两个元素,可以求其余元素吗?教师给出结论:在直角三角形中,知道除直角外的五个元素中的两个元素(至1.有条理地梳理直角三角形除直角外的五个元素之间的关系,明确各自的作用,便于应用.2.在讨论解直角三角形的方法过程中,明确解直角三角形的条件,培养学生的逻辑思维能力.少有一个是边),就可以求出其余三个未知元素.活动三:开放训练、体现应用【典型例题】例1(教材第73页例1)如图,在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.解:AB=22,∠B=30°,∠A=60°.师生活动:学生在教师的引导下,思考如何求出所有未知元素.先让学生找出所有未知元素:∠A,∠B和AB,然后让学生逐一说明求每一个未知元素的方法和依据,教师引导学生选择简便的解题途径.最后给出简洁、规范的解题步骤.例2(教材第73页例2)如图,在Rt△ABC中,∠C=90°,∠B=35°,b=20,解这个直角三角形(结果保留小数点后一位).解:∠A=90°-∠B=90°-35°=55°.∵tanB=ba,∴a=btanB=20tan35°≈28.6.∵sinB=bc,∴c=bsinB=20sin35°≈34.9.师生活动:由学生代表参照例1的解题思路,分析本题的解题思路;然后由学生独立完成,再小组交流;最后由学生代表展示解题步骤.对于求c,如果学生采取不同方法,让他们展示不同方法;如果学生没有采取不同方法,教师注意引导他们思考其他解法.【变式训练】1.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=43,则CD的值为(D)1.通过解特殊的直角三角形,训练学生解直角三角形的思路和方法,提高学生分析和解决问题的能力.2.进一步训练解一般直角三角形的思路和方法,并体会从计算简便的角度选用适当的关系式求解.3.变式训练拓展学生思维,同时增强学生对所学知识的灵活应用能力.A .2 B.45 C.43 D.65提示:延长AD ,BC ,两线交于点O ,得到两个直角三角形,解直角三角形即可. 2.在△ABC 中,若AB =10,AC =15,∠BAC =150°,则△ABC 的面积为(A) A .37.5 B .75 C .100 D .150提示:过点C 作CD ⊥AB ,交BA 的延长线于点D.在Rt △ADC 中利用特殊角求出高CD ,再计算三角形的面积.3.在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,解这个直角三角形.解:如图:∵在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,∴12ab =92 3. ∴a =3 3.∴tanA =a b =333= 3.∴∠A =60°.∴∠B =180°-∠A -∠C =180°-60°-90°=30°. ∴c =2b =6. 活动四:课堂检测【课堂检测】1.如图,在Rt △ABC 中,∠C =90°,AB =4,sinA =12,则BC 的长为(A)A .2B .3 C. 3 D .2 3通过设置课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.2.在Rt △ABC 中,∠C =90°,∠B =40°,BC =3,则AC =(C) A .3sin40° B .3sin50° C .3tan40° D .3tan50°3.在Rt △ABC 中,∠C =90°,斜边中线是3 cm ,sinA =13,则S △ABC =(D)A. 2 cm 2B .2 2 cm 2C .3 2 cm 2D .4 2 cm 2提示:由中线长可以求出斜边,解直角三角形求出两直角边,再计算三角形面积.4.如图,在△ABC 中,BD ⊥AC 于点D ,AB =6,AC =53,∠A =30°.(1)求BD 和AD 的长. (2)求tanC 的值. 解:(1)∵BD ⊥AC , ∴∠ADB =90°.在Rt △ADB 中,AB =6,∠A =30°, ∴BD =12AB =3.∴AD =BDtanA=3BD =3 3. (2)CD =AC -AD =53-33=23, 在Rt △BCD 中,tanC =BD CD =323=32.学生进行当堂检测,完成后,教师进行批阅、点评、讲解. 课堂小结1.课堂总结:(1)什么叫解直角三角形?(2)两个直角三角形全等要具备什么条件?为什么在直角三角形中,已知一边和一个锐角或两边就能解直角三角形呢?教学说明:教师提问并引导学生总结归纳解直角三角形的定义以及直角三角形五元素之间的关系. 2.布置作业:教材第77页习题28.2第1题.引导学生从知识和方法两个方面总结自己的收获,理清解直角三角形的目的、条件、依据、方法,提升综合运用知识的能力.。
《解直角三角形》教案
![《解直角三角形》教案](https://img.taocdn.com/s3/m/fa5b76f4b1717fd5360cba1aa8114431b90d8eaa.png)
《解直角三角形》教案一、教学内容本节课的教学内容来自人教版数学五年级下册第117页至119页,主要讲解解直角三角形的知识和方法。
内容包括直角三角形的定义、直角三角形的性质、解直角三角形的步骤和方法等。
二、教学目标1. 让学生掌握直角三角形的定义和性质,理解解直角三角形的步骤和方法。
2. 培养学生运用直角三角形知识解决实际问题的能力。
3. 培养学生合作学习、积极思考的良好学习习惯。
三、教学难点与重点重点:直角三角形的定义和性质,解直角三角形的步骤和方法。
难点:如何运用直角三角形知识解决实际问题。
四、教具与学具准备教具:黑板、粉笔、直角三角形模型、直尺、三角板。
学具:练习本、直角三角形模型、直尺、三角板。
五、教学过程1. 实践情景引入:老师拿一个直角三角形模型,问同学们:“这个图形是什么三角形?”(直角三角形)“谁能告诉我直角三角形有什么特点?”(有一个角是直角,两条直角边)2. 讲解直角三角形的定义和性质:直角三角形是指有一个角是直角的三角形,这个直角所对的边叫做直角边,另外两个角叫做锐角。
直角三角形的性质有:直角三角形的两个锐角互余,直角三角形的斜边最长。
3. 讲解解直角三角形的步骤和方法:(1)画出直角三角形,标出已知量和所求量。
(2)根据已知量和直角三角形的性质,列出方程。
(3)解方程,求出所求量。
4. 例题讲解:已知直角三角形的两条直角边分别是3cm和4cm,求斜边的长度。
解:根据勾股定理,斜边的长度为√(3²+4²)=√(9+16)=√25=5cm。
5. 随堂练习:(1)已知直角三角形的两条直角边分别是5cm和12cm,求斜边的长度。
(2)一个直角三角形的斜边长是13cm,其中一个锐角是30°,求另一个锐角的大小。
6. 作业设计:(1)已知直角三角形的斜边长是20cm,其中一个锐角是60°,求另一个锐角的大小。
答案:另一个锐角的大小是30°。
初三数学解直角三角形教案
![初三数学解直角三角形教案](https://img.taocdn.com/s3/m/f2db5454876fb84ae45c3b3567ec102de2bddfa3.png)
初三数学解直角三角形教案一、教学目标1. 理解直角三角形的概念和特性;2. 掌握直角三角形中的关键概念,如斜边、直角边和对边;3. 学会使用勾股定理和正弦定理求解直角三角形的边长和角度。
二、教学重点1. 直角三角形的定义和特性;2. 勾股定理的应用;3. 正弦定理的应用。
三、教学内容及方法本节课将通过以下步骤完成教学:步骤一:引入直角三角形的概念(10分钟)1. 教师出示直角三角形的示意图,引导学生回忆直角三角形的定义;2. 学生观察示意图,并讨论直角三角形的特性,如直角、斜边和直角边等;3. 教师进行概念解释和示例说明,确保学生对直角三角形的定义和特性有清晰的理解。
步骤二:勾股定理的应用(20分钟)1. 引导学生回忆勾股定理的内容和公式;2. 教师通过示意图演示勾股定理的应用步骤,如已知直角三角形的两条边,求第三条边的长度;3. 学生在教师的指导下进行练习,将勾股定理应用于解决实际问题。
步骤三:解直角三角形的边长(30分钟)1. 教师出示一些直角三角形的具体问题,要求学生通过勾股定理计算出相应的边长;2. 学生在小组讨论解答过程,并逐步得出解题思路,完成解题过程;3. 学生代表上台展示解答方法,教师进行点评和指导,确保学生的解题思路正确。
步骤四:正弦定理的应用(20分钟)1. 引导学生回忆正弦定理的内容和公式;2. 教师通过示意图演示正弦定理的应用步骤,如已知直角三角形的一个角度和两条边,求其他角度或边的长度;3. 学生在教师的指导下进行练习,将正弦定理应用于解决实际问题。
步骤五:解直角三角形的角度和边长(30分钟)1. 教师出示一些直角三角形的具体问题,要求学生通过正弦定理计算出相应的角度或边长;2. 学生在小组讨论解答过程,并逐步得出解题思路,完成解题过程;3. 学生代表上台展示解答方法,教师进行点评和指导,确保学生的解题思路正确。
四、教学效果的评价方法1. 在课堂上,教师将密切观察学生的学习情况,及时给予反馈和指导;2. 教师可采用课堂练习、小组讨论和个人展示等形式,对学生的掌握情况进行评价;3. 教师还可布置相关的作业,通过作业的完成情况综合评价学生的学习效果。
解直角三角形教案精选5篇
![解直角三角形教案精选5篇](https://img.taocdn.com/s3/m/0eaae687d0f34693daef5ef7ba0d4a7302766c20.png)
解直角三角形教案精选5篇解直角三角形教案篇一一、教学目标〔一〕知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.〔二〕能力训练点通过综合运用勾股定理,直角三角形的'两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.〔三〕德育渗透点渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在的两个元素中,为什么至少有一个是边.三、教学过程〔一〕明确目标1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?〔1〕边角之间关系如果用表示直角三角形的一个锐角,那上述式子就可以写成。
〔2〕三边之间关系a2+b2=c2〔勾股定理〕〔3〕锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.〔二〕整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习稳固.同时,本课又为以后的应用举例打下根底,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.〔三〕重点、难点的学习与目标完成过程1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素〔至少有一个是边〕后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个元素中至少有一条边?〞让全体学生的思维目标一致,在作出准确答复后,教师请学生概括什么是解直角三角形?〔由直角三角形中除直角外的两个元素,求出所有未知元素的过程,叫做解直角三角形〕.3.例题例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比拟各种方法中哪些较好完成之后引导学生小结“一边一角,如何解直角三角形?〞答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比拟可靠,防止第一步错导致一错到底.例2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.在学生独立完成之后,选出最好方法,教师板书.4.稳固练习解直角三角形是解实际应用题的根底,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比拟繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.〔四〕总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素〔至少有一个是边〕,就可以求出另三个元素.2.出示图表,请学生完成abcAB1√√2√√3√b=acotA√4√b=atanB√5√√6a=btanA√√7a=bcotB√√8a=csinAb=ccosA√√9a=ccosBb=csinB√√10不可求不可求不可求√√注:上表中“√〞表示。
解直角三角形教案
![解直角三角形教案](https://img.taocdn.com/s3/m/3d51926cec630b1c59eef8c75fbfc77da26997ad.png)
解直角三角形教案解直角三角形教案直角三角形是初中数学中的重要内容之一,也是几何学中的基础概念。
本文将为大家介绍一份解直角三角形的教案,帮助学生更好地理解和掌握直角三角形的相关知识。
一、教学目标通过本节课的学习,学生应能够:1. 理解直角三角形的定义和性质;2. 掌握直角三角形中的各个要素,如斜边、直角边、对边和对角;3. 运用勾股定理解决直角三角形相关问题;4. 运用正弦、余弦、正切等三角函数解决直角三角形相关问题。
二、教学内容1. 直角三角形的定义和性质直角三角形是指其中一个角为直角(即90度)的三角形。
直角三角形的性质包括:直角边互相垂直、斜边是直角边的平方和的平方根等。
2. 直角三角形的要素直角三角形的要素包括:斜边、直角边、对边和对角。
斜边是直角三角形的最长边,直角边是与直角相邻的两条边,对边是与直角三角形的直角边不相邻的边,对角是直角三角形的两个直角边之间的夹角。
3. 勾股定理勾股定理是解决直角三角形问题的重要定理,它表明在直角三角形中,直角边的平方和等于斜边的平方。
即a² + b² = c²,其中a和b为直角边的长度,c为斜边的长度。
4. 三角函数三角函数是解决直角三角形问题的有力工具。
其中,正弦函数(sin)、余弦函数(cos)和正切函数(tan)是最常用的三角函数。
正弦函数定义为对边与斜边的比值,余弦函数定义为邻边与斜边的比值,正切函数定义为对边与邻边的比值。
三、教学过程1. 引入直角三角形的概念通过展示一张直角三角形的图片,引导学生观察并讨论直角三角形的特点,引出直角三角形的定义和性质。
2. 探究直角三角形的要素通过给出一个直角三角形的图形,让学生自主观察并找出斜边、直角边、对边和对角,引导学生理解这些要素的含义和关系。
3. 学习勾股定理通过一个生活中的实际问题,如测量房间的对角线长度,引出勾股定理的应用场景。
然后,通过具体的例子,教授勾股定理的原理和使用方法。
解直角三角形的应用教案
![解直角三角形的应用教案](https://img.taocdn.com/s3/m/6e784321640e52ea551810a6f524ccbff121ca29.png)
解直角三角形的应用教案
一、教学目标:
1.了解直角三角形的定义和性质;
2.掌握解直角三角形的基本步骤;
3.能够灵活运用直角三角形的知识解决实际问题。
二、教学重点:
掌握解直角三角形的基本步骤。
三、教学难点:
能够灵活运用直角三角形的知识解决实际问题。
四、教学方法:
1. 教师讲授与学生互动相结合的教学方法;
2. 课堂讨论与练习相结合的教学方法;
3. 实际问题解决与演练相结合的教学方法。
五、教学过程:
Step 1 导入(5分钟)
教师出示一个直角三角形的图形,引导学生回顾直角三角形的定义和性质,并提问一些解直角三角形的实际问题,为本节课的学习做铺垫。
Step 2 讲解(10分钟)
教师简要讲解解直角三角形的基本步骤:
1. 已知一个直角三角形,确认已知条件;
2. 根据已知条件,运用三角函数和三角恒等式求解;
3. 检验解是否合理。
Step 3 练习(15分钟)
教师出示多个直角三角形的实际问题,要求学生分组解答,鼓励学生积极参与,提高解题能力。
同时,教师可以采用课堂讨论的形式,引导学生分享解题思路和方法。
Step 4 拓展(15分钟)
教师出示一些较为复杂的直角三角形问题,鼓励学生尝试解答,提高解题的灵活性和应用能力。
Step 5 总结(5分钟)
教师根据学生在本课中的表现总结解直角三角形的基本步骤和注意事项,并强调掌握直角三角形的知识对解决实际问题的重要性。
六、课堂作业:
1. 完成课堂练习题;
2. 思考一个与直角三角形相关的实际问题,并尝试解答。
1.4 解直角三角形(教案)-北师大版数九年级下册
![1.4 解直角三角形(教案)-北师大版数九年级下册](https://img.taocdn.com/s3/m/ad095bd880c758f5f61fb7360b4c2e3f5627255f.png)
第4节解直角三角形1.了解解直角三角形的概念,使学生理解直角三角形中五个元素的关系.2.经历解直角三角形的过程,掌握运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形的方法.1.在研究问题的过程中思考如何把实际问题转化为数学问题,进而把数学问题具体化.2.通过利用三角函数解决实际问题的过程,进一步提高学生的逻辑思维能力和解决问题能力.1.在解决问题的过程中引导学生形成数形结合的数学思想,体会数学与实践生活的紧密联系.增强学生的数学应用意识,激励学生敢于面对数学学习中的困难.2.通过获取成功的体验和克服困难的经历,增进学生学习数学的信心,养成学生良好的学习习惯.【重点】理解并掌握直角三角形边角之间的关系,运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形中的未知元素.【难点】从已知条件出发,正确选用适当的边角关系或三角函数解题.【教师准备】多媒体课件.【学生准备】复习三角函数和勾股定理的相关知识.导入一:课件出示:在日常生活中,我们常常遇到与直角三角形有关的问题,知道直角三角形的边可以求出角,知道角也可以求出相应的边.如图所示,在Rt△ABC中共有几个元素?我们如何利用已知元素求出其他的元素呢?【师生活动】复习直角三角形的性质(两锐角互余和勾股定理)和三角函数的概念.【学生活动】通过独立思考和与同伴交流,分析出Rt△ABC中的6个元素,并尝试利用已知元素求未知元素.[设计意图]在学生分析直角三角形6个元素的过程中,学生自然而然地会想到直角三角形的相关性质,在复习旧知的同时,又为学习新知奠定了良好的基础.导入二:课件出示:如图所示,AC是电线杆AB的一根拉线,测得拉线AC=12m,AB=6m,你能求出拉线底端到电线杆底端的长度BC吗?能求出拉线AC与地面BC所成角的度数和拉线AC与电线杆AB所成角的度数吗?学生分析:可以利用勾股定理求拉线AC的长度,易知拉线与地面所成角为∠BCA,拉线与电线杆所成角为∠BAC,利用三角函数知识和计算器即可求出∠BCA和∠BAC的度数.【引入】这节课我们就综合运用勾股定理、直角三角形的两个锐角互余及锐角三角函数的知识探究直角三角形中的边和角的求解方法.[设计意图]通过生活中实际情境的引入,使学生对本节课的学习任务一目了然,学生在探究的过程中就可以抓住重点和难点.[过渡语]我们已经了解了直角三角形中6个元素分别是三条边和三个角,那么至少要知道几个元素,才可以求出其他元素呢?下面我们进行分类探究.【做一做】在Rt△ABC中,如果已知其中两边的长,你能求出这个三角形的其他元素吗?课件出示:(教材例1)在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且a=,b=,求这个三角形的其他元素.思路一教师引导学生分析:1.直角三角形中已知两边可以利用定理求出第三条边.2.直角三角形中,已知两边可以利用求∠A(或∠B)的度数.3.再利用求∠B(或∠A)的度数.【师生活动】教师引导学生分析,得出解直角三角形的方法,理清解题思路.【学生活动】得出结论:1.勾股定理2.三角函数2.两锐角互余解:在Rt△ABC中,a2+b2=c2,a=,b=,∴c===2.在Rt△ABC中,sin B===,∴∠B=30°,∴∠A=60°.思路二分组探究,思考下面的问题:1.由两个已知条件a=,b=能不能求出其中的一个锐角?2.如何再求出另外一个锐角的度数?3.如何再求出第三条边的长【师生活动】学生先独立思考,然后小组讨论.教师巡视,及时发现问题,予以纠正.完成后各小组展示解题的方法和步骤,师生共同验证.解:在Rt△ABC中,a=,b=,∴tan A===,∴∠A=60°,∴∠B=30°.在Rt△ABC中,sin B=sin30°=,即=,∴c=2.【教师小结】解直角三角形的概念:由直角三角形中已知的元素,求出所有的未知元素的过程,叫做解直角三角形.[设计意图]通过对直角三角形6个元素的分析及对猜测的探究活动,自然而然地引出解直角三角形的概念,并让学生及时总结解题方法,加深对概念的理解.[知识拓展]已知直角三角形两条边求其他元素的方法:方法1:已知两条边的长度,可以先利用勾股定理求出第三边,然后利用锐角三角函数求出其中一个锐角,再根据直角三角形两锐角互余求出另外一个锐角.方法2:已知两条边的长度,可以先利用锐角三角函数求出其中一个锐角,然后根据直角三角形中两锐角互余求出另外一个锐角,再利用锐角三角函数求出第三条边.解:在Rt△ABC中,AC=12,AB=6,由勾股定理得BC=6.在Rt△ABC中,tan∠BCA===,∴∠BCA=60°,∴∠BAC=30°.∴拉线底端到电线杆底端的长度BC是6m,∠BCA和∠BAC的度数分别是60°和30°.[设计意图]通过对导入题的解答,加深学生对解直角三角形概念的理解,提高解题的综合能力.三角形的其他元素(边长精确到1).〔解析〕在直角三角形中可以利用两锐角互余求另外一个锐角的度数,然后利用与锐角∠B 和边b有关的三角函数先求出其中一条边a或c,再利用三角函数或勾股定理求出第三条边c或a.解:在Rt△ABC中,∠C=90°,∠B=25°,∴∠A=65°.∵sin B=,b=30,∴c==≈71.∵tan B=,b=30,∴a==≈64.【教师设疑】此题还有其他解法吗?【学生活动】学生相互交流他们的解法.[设计意图]通过对学习活动的探究,学生逐步掌握了解直角三角形所要具备的条件,并在探究的过程中及时总结归纳出解直角三角形的思路和方法,为后面的练习和应用打下了良好的基础.[知识拓展]已知直角三角形一条边和一个锐角求其他元素的方法:已知一个锐角的度数,先根据直角三角形两锐角互余求出另外一个锐角的度数;又知道一条边的长度,根据三角函数的定义可以求出另外两条边的长度;也可以先利用三角函数的定义求出其中一条边的长度,再利用三角函数或勾股定理求出第三条边的长度.在Rt△ABC中,如果已知两个锐角,可以解直角三角形吗?【学生活动】学生先独立判断,再分组讨论.学生小结:只知道角度是无法求出直角三角形的边长的.问题2只给出一条边长这一个条件,可以解直角三角形吗?学生小结:只给出一条边长,不能解直角三角形.【教师点评】解直角三角形必须满足的一个条件是已知“一条边”.【师生总结】解直角三角形需要满足的条件:在直角三角形的6个元素中,直角是已知元素,如果再知道一条边和第三个元素,那么这个三角形的所有元素就都可以确定下来.【教师提示】第三个元素既可以是角也可以是边.[知识拓展]解直角三角形的思路和方法:在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,则有:(1)三边之间的关系:a2+b2=c2(勾股定理).(2)锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sin A=,cos A=,tan A=,sin B=,cos B=,tan B=.(4)面积的不同表示法:S△ABC=ab=ch(h为斜边上的高).1.解直角三角形的概念:由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形.2.解直角三角形的类型:(1)已知直角三角形两条边求其他元素.(2)已知直角三角形一条边和一个锐角求其他元素.3.解直角三角形需要满足的条件:除直角外,再知道一条边和第三个元素,就可以解直角三角形.1.如图所示的是教学用直角三角板,边AC=30cm,∠C=90°,tan∠BAC=,则边BC的长为()A.5cmB.10cmC.20cmD.30cm解析:在直角三角形ABC中,根据三角函数定义可知tan∠BAC=,∵AC=30cm,tan∠BAC=,∴BC=AC·tan∠BAC=30×=10(cm).故选B.2.如图所示,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°·sin54°D.点A到OC的距离为cos36°·sin54°解析:根据图形得出点B到AO的距离是指BO的长,根据锐角三角函数定义得出BO=AB sin36°,即可判断A,B错误;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角函数定义得出AD=AO sin36°,AO=AB·sin54°,所以AD=sin36°·sin54°,即可判断C正确,D错误.故选C.3.如图所示,已知在Rt△ABC中,斜边BC上的高AD=4,cos B=,则AC=.解析:∵在Rt△ABC中,cos B==,∴sin B==,tan B==.∵在Rt△ABD中,AD=4,∴AB===.∵tan B==,∴AC=AB tan B=×=5.故填5.4.如图所示,在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.解析:如图所示,过点A作AD⊥BC于D,∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=2BD=6.故填6.5.如图所示,在Rt△ABC中,∠C=90°,AB=10,cos A=,求BC的长和tan B的值.解:在Rt△ABC中,∠C=90°,AB=10,cos A===,∴AC=4,根据勾股定理,得BC==6,∴tan B===.4解直角三角形解直角三角形:一、教材作业【必做题】教材第17页习题1.5第1,2题.【选做题】教材第18页习题1.5第3,4题.二、课后作业【基础巩固】1.在直角三角形ABC中,已知∠C=90°,∠A=50°,BC=5,则AC等于()A.3sin50°B.3sin40°C.3tan50°D.3tan40°2.如图所示,已知在Rt△ABC中,∠C=90°,AC=4,tan A=,则AB的长是()A.2B.8C.2D.43.(2015·桂林中考)如图所示,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是.4.要用8m长的梯子爬到4m高的墙上,则梯子与地面的夹角为度.【能力提升】5.如图所示的是一张简易活动餐桌,测得OA=OB=30cm,OC=OD=50cm,B点和O点是固定的.为了调节餐桌高矮,A点有3处固定点,分别使∠OAB为30°,45°,60°,则这张餐桌调节到最低时桌面离地面的高度是(不考虑桌面厚度)()A.40cmB.40cmC.30cmD.30cm6.如图所示,在△ABC中,cos B=,sin C=,AC=5,则△ABC的面积是.7.(2015·湖北中考)如图所示,AD是△ABC的中线,tan B=,cos C=,AC=,求:(1)BC的长;(2)sin∠ADC的值.8.张大爷家有一块三角形土地如图所示,测得∠A=30°,∠B=45°,BC=20m.请你帮助张大爷计算这块土地有多少平方米.9.如图所示,沿AC方向开山修一条公路,为了加快施工速度,要在小山的另一边寻找点E同时施工.从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE在同一平面内.(1)施工点E离D多远正好能使A,C,E成一条直线(结果保留整数)?(2)在(1)的条件下,若BC=80m,求公路段CE的长(结果保留整数).(参考数据:sin37°≈0.60,cos 37°≈0.80,tan37°≈0.75)【拓展探究】10.(2014·宁波中考)如图所示,从A地到B地的公路需经过C地,图中AC=10km,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A,B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)公路改直后比原来缩短了多少千米?(参考数据:sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【答案与解析】1.D(解析:∵在直角三角形ABC中,∠C=90°,∠A=50°,∴∠B=90°-∠A=90°-50°=40°.∵tanB=,∴AC=BC·tan B=3tan40°.故选D.)2.C(解析:在Rt△ABC中,∵∠C=90°,∴tan A=.∵AC=4,tan A=,∴BC=AC·tan A=2,∴AB===2.故选C.)3.(解析:在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°,∴∠A=∠BCD,∴tan∠BCD=tanA===.故填.)4.60(解析:要用8m长的梯子爬到4m高的墙上,梯子、地面和墙正好构成直角三角形,∴梯子与地面的夹角的正弦值为=.∵sin60°=,∴梯子与地面的夹角为60°.故填60.)5.B(解析:过点D作DE⊥AB于点E,易知∠OAB=30°时,桌面离地面最低,∴DE的长即为最低长度.∵OA=OB=30cm,OC=OD=50cm,∴AD=OA+OD=80cm.在Rt△ADE中,∵∠OAB=30°,AD=80cm,∴DE=AD=40cm.故选B.)6.(解析:过点A作AD⊥BC,∵在△ABC中,cos B=,sin C=,AC=5,∴cos B==,∴∠B=45°.∵sinC===,∴AD=3,∴在Rt△ADC中,CD==4,∴在等腰直角三角形ADB中,BD=AD=3,则△ABC的面积是×BC×AD=×(3+4)×3=.故填.)7.解:过点A作AE⊥BC于点E,∵cos C=,∴∠C=45°.在Rt△ACE中,CE=AC·cos C=1,∴AE=CE=1.在Rt△ABE中,tan B=,即=,∴BE=3AE=3,∴BC=BE+CE=4.(2)由(1)知BC=4,∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD-CE=1.∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.8.解:如图所示,过点C作CD⊥AB于D.易知CD=BD=BC·sin=AB·CD=×10(+)×10≈273.2(m2).答:这块土地约45°=20×=10,∴AD===10,∴AB=AD+BD=10(+),∴S△ABC有273.2m2.9.解:(1)若使A,C,E成一条直线,则需∠ABD是△BDE的外角,∴∠BED=∠ABD-∠D=127°-37°=90°,∴DE=BD·cos37°≈520×0.80=416(m),∴施工点E离D距离约为416m时,正好能使A,C,E成一条直线.(2)由(1)得在Rt△BED中,∠BED=90°,∵∠D=37°,∴BE=BD·sin37°≈520×0.60=312(m).∵BC=80m,∴CE=BE-BC≈312-80=232(m),∴公路段CE的长约为232m.10.解:(1)如图所示,过点C作CH⊥AB于H.在Rt△ACH中,CH=AC·sin∠CAB=AC·sin25°≈10×0.42=4.2(km),AH=AC·cos∠CAB=AC·cos25°≈10×0.91=9.1(km),在Rt△BCH中,BH=CH÷tan ∠CBA≈4.2÷tan37°≈4.2÷0.75=5.6(km),∴AB=AH+BH≈9.1+5.6=14.7(km).故改直的公路AB的长约为14.7km.(2)在Rt△BCH中,BC=CH÷sin∠CBA≈4.2÷sin37°≈4.2÷0.60=7(km),则AC+BC-AB≈10+7-14.7=2.3(km).答:公路改直后比原来缩短了约2.3km.为使学生迅速掌握本节课的知识,上课开始就对解直角三角形所用到的知识点:直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系等知识点进行了复习回顾,因为合理选用这些关系是正确、迅速解直角三角形的关键.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,在处理例题时,首先,应让学生独立完成,培养学生分析问题、解决问题的能力,同时渗透数形结合思想.本节课力求给学生更多自主探索的时间,让其在宽松和谐的氛围中学习,使他们学得更主动、更轻松,力求在探索知识的过程中培养学生探索能力、创新精神、合作精神,激发学生学习数学的积极性、主动性.同时,在学生选择解直角三角形的诸多方法的过程中,鼓励学生通过多种解法去解答.在选用合适的三角函数解决问题时,要引导学生总结出分析问题的方法,巧妙联系已知和未知之间的函数关系,选取合适的三角函数求解.再教时,增加解实际问题中直角三角形的例题的练习,因为学生对把实际问题转化成数学问题的能力还不太强.随堂练习(教材第17页)(1)c=4,∠A≈27°,∠B≈63°.(2)a=,c=,∠A=30°.(3)a=10,b=10,∠B=30°.习题1.5(教材第17页)1.(1)b=19,∠A=45°,∠B=45°.(2)c=12,∠A=30°,∠B=60°.2.(1)a=10,b=10,∠B=45°.(2)b=12,c=24,∠A=60°.3.解:tan∠ACD==,∴∠ACD≈27.5°,∠ACB=2∠ACD≈2×27.5°=55°.4.解:(1)墙高=6sin75°≈6×0.966≈5.8(m).(2)cosα=,解得α≈66°.∵50°<66°<75°,∴此时人能够安全使用这个梯子.本节课学生学习的重点是解直角三角形的方法,所以理解解直角三角形的概念是掌握解直角三角形方法的前提,而熟练运用勾股定理、两锐角互余以及锐角三角函数的定义则是解直角三角形的关键,学生要做好复习和预习工作,把握好各个元素之间的关系.此外,在没有直角三角形的图形中,通过作垂线或其他辅助线构造直角三角形也是学生要重点掌握的能力和技巧.解非直角三角形时,构造直角三角形的方法:(1)利用作高构造直角三角形,如下图所示.(2)利用勾股定理或逆定理构造直角三角形,如下图所示.(3)利用已知角构造直角三角形,如下图所示.。
28.2解直角三角形教案
![28.2解直角三角形教案](https://img.taocdn.com/s3/m/b1f073034b35eefdc8d3334d.png)
28.2解直角三角形教案【篇一:28.2.1解直角三角形教案】28.2.1解直角三角形西湖中学黄勇一、内容和内容解析1、内容:解直角三角形的意义,直角三角形的解法。
2、内容解析:本节是学习锐角三角函数之后,结合已学过的勾股定理和三角形内角和定理,研究解直角三角形的问题。
本课内容既能加深对锐角三角函数的理解,又能为后续解决与其相关的实际问题打下基础,在本章起到承上启下的作用。
二、目标和目标解析1.了解解直角三角形的意义和条件.2.能根据直角三角形中的角角关系、边边关系、边角关系解直角三角形,能运用解直角三角形的知识解决有关的实际问题.目标解析:达成目标1的标志是,知道解直角三角形的内涵,能根据直角三角形中已知元素,明确所有要求的未知元素。
达成目标2的标志是根据元素的关系,选择适当关系式,求出未知元素。
三、学情分析在直角三角形的边角关系中,三边之间的关系、两锐角之间的关系比较直接,而两边的比与一个锐角的关系,学生通过学习锐角三角函数,有了一定的基础,但在具体的直角三角形中,根据已知条件选择恰当的锐角三角函数,还是有些困难,且解直角三角形往往需要综合运用勾股定理及三角函数的知识,具有一定的综合性。
四、教学过程1、实例引入,初步体验本章引言提出的比萨斜塔倾斜程度的问题。
设塔顶中心点为b,塔身中心线与垂直中心线夹角为∠a,过点b向垂直中心线引ab=54.5m,求∠a的度数。
sina=bc5.2=≈0.0954 ab54.5一般地,在直角三角形中,除直角外,共有五个元素,即三条边和两个角,由已知元素求出其余未知元素的过程,叫做解直角三角形.解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如下图:222边边关系:勾股定理,即a+b=c;边角关系:锐角三角函数,即:a,cosa=cbsinb=,cosb=csina=b,tana=ca,tanb=ca,cota=bb,cotb=abaab解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.ac=,bc=解这个直角三角形。
1.4解直角三角形(教案)
![1.4解直角三角形(教案)](https://img.taocdn.com/s3/m/388e7f84cf2f0066f5335a8102d276a2002960b9.png)
在今天的教学过程中,我发现学生们对解直角三角形这一章节的内容表现出较高的兴趣。他们在课堂上积极参与,尤其是在实践活动和小组讨论环节,大家都很投入。以下是我对今天教学的一些思考:
首先,导入新课环节通过提问方式引发学生思考,激发了他们的好奇心。这使得学生们对接下来的教学内容充满期待,为课堂学习奠定了良好的基础。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理和三角函数这两个重点。对于难点部分,比如如何运用三角函数求解角度,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解直角三角形相关的实际问题,如测量旗杆的高度。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量直角三角形的边长,并运用勾股定理计算斜边长度。
举例:计算一个墙角的度数,或者计算一个旗杆的高度等。
在教学过程中,教师需要针对以上重点和难点内容,采用讲解、举例、练习、讨论等多种教学方法,帮助学生透彻理解核心知识,突破学习难点,提高解题能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解直角三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算三角形边长或角度的情况?”比如,测量一块三角形的土地面积。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索解直角三角形的奥秘。
举例:已知直角三角形的斜边长为5,一个锐角为30°,求另一个锐角的度数。
(4)学会运用解直角三角形的方法解决实际问题,提高解决问题的能力。
2.教学难点
(1)理解并掌握勾股定理的逆定理,能判断一个三角形是否为直角三角形;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形
一、教学目标:
1、理解直角三角形中,除直角外其余五个元素之间的关系,了解确定一个三角形和解直角三角形所需条件的一致性.
2、经历对满足什么条件可解直角三角形的问题分析过程,体会从一般到
特殊的思考方法.
3、会解直角三角形;会选择合理的算法.
4、通过师生共同探索,体验独立思考与合作交流的学习过程;渗透分类讨论、化归等数学思想,激发学生探索数学的热情和兴趣。
二、制定依据:
1.内容分析
解直角三角形是三角学应用的基础,也是后面即将学习的解直角三角形的应用的前提保证,因为涉及到勾股定理、直角三角形的两个锐角互余、锐角三角比定义、特殊锐角三角比的值及灵活应用三角比解决问题,学习时会有一定难度。
因此,本节内容的讲述要注意复习、注重与图形结合,引导学生参与思考分析;训练的形式也可一题多变,力求引导学生真正掌握。
也为今后高中阶段探究解斜三角形打好必要的基础。
2.学生实际
班级中有小部分学生数学思维敏捷,学习优秀,有几位学生数学基础非常薄弱,理解和记忆能力较其他学生有极大差异。
因而在教案设计和教材教法上,我尽量要考虑到不同学生层次的发展,学生可能出现的问题有:1、勾股定理、直角三角形的两个锐角互余、锐角三角比定义、特殊锐角三角比的值遗忘或记错;2、选择适当的锐角三角比错误。
三、教学重难点
教学重点:解直角三角形的基本方法.
教学难点:锐角三角比在解直角三角形中的灵活运用
教学反思:。