关于中心原子杂化轨道数的计算方法

关于中心原子杂化轨道数的计算方法
关于中心原子杂化轨道数的计算方法

第26卷第3期2011年6月

大学化学

UNIVERSITY CHEMISTRY

Vol.26No.3

Jun.2011关于中心原子杂化轨道数的计算方法

苏金昌

(大庆教育中心黑龙江大庆163001)

摘要对于H

m AB

n

型的共价分子(或离子),本文提出用公式G=V/2-3n计算中心原子A的杂化轨道

数,并由此确定对应的杂化轨道类型。该方法简单、直接、有效。

关键词中心原子价层电子总数杂化轨道数杂化轨道类型

杂化轨道理论是大学化学的重要基础理论之一,主要用来讨论共价分子(或离子)的成键情况以及预测其几何构型或阐述其物理化学性质。对于如何判定给定的分子(或离子)的中心原子轨道杂化方式,在杂化轨道理论里并没有系统论述,导致在应用杂化轨道理论教与学时遇到困难。为了有利于应用杂化轨道理论阐述相关问题,本文给出一个有关中心原子杂化轨道数的计算公式,并根据计算得出的杂化轨道数确定对应的杂化轨道类型。

1中心原子杂化轨道数的计算公式

在H m AB n型共价分子(或离子)中,设A为选定的中心原子,H为与A直接相连的氢原子(或氢离子)配位体,B为与A直接相连的非氢原子及其离子(或价电子数不大于8的原子团及其离子,如OH 与OH-)配位体;n、m分别为B、H的数目(即配位数);V为H m AB n型分子(或离子)的价电子总数,即所有原子(m个H、1个A和n个B)的价电子数之代数和。计算价电子总数V时应该注意的是:对于阴离子要再加上所带的电荷数,例如,PO3-4的价电子总数V=5+6?4+3=32;对于阳离子要再减去所带的电荷数,例如,NH4+的价电子总数V=5+1?4-1=8。

根据价键理论,在共价分子(或离子)中,氢原子(H)的价层一般满足2电子的稳定结构,而非氢原子(B)的价层一般满足8电子的稳定结构。当每个H、B都通过一个双电子的σ键与A共享2个电子时,满足2电子稳定结构的每个H的价电子就都参与了双电子σ键的形成,并没有剩余未成键的价电子;而每个B的价层8个电子中除了有2个是与中心原子A共用的σ键电子外,还有6个是未参与双电子σ键的电子,n个B共有6n个电子未参与σ键形成。那么,对于H m AB n的V个价电子中余下的(V-6n)个价电子,如果假定它们都有在A与B、A与H之间形成双电子σ键的倾向,则中心原子A倾向参与形成双电子σ键的最大数为:(V-6n)/2,即V/2-3n。

假定在共价分子(或离子)中,中心原子键合时之所以进行轨道杂化,其主要目的是最大限度地促进中心原子与配位体之间形成更多牢固的σ键,即尽可能地促使σ键的数目倾向于最大。因为“头碰头”式重叠的σ键越多、越牢固,构成的分子(或离子)就越稳定。可见,中心原子倾向参与形成σ键的最大数与其杂化轨道数之间存在着对应关系。若令G表示中心原子A的杂化轨道数,则计算中心原子杂化轨道数的公式可写为:

G=V/2-3n(1)由式(1)可知,G的大小与V、n有关。即对于H m AB n型分子(或离子),其中心原子(A)的杂化轨道数(G),由分子(或离子)的价电子总数(V)和非氢配位体数目(n)决定。

(1)计算得出的中心原子的杂化轨道数及其杂化轨道类型、杂化轨道空间取向的对应关系归

纳在表1中。

表1中心原子杂化轨道数与杂化轨道类型及空间取向的对应关系

中心原子杂化轨道数(G)中心原子杂化轨道类型杂化轨道空间取向

2sp直线

3sp2平面三角

4sp3四面体

5sp3d三角双锥

6sp3d2八面体

7sp3d3五角双锥

2应用示例

例:次磷酸分子H2(HO)PO中P的杂化轨道数为:

G=V/2-3n=20/2-3(1+1)=4

其对应的杂化轨道类型是sp3。

应用式(1)计算了一些有代表性的分子(或离子)的杂化轨道数及对应的杂化轨道类型,其结果见表2,与有关文献报告相符。

根据式(1)计算得出的杂化轨道数判定对应的杂化轨道类型后,再进一步结合配位数讨论价键结构或判定共价分子(或离子)的几何构型,可以按常规方法处理,本文不再赘述。

表2代表性分子(或离子)的中心原子杂化轨道数及对应的杂化轨道类型

分子(或离子)实例V n G中心原子杂化轨道类型

H2O H2Se H2S H2Te804sp3

N2CO CN-C2-21012sp

SO2NO-2O3HONO1823sp2

SF2Cl2O SCl2ClO-22024sp3

XeF2I-3ICl-2IF-22225sp3d

NO-3(HO)2CO HONO22433sp2

NCl3PF3XeO32634sp3

SF4TeCl4O2XeF23445sp3d

XeF4IF4ICl43646sp3d2

IF5BrF5OXeF44256sp3d2

AlF3-6(HO)4XeO24866sp3d2

XeF6TeCl2-6TeBr2-65067sp3d3

3讨论

1)当m=0、n≠0时,即对于AB

n 型分子(或离子),式(1)的形式仍为:

19

第3期苏金昌:关于中心原子杂化轨道数的计算方法

29大学化学第26卷

G=V/2-3n

所不同的是这时的价电子总数V是1个A与n个B的价电子数之代数和。

2)当n=0时,式(1)可简化为:

G=V/2

此时G仅与V有关。例如,H m A型分子(或离子):H2S、H3O+、NH+4等。

3)对于V相同的不同分子(或离子),当n相同时,由式(1)可得出G是相同的。说明这类分子(或离子)的中心原子的杂化轨道类型是相同的,也说明“等电子分子族”结构相似性的理论依据是其中心原子轨道杂化方式的一致性。例如,表2中所列的各组实例。

4)在分子(或离子)中,多数价电子总数V是偶数。对于少数V为奇数的分子(或离子),用(V+1)代替式(1)中的V,同样可以得出合理的结果。

例:在价电子总数为17的NO2中,N的杂化轨道数为:

G=(V+1)/2-3n=(17+1)/2-3?2=3

其对应的杂化轨道类型是sp2。

5)由式(1)可知,求G值并不需要先确认中心原子价层里的孤电子对,就能直接得出合理结果。这是本方法的独特创新之处,也是诸多其他方法[1-3]所不能的。实际上,当确认了中心原子杂化轨道数及对应的杂化轨道类型,再结合配位数,其杂化轨道中有无未成键电子(或未成键电子分组情况)便一目了然。也可以用式(2)计算未成键的杂化轨道数,即价层中未成键的电子组数(L)。

L=G-(n+m)(2)综上所述,应用本文提出的式(1),仅选择2个参数(V、n)就能直接得出中心原子的杂化轨道数并确定相应的杂化轨道类型,说明该方法是一种简单、直接、有效的方法。但需要指出的是:这种计算方法对主族元素及主族元素与零族元素形成的单中心共价分子(或离子)是有效的,而对于含有过渡金属元素或含有多个中心原子的分子(或离子),则还有待进一步探讨。

参考文献

[1]张文广,韦斯林,王祖浩.化学教育,2008,29(6):3

[2]吴集贵,曾正志,姚卡玲.大学化学,1991,6(6):9

[3]李小平.大学化学,1987,2(6):39

杂化轨道详细解说

高中化学7:杂化轨道 1、概念理解 原子在形成分子时,原子轨道不可能只重叠而本身不变,实际上个原子的价电子运动状态必然改变,而使成键能力尽可能增加,体系能量尽可能降低。能量相近的不同原子轨道重新合成相同数目的新原子轨道。通常有sp型、dsp型、spd型等。 杂化并非一个实际过程,而是一个数学概念。为了得到波动方程有关价层电子的解,及波函数而采取的一个步骤。 和原有的s、p轨道相比,杂化轨道分布图具有一个肥大的正瓣,这一区域大大有利于成键轨道之间的重叠。而且杂化轨道空间分布合理,降低了成键电子的排斥。2个方面都有利于体系能量的下降。 2、价层电子对互斥理论(VSEPR理论)对轨道形状的推测2.1、价层电子对互斥理论(VSEPR理论): 对于一个ABm型分子(或离子),围绕中心A原子的价层对子对(包括成键电子对和未成键的孤电子对)的空间分布是受静电相互作用所支配。电子对之间尽可能互相远离,这样斥力小,体系趋于稳定。 2.2、A原子价层电子对数的确定: [A原子价层电子数 + B原子提供的用于形成共价单键的电子数(双剑、三键均按生成一个单键考虑)]/2 若是阴离子,电子数要加阴离子电荷数,阳离子则要减去。 B是H或卤素元素,每个原子提供一个共用电子。 B若是是氧族元素,规定不提供共用电子。

四氯化碲TeCl4分子:Te有6个价层电子,加上4个Cl提供的共用电子,中心Te原子价层电子数等于10,对数为5。 SO42-离子:S有6个价层电子,规定O原子不提供共用电子,加上离子电荷数2,中心S原子价层电子数等于8,对数为4。 2.3、VSEPR理论推测分子形状: 判断非过渡元素化合物的分子(或离子)的几何构型是相当成功的。价层电子对数在4以内,未发现例外;价层电子对数为5、6时,发现个别例外;价层电子对数为7以上时,中心不单一,出入较大;步骤:1、确定中心原子的价层电子对数 2、确定价层电子对对应的最佳分布构型:2直线、3平面三角、4正四面体、5三角双锥体、6正八面体。 3、依据价层电子对相互作用斥力大小选出最稳定布局。依此布局将配位原子排列在中心原子周围。 电子对之间斥力大小:孤-孤>孤-成>成-成 按照力学分析,很好理解。 2个同等力作用1个点,稳定结构是直线,夹角180度。 3个同等力作用1个点,稳定结构是平面,夹角120度。 4个同等力作用1个点,稳定结构是(正四面体、平面正方体等),正四面体夹角109.5度。 5个同等力作用1个点,稳定结构是三角双锥体 6个同等力作用1个点,稳定结构是正八面体

价层电子对的几种计算方法

在计算价层电子数时,可以有多个物理模型供选用。在常见的化学教材或教学参考资料中,可以看到有3种其间有显著不同的计算价层电子对数目的模型,产生3类不同的方法。(一)元素种类法 元素种类法的特点在于,对非过渡系ABm型分子来说,用配原子的种类来确定它向中心原子提供的价层电子数。它规定: 当H及卤原子作配原子时,每个配原子向中心原子提供1个价层电子; 而当O、S原子作配原子时,它们都并不向中心原子提供价层电子; 而当N原子作配原子时,它不仅不向中心原子提供价层电子,反而要从中心原子拉走1个价层电子。 如对SO2分子。中心S原子有6个价电子,而作为配原子的O原子并不向中心原子提供电子,S的价层电子数仍为6,价层电子数对为3。所以,S原子的电子云呈三角形分布。S原子位于三角形的中心附近,电子云分别指向三角形的三个顶点。考虑到3个电子云,只有2个与O原子结合,另1个被孤电子对占据,分子应该为角型。 (二)电子式法] 电子式法则是用分子的点电子式中,电子对及电子组的数目,来确定中心原子的价层电子对数。 它规定:中心原子周围的电子对(包括成键电子对和孤电子对)及电子组数(双键的4个电子、或叁键的6个电子,都只能算是1个电子组)之和,就是中心原子的价层电子对数。如对SO2分子。根据八隅体原则写出电子式(如左下图)后,可以看出S原子上方有1孤电子对、与右侧O原子结合用了1电子对、与左侧O原子结合用的是4个电子(双键)——为1个电子组。 这样,属于中心原子的电子对数为1、孤电子对数为1、电子组数为1,合计为3。因而价层电子对数为3。与元素种类法的判断结果相同。 电子式法与元素种类法的另一个区别是,在电子式法中没有可以成单的价层电子数的概念。最小的单位也是1个价层电子对。 (三)结构式法 结构式法与另两个方法的区别在于,对非过渡系元素构成的分子来说,用结构式中共价键的性质不同,来确定相关配原子向中心原子提供的价层电子数。它规定:

关于中心原子杂化轨道数的计算方法

第26卷第3期2011年6月 大学化学 UNIVERSITY CHEMISTRY Vol.26No.3 Jun.2011关于中心原子杂化轨道数的计算方法 苏金昌 (大庆教育中心黑龙江大庆163001) 摘要对于H m AB n 型的共价分子(或离子),本文提出用公式G=V/2-3n计算中心原子A的杂化轨道 数,并由此确定对应的杂化轨道类型。该方法简单、直接、有效。 关键词中心原子价层电子总数杂化轨道数杂化轨道类型 杂化轨道理论是大学化学的重要基础理论之一,主要用来讨论共价分子(或离子)的成键情况以及预测其几何构型或阐述其物理化学性质。对于如何判定给定的分子(或离子)的中心原子轨道杂化方式,在杂化轨道理论里并没有系统论述,导致在应用杂化轨道理论教与学时遇到困难。为了有利于应用杂化轨道理论阐述相关问题,本文给出一个有关中心原子杂化轨道数的计算公式,并根据计算得出的杂化轨道数确定对应的杂化轨道类型。 1中心原子杂化轨道数的计算公式 在H m AB n型共价分子(或离子)中,设A为选定的中心原子,H为与A直接相连的氢原子(或氢离子)配位体,B为与A直接相连的非氢原子及其离子(或价电子数不大于8的原子团及其离子,如OH 与OH-)配位体;n、m分别为B、H的数目(即配位数);V为H m AB n型分子(或离子)的价电子总数,即所有原子(m个H、1个A和n个B)的价电子数之代数和。计算价电子总数V时应该注意的是:对于阴离子要再加上所带的电荷数,例如,PO3-4的价电子总数V=5+6?4+3=32;对于阳离子要再减去所带的电荷数,例如,NH4+的价电子总数V=5+1?4-1=8。 根据价键理论,在共价分子(或离子)中,氢原子(H)的价层一般满足2电子的稳定结构,而非氢原子(B)的价层一般满足8电子的稳定结构。当每个H、B都通过一个双电子的σ键与A共享2个电子时,满足2电子稳定结构的每个H的价电子就都参与了双电子σ键的形成,并没有剩余未成键的价电子;而每个B的价层8个电子中除了有2个是与中心原子A共用的σ键电子外,还有6个是未参与双电子σ键的电子,n个B共有6n个电子未参与σ键形成。那么,对于H m AB n的V个价电子中余下的(V-6n)个价电子,如果假定它们都有在A与B、A与H之间形成双电子σ键的倾向,则中心原子A倾向参与形成双电子σ键的最大数为:(V-6n)/2,即V/2-3n。 假定在共价分子(或离子)中,中心原子键合时之所以进行轨道杂化,其主要目的是最大限度地促进中心原子与配位体之间形成更多牢固的σ键,即尽可能地促使σ键的数目倾向于最大。因为“头碰头”式重叠的σ键越多、越牢固,构成的分子(或离子)就越稳定。可见,中心原子倾向参与形成σ键的最大数与其杂化轨道数之间存在着对应关系。若令G表示中心原子A的杂化轨道数,则计算中心原子杂化轨道数的公式可写为: G=V/2-3n(1)由式(1)可知,G的大小与V、n有关。即对于H m AB n型分子(或离子),其中心原子(A)的杂化轨道数(G),由分子(或离子)的价电子总数(V)和非氢配位体数目(n)决定。 (1)计算得出的中心原子的杂化轨道数及其杂化轨道类型、杂化轨道空间取向的对应关系归

杂化轨道理论(图解)

杂化轨道理论(图解)一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外 PCl5SF6BeCl2BF3NO,NO2… 中心原子周围价电子数101246含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特和美国的马利肯两位化学家提出分子轨道理论,简称MO理论。马利肯由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件

中心原子杂化轨道类型的判断方法

中心原子杂化轨道类型的判断方法 高中化学选修模块《物质结构与性质》中介绍了杂化轨道理论,这一重要理论能解释大多数分子几何构型及价键结构。在使用该理论时,首先必须确定中心原子的杂化形式,在未知分子构型的情况下,判断中心原子杂化轨道类型有时比较困难,成为教学难点。下面总结几种高中阶段判断中心原子杂化轨道类型的方法。 一、根据分子的空间构型判断 根据杂化轨道理论,中心原子轨道采取一定的杂化方式后,其空间构型和键角如下: 由此,可以根据分子的空间构型或键角来判断中心原子轨道的杂化方式。 例如:学生对于一些常见的简单分子的结构都是熟悉的,C2H2、CO2为直线型分子,键角为 180°,推断其 C 原子的杂化轨道类型为 sp;C2H4、C6H6为平面型分子,键角为 120°,推断其 C原子的杂化轨道类型为 sp2;CH4、CCl4为正四面体,键角109.5°,推断其C原子的杂化轨道类型为 sp3。 还可以扩展到以共价键形成的晶体,如:已知金刚石中的碳原子、晶体硅和石英中的硅原子,都是以正四面体结构形成共价键的,所以也都是采用 sp3杂化;已知石墨的二维结构平面内,每个碳原子与其它三个碳原子结合,形成六元环层,键角为 120°,由此判断石墨的碳原子采用 sp2杂化。 二、根据价层电子对互斥理论判断 教材的“拓展视野”中介绍了价层电子对互斥理论,根据该理论能够比较容易而准确地判断 ABm型共价分子或离子的空间构型和中心原子杂化轨道类型。中心原子的价电子对数与价电子对的几何分布、中心原子杂化轨道类型的对应关系如下表(价电子对数>4的,高中阶段不作要求)。 运用该理论的关键是能准确计算出中心原子的价电子对数,其计算方法是: 1、n=[中心原子(A)的价电子数+配位原子(B)提供的价电子数×m]÷2。 2、对于主族元素,中心原子(A)的价电子数=最外层电子数;配位原子中卤族原子、氢原子提供 1个价电子,氧族元素的原子按不提供电子计算;离子在计算价电子对数时,还应加上负离子的电荷数或减去正离子的电

杂化轨道理论(图解)

杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz 2 dx 2-y 2 dxy dxz dyz 二、共价键理论与分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)与1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。她们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总就是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k ?u`veilent]bond[b ?nd])。用黑点代表价电子(即最外层s,p 轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l ?un ]pair[pε?]electron[i`lektr ?n])。Lewis 结构式的书写规则又称八隅规则(即8电子结构)。 评价 贡献:Lewis 共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与 PCl 5 SF 6 BeCl 2 BF 3 NO,NO 2 … 中心原子周围价电子数 10 12 4 6 含奇数价电子的分子 … ③、不能解释某些分子的性质。含有未成对电子的分子通常就是顺磁性的(即它们在磁场中表现出磁性)例如O 2。 2、1927年德国的海特勒Heitler 与美籍德国人的伦敦London 两位化学家建立了现代价键理论,简称VB 理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F 、Hund)与美国的马利肯(R 、S 、Mulliken)两位化学家提出分子轨道理论,简称MO 理论。马利肯(R 、S 、Mulliken)由于建立与发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO 法与VB 法就是两种根本不同的物理方法;都就是电子运动状态的近似描述;在一定条

中心原子杂化轨道类型的判断方法

中心原子杂化轨道类型的判断方法 徐长明(湖北省十堰市房县第三中学442100) 摘要:杂化轨道理论能解释大多数分子的几何构型及价键结构。在使用该理论时,首先必须确定中心原子的杂化类型,在未知分子构型的情况下,判断中心原子杂化轨道类型有时比较 困难,成为教学难点。 关键词:杂化轨道理论;价层电子对互斥理论;等电子原理 高中化学选修模块《物质结构与性质》(人教版)中介绍了杂化轨道理论,这一重要理论能解释大多数分子几何构型及价键结构。在使用该理论时,首先必须确定中心原子的杂化形式,在未知分子构型的情况下,判断中心原子杂化轨道类型有时比较困难,成为教学难点。下面总结几种高中阶段判断中心原子杂化轨道类型的方法。 一、根据价层电子对互斥理论判断 教材中介绍了价层电子对互斥理论,根据该理论能够比较容易而准确地判断AB m型共价化合物分子或离子的空间构型和中心原子杂化轨道类型。中心原子的价电子对数与价电子对的几何分布、中心原子杂化 轨道类型的对应关系如下表(价电子对数>4 的,高中阶段不作要求)。 运用该理论的关键是能准确计算出中心原子的价 电子对数,其计算方法是: 1.价电子对数n =σ键的电子对和中心原子上的孤电子对,中心原子上的孤电子对数=1/2(a-xb) 2.σ键的电子对可由分子式确定。例如,H20中0有2对σ键电子对;NH3中N有3对σ键电子对 3.式中a为中心原子的价电子数对于主族元素,中心原子(A)的价电子数=最外层电子数;x为与中心原子结合的原子数;b为与中心原子结合的原子最多能接受的电子数,氢为1 ,其他原子等于“8-该原子的价电子数”。离子在计算价电子对数时,还应加上负离子的电荷数或减去正离子的电荷数(绝对值) 4.杂化轨道由形成σ键的电子对和孤电子对占据,因此分子或离子的空间构型为杂化轨道构型去掉孤电子对后剩余的形状。 例如:指出下列分子或离子的中心原子的杂化轨道类型,并预测它们的空间构型: ⑴BeCl2 ⑵SO3 ⑶NH4+ 解析:⑴是AB2型分子,BeCl2 的价电子对数 n=1/2(2-2×1)+2=2,Be 采用sp 杂化,无孤电子对,故分子呈直线型; ⑵是AB3型分子,SO3的价电子对数n=1/2(6-3×2)+3=3,S 采用sp2杂化,无孤电子对,故分子呈平面三角形 ⑶是AB4 型离子,NH4+的价电子对数n=1/2(5-1-4×1)+4=4,N 采用sp3杂化,无孤电子对,故分子呈正四面体 二、根据分子的空间构型判断

杂化轨道理论(图解)

杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子

(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis 结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外很多。 PCl 5SF6BeCl 2 BF3NO,NO2… 中心原子周围价电子数10 12 4 6 含奇数价电子 的分子 … ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F.Hund)和美国的马利肯(R.S.Mulliken)两位化学家提出分子轨道理论,简称MO 理论。马利肯(R.S.Mulliken)由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件下它们具有等价性。 O2 :2 O原子电子组态 1s2 2s2 2p4 →O2,8×2=16个电子,外层电子:12个电子,

杂化轨道计算教学文案

二种计算杂化轨道数的方法 方法一: 公式:杂化轨道数=[中心原子价电子数+ 配原子数-π键数-电荷数]/2 例1:SO2(6+2-2)/2=3 sp2杂化。 说明:S的价电子数6;配原子为2个氧原子,氧为二价,所以硫与氧间为双键,其一为π键,共二个π键。 例2:SO3(6+3-3)/2=3 sp2杂化。(解析同上,下同)。 例3:SO32-(6+3-3+2)/2=4 sp3杂化。(SO32-带二个单位负电荷)。 例4:SO42-(6+4-4+2)/2=4 sp3杂化。 例5:CN-(4+1-2+1)/2=2 sp1杂化。(氮元素为三价,所以碳氮间为叁键,其中有二个π键) 例6:NH4+(5+4-1)/2=4 sp3杂化。 例7:ClO3-(7+3-3+1)/2=4 sp3杂化。 例8:PO33-(5+3-3+3)/2=4 sp3杂化。 例9:PO43-(5+4-4+3)/2=4 sp3杂化。 例10:H-N=N-H (5+2-1)/2=3 sp2杂化。 练习:sp1杂化:BeCl2、CO2;sp2杂化:BF3、HCHO(中心原子为C:(4+3-1)/2=3; sp3杂化CH4、NH3、H2O。 方法二:因为杂化轨道只能用于形成σ键或用来容纳孤电子对,故有:公式:杂化轨道数=中心原子价层电子对数(成键电子对数+孤电子对数) 价层电子对数中心原 子杂化 类型 电子对 的空间 构型 成键电 子对数 孤电 子 对数 分子的 空间构 型 实例 2 sp 直线 2 0 直线BeCl2、CO2 3 sp2三角形3 0 三角形BF3、SO3 2 1 V形SnBr2、PbCl2 4 sp3四面体4 0 四面体CH4、CCl4 3 1 三角锥NH3、PCl3 2 2 V形H2O 精品文档

杂化轨道

1.总述 1931年,Linus Carl Pauling提出轨道杂化理论。实验事实基础是许多分子的键角不等于原子轨道间夹角。如氧原子与氢原子组成的水分子H-O-H的键角是104.5o,不等于氧的2py与2pz轨道间的夹角90o。类似的,NH3分子中H-N-H的键角也不等于90o,实际测得107.3o。实验测得甲烷分子CH4是四面体结构,H-C-H键角为109.5o。 一个原子中的几个原子轨道经过再分配而组成的互相等同的轨道。原子在化合成分子的过程中,根据原子的成键要求,在周围原子影响下,将原有的原子轨道进一步线性组合成新的原子轨道。这种在一个原子中不同原子轨道的线性组合,称为原子轨道的杂化。杂化后的原子轨道称为杂化轨道。杂化时,轨道的数目不变,轨道在空间的分布方向和分布情况发生改变。组合所得的杂化轨道一般均和其他原子形成较强的σ键或安排孤对电子,而不会以空的杂化轨道的形式存在。在某个原子的几个杂化轨道中,参与杂化的s、p、d等成分相等,称为等性杂化轨道;若不相等,称为不等性杂化轨道。 杂化轨道具有和s,p等原子轨道相同的性质,必须满足正交,归一性。 2. sp3杂化与碳氢、碳碳单键 碳原子的电子构型为1s22s22px12py12pz,其中1s轨道中的两个电子不参与成键。由能量较低的2s轨道与能量较高的3个2p轨道进行杂化,形成4个简并(即能量相同的)的sp3杂化轨道(sp3-hybrid orbital)。每个sp3杂化轨道含有1/4的s轨道成分,3/4的p轨道成分,其能量高于2s轨道,低于2p轨道。 sp3杂化轨道的形状如图所示,四个简并的sp3杂化轨道采取相互尽可能远离的方式在空间排布,从而减少电子间的相互排斥作用,即形成四面体结构,sp3杂化轨道间的夹角为109.5°。每个sp3杂化轨道上各排布一个自旋平行的电子。 甲烷分子中,碳原子以sp3杂化轨道与氢原子的1s轨道成键。所形成的键是沿轨道的轴向方向叠加的,形成的键轴向对称,称为σ键(σ bonds)。4个C—H键的键角等于碳的sp3杂化轨道的键角,即109.5°。整个甲烷分子的形状为四面体,甲烷分子的轨道成键图以及球棍模型、比例模型如下图所示。

高三化学复习 杂化轨道理论之轨道类型和轨道数(教师版)

高三化学复习第一轮 第9讲 杂化轨道理论 之判断杂化轨道类型和计算杂化轨道数 一、AB m 型杂化类型的判断 方法一: 公式: 电子对数n =1 2 (中心原子的价电子数+配位原子的成键电子数±电荷数) 根据n 值判断杂化类型一般有如下规律: 当n =2,sp 杂化;n =3,sp 2杂化;n =4,sp 3杂化; 当n =5, sp3d 杂化;n =6,sp3d2杂化;n =7,sp3d3杂化…… SO 2:n =12(6+0)=3 sp 2杂化 NO -3:n =12(5+1)=3 sp 2杂化 NH 3:n =12(5+3)=4 sp 3 杂化 注意:①当上述公式中电荷数为正值时取“-”,电荷数为负值时取“+”。 ②当配位原子为氧原子或硫原子时,成键电子数为零。 方法二: 公式:杂化轨道数=1/2(中心原子价电子数+ 配原子数-π键数±电荷数) 例1:SO 2 (6+2-2)/2=3 sp 2杂化(S 的价电子数6;配原子为2个氧原子,氧为二价,所以硫与氧间为双键,其一为π键,共二个π键) 例2:SO 3 (6+3-3)/2=3 sp 2 杂化(解析同上,下同) 例3:SO 32- (6+3-3+2)/2=4 sp 3杂化(SO 32-带二个单位负电荷) 例4:SO 42- (6+4-4+2)/2=4 sp 3杂化 例5:CN - (4+1-2+1)/2=2 sp 杂化(氮元素为三价,碳氮间为叁键,其中有二个π键) 例6:NH 4+ (5+4-1)/2=4 sp 3 杂化 例7:ClO 3- (7+3-3+1)/2=4 sp 3杂化 例8:PO 33- (5+3-3+3)/2=4 sp 3杂化 例9:PO 43- (5+4-4+3)/2=4 sp 3杂化 例10:H -N =N -H (5+2-1)/2=3 sp 2杂化。 注意:当上述公式中电荷数为正值时取“-”,电荷数为负值时取“+”。 练习: (1)sp 杂化:BeCl 2、CO 2; (2) sp 2杂化:BF 3 、HCHO(中心原子为C :(4+3-1)/2=3; (3)sp 3杂化:CH 4、NH 3、H 2O 。

高中杂化轨道理论(图解)

高中杂化轨道理论(图解) 一、原子轨道角度分布图 二、共价键理论和分子结构 价键法(VB法)价键理论一: 1、要点: ⑴、共价键的形成条件:①、先决条件:原子具有未成对电子; ②、配对电子参与成键的原子轨道要满足对称匹配、能量相近以及最大重叠的原则;③、两原子具有成单的自旋相反的电子配对, 服从保里不相容原理。 ⑵、共价键的本质:是由于原子相互接近时轨道重叠,原子间通 过共用自旋相反的电子使能量降低而成键。 ⑶、共价键的特征:①、饱和性,一个原子有几个未成对电子(包括激发后形成的未成对电子),便和几个自旋相反的电子配对成键;而未成对电子数是有限的,故形成化学键的数目是有限的。 ②、根据原子轨道最大重叠原理,原子轨道沿其角度分布最大值 方向重叠,即共价键具有一定的方向性。 ⑷、共价键的类型:单键、双键和叁键。 ①、σ键和π键。 ⅰ、σ键:沿键轴方向重叠,呈圆柱形对称,称为σ轨道,生成的键称为σ键σ是希腊字母,相当于英文的s,是对称Symmetry[`simitri]这个字的第一个字母)。 σ键形成的方式: ⅱ、π键:两个p轨道彼此平行地重叠起来,轨道的对称面是通

过键轴的平面,这个对称面就叫节面,这样的轨道称为

π轨道,生成的键称为π键(π相当于英文的p ,是平行 parallel[`p?r?lel]的第一个字母)。 π键的形成过程: , σ键和π键的比较 σ键 (共价键中都存在σ键) π键 (只存在不饱和共价键 中) 重叠方式 (成建 方向) 沿两电子云(原子轨道)的键轴方向以“头碰头”的方式遵循原子轨道最大程度重叠原理进行重叠 两互相平行的电子云(原子轨道)以“肩并肩”的方式遵循原子轨道最大程度重叠原理进行重叠 重叠 程度 重叠程度较大 重叠程度较小 电子云形状 共价键电子云(重叠部分)呈轴对称 共价键电子云(重叠部 分)呈镜像对称 牢固程度 强度较大,键能大,较牢固,不易断裂 强度较小,键能较小,不很牢固,易断裂 化学活 泼性 不活泼,比π键稳定 活泼,易发生化学反应 类型 s-s 、s-p 、、p-p 、s- p -p π键,、p -p 大π 健 型 项 目

杂化轨道理论

杂化轨道理论 在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫做杂化轨道。 1基本介绍 杂化轨道理论(hybrid orbital theory)是1931年由鲍林(Pauling L)等人在价键理论的基础上提出,它实质上仍属于现代价键理论,但是它在成键能力、分子的空间构型等方面丰富和发展了现代价键理论。 核外电子在一般状态下总是处于一种较为稳定的状态,即基态。而在某些外加作用下,电子也是可以吸收能量变为一个较活跃的状态,即激发态。在形成分子的过程中,由于原子间的相互影响,单个原子中,具有能量相近的两个能级中,具有能量较低的能级的一个或多个电子会激发而变为激发态,进入能量较高的能级中去,即所谓的跃迁现象,从而新形成了一个或多个能量较高的能级。此时,这一个或多个原来处于较低能量的能级的电子所具有的能量增加到与原来能量较高的能级中的电子相同。这样,这些电子的轨道便混杂在一起,这便是杂化,而这些电子的状态也就是所谓的杂化态。 用化学语言讲,杂化轨道理论从电子具有波动性、波可以叠加的观点出发,认为一个原子和其他原子形成分子时,中心电子所用的电子轨道不是原来纯粹的s轨道或p轨道,而是若干不同类型、能量相近的电子轨道经叠加混杂、重新分配轨道的能量和调整空间伸展方向,组成了同等数目的能量完全相同的新的电子轨道——杂化轨道,以满足化学结合的需要。这一过程称为电子轨道的杂化。 2基本要点 只有最外电子层中不同能级中的电子可以进行轨道杂化,且在第一层的两个电子不参与反应。 不同能级中的电子在进行轨道杂化时,电子会从能量低的层跃迁到能量高的层,并且杂化以后的各电子轨道能量相等又高于原来的能量较低的能级的能量而低于原来能量较高的能级的能量。当然的,有几个原子轨道参加杂化,杂化后就生成几个杂化轨道。 杂化轨道成键时,要满足原子轨道最大重叠原理。 杂化后的电子轨道与原来相比在角度分布上更加集中,从而使它在与其他原子的原子轨道成键时重叠的程度更大,形成的共价键更加牢固。 3理论说明 (1)s-p型杂化 只有s轨道和p轨道参与的杂化,主要有以下三种类型:sp1杂化,sp2杂化,sp3杂化。 sp杂化轨道角度分布及其空间伸展方向示意图 (2)s-p-d型杂化 ns轨道,np轨道,nd轨道一起参与杂化称为s-p-d型杂化,主要有以下几种类型: 此外还有以内层的(n-1)d轨道,ns轨道,np轨道一起参与的杂化方式,它主要存在于

中心原子杂化轨道类型的判断方法

高中化学选修模块《物质结构与性质》中介绍了杂化轨道理论,这一重要理论能解释大多数分子几何构型及价键结构。在使用该理论时,首先必须确定中心原子的杂化形式,在未知分子构型的情况下,判断中心原子杂化轨道类型有时比较困难,成为教学难点。下面总结几种高中阶段判断中心原子杂化轨道类型的方法。 一、根据分子的空间构型判断 根据杂化轨道理论,中心原子轨道采取一定的杂化方式后,其空间构型和键角如下: 杂化轨道类型杂化轨道空间构型键角 sp 直线形 180° sp2 平面三角形 120° sp3 正四面体 109.5° 由此,可以根据分子的空间构型或键角来判断中心原子轨道的杂化方式。 例如一些常见的简单分子的结构都是熟 悉的,C2H2、CO2为直线型分子,键角为180°,推断其C 原子的杂化轨道类型为sp;C2H4 、C6H6 为平面型分子,键角为120°,推断其C 原子的杂化轨道类型为sp2;CH4、CCl4为正四面体,键角109.5°,推断其C 原子的杂化轨道类型为sp3。 还可以扩展到以共价键形成的晶体,如:已知金刚石中的碳原子、晶体硅和石英中的硅原子,都是 以正四面体结构形成共价键的,所以也都是采用sp3 杂化;已知石墨的二维结构平面内,每个碳原 子与其它三个碳原子结合,形成六元环层,键角为120°,由此判断石墨的碳原子采用sp2 杂化。 二、根据价层电子对互斥理论判断 教材的“拓展视野”中介绍了价层电子对互斥理论,根据该理论能够比较容易而准确地判断ABm型共价分子或离子的空间构型和中心原子杂化轨道类型。中心原子的价电子对数与价电子对的几何分布、中心原子杂化轨道类型的对应关系如下表(价电子对数>4 的,高中阶段不作要求)。 中心原子价电子对数价电子对几何分布中心原子杂化类型 2 直线形 sp 3 平面三角形 sp2 4 正四面体 sp3 运用该理论的关键是能准确计算出中心原子的价电子对数,其计算方法是: 1.价电子对数n =[中心原子(A)的价电子数+配位原子(B)提供的价电子数×m]÷2。 2.对于主族元素,中心原子(A)的价电子数=最外层电子数;配位原子中卤族原子、氢原子提供1 个价电子,氧族元素的原子按不提供电子计算;离子在计算价电子对数时,还应加上负离子的电荷数或减去正离子的电荷数。 3.中心原子孤电子对数=n(价电子对数)-m(配位原子B 数)。 4.杂化轨道由形成σ键的电子对和孤电子对占据,因此分子或离子的空间构型为杂化轨道构型去掉孤电子对后剩余的形状。 例:指出下列分子或离子的中心原子的杂化轨道类型,并预测它们的空间构型:⑴BeCl2、H2O ⑵SO3、NH3

高考化学:杂化轨道理论(图解)

高考化学:杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子 (lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外很多。 PCl5SF6BeCl2BF3NO,NO2… 中心原子周围价电子数10 12 4 6 含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F.Hund)和美国的马利肯(R.S.Mulliken)两位化学家提出分子轨道理论,简称MO理论。马利肯(R.S.Mulliken)由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件

原子轨道杂化理论

原子轨道杂化理论 原子轨道杂化理论 高二论文联盟下学期选修的《物质结构与性质》一书中对杂化轨道理论的介绍比较简单,也比较模糊,学生理解起来比较困难,我根据所学的知识以及教学中的经验对这部分内容做以下总结: 1.原子轨道为什么需要杂化 (1)杂化的原因:原子在形成分子时能量相近的不同原子轨道相互影响,形成能量相近的新轨道,增强了成键的能力和分子的稳定性。 (2)杂化后轨道的变化:在成键过程中,由于原子间的相互影响,同一原子中几个能量相近的不同类型的原子轨道混合,重新分配能量和确定轨道空间伸展方向,组成数目相等的新的轨道,这个过程即为杂化。杂化的结果是轨道成分变了,轨道的能量变了,轨道的形状也变了。这些新轨道的能量是等同的,形状是完全相同的。因此杂化轨道比原来的轨道成键能力强,使生成的分子更稳定。 (3)杂化轨道成键能力强的原因:由于成键原子轨道杂化后,轨道角度分布图的形状发生了变化,杂化轨道在某些方向上的角度分布比未杂化的p轨道和s轨道的角度分布大得多,它的大头在成键时与原来的轨道相比,能够形成更大的重叠,因此杂化轨道比原有的原子轨道成键能力更强。毕业论文 2.原子轨道为什么可以杂化 并非所有的原子轨道都可以杂化,只有能量相近的外层原子轨道

才有可能参与杂化。孤立的原子本身不会杂化,只有当原子相互结合的过程中才会杂化,而且在双原子分子中不存在杂化现象。 3.杂化轨道的类型 按参加杂化的原子轨道种类,轨道的杂化有sp和spd两种主要类型。高中阶段我们只掌握sp型杂化。按参加杂化的s轨道和p轨道的数目sp型杂化分为sp1、sp2、sp3三种杂化。 4.杂化过程 以CH4分子的形成为例。 基态C原子的外层电子构型为2s22p1x2p1y。在与H原子结合时,2s上的一个电子被激发到2pz轨道上,C原子以激发态21S2p1x2p1y2p1z参与化学结合。当然,电子从2s激发到2p上需要能量,但由于可以多生成两个共价键,放出更多的能量而得到补偿。 在成键之前,激发态C原子的四个单电子分占的轨道2s、2px、2py、2pz会互相“混杂”,线性组合成毕业论文

相关文档
最新文档