排列组合二项式定理竞赛选拔题

合集下载

排列组合二项式定理测试题

排列组合二项式定理测试题

排列组合二项式定理测试题1.若展开式(ax-1)的x^3项系数为80,则实数a的值为()A。

-2 B。

1 C。

2 D。

32.若展开式(x-5/n)的第三项系数为6,则n的值为()A。

11 B。

4 C。

8 D。

123.若(1+mx)^6 = a + a1x + a2x^2 +。

+ a6x^6 且 a1 + a2 +。

+ a6 = 63,则实数m的值为()A。

1 B。

-1 C。

-3 D。

1或-34.在平面直角坐标系中,x轴正半轴上有5个点,y轴正半轴上有3个点,将x轴上这5个点和y轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有()A。

30个 B。

35个 C。

20个 D。

15个5.有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有()A。

240种 B。

192种 C。

96种 D。

48种6.将A、B、C、D四个球放入编号为1、2、3的三个盒子中,每个盒子中至少放一个球且A、B两个球不能放在同一盒子中,则不同的放法有()A。

15 B。

18 C。

30 D。

367.将5名实教师分配到高一年级的3个班实,每班至少1名,最多2名,则不同的分配方案有()A。

30种 B。

90种 C。

180种 D。

270种8.某单位邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有()A。

84种 B。

98种 C。

112种 D。

140种9.由数字1、2、3、4、5组成的所有没有重复数字的5位数中,大于且小于的数共有()A。

56个 B。

57个 C。

58个 D。

60个10.用1、2、3、4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间,这样的五位数的个数有()A。

48个 B。

12个 C。

36个 D。

28个11.某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共有()A。

排列组合+二项式定理(含答案)

排列组合+二项式定理(含答案)

高二数学:排列组合二项式定理一、选择题(本大题共16小题,共80.0分)1.如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案( )A. 180种B. 240种C. 360种D. 420种【答案】D【解析】解:若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,则2、4两个花池栽同一种颜色的花;或者3、5两个花池栽同一种颜色的花,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,故最多有A55+2A54+A53=420种栽种方案,故选D.若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,相加即得所求.本题主要考查排列、组合以及简单计数原理的应用,体现了分类讨论的数学思想,属于中档题.2.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有( )种(用数字作答).A. 720B. 480C. 144D. 360【答案】B【解析】解:甲、乙、丙等六位同学进行全排可得A66=720种,∵甲乙丙的顺序为甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,∴甲、乙均在丙的同侧,有4种,∴甲、乙均在丙的同侧占总数的46=23∴不同的排法种数共有23×720=480种.故选:B.甲、乙、丙等六位同学进行全排,再利用甲、乙均在丙的同侧占总数的46=23,即可得出结论.本题考查排列、组合及简单计数问题,考查学生的计算能力,比较基础.3.从1,3,5中选2个不同数字,从2,4,6,8中选3个不同数字排成一个五位数,则这些五位数中偶数的个数为( )A. 5040B. 1440C. 864D. 720【答案】C【解析】解;先任选一个偶数排在末尾,共有4种选法,其它2个奇数的选法共有3种,剩余2个偶数的选法共有3种,这4个数全排列,共有4×3×2×1=24种方法,共有则这些五位数中偶数的个数为4×3×3×24= 864,故选:C.先按要求排末尾,再排其它,根据分步计数原理可得.本题考查加法原理和乘法原理综合运用,考查学生分析解决问题的能力,属于中档题.4.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A. 48B. 72C. 90D. 96【答案】D【解析】解:根据题意,从5名学生中选出4名分别参加竞赛,分2种情况讨论:①、选出的4人没有甲,即选出其他4人即可,有A44=24种情况,②、选出的4人有甲,由于甲不能参加生物竞赛,则甲有3种选法,在剩余4人中任选3人,参加剩下的三科竞赛,有A43=24种选法,则此时共有3×24=72种选法,则有24+72=96种不同的参赛方案;故选:D.根据题意,分2种情况讨论选出参加竞赛的4人,①、选出的4人没有甲,②、选出的4人有甲,分别求出每一种情况下分选法数目,由分类计数原理计算可得答案.本题考查排列、组合的实际应用,注意优先考虑特殊元素.5.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为( )A. 60B. 72C. 84D. 96【答案】C【解析】解:根据题意,分3种情况讨论:①、若小明的父母的只有1人与小明相邻且父母不相邻时,先在其父母中选一人与小明相邻,有C21=2种情况,将小明与选出的家长看成一个整体,考虑其顺序有A22=2种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有A22×A32=12种安排方法,此时有2×2×12=48种不同坐法;②、若小明的父母的只有1人与小明相邻且父母相邻时,将父母及小明看成一个整体,小明在一端,有2种情况,考虑父母之间的顺序,有2种情况,则这个整体内部有2×2=4种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时有2×2×6=24种不同坐法;③、小明的父母都与小明相邻,即小明在中间,父母在两边,将3人看成一个整体,考虑父母的顺序,有A22=2种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时,共有2×6=12种不同坐法;则一共有48+24+12=84种不同坐法;故选:C.根据题意,分3种情况讨论:①、小明的父母的只有1人与小明相邻且父母不相邻,②、小明的父母的只有1人与小明相邻且父母相邻,③、小明的父母都与小明相邻,分别求出每一种情况下的排法数目,由分类计数原理计算可得答案.本题考查排列、组合的应用,关键是根据题意,进行不重不漏的分类讨论.6.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有( )A. 24种B. 60种C. 90种D. 120种【答案】B【解析】解:根据题意,使用倍分法,五人并排站成一排,有A55种情况,而其中B站在A的左边与B站在A的右边是等可能的,则其情况数目是相等的,×A55=60,则B站在A的右边的情况数目为12故选B.根据题意,首先计算五人并排站成一排的情况数目,进而分析可得,B 站在A 的左边与B 站在A 的右边是等可能的,使用倍分法,计算可得答案.本题考查排列、组合的应用,注意使用倍分法时,注意必须保证其各种情况是等可能的.7. C 74+C 75+C 86等于( ) A. C 95B. C 96C. C 87D. C 97【答案】B【解析】解:根据组合数公式C n+1m =C n m−1+C n m得,C 74+C 75+C 86=(C 74+C 75)+C 86 =C 85+C 86 =C 96. 故选:B .利用组合数公式C n+1m =C n m−1+C n m,进行化简即可.本题考查了组合数公式C n+1m =C n m−1+C n m的逆用问题,是基础题目.8. 9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的抽取方法是( )A. C 42⋅C 52B. C 42+C 43+C 44C. C 42+C 52D. C 42⋅C 52+C 43⋅C 51+C 44⋅C 50【答案】D【解析】解:一共有4件一等品,至少两件一等品分为2件,3件,4件,第一类,一等品2件,从4件任取2件,再从3件二等品或2件三等品共5件产品中任取2件,有C 42⋅C 52, 第二类,一等品3件,从4件任取3,再从3件二等品或2件三等品共5件产品中任取1,有C 43⋅C 51,第二类,一等品4件,从4件中全取,有C 44⋅C 50, 根据分类计数原理得,至少有两件一等品的抽取方法是C 42⋅C 52+C 43⋅C 51+C 44⋅C 50. 故选:D .利用分类计数原理,一共有4件一等品,至少两件一等品分为2件,3件,4件,然后再按其它要求抽取. 本题主要考查了分类计数原理,如何分类是关键,属于基础题.9. 4名同学争夺三项冠军,冠军获得者的可能种数是( )A. 43B. A 43C. C 43D. 4 【答案】A【解析】解:每一项冠军的情况都有4种,故四名学生争夺三项冠军,获得冠军的可能的种数是43, 故选:A .每个冠军的情况都有4种,共计3个冠军,故分3步完成,根据分步计数原理,运算求得结果. 本题主要考查分步计数原理的应用,属于基础题.10. 某班班会准备从含甲、乙的7人中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有( ) A. 720种 B. 520种 C. 600种 D. 360种 【答案】C【解析】解:分两类:第一类,甲、乙两人只有一人参加,则不同的发言顺序有C 21C 53A 44种;第二类:甲、乙同时参加,则不同的发言顺序有C 22C 52A 22A 32种.共有:C 21C 53A 44+C 22C 52A 22A 32=600(种). 故选:C .分两类:第一类,甲、乙两人只有一人参加,第二类:甲、乙同时参加,利用加法原理即可得出结论. 本题考查排列、组合的实际应用,正确分类是关键.11. 现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有 ( ) A. 144种 B. 72种 C. 64种 D. 84种 【答案】D【解析】解:由题意知本题是一个分步计数问题, 需要先给最上面金着色,有4种结果, 再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果 根据分步计数原理知共有4×3×(3+2×2)=84种结果, 故选D .需要先给最上面金着色,有4种结果,再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果,根据分步计数原理得到结果.本题考查计数原理的应用,解题的关键是理解“公共边的两块区域不能使用同一种颜色,”根据情况对C 处涂色进行分类,这是正确计数,不重不漏的保证.12. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A. 192种B. 216种C. 240种D. 288种 【答案】B【解析】解:最左端排甲,共有A 55=120种,最左端只排乙,最右端不能排甲,有C 41A 44=96种, 根据加法原理可得,共有120+96=216种. 故选:B .分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论. 本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.13. 有黑、白、红三种颜色的小球各5个,都分别标有数字1,2,3,4,5,现取出5个,要求这5个球数字不相同但三种颜色齐备,则不同的取法种数有( ) A. 120种 B. 150种 C. 240种 D. 260种 【答案】B【解析】解:根据题意,取出的5个球有三种颜色且数字不同, 分2步进行分析:①,先把取出的5个球分成3组,可以是3,1,1,也可以是1,2,2; 若分成3,1,1的三组,有C 53C 21C 11A 22=10种分组方法; 若分成1,2,2的三组,有C 51C 42C 22A 22=15种分组方法;则共有10+15=25种分组方法,②,让三组选择三种不同颜色,共有A 33=6种不同方法 则共有25×6=150种不同的取法; 故选:B .因为要求取出的5个球分别标有数字1,2,3,4,5且三种颜色齐备,所以肯定是数字1,2,3,4,5各取一个,分2步分析:先把5个球分成三组,再每组选择一种颜色,由分步计数原理计算可得答案. 本题考查分步计数原理的应用,注意题目中“5个球数字不相同但三种颜色齐备”的要求.14. 从4双不同鞋中任取4只,结果都不成双的取法有____种.( )A. 24B. 16C. 44D. 384 【答案】B【解析】解:取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,故总的取法有2×2×2×2=16种, 故选B .取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,利用乘法原理可得结论.本题考查排列、组合及简单计数问题,考查乘法原理的运用,比较基础.15.某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有( )种.A. 510B. 105C. 50D. A105【答案】A【解析】解:根据题意,公共汽车沿途5个车站,则每个乘客有5种下车的方式,则10位乘客共有510种下车的可能方式;故选:A.根据题意,分析可得每个乘客有5种下车的方式,由分步计数原理计算可得答案.本题考查排列、组合的实际应用,16.从0,1,2,3,4中选取三个不同的数字组成一个三位数,其中奇数有( )A. 18个B. 27个C. 36个D. 60个【答案】A【解析】解:先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,故有2×3×3=18个,故答案为:18.先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,根据分步计数原理可得.本题考查了分步计数原理,关键是分步,属于基础题.二、填空题(本大题共9小题,共45.0分)17.(1+2x)5的展开式中含x2项的系数是______ .(用数字作答)【答案】40【解析】解:由二项式定理的通项公式T r+1=C n r a n−r b r可设含x2项的项是T r+1=C5r15−r(2x)r=2r C5r x r,可知r=2,所以系数为22C52=40所以答案应填40本题是求系数问题,故可以利用通项公式T r+1=C n r a n−r b r来解决,在通项中令x的指数幂为2可求出含x2是第几项,由此算出系数为40本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.18.(x−1x )(2x+1x)5的展开式中,常数项为______.【答案】−40【解析】解:(x−1x )(2x+1x)5展开式中常数项是(2x+1x )5展开式中的1x项与x的乘积,加上含x项与−1x的乘积;由(2x+1x)5展开式的通项公式为T r+1=C5r⋅(2x)5−r⋅(1x)r=25−r⋅C5r⋅x5−2r,令5−2r=−1,解得r=3,∴T4=22⋅C53⋅1x =40x;令5−2r=1,解得r=2,∴T3=23⋅C52⋅x=80x;所求展开式的常数项为40 x ⋅x+80x⋅(−1x)=40−80=−40.故答案为:−40.根据(x−1x )(2x+1x)5展开式中常数项是(2x+1x)5展开式中的1x项与x的乘积,加上x项与−1x的乘积;利用(2x+1x)5展开式的通项公式求出对应的项即可.本题考查了二项式定理的应用问题,是基础题.19.小明、小刚、小红等5个人排成一排照相合影,若小明与小刚相邻,且小明与小红不相邻,则不同的排法有______ 种.【答案】36【解析】解:根据题意,分2种情况讨论:①、小刚与小红不相邻,将除小明、小刚、小红之外的2人全排列,有A22种安排方法,排好后有3个空位,将小明与小刚看成一个整体,考虑其顺序,有A22种情况,在3个空位中,任选2个,安排这个整体与小红,有A32种安排方法,有A22×A32×A22=24种安排方法;②、小刚与小红相邻,则三人中小刚在中间,小明、小红在两边,有A22种安排方法,将三人看成一个整体,将整个整体与其余2人进行全排列,有A33种安排方法,此时有A33×A22=12种排法,则共有24+12=36种安排方法;故答案为:36.根据题意,分2种情况讨论:①、小刚与小红不相邻,②、小刚与小红相邻,由排列、组合公式分别求出每一种情况的排法数目,由分类加法原理计算可得答案.本题考查排列、组合的运用,注意特殊元素优先考虑,不同的问题利用不同的方法解决如相邻问题用捆绑,不相邻问题用插空等方法.20.(1−3x)7的展开式中x2的系数为______ .【答案】7【解析】解:由于(1−3x)7的展开式的通项公式为T r+1=C7r⋅(−1)r⋅x r3,令r3=2,求得r=6,可得展开式中x2的系数为C76=7,故答案为:7.在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题21.已知C203x=C20x+4,则x=______ .【答案】2或4【解析】解:∵C203x=C20x+4,则3x=x+4,或3x+x+4=20,解得x=2或4.故答案为:2或4.由C203x=C20x+4,可得3x=x+4,或3x+x+4=20,解出即可得出.本题考查了组合数的计算公式、方程的解法,考查了推理能力与计算能力,属于基础题.22.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有______ 种.【答案】70【解析】解:甲型电视机2台和乙型电视机1台,取法有C42C51=30种;甲型电视机1台和乙型电视机2台,取法有C41C52=40种;共有30+40=70种.故答案为:70任意取出三台,其中至少要有甲型和乙型电视机各1台,有两种方法,一是甲型电视机2台和乙型电视机1台;二是甲型电视机1台和乙型电视机2台,分别求出取电视机的方法,即可求出所有的方法数.本题考查组合及组合数公式,考查分类讨论思想,是基础题.23.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是______ .【答案】49【解析】解:一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,向上的数之积可能为ξ=0,1,2,4,P(ξ=0)=C31C31+C31C31+C31C31C61C61=34,P(ξ=1)=C21C21C61C61=19,P(ξ=2)=C21C11+C11C21C61C61=19,P(ξ=4)=C11C11C61C61=136,∴Eξ=19+29+436=49.故答案为:49.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个骰子掷两次得到结果有三种情况,使得它们两两相乘,得到变量可能的取值,结合事件做出概率和期望.数字问题是概率中经常出现的题目,一般可以列举出要求的事件,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的可以借助于排列数和组合数来表示.24.把5本不同的书全部分给4个学生,每个学生至少一本,不同的分发种数为______.(用数字作答)【答案】240【解析】解:由题意知先把5本书中的两本捆起来看做一个元素共有C52,这一个元素和其他的三个元素在四个位置全排列共有A44,∴分法种数为C52⋅A44=240.故答案为:240.由题意知先把5本书中的两本捆起来看做一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘得到结果.排列组合问题在几何中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件.25.从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是______(用数字作答)【答案】96【解析】解:根据题意,在4名男同学和6名女同学共10名学生中任取3人,有C103=120种,其中只有男生的选法有C43=4种,只有女生的选法有C63=20种则选出的3人中男女同学都有的不同选法有120−4−20=96种;故答案为:96.根据题意,用间接法分析:首先计算在10名学生中任取3人的选法数目,再分析其中只有男生和只有女生的选法数目,分析即可得答案.本题考查排列、组合的应用,注意利用间接法分析,可以避免分类讨论.三、解答题(本大题共5小题,共60.0分)26.已知(2x√x)n展开式前两项的二项式系数的和为10.(1)求n的值.(2)求出这个展开式中的常数项.【答案】解:(1)∵(2x√x)n展开式前两项的二项式系数的和为10∴C n0+C n1=10,解得n=9;(2)∵(2x√x )n展开式的通项T r+1=C n r(2x)n−r(√x)r=2n−r C n r x n−3r2----8分∴令n−3r2=0且n=9得r=6,∴(2x+√x)n展开式中的常数项为第7项,即T7=29−6⋅C96=672.【解析】(1)根据二项式展开式得到前两项的系数,根据系数和解的n的值,(2)利用展开式的通项,求常数项,只要使x的次数为0即可.本题主要考查了二项式定理,利用好通项,属于基础题.27.已知n为正整数,在二项式(12+2x)n的展开式中,若前三项的二项式系数的和等于79.(1)求n的值;(2)判断展开式中第几项的系数最大?【答案】解:(1)根据题意,C n0+C n1+C n2=79,即1+n+n(n−1)2=79,整理得n2+n−156=0,解得n=12或n=−13(不合题意,舍去)所以n=12;…(5分)(2)设二项式(12+2x)12=(12)12⋅(1+4x)12的展开式中第k+1项的系数最大,则有{C12k⋅4k≥C12k−1⋅4k−1 C12k⋅4k≥C12k+1⋅4k+1,解得9.4≤k≤10.4,所以k=10,所以展开式中第11项的系数最大.…(10分)【解析】(1)根据题意列出方程C n0+C n1+C n2=79,解方程即可;(2)设该二项式的展开式中第k+1项的系数最大,由此列出不等式组,解不等式组即可求出k的值.本题考查了二项式定理的应用问题,也考查了转化思想与不等式组的解法问题,是综合性题目.28.已知二项式(1+√2x)n=a0+a1x+a2x2+⋯+a n x n(x∈R,n∈N)(1)若展开式中第五项的二项式系数是第三项系数的3倍,求n的值;(2)若n为正偶数时,求证:a0+a2+a4+a6+⋯+a n为奇数.(3)证明:C n1+2C n2⋅2+3C n3⋅22+⋯+nC n n⋅2n−1=n⋅3n−1(n∈N+)【答案】解:(1)由题意可得C n 4=3⋅C n 2(√2)2,∴n =11.(2)证明:当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C n n , 除第一项为奇数外,其余的各项都是偶数,故1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn 为奇数, 即a 0+a 2+a 4+a 6+⋯+a n 为奇数.(3)∵kC n k =n ⋅C n−1k−1, ∴C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1) =n ⋅(1+2)n−1=n ⋅3n−1.【解析】(1)直接利用条件可得C n 4=3⋅C n 2(√2)2,由此求得n 的值.(2)当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn ,除第一项为奇数外,其余的各项都是偶数,从而证得结论.(3)由kC n k =n ⋅C n−1k−1,可得C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1),再利用二项式定理证得所给的等式成立.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.29. 从5名男生和4名女生中选出4人去参加座谈会,问:(Ⅰ)如果4人中男生和女生各选2人,有多少种选法?(Ⅱ)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法? (Ⅲ)如果4人中必须既有男生又有女生,有多少种选法?【答案】解:(Ⅰ)根据题意,从5名男生中选出2人,有C 52=10种选法,从4名女生中选出2人,有C 42=6种选法,则4人中男生和女生各选2人的选法有10×6=60种;(Ⅱ)先在9人中任选4人,有C 94=126种选法,其中甲乙都没有入选,即从其他7人中任选4人的选法有C 74=35种, 则甲与女生中的乙至少要有1人在内的选法有126−35=91种;(Ⅲ)先在9人中任选4人,有C 94=126种选法,其中只有男生的选法有C 51=5种,只有女生的选法有C 41=1种, 则4人中必须既有男生又有女生的选法有126−5−1=120种.【解析】(Ⅰ)根据题意,分别计算“从5名男生中选出2人”和“从4名女生中选出2人”的选法数目,由分步计数原理计算可得答案;(Ⅱ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“甲乙都没有入选”的选法数目,即可得答案;(Ⅲ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“只有男生”和“只有女生”的选法数目,即可得答案.本题考查排列、组合的应用,涉及分步、分类计数原理的应用,(Ⅱ)(Ⅲ)中可以选用间接法分析.30. 某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的排节目单的方法种数:(1)一个唱歌节目开头,另一个压台; (2)两个唱歌节目不相邻;(3)两个唱歌节目相邻且3个舞蹈节目不相邻.【答案】解:(1)先排歌曲节目有A 22种排法,再排其他节目有A 66种排法,所以共有A 22A 66=1440种排法.(2)先排3个舞蹈节目,3个曲艺节目,有A 66种排法,再从其中7个空(包括两端)中选2个排歌曲节目,有A 72种插入方法,所以共有A 66A 72=30240种排法.(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,共有A 44A 53A 22=2880种. 【解析】(1)先排歌曲节目,再排其他节目,利用乘法原理,即可得出结论; (2)先排3个舞蹈,3个曲艺节目,再利用插空法排唱歌,即可得到结论;(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,即可得到结论.本题考查排列组合知识,考查学生利用数学知识解决实际问题的能力,属于中档题.。

排列组合二项式定理测试题doc.

排列组合二项式定理测试题doc.

排列、组合、二项式定理测试题班别_________ 姓名___________ 学号___________一、选择题(每小题5分,共60分)1、从某班学生中,选四个组长的不同选法有m 种,选出正、副班长各一名的选法有n 种, 若m:n=13:2,则该班学生人数为( )A 、10B 、15C 、20D 、222、由0,1、2,…,9这十个数组成的无重复数字的四位偶数共有( ) A 、2240个 B 、2293个 C 、2296个 D 、4586个3、角A 的一边上有4个点,另一边上有5个点,连同A 点在内一共有10个点,它 们可连成的三角形的个数是( )个A 、310C -3534C C - B 、16252615C C C C ⋅+⋅ C 、25141524C C C C ⋅+⋅D 、15141115242514C C C C C C C ⋅⋅+⋅+⋅4、把四个人分配到三个办公室打扫卫生,每个办公室至少分配一人,则不同的分配有( ) A 、36种 B 、48种 C 、24种 D 、72种5、从1,2,3,4,7,9中任取两个作分子、分母构成一个真分数,则可以构成的不同 的真分数的个数是( )A 、32B 、27C 、25D 、206、)(!055053636C C C P +⋅的值是( )A 、0B 、32C 、2D 、3 7、(1-x )2n-1展开式,二项式系数最大项是( )A 、第n-1项B 、第n 项C 、第n-1项与第n 项D 、第n 项与第n+1项 8、(xx 13-)8的展开式中,x 的一次项系数是( )A 、28B 、-28C 、56D 、-569、5310被8除的余数是( )A 、1B 、2C 、3D 、710、在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法是 A 、4140种 B 、1081种 C 、4186种 D 、1035种 11、书架上有不同的数学书与不同的外文书共7本,现取2本数学书, 1本外文书借 给3位同学,每人一本,共有72种不同的借法,则数学书与外文书的本数分别为( ) A .4,3 B .3,4 C .5,2D .2,512、4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在 一起,则不同的排法种数有 ( )A .2880B .3080C .3200D .3600一、选择题:(60)二、填空题 (每小题5分,共20分)13、已知324735---=x x x P C ,则x=__________________14、(x-1)(x+2)(x-5)(x+7)(x-10)中x 4的系数为_______________15、6人站成一排,如果甲不站两端,且乙与丙必须相邻的排法有_____________(用数字回答) 16、某游人上山,从前山上山的道路有3条,从后山上山的道路有2条,那么游人从上山到下 山不同的走法共有_________________种(用数字回答) 三、解答题17、有4名男生,5名女生,全体排成一行,下列情形各有多少种不同的排法? (1) 甲只在中间或两头位置上; (2) 甲、乙两人必须排在两头; (3) 甲不在排头,乙不在排尾;(4) 甲总排在乙的左边,乙总排在丙的左边(不一定相邻); (5) 男生陷不能相邻; (6) 女生必须相邻。

排列组合和二项式定理测试卷及答案(4套)(已上传)

排列组合和二项式定理测试卷及答案(4套)(已上传)

排列组合与二项式定理(1)【基本知识】1.甲班有四个小组,每组10人,乙班有3个小组,每组15人,现要从甲、乙两班中选1人担任校团委部,不同的选法种数为 852.6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 1444.用二项式定理计算59.98,精确到1的近似值为( 99004 )5.若2)nx 的项是第8项,则展开式中含1x的项是第 9项6.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 34种7.已知8()a x x-展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 1或288.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 38A 种9.设34550500150(1)(1)(1)(1)x x x x a a x a x ++++++++=+++L L ,则3a 的值是 451C10.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有____24______.11.102(2)(1)x x +-的展开式中10x 的系数为____179______.(用数字作答)若1531-++++n n n n n C C C C ΛΛ=32,则n = 612.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第____10_____个数。

13、体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有___10___种。

三、解答题15、已知n 展开式中偶数项的二项式系数之和为256,求x 的 系数.【解】由二项式系数的性质:二项展开式中偶数项的二项式系数之和为2n -1,得n =9,由通项92923199C (C (2)r rrrrr r r T x---+==-g g g ,令92123r r --=,得r =3,所以x 的二项式为39C =84, 而x 的系数为339C (2)84(8)672-=⨯-=-g.16、有5名男生,4名女生排成一排:(1)从中选出3人排成一排,有多少种排法?(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法? (3)要求女生必须站在一起,则有多少种不同的排法? (4)若4名女生互不相邻,则有多少种不同的排法?【解】(1)39504A = (2)287280 (3)17280 (4)211217.从7个不同的红球,3 个不同的白球中取出4个球,问:(1)有多少种不同的取法?(2)其中恰有一个白球的取法有多少种? (3)其中至少有现两个白球的取法有多少种? 【解】(1)210 (2)105 (3)7018、 已知n展开式中偶数项二项式系数和比()2na b +展开式中奇数项二项式系数和小120,求:(1)n展开式中第三项的系数;(2)()2na b +展开式的中间项。

高考数学排列组合与二项式定理选择题

高考数学排列组合与二项式定理选择题

高考数学排列组合与二项式定理选择题1. 某班级有40名学生,其中有15名女生,25名男生,现随机选取4名学生参加比赛,求选取的4名学生中恰好有2名女生的概率。

2. 一个密码锁有5个轮盘,每个轮盘上有数字1到6,需要按顺序转动轮盘才能打开锁。

求解开锁的总方法数。

3. 一个图书馆有30本书,其中15本小说,15本非小说。

随机选取5本书,求选取的5本书中恰好有3本小说的概率。

4. 一个班级有20名学生,其中有10名男生,10名女生。

现随机选取3名学生参加竞赛,求选取的3名学生中恰好有1名男生的概率。

5. 一个密码锁有4个轮盘,每个轮盘上有数字1到4,需要按顺序转动轮盘才能打开锁。

求解开锁的总方法数。

6. 一个图书馆有20本书,其中10本小说,10本非小说。

随机选取5本书,求选取的5本书中恰好有3本小说的概率。

7. 一个班级有30名学生,其中有15名男生,15名女生。

现随机选取4名学生参加比赛,求选取的4名学生中恰好有2名女生的概率。

8. 一个密码锁有5个轮盘,每个轮盘上有数字1到5,需要按顺序转动轮盘才能打开锁。

求解开锁的总方法数。

9. 一个图书馆有15本书,其中8本小说,7本非小说。

随机选取5本书,求选取的5本书中恰好有3本小说的概率。

10. 一个班级有40名学生,其中有20名男生,20名女生。

现随机选取5名学生参加比赛,求选取的5名学生中恰好有3名男生的概率。

11. 一个密码锁有4个轮盘,每个轮盘上有数字1到4,需要按顺序转动轮盘才能打开锁。

求解开锁的总方法数。

12. 一个图书馆有30本书,其中15本小说,15本非小说。

随机选取5本书,求选取的5本书中恰好有3本小说的概率。

13. 一个班级有20名学生,其中有10名男生,10名女生。

现随机选取3名学生参加竞赛,求选取的3名学生中恰好有1名男生的概率。

14. 一个密码锁有5个轮盘,每个轮盘上有数字1到5,需要按顺序转动轮盘才能打开锁。

求解开锁的总方法数。

排列组合二项式定理定积分--专题卷---(全国通用)

排列组合二项式定理定积分--专题卷---(全国通用)

排列组合、二项式定理一、排列组合1、某校选定甲、乙、丙、丁、戊共5名教师到3个边远地区支教,每地至少1人,其中甲和乙一定不去同一地区,甲和丙必须去同一地区,则不同的选派方案共有( )A .27种 B. 30种 C. 33种 D.36种2、将4名大学生分配到A,B,C 三个不同的学校实习,每个学校至少分配一人.若甲要求不到A 学校,则不同的分配方案共有( )A.36种B.30种C.24种D.20种3、某次联欢会要安排3个歌舞类节目,2个小品类节目和一个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B. 120C. 144D. 1684、从2名语文老师、2名数学老师、4名英语老师中选派5人组成一个支教小组,则语文老师、数学老师、英语老师都至少有一人的选派方法种树为 .(用数字作答)5、将编号为1,2,3,4的四个小球放入3个不同的盒子中,每个盒子里至少放1个,则恰有1个盒子有2个连号小球的所有不同放法有___________种.(用数字作答)二、二项式定理1、24(1)(1)x x x ++-展开式中2x 的系数为______ 2、若26()b ax x +的展开式中3x 项系数为20,则22a b +的最小值为( )A. 4B. 3C. 2D. 1 3、二项式61x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为 4、设二项式()60a x a x ⎛⎫-≠ ⎪⎝⎭学科网的展开式中2x 的系数为A ,常数项为B ,若B=44,则a = 5、在二项式6213x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于________(用数字作答); 6、()()52132x x --的展开式中,含x 次数最高的项的系数是_________(用数字作答).7、已知的展开5(12)x -式中所有项的系数和为m ,则21m x dx =⎰_________.8、已知0sin a xdx π=⎰,则二项式51a x ⎛⎫- ⎪⎝⎭的展开式中3x -的系数为9、二项式66(ax+的展开式中5x 20a x x d =⎰ .三、定积分1、已知函数()f x 的部分图像如图所示,向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为39,由此可估计1()0f x dx 的值约为( )A. 61100B. 39100B. C.10100 D.1171002、如图所示,在边长为1的正方形OABC 中任取一点M ,则点M 恰好取自阴影部分的概率为__________.参考答案:1、B2、C3、B4、445、18参考答案:1、32、C3、204、-35、12156、-647、ln28、-809、1 3【解析】61xx⎛⎫+⎪⎝⎭中的通项为61rr n rC xx-⎛⎫⎪⎝⎭,若为常数项,则3r=,366120rr n rC x Cx-⎛⎫==⎪⎝⎭.参考答案:1、D2、1 3。

高中数学竞赛专题练习——排列组合

高中数学竞赛专题练习——排列组合

高中数学竞赛专题讲座之 排列组合 二项式定理和概率一. 排列组合二项式定理 1 (2005年浙江)设()n n n x a x a a x x 221021+++=++ ,求n a a a 242+++ 的值( ) (A )n 3 (B )23-n (C )213-n (D )213+n 【解】: 令0=x 得 10=a ;(1) 令1-=x 得 123210=++-+-n a a a a a ;(2)令1=x 得 n n a a a a a 323210=+++++ ; (3)(2)+(3)得 13)(22420+=++++n n a a a a ,故 2132420+=++++n n a a a a , 再由(1)得 213242-=+++n n a a a 。

∴选 【 C 】 2、(2004 全国)设三位数n abc =,若以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有 ( )A. 45个B. 81个C. 165个D. 216个解:a ,b ,c 要能构成三角形的边长,显然均不为0。

即,,{1,2,...,9}a b c ∈(1)若构成等边三角形,设这样的三位数的个数为1n ,由于三位数中三个数码都相同,所以,1199n C ==。

(2)若构成等腰(非等边)三角形,设这样的三位数的个数为2n ,由于三位数中只有2个不同数码。

设为a 、b ,注意到三角形腰与底可以置换,所以可取的数码组(a ,b )共有292C 。

共20种情况。

同时,每个数码组(a ,b )中的二个数码填上三个数位,有23C 种情况。

故2222399(220)6(10)156n C C C =-=-=。

综上,12165n n n =+=。

3.(2005四川)设}10,,2,1{ =A ,若“方程02=--c bx x 满足A c b ∈,,且方程至少有一根A a ∈”,就称该方程为“漂亮方程”。

排列组合与二项式定理综合专项训练(有答案)

排列组合与二项式定理综合专项训练(有答案)
A.15; B.18;C.30; D.36;
9、有6本不同的书,全部借给4人,每人至少1本,有多少种不同的借法( )
A.120种B.150种C.180种D.210种
10、将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有
A.30种B.90种C.180种D.270种
11、某单位要邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有( )
53、若 的展开式中的第5项等于 ,则 的值为( ).
A.1 B. C. D.
54、代数式 的展开式中,含 项的系数是
A.-30B.30C.70D.90
55、将4个相同的白球和5个相同的黑球全部放入3个不同的盒子中,每个盒子既要有白球,又要有黑球,且每个盒子中都不能同时只放入2个白球和2个黑球,则所有不同的放法种数为
65、用4种不同的颜色为正方体的六个面着色,要求相邻两个面颜色不相同,则不同的着色方法有()种。
A.24B.48C.72D.96
66、若 的展开式中 的系数是80,则实数a的值为
A.-2B.2 C. D.2
38、若 的展开式中 的系数是()
A. B. C. D.
39、五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有
A. 种B. 种C. 种D. 种
40、有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是
(A)36种(B)108种(C)216种(D)432种
19、在 展开式中,含 的负整数指数幂的项共有( )
A.8项B.6项C.4项D.2项

排列组合二项式定理竞赛选拔题

排列组合二项式定理竞赛选拔题

排列组合二项式定理竞赛选拔题班级 姓名选择填空每题3分,简答题每题7分.1.五男两女站成一排,要求女生不能站在两端,且又要相邻,则共有 种排法.2.6人排成一排,要求甲乙两人之间必有2人,则共有 种排法.3.8张椅子排成一排,有4人就坐,每人一个座位,其中恰有3个连续空位,则共有 种排法.4.8人站成一列纵队,要求甲乙丙三人不在排头且互相隔开,则共有 种排法.5.六人并排拍照,要求甲不坐最左边,乙不坐最右边,则共有 种排法.6.求满足方程10x y z ++=且,,*x y z N ∈的解的个数 .7.从1,2,3,…,14中,按数从小到大的顺序取出123,,a a a ,使同时满足21a a -3=,323a a -=,则符合要求的不同取法有 种.8.求四个杯子,四个杯盖均不对号入座的方法种数 .9.有五件不同奖品发给4位先进工作者,每人至少一件,有 种不同的发放方法.10.一次小型演出活动,预备了两个独唱、两个乐器演奏、一个舞蹈、一个相声共六个节目, 要编排一个节目单,规定同类节目不能连排,不同的排法有 种.11.从1,2,3,4,7,9六个数字中任取两个作为一个对数的底数和真数,可得 个不同的数值.12.若(1+x)+(1+x)2+(1+x)3+…+(1+x)n =a 0+a 1(x-1)+a 2(x-1)2+…+a n (x-1)n ,则a 0+a 1+a 2+…+a n等于 .13.用0,1,2,3,4五个数字组成无重复数字的五位数,并将他们排成一个递增数列, 则32140是那个数列的第 项.14.运算()43.02得 .(使误差小于001.0)15.求()62321x x -+展开式中的2x 项的系数 .16.一直线和圆相离,这条直线上有6个点,圆周上有4个点,通过任意两点作直线,最少可作直线的条数是 ( )A .37B .19C .13D .717.某团进行换届选举,从甲、乙、丙、丁四人中选出三人分别担任书记、副书记和组织委员,规定上届任职的甲、乙、丙三人不能连任原职,则不同的任职结果有 ( )A .5种B .11种C .14种D .23种18.某城新建的一条道路上有12只路灯,为了节约用电而又不阻碍正常的照明,能够熄灭其中三只路灯,但两端的灯不能熄灭,也不能熄灭相邻的两只灯,那么熄灯方法共有 ( )A .38C 种B .38A 种C .39C 种 D .39A 种 19.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有( ) A .240 B .180 C .120 D .6020.已知直线21//l l ,在1l 上取3个点,在2l 上取4个点,每两个点连成直线,那么这些直线在1l 和2l 之间的交点(不包括21,l l 上的点)最多有 ( )A .18个B .20个C .24个D .36个21.已知)(10N n n ∈≤,若n x x )1(23-的展开式中含有常数项,则如此的n 有 ( )A .3个B .2C .1D .022.把正方形的四个顶点、四边中点以及中心都用线段连接起来,则以这9个点中的3点为顶点的三角形的个数是 ( )A .54B .76C .81D .8423.有6张卡片分别有1,2,3,4,5,6的6个数字,现从中任取出4张组成四位数,其中数字1,2必取出且相邻,假如写有6的卡片也能够当9用,则如此的四位自然数个数为( )A .54B .108C .144D .28824.13个学生中,有10人会打排球,6人会打篮球,没有既可不能打排球又可不能打篮球的,现选出6个人,其中3人去打排球,3人去打篮球,有多少种不同选法?25.平面上有11个相异的点,过其中任意两点相异的直线有48条.(1)这11点中,含3个或3个以上的点的直线有几条?(2)这11点构成几个三角形?26.已知nx x ⎪⎭⎫ ⎝⎛+22展开式中第5项的系数与第3项的系数之比为56:3,求展开式中不含x 的项.27.()5021x+展开式中第几项其二项式系数最大?第几项其展开式系数最大?28.求证:()11,o k k k o k a b a b a b a b C C C C C C C k a k b -+⋅+⋅++⋅=≤≤.。

排列组合二项式定理综合测试(含详细解答)

排列组合二项式定理综合测试(含详细解答)

排列、组合和二项式定理单元综合测试一、选择题(每小题5分,共60分)1.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )A .18B .24C .30D .362.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为 ( )A .300B .216C .180D .1623.五个人排成一排,甲、乙不相邻,且甲、丙也不相邻的不同排法的种数为 ( )A .60B .48C .36D .244.某小组共有8名同学,其中男生6人,女生2人,现从中按性别分层随机抽取4人参加一项公益活动,则不同的抽取方法有 ( )A .40种B .70种C .80种D .240种5.若能被整除,则的值可能为(122n nn n n C x C x C x +++ 7,x n )A .B .4,3x n ==4,4x n ==C . D .5,4x n ==6,5x n ==6.圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多有( )A .AB .A ·A 412212212C .C ·CD .C 2122124127.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 ( )A .288个B .240个C .144个D .126个8.有4个标号为1,2,3,4的红球和4个标号为1,2,3,4的白球,从这8个球中任取4个球排成一排.若取出的4个球的数字之和为10,则不同的排法种数是( )A .384B .396C .432D .4809.在一条南北方向的步行街同侧有8块广告牌,广告牌的底色可选用红、蓝两种颜色,若只要求相邻两块广告牌的底色不都为红色,则不同的配色方案共有 ( )A .55种B .56种C .46种D .45种10.有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是 ( )A .18B .26C .29D .5811.若自然数n 使得作竖式加法n +(n +1)+(n +2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.那么,小于1000的“可连数”的个数为 ( )A .27B .36C .39D .4812.为支持地震灾区的灾后重建工作,四川某公司决定分四天每天各运送一批物资到A 、B 、C 、D 、E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B 、C 两地相邻,安排在同一天上、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同运送顺序),且运往这两地的物资算作一批;D 、E 两地可随意安排在其余两天送达.则安排这四天送达五个受灾地点的不同运送顺序的种数为 ( )A .72B .18C .36D .24二、填空题(每小题4分,共16分)13.沿海某市区对口支援贫困山区教育,需从本区3所重点中学抽调5名教师分别到山区5所学校任教,每校1人;每所重点中学至少抽调1人,则共有__________种不同的支教方案.14.一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为__________.15.(4x 2-4x +1)5的展开式中,x 2的系数为__________.(用数字作答)16.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为__.三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.(12分)(1)求值:C +C ;5-n n 9-n n +1(2)解不等式:-<.18.(12分)有5张卡片的正反面分别写有0与1、2与3、4与5、6与7、8与9,将其中任三张并排组成三位数,可组成多少个数字不重复的三位数?19.(12分)若(1+2x )100=a 0+a 1(x -1)+a 2·(x -1)2+…+a 100(x -1)100,求a 1+a 3+a 5+…+a 99.20.(12分)已知(-)n 的展开式的各项系数之和等于(4-)5的展开式中的3a 3b 常数项,求:(1)(-)n 展开式的二项式系数和;3a (2)(-)n 的展开式中a -1项的二项式系数.3a 21.(12分)(1)求证:kC =nC ;k nk -1n (2)等比数列{a n }中,a n >0,化简:A =lg a 1-C lg a 2+C lg a 3-…+(-1)n C lg a n +1.1n 2n n详细解答:1.答案解析:用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序C 24C 有 种,而甲乙被分在同一个班的有种,所以种数是.33A 33A 23343330C A A -=2.答案 解析:分类讨论思想:第一类:从1,2,3,4,5中任取两个奇数和两个偶数,C 组成没有重复数字的四位数的个数为;第二类:取0,此时2和4只能取243472C A =一个,0还有可能排在首位,组成没有重复数字的四位数的个数为.共有180个数.21433243[]108C C A A -=3.解析:五个人排成一排,其中甲、乙不相邻且甲、丙也不相邻的排法可分为两类:一类是甲、乙、丙互不相邻,此类方法有A ·A =12种(先把除甲、乙、丙外的两个人排好,有A 种232方法,再把甲、乙、丙插入其中,有A 种方法,因此此类方法有A ·A =12种);另一类是乙、323丙相邻但不与甲相邻,此类方法有A ·A ·A =24种方法(先把除甲、乙、丙外的两人排好,2322有A 种方法,再从这两人所形成的三个空位中任选2个,作为甲和乙、丙的位置,此类方法2有A ·A ·A =24种).综上所述,满足题意的方法种数共有12+24=36,选C.2322答案:C4.解析:依题意得,所选出的4人必是3名男生、1名女生,因此满足题意的抽取方法共有C C =40种,选A.3612答案:A 5.答案解析:,当时,C 122(1)1nnnn n n C x C x C x x +++=+- 5,4x n ==能被7整除.4(1)1613537n x +-=-=⨯6答案:D解析:圆周上任意四个点连线的交点都在圆内,此四点的选法有C ,则由这四点确定412的圆内的交点个数为1,所以这12个点所确定的弦在圆内交点的个数最多为C .故选D.4127.解析:个位是0的有C ·A =96个;1434个位是2的有C ·A =72个;1334个位是4的有C ·A =72个;1334所以共有96+72+72=240个.答案:B 8答案:C解析:若取出的球的标号为1,2,3,4,则共有C C C C A =384种不同的排法;若取出121212124的球的标号为1,1,4,4,则共有A =24种不同的排法;若取出的球的标号为2,2,3,3,则共有A 4=24种不同的排法;由此可得取出的4个球数字之和为10的不同排法种数是4384+24+24=432,故应选C.9解析:C +C +C +C +C =55.0818273645答案:A10.解析:若把两人都安排在前排,则有A =6种方法,若把两人都安排在后排,则有23A =12种方法,若两人前排一个,后排一个,则有4×5×2=40种方法,因此共有58种方法,24故正确答案是D.答案:D11解析:根据题意,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时:有C =3个;13当“可连数”为两位数时:个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C C =9个;1313当“可连数”为三位数时:有C C C =36个;131413故共有:3+9+36=48个,故选D.答案:D12解析:可分三步完成:第一类是安排送达物资到受灾地点A ,有A 种方法;第二步是12在余下的3天中任选1天,安排送达物资到受灾地点B 、C ,有A A 种方法;第三步是在余132下的2天中安排送达物资到受灾地点D 、E ,有A 种方法.由分步计数原理得不同的运送顺2序共有A ·(A A )·A =24种,故选D.121322答案:D二、填空题(每小题4分,共16分)13.解析:5名重点中学教师到山区5所学校有A 种,而3所重点中学的抽调方法种5数可由列举法一一列出为6种.故共有6A =720种不同的支教方案.5答案:72014.解析:分两类:(1)万位取1,其余不同的四个数放在不同的四个位置上时有A 个:4(2)万位取2或3,在余下的四个不同的位置中选两个位置放数字0与3或2时有2A 个,故24总共有A +2A =48.424答案:4815.答案:18016.解析:令x =1,(1+m )6=a 0+a 1+…+a 6 ①,令x =0,1=a 0 ②,①-②,得:a 1+…+a 6=(1+m )6-1∴(1+m )6-1=63 ∴(1+m )6=64∴1+m =±2 ∴m =1或m =-3.答案:1或-3三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.解:利用组合数定义与公式求解.(1)由组合数定义知:解得4≤n ≤5.∵n ∈N *,∴n =4或5.当n =4时,原式=C +C =5;145当n =5时,原式=C +C =16.0546(2)由组合数公式,原不等式可化为-<,3!(n -3)!n !4!(n -4)!n !2×5!(n -5)!n !不等式两边约去,得(n -3)(n -4)-4(n -4)<2×5×4,即n 2-11n -12<0,解3!(n -5)!n !得-1<n <12.又∵n ∈N *,且n ≥5,∴n =5,6,7,8,9,10,11.18.解:解法1:(直接法)由于三位数的百位数字不能为0,所以分两种情况:当百位数字为1时,不同的三位数有A ·A =48个;当百位数为2、3、4、5、6、7、8、9中的任意一个时,1816不同的三位数有A A A =8×8×6=384个.综上,共可组成不重复的三位数48+384=432181816个.解法2:(间接法)任取3张卡片共有C ·C ·C ·C ·A 种排法,其中0在百位不能构成三351212123位数,这样的排法有C ·C ·C ·A 种,故符合条件的三位数共有C ·C ·C ·C ·A -C ·C ·C 24121223512121232412·A =432个.12219.解:令x -1=t ,则x =t +1,于是已知恒等式可变为(2t +3)100=a 0+a 1t +a 2t 2+…+a 100t100,又令f (t )=(2t +3)100,则a 1+a 3+a 5+…+a 99=[f (1)-f (-1)]12=[(2+3)100-(-2+3)100]=(5100-1).121220.解:依题意,令a =1,得(-)n 展开式中各项系数和为(3-1)n =2n ,(4-3a 3b )5展开式中的通项为T r +1=C (4)5-r (-)r =(-1)r C 45-r 5-b .r 53b r 5r 210-5r6若T r +1为常数项,则=0,即r =2,10-5r6故常数项为T 3=(-1)2C ·43·5-1=27,25于是有2n =27,得n =7.(1)(-)n 展开式的二项式系数和为3a 2n =27=128.(2)(-)7的通项为3a T ′r +1=C ()7-r ·(-)r =C (-1)r ·37-r ·a ,r 73a r 75r -216令=-1,得r =3,5r -216∴所求a -1项的二项式系数为C =35.3721.解:(1)∵左式=k ·=n !k !(n -k )!n ·(n -1)!(k -1)!(n -k )!=n ·=nC =右式,(n -1)!(k -1)![(n -1)-(k -1)]!k -1n∴kC =nC .k nk -1n (2)由已知:a n =a 1q n -1,∴A =lg a 1-C (lg a 1+lg q )+C (lg a 1+2lg q )-C (lg a 1+3lg q )+…+(-1)n C (lg a 1+n lg q )1n 2n 3n n =lg a 1[1-C +C -…+(-1)n C ]-lg q [C -2C +3C -…+(-1)n -1C ·n ]1n 2n n 1n 2n 3n n =lg a 1·(1-1)n -lg q [nC -nC +nC -…+(-1)n -1·nC ]0n -11n -12n -1n -1=0-n lg q [C -C +C -…+(-1)n -1·C ]0n -11n -12n -1n -1=-n lg q (1-1)n -1=0.22.解:(1)如图1,先对a 1部分种植,有3种不同的种法,再对a 2、a 3种植,因为a 2、a 3与a 1不同颜色,a 2、a 3也不同.所以S (3)=3×2=6(种)……………3分如图2,S (4)=3×2×2×2-S (3)=18(种) ……………………………6分 (2)如图3,圆环分为n 等份,对a 1有3种不同的种法,对a 2、a 3、…、a n 都有两种不同的种法,但这样的种法只能保证a 1与a i (i=2、3、……、n -1)不同颜色,但不能保证a 1与a n 不同颜色. ………………………………8分于是一类是a n 与a 1不同色的种法,这是符合要求的种法,记为种.另一类是a n 与a 1同色的种法,这时可以把a n 与a 1看成一部分,这样)3)((≥n n S 的种法相当于对n -1部分符合要求的种法,记为.)1(-n S 共有3×2n -1种种法. ………………………………10分这样就有.即,123)1()(-⨯=-+n n S n S ]2)1([2)(1----=-n nn S n S 则数列是首项为公比为-1的等比数列.)3}(2)({≥-n n S n32)3(-S 则).3()1](2)3([2)(33≥--=--n S n S n n由⑴知:,∴.6)3(=S 3()2(68)(1)nn S n --=--∴.………………………………13分3()22(1)nn S n -=-⋅-答:符合要求的不同种法有…………………14分).3()1(223≥-⋅--n n n种。

高考数学排列组合与二项式定理选择题

高考数学排列组合与二项式定理选择题

高考数学排列组合与二项式定理选择题1. 已知集合A={1,2,3},集合B={4,5,6},集合C={7,8,9},求集合A与集合B的交集的元素的个数。

2. 设有三个事件A,B,C,它们的关系是A包含B,B包含C,求事件A,B,C的并集的元素的个数。

3. 某人要从A,B,C,D四个城市中选择两个城市进行旅行,要求这两个城市相邻,求所有可能的选择的个数。

4. 某班有20名学生,其中有10名男生和10名女生,现要从中选出4名学生参加比赛,要求男女各选2名,求所有可能的选择的个数。

5. 设有四个不同的数字1,2,3,4,要将这四个数字组成一个无重复数字的三位数,求所有可能的三位数的个数。

6. 某人要从5个不同的水果中选择3个水果,要求这3个水果的种类不同,求所有可能的选择的个数。

7. 某班有25名学生,其中有15名男生和10名女生,现要从中选出6名学生参加比赛,要求男女各选3名,求所有可能的选择的个数。

8. 设有六个不同的数字1,2,3,4,5,6,要将这六个数字组成一个无重复数字的六位数,求所有可能的三位数的个数。

9. 某人要从6个不同的水果中选择4个水果,要求这4个水果的种类不同,求所有可能的选择的个数。

10. 某班有30名学生,其中有18名男生和12名女生,现要从中选出8名学生参加比赛,要求男女各选4名,求所有可能的选择的个数。

11. 设有七个不同的数字1,2,3,4,5,6,7,要将这七个数字组成一个无重复数字的七位数,求所有可能的三位数的个数。

12. 某人要从7个不同的水果中选择5个水果,要求这5个水果的种类不同,求所有可能的选择的个数。

13. 某班有35名学生,其中有20名男生和15名女生,现要从中选出9名学生参加比赛,要求男女各选5名,求所有可能的选择的个数。

14. 设有八个不同的数字1,2,3,4,5,6,7,8,要将这八个数字组成一个无重复数字的八位数,求所有可能的三位数的个数。

15. 某人要从8个不同的水果中选择6个水果,要求这6个水果的种类不同,求所有可能的选择的个数。

排列 组合二项式定理测诫题

排列 组合二项式定理测诫题

排列组合、二项式定理单元测试卷一、选择题(每题5分,计50分)1.从7人中选派5人到10个不同交通岗的5个中参加交通协管工作,则不同的选派方法有( )A 、5551057A A C 种B 、5551057PC A 种 C 、57510C C 种D 、51057A C2.某乒乓球队共有男女队员18人,现从中选出男女队员各一人组成一对双打组合,由于男队员中有两人主攻单打项目,不参与双打组合,这样共有64种组合方式,则此队中男队员的人数有( )A 、10人B 、8人C 、6人D 、12人3.设34)1(6)1(4)1(234-+-+-+-=x x x x S ,则S 等于( )A 、x 4B 、x 4+1C 、(x-2)4D 、x 4+44.学校要选派4名爱好摄影的同学中的3名参加校外摄影小组的3期培训(每期只派1名),由于时间上的冲突,甲、乙两位同学都不能参加第1期培训,则不同的选派方式有( )A 、6种B 、8种C 、10种D 、12种5.甲、乙、丙三个同学在课余时间负责一个计算机房周一至周六的值班工作,每天1人值班,每人值班2天。

如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有( )A 、36种B 、42种C 、50种D 、72种6.(1-2x)7展开式中系数最大的项为( )A 、第4项B 、第5项C 、第7项D 、第8项7.若n xx )13(3+)(*∈N n 展开式中含有常数项,则n 的最小值是( )A 、4B 、3C 、12D 、108.. 一道数学选择题,有四个可供选择的答案,其中有且只有一个答案是正确的,一个学生解答五道这样的数学选择题,每道题都作了选择,问至多有多少种错误情形?( )A.1021B.1022C.1023D.10249.若一个m 、n 均为非负整数的有序数对(m ,n ),在做m+n 的加法时,各位均不进位则称(m ,n )为“简单的有序实数对”,m+n 称为有序实数对(m ,n )之值。

排列组合、二项式定理典型题(含答案)

排列组合、二项式定理典型题(含答案)

排列、组合、二项式定理典型题一、选择题(共24题)1.(北京卷)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(A )36个 (B )24个 (C )18个(D )6个解:依题意,所选的三位数字有两种情况:(1)3个数字都是奇数,有33A 种方法(2)3个数字中有一个是奇数,有1333C A ,故共有33A +1333C A =24种方法,故选B2.(福建卷)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有(A )108种 (B )186种 (C )216种 (D )270种解析:从全部方案中减去只选派男生的方案数,合理的选派方案共有3374A A -=186种,选B.3.(湖北卷)在24(x -的展开式中,x 的幂的指数是整数的项共有 A .3项 B .4项 C .5项 D .6项解:72424312424rr rr rr T C x C x --r +=(=(-1),当r =0,3,6,9,12,15,18,21,24时,x 的指数分别是24,20,16,12,8,4,0,-4,-8,其中16,8,4,0,-8均为2的整数次幂,故选C4.(湖南卷)某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( )A.16种B.36种C.42种D.60种解析:有两种情况,一是在两个城市分别投资1个项目、2个项目,此时有123436C A ⋅=种方案,二是在三个城市各投资1个项目,有3424A =种方案,共计有60种方案,选D.5.(湖南卷)若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是 A .-2 B . 22 C. 34 D . 2解析:5)1-ax (的展开式中3x 的系数332335()(1)10C ax a x ⋅-=80x 3, 则实数a 的值是2,选D 6.(湖南卷)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A .6B . 12 C. 18 D . 24解析:先排列1,2,3,有336A =种排法,再将“+”,“-”两个符号插入,有222A =种方法,共有12种方法,选B.7.(江苏卷)10)31(x x -的展开式中含x 的正整数指数幂的项数是(A )0 (B )2 (C )4 (D )6 【思路点拨】本题主要考查二项式展开通项公式的有关知识.【正确解答】1031⎪⎭⎫ ⎝⎛-x x的展开式通项为31010102121011()()33r r r r r r C C x x ---=,因此含x 的正整数次幂的项共有2项.选B【解后反思】多项式乘法的进位规则.在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令0x =.在二项式的展开式中,要注意项的系数和二项式系数的区别. 8.(江西卷)在(x)2006的二项展开式中,含x 的奇次幂的项之和为S ,当x时,S 等于( )A.23008B.-23008C.23009D.-23009 解:设(x)2006=a 0x 2006+a 1x 2005+…+a 2005x +a 2006则当x时,有a 0)2006+a 1)2005+…+a 2005)+a 2006=0 (1) 当x时,有a 0)2006-a 1)2005+…-a 2005)+a 2006=23009 (2) (1)-(2)有a 1)2005+…+a 200523009÷2=-23008,故选B9.(江西卷)在2nx ⎫⎪⎭的二项展开式中,若常数项为60,则n 等于( )A.3B.6C.9D.12解:n 3rrn rr r r 2r 1nn r rn 2T C 2C x x n 3r 02C 60⨯⎧⎨⎩--+=()=-==,由r r n n 3r 02C 60⎧⎨⎩-==解得n =6故选B10.(辽宁卷)1234566666C C C C C ++++的值为( )A.61 B.62C.63 D.64解:原式=62262-=,选B11.(全国卷I )设集合{}1,2,3,4,5I =。

高考数学专题:排列、组合与二项式定理问题练习试题、答案

高考数学专题:排列、组合与二项式定理问题练习试题、答案

高考数学专题:排列、组合与二项式定理问题练习试题一.排列与组合问题1.某科技小组有四名男生两名女生,现从中选出三名同学参加比赛,其中至少一名女生入选的不同选法种数为( )A .36CB .1225C C C .12212424C C C CD .36A2.某校需要在5名男生和5名女生中选出4人参加一项文化交流活动,由于工作需要,男生甲与男生乙至少有一人参加活动,女生丙必须参加活动,则不同的选人方式有( )A .56种B .49种C .42种D .14种 3.五人排成一排,甲与乙不相邻,且甲与丙也不相邻的不同排法有( )A .60种B .48种C .36种D .24种4.某单位有7个连在一起的停车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空车位连在一起,则不同的停放方法有( )A .16种B .18种C .24种D .32种5.为迎接2008年北京奥运会,某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,若12名参赛同学中有4人获奖,且这4人来自3个不同的代表队,则不同获奖情况种数共有( )A .412CB .3111162223C C C C C C .31116322C C C C D .311112622232C C C C C A 6.A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条网线且使这三条网线通过最大信息量的和大于等于6的方法共有( )A .13种B .14种C .15种D .16种7.有一排7只发光二级管,每只二级管点亮时可发出红光或绿光,若每次恰有3只二级管点亮,但相邻的两只二级管不能同时点亮,根据这三只点亮的二级管的不同位置或不同颜色来表示不同的信息,则这排二级管能表示的信息种数共有( )A .10B .48C .60D .808.数列{}n a 共七项,其中五项为1,两项为2,则满足上述条件的数列{}n a 共有( )A .21个B .25个C .32个D .42个 9.三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又踢回给甲,则不同的传递方式共有( )A .6种B .8种C .10种D .16种 10.5个大小都不同的数按如图形式排列,设第一行中的最大数为a ,第二行中的最大数为b ,则满足a b <的所有排列的个数是( )A .144B .72C .36D .2411.有A ,B ,C ,D ,E ,F 共6个不同的油气罐准备用甲,乙,丙3台卡车运走,每台卡车运两个,但卡车甲不能运A 罐,卡车乙不能运B 罐,此外无其它限制. 要把这6个油气罐分配给这3台卡车,则不同的分配方案种数为( )A .168B .84C .56D .4212.若m 、2210{|1010}n x x a a a ∈=⨯+⨯+,其中(0,1,2){1,2,3,4,5,6}i a i =∈,并且606m n +=,则实数对(,)m n 表示平面上不同点的个数为( )A .32个B .30个C .62个D .60个 13.由0、1、2、3这四个数字,可组成无重复数字的三位偶数有_______个.14.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为奇数的概率是____________(用数字作答).15.如图所示,画中的一朵花,有五片花瓣.现有四种不同颜色的画笔可供选择,规定每片花瓣都要涂色,且只涂一种颜色.若涂完的花中颜色相同的花瓣恰有三片,则不同涂法种数为_______(用数字作答).二.二项式定理1.已知23132nx x ⎛⎫- ⎪⎝⎭的展开式中含有常数项(非零),则正整数n 的可能值是( )A .6B .5C .4D .32.已知622x x p ⎛⎫- ⎪⎝⎭的展开式中,不含x 的项是2720,那么正数p 的值是( ) A .1 B .2 C .3 D .43.已知31nx ⎛⎫ ⎪⎝⎭的展开式中第二项与第三项的系数之和等于27,则n 等于______,系数最大的项是第___________项.4.621x x ⎛⎫- ⎪⎝⎭的展开式中第四项的系数为___________.(用数字作答) 5.6)21(x -展开式中所有项的系数之和为________;63)21)(1(x x -+展开式中5x 的系数为__________.6.62)21(x x -展开式中5x 的系数为______________.7.已知n x )21(+的展开式中含3x 项的系数等于含x 项的系数的8倍,则n 等于__________.8.已知n+的二项展开式的第6项是常数项,那么n =_______. 9.62)2(x x+的展开式中的常数项是______________(用数字作答). 10. 在6(12)x -的展开式,含2x 项的系数为_________________;所有项的系数的和为_______________. 11.在n的展开式中,前三项的系数的绝对值依次组成一个等差数列,则n =______,展开式中第五项的二项式系数为_____(用数字作答). 12.82)2(x +的展开式中12x 的系数等于______________(用数字作答). 13.210(1)x -的展开式中2x 的系数是______________,如果展开式中第4r 项和第2r +项的二项式系数相等,则r 等于____________. 14. 若62a x x ⎛⎫- ⎪⎝⎭的展开式中常数项为160-,则常数a 的值为_________,展开式中各项系数之和为_________.答案一.1.C2.B3.C4.C5.C6.C7.D8.A9.C10.B11.D12.D13.1014.10 2115.240二1.B2.C 3.9,5 4.-20 5.1,-132 6.-160 7.58.10 9.60 10.60,111.8,70 12.112 13.-10,2 14.1,1。

排列组合二项式定理练习1(含答案)

排列组合二项式定理练习1(含答案)

一、选择题1.由太原去北京如果一天之内火车有4个班次,汽车有17个班次,飞机有6个班次,那么,每天由太原去北京有( )种不同的方法.A 4B 17C 27D 4082. 某班有男生26人,女生20人,若要选男、女生各1人作为学生代表参加学校伙食管理委员会,共有( )种选法.A 520B 26C 20D 46 3. 6个朋友聚会,每两人握手一次,一共握手( )次. A 30 B 20 C 15 D 64. 从5名学生中,选出2名学生, 担任两项不同的工作,有( )种不同的选法 A 40 B 20 C 7 D 25. 如果7名学生排成一列照集体照,有两名学生必须要相邻,那么共有( )种不同的排法. A 360 B 720 C 1440 D 28806. (1-x )9的二项式展开式中第4项的系数是( ) A -84B -126C 84D 1267. 二项式(x -3y )5的展开式中,第4项的二项式系数为( ) A .-3240 B .3240 C .-10 D .10 8. 二项式(3x -2y )6的展开式中,各项的系数之和为( ) A .-1B .1C .-64D .649. 满足等式65181717C C C m =+的m 的值为( )A .6B .12C .5D .6或1210. 平面内有12个点,其中任意3点都不在同一条直线上,以任意3点为顶点画三角形,则可画出的三角形 ( ) 个A .36B .219C .220D .1320 二、判断题:1.计算05C的值为0.()2.用数字1,2,3可以组成27个三位数. ()3. 6个朋友每两人互通一次电话,一共需要通15次电话.()4.从5名学生中,选出2名学生去参加一个调查会,有20种不同的选法. ( ) .5. 5个人争夺3项比赛冠军,每项比赛无并列冠军,冠军得主共有35种情况.()6.抛掷一枚硬币,会出现正面向上或反面向上两种结果,现将一枚硬币抛3次可能出现的结果共有6种.()7. 5支球队进行单循环足球比赛的分组情况,属于组合.()8. 平面上有7个不同的点,其中任何3点不在同一直线上.如果任取3点作为三角形顶点,那么一共可作37C个三角形. ()9.二项式(x-3y)5的展开式中,第4项的二项式系数为-10.()10.将3个球放入2个不同的盒子中,每个盒子至少一个球,共有12种放法. ()三、填空题1.有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有______种不同的报名方法.2.某商场有4个门,一人从一门进,从另一门出,则不同的进出走法有______种.3.2Pn=30,则n=_____.4.5名男生和3名女生站成一排,女生不相邻且不站在排头的站法有_______种.5.二项式52xx⎛⎫-⎪⎝⎭的展开式中第5项的系数为_______.三、解答1. 10件产品中有2件次品,从中任意抽取2件产品进行检查.问(1)一共有多少种不同的抽取方法?(2)抽取的2件产品中,恰有一件是次品的不同抽取方法有多少种?(3)抽取的2件产品中,至少有一件是次品的不同抽取方法有多少种?2. 求10+的二项展开式的常数项. 一、选择题1. C 【解析】由太原去北京共有三类方案.第一类是乘火车,有4种方法;第二类是乘汽车,有17种方法;第三类是乘飞机,有6种方法.并且,每一种方法都能够完成这件事(从太原去北京).所以每天从太原去北京的方法共有417627++=(种).故选C2. A 【解析】这件事可以分成两个步骤完成: 第一步:从26名男生中选出1人,有126k =种选法; 第二步:从20名女生中选出1人,有220k =种选法. 由分步计数原理有2620520N =⨯=(种). 即共有520种选法.故选A3. C 【解析】握手无先后,所以是组合问题, 一共握手2665C 1521⨯==⨯.次. 故选C 4. B 【解析】不同的选法共有25P 5420=⨯=(种).故选B5. C 【解析】分成两步来排队.第一步,将这两个人的顺序排好;第二步,将这两个人作为一个总体,与剩下的5名学生一起排队.2626P P 216543211440⋅=⨯⨯⨯⨯⨯⨯⨯=(种).故选C6. A 【解析】∵T 4=T 3+1=39C (-x )3=-84x 3, ∴系数为-84,故选A .7.D 【解析】第4项的二项式系数为35C =10,故选D .8. B 【解析】 二项式(3x -2y )6中令x =y =1,可得各项的系数之和为1,故选B .9. D 【解析 】 由组合数的性质公式,得656171718C C C +=,所以61818C C m =故,m =6或m =12. 故选D .10.C 【解析】因任意3点都不在同一条直线上,故从12个点中任取3点可组成一个三角形,所以可画出的三角形的个数为312C =220,故选C . 二、判断题:1.【解析】规定0C n =1.故本题×.2.【解析】个位、十位、百位,每一个数位都有3种选择,故共可以组成3×3×3=27个三位数. . 故本题√.3.【解析】每两人互通一次电话是有先后顺序的,所以是排列问题, 一共通26P 6530=⨯=次电话. 故本题×.4. 解析】从5名学生中,选出2名学生去参加一个调查会,选出2名学生后完成的任务是一样的.所以这是一个组合问题.共有2554C 1021⨯==⨯种不同的选法. 故本题×. 5.【解析】每一项比赛冠军得主都有5种可能,故冠军得主共有35种情况. 故本题√.6. 【解析】现将一枚硬币抛3次,每一次都有两种情况.故共有2×2×2=8种情况. 故本题×.7.【解析】本题√.8.【解析】任取三点画三角形,是无顺序的,属于组合问题.本题√. 9.【解析】第4项的二项式系数为35C =10. 故本题×.10.【解析】将3个球放入2个不同的盒子中,每个盒子至少一个球,所以一定有一个盒子放2个球.故先将球分成两组,再把球放入盒子中,故共有2232C P 6=种不同的放法. 故本题×.三、填空题1.【解析】34=81(种).2.【解析】 由分步计数原理可知,不同的走法有N =4×3=12(种).3.【解析】∵2P n =30∴n (n -1)=30,即n 2-n -30=0, ∴(n -6)(n +5)=0,由此可得n =6或n =-5(舍去),∴n =6.4.【解析】用插空法,先排男生有55P 种排法,再从男生之间的4个空中排入3名女生有34P 种排法.∴共有5354P P =2880(种)排法.5.【解析】T 5=T 4+1=444433552C =(2)C =80x x x x --⎛⎫-- ⎪⎝⎭,∴第5项的系数为80 三、解答1.【解析】(1)不同的抽取方法的总数为从10件产品中取出件的组合数210109C 4521⨯==⨯.(2)分成两步来完成.第一本从2件次品中抽出1件,第二步从8件正品中抽出的1件.由分步计数原理知,恰有1件次品的不同抽取方法的种数为1128C C 2816⋅=⨯=.(3)从任意抽取不同的2件产品的抽取方法总数中,减去2件全是正品的抽取方法种数,就是至少有一件是次品的不同抽取方法种数.即22108C C 452817-=-=. 2.【解析】 由于101022110101C ()C m mmmm m m T x x x---+==(),故1002m m--=2.解得m =5. 所以二项式展开式中第6项是常数项,为51010987625254321C ⨯⨯⨯⨯==⨯⨯⨯⨯.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合二项式定理竞赛选拔题
班级 _______ 姓名_______
选择填空每题3分,简答题每题7分.
1 •五男两女站成一排,要求女生不能站在两端,且又要相邻,则共有________ 种排法•
2. 6人排成一排,要求甲乙两人之间必有2人,则共有_________ 种排法.
3.8张椅子排成一排,有4人就坐,每人一个座位,其中恰有3个连续空位,则共有______________ 种排法•
4. 8人站成一列纵队,要求甲乙丙三人不在排头且互相隔开,则共有________ 种排法•
5. ____________________________________________________________ 六人并排拍照,要求甲不坐最左边,乙不坐最右边,则共有____________________________________ 种排法.
6. 求满足方程x y z 10且x,y,z N *的解的个数_____________________ .
7. 从1,2,3,…,14中,按数从小到大的顺序取出a i,a2,a3,使同时满足a? a i 3, a3 a? 3 ,
则符合要求的不同取法有_________ 种.
&求四个杯子,四个杯盖均不对号入座的方法种数______________ .
9•有五件不同奖品发给4位先进工作者,每人至少一件,有 _______ 种不同的发放方法.
10. 一次小型演出活动,准备了两个独唱、两个乐器演奏、一个舞蹈、一个相声共六个节目,
要编排一个节目单,规定同类节目不能连排,不同的排法有 _____________ 种.
11. ______________________________________________________________________________ 从1 , 2, 3, 4, 7, 9六个数字中任取两个作为一个对数的底数和真数,可得_______ 个不同的数值.
12 .若(1+x)+(1+x)2+(1+x)3+・・. +(1+x)n=a o+a1(x-1)+a 2(x-1)2+…+a n(x-1)n,贝y a o+a1+a2+ …+a n 等于.
13•用0, 1 , 2, 3, 4五个数字组成无重复数字的五位数,并将他们排成一个递增数列,则32140是这个数列的第____________________ 项.
14 •计算3.02 4得 __________ .(使误差小于0.001)
6
15. 求1 2x 3x2展开式中的x2项的系数.
16. 一直线和圆相离,这条直线上有6个点,圆周上有4个点,通过任意两点作直线,最少
可作直线的条数是()
A . 37
B . 19 C. 13 D. 7
17•某团进行换届选举,从甲、乙、丙、丁四人中选出三人分别担任书记、畐师记和组织委员,规定上届任职的甲、乙、丙三人不能连任原职,则不同的任职结果有()
A . 5 种
B . 11 种
C . 14 种
D . 23 种
18 .某城新建的一条道路上有12只路灯,为了节省用电而又不影响正常的照明,可以熄灭其
中三只路灯,但两端的灯不能熄灭,也不能熄灭相邻的两只灯,那么熄灯方法共有()
A. C;种 B . A种 C . C93种 D . A种
19 .从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有()
A . 240
B . 180
C . 120
D . 60
20.已知直线I 1//I 2,在l i 上取3个点,在丨2上取4个点,每两个点连成直线,那么这些直线 在l i 和I 2之间的交点(不包括I i ,l 2上的点)最多有
A . 18个
B . 20个
C . 24 个
D . 36 个 21 .
已知n 10( n N),若(x 3 1 —)n 的展开式中含有常数项,则这样A . 3个 B . 2 C . 1 D . 0
22.把正方形的四个顶点、四边中点以及中心都用线段连接起来,则以这 顶点的三角形的个数是
A . 54
B . 76
C . 81
D . 84
数字1,2必取出且相邻,如果写有6的卡片也可以当9用,则这样的四位自然数个数为 ()
选出6个人,其中3人去打排球,3人去打篮球,有多少种不同选法?
25.平面上有11个相异的点,过其中任意两点相异的直线有 48条.
(1)这11点中,含3个或3个以上的点的直线有几条? ⑵这11点构成几个三角形?
n
26 .已知刍 展开式中第5项的系数与第3项的系数之比为56:3,求展开式中不含x 的
x
50
27. 1 ,2x 展开式中第几项其二项式系数最大?第几项其展开式系数最大?
28.求证:C a o C : C ; C : 1 L C k C° C k b k a,k b
9个点中的3点为 23.有6张卡片分别有 1, 2, 3, 4, 5, 6的6个数字,现从中任取出
4张组成四位数,其中 A . 54
B . 108
C . 144
D . 288 24. 13个学生中,有10人会打排球, 6人会打篮球,没有既不会打排球又不会打篮球的,现。

相关文档
最新文档