高考文科数学复习题古典概型与几何概型
高考数学 17.2 古典概型与几何概型
17、概率17.2 古典概型与几何概型【知识网络】1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率。
2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。
【典型例题】[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .13(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( )A .61B .365 C .121 D .21 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为()A .56B .12C .13D .16(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3S”的概率为 .(5)任意投掷两枚骰子,出现点数相同的概率为 .[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。
[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.[例4]抛掷骰子,是大家非常熟悉的日常游戏了.某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.方案1:总点数是几就送礼券几十元.方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.【课内练习】1. 某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是 ()A .15 B .524C .1081D .512 2. 盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P 1,第8个人摸出红球的概率是P 8,则()A .P 8=18P 1B .P 8=45P 1 C .P 8=P 1 D .P 8=0 3. 如图,A 、B 、C 、D 、E 、F 是圆O 的六个等分点,则转盘指针不落在阴影部分的概率为( )A .12 B .13C .23D .144. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为()A .12B .13C .14D .235. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 .6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为 . 7. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交AB 于P ,则同时满足:∠AOP ≥45°且∠BOP ≥75°的概率为 .8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.(1)共有多少个基本事件?(2)小曹能乘上上等车的概率为多少?9.设A 为圆周上一定点,在圆周上等可能的任取一点P 与A 连结,第3题图倍的概率.10.正面体ABCD的体积为V,P是正四面体ABCD的内部的点.①设“V P-ABC≥14V”的事件为X,求概率P(X);②设“V P-ABC≥14V且V P-BCD≥14V”的事件为Y,求概率P(Y).17、概率17.2 古典概型与几何概型A 组1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为 ( )A .2π B .2ππ- C D .4π2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( )A .12B .13C .14D .163. 已知椭圆22221x y a b+=(a >b >0)及内部面积为S=πab ,A 1,A 2是长轴的两个顶点,B 1,B 2是短轴的两个顶点,点P 是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA 1A 2为钝角三角形的概率为1; ②△PB 1B 2为直角三角形的概率为0;③△PB 1B 2为钝角三角形的概率为ba ;④△PA 1A 2为钝角三角形的概率为ba ;⑤△PB 1B 2为锐角三角形的概率为a ba-。
高中数学概率几何概型古典概型精选题目(附答案)
高中数学概率几何概型古典概型精选题目(附答案)一、古典概型1.互斥事件与对立事件的概率(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)当事件A与B互斥时,P(A+B)=P(A)+P(B),当事件A与B对立时,P(A+B)=P(A)+P(B)=1,即P(A)=1-P(B).(3)求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式P(A)=1-P(A)求解.2.古典概型的求法对于古典概型概率的计算,关键是分清基本事件的总数n与事件A包含的基本事件的个数m,有时需用列举法把基本事件一一列举出来,再利用公式P(A)=mn求出事件发生的概率,这是一个形象、直观的好方法,但列举时必须按照某种顺序,以保证不重复、不遗漏.1.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.[解]甲校两名男教师分别用A,B表示,女教师用C表示;乙校男教师用D 表示,两名女教师分别用E,F表示.(1)从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.从中选出的2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,所以选出的2名教师性别相同的概率为P=4 9.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.从中选出的2名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种.所以,选出的2名教师来自同一学校的概率为P=615=25.注:解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.2.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为()A.13 B.110C.25 D.310解析:选D设2个金鸡奖演员编号为1,2,3个百花奖演员编号为3,4,5.从编号为1,2,3,4,5的演员中任选3名有10种挑选方法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种.其中挑选出2名金鸡奖和1名百花奖的有3种:(1,2,3),(1,2,4),(1,2,5),故所求的概率为P=3 10.3.随着经济的发展,人们生活水平的提高,中学生的营养与健康问题越来越得到学校与家长的重视.从学生体检评价报告单了解到我校3 000名学生的体重发育评价情况,得下表:0.15.(1)求x的值;(2)若用分层抽样的方法,从这批学生中随机抽取60名,问应在肥胖学生中抽多少名?(3)已知y ≥243,z ≥243,求肥胖学生中男生不少于女生的概率.解:(1)由题意得,从这批学生中随机抽取1名学生,抽到偏痩男生的概率为0.15,可知x3 000=0.15,所以x =450.(2)由题意,可知肥胖学生人数为y +z =500(人).设应在肥胖学生中抽取m 人,则m 500=603 000.所以m =10.即应在肥胖学生中抽10名.(3)由题意,可知y +z =500,且y ≥243,z ≥243,满足条件的基本事件如下: (243,257),(244,256),…,(257,243),共有15组.设事件A :“肥胖学生中男生不少于女生”,即y ≤z ,满足条件的(y ,z )的基本事件有:(243,257),(244,256),…,(250,250),共有8组,所以P (A )=815.所以肥胖学生中男生不少于女生的概率为815.二、几何概型(1)几何概型满足的两个特点:①等可能性;②无限性. (2)几何概型的概率求法公式P (A )=构成事件A 的区域长度(面积、体积)试验的全部结果长度(面积、体积).4.(1)已知平面区域D 1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )| ⎩⎨⎧|x |<2,|y |<2,D 2={}(x ,y )|(x -2)2+(y -2)2<4.在区域D 1内随机选取一点P ,则点P 恰好取自区域D 2的概率是( )A.14 B.π4 C.π16D.π32(2)把一根均匀木棒随机地按任意点折成两段,则“其中一段长度大于另一段长度2倍”的概率为________.[解析] (1)因区域D 1和D 2的公共部分是一个半径为2的圆的14,从而所求概率P =14×22π42=π16,故选C.(2)将木棒折成两段的折点应位于距木棒两端点小于13木棒长度的区域内,故所求概率为2×13=23.[答案] (1)C (2)23 注:几何概型问题的解题方法(1)由于基本事件的个数和结果的无限性,其概率就不能应用P (A )=mn 求解,因此需转化为几何度量(如长度、面积、体积等)的比值求解.(2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.5.如图,两个正方形的边长均为2a ,左边正方形内四个半径为a2的圆依次相切,右边正方形内有一个半径为a 的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P 1,P 2,则P 1,P 2的大小关系是( )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .无法比较解析:选A 由题意知正方形的边长为2a .左图中圆的半径为正方形边长的14,故四个圆的面积和为πa 2,右图中圆的半径为正方形边长的一半,圆的面积也为πa 2,故P 1=P 2.6.在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( )A.34B.23C.13D.14解析:选A 不等式-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1可化为log 122≤log 12⎝ ⎛⎭⎪⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.7.圆具有优美的对称性,以圆为主体元素构造的优美图案在工艺美术、陶瓷、剪纸等上有着广泛的应用,如图1,图2,图3,图4,其中图4中的3个阴影三角形的边长均为圆的半径,记图4中的阴影部分区域为M ,现随机往图4的圆内投一个点A ,则点A 落在区域M 内的概率是( )A.34πB.334πC.2πD.3π解析:选B 设圆内每一个小正三角形的边长为r , 则一个三角形的面积为12×r ×32r =34r 2, ∴阴影部分的面积为334r 2. 又圆的面积为πr 2,∴点A 落在区域M 内的概率是334r 2πr 2=334π.。
高考一轮总复习-082.古典概型与几何概型(基础)-知识讲解
高考总复习:古典概型与几何概型【考点梳理】知识点一、古典概型1. 定义具有如下两个特点的概率模型称为古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
2. 古典概型的基本特征(1)有限性:即在一次试验中,可能出现的结果,只有有限个,也就是说,只有有限个不同的基本事件。
(2)等可能性:每个基本事件发生的可能性是均等的。
3.古典概型的概率计算公式由于古典概型中基本事件发生是等可能的,如果一次试验中共有n 种等可能的结果,那么每一个基本事件的概率都是1n。
如果某个事件A 包含m 个基本事件,由于基本事件是互斥的,则事件A 发生的概率为其所含m 个基本事件的概率之和,即n m A P =)(。
所以古典概型计算事件A 的概率计算公式为:试验的基本事件总数包含的基本事件数事件A A P =)( 4.求古典概型的概率的一般步骤:(1)算出基本事件的总个数n ;(2)计算事件A 包含的基本事件的个数m ;(3)应用公式()m P A n=求值。
5.古典概型中求基本事件数的方法:(1)穷举法;(2)树形图;(3)排列组合法。
利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏。
知识点二、几何概型1. 定义:事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关。
满足以上条件的试验称为几何概型。
2.几何概型的两个特点:(1)无限性,即在一次试验中基本事件的个数是无限的;(2)等可能性,即每一个基本事件发生的可能性是均等的。
3.几何概型的概率计算公式:随机事件A 的概率可以用“事件A 包含的基本事件所占的图形面积(体积、长度)”与“试验的基本事件所占总面积(体积、长度)”之比来表示。
所以几何概型计算事件A 的概率计算公式为:Ω=μμA A P )( 其中μΩ表示试验的全部结果构成的区域Ω的几何度量,A μ表示构成事件A 的区域的几何度量。
2021高考数学复习专题 古典概型与几何概型 (文 精讲)
专题11.2 古典概型与几何概型【考情分析】1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率.3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义. 【重点知识梳理】 知识点一 基本事件的特点 (1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 知识点二 古典概型具有以下两个特征的概率模型称为古典的概率模型,简称古典概型. (1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果. (2)每一个试验结果出现的可能性相同.【特别提醒】如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=mn.知识点三 古典概型的概率公式 P (A )=事件A 包含的可能结果数试验的所有可能结果数.知识点四 几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.知识点五 几何概型的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. 知识点六 几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).【典型题分析】高频考点一 古典概型的概率计算【例1】【2020·浙江卷】盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______,()E ξ=_______. 【变式探究】(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A ,B ,C ,D ,E ,F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(ⅰ)试用所给字母列举出所有可能的抽取结果;(ⅰ)设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.【方法规律】有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键【变式探究】(1)(2019·全国卷ⅰ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23B.35C.25D.15(2)(2019·全国卷ⅰ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B.14 C.13D.12【变式探究】(2019·江苏卷)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .【举一反三】(2018·天津卷)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160. 现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.ⅰ试用所给字母列举出所有可能的抽取结果;ⅰ设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 高频考点二 综合考查古典概型与其他知识【例2】(2020·河南省焦作模拟)从集合{1,2,3,4}中随机抽取一个数a ,从集合{1,2,3}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(2,1)共线的概率为( )A.16B.13C.14D.12【变式探究】(2020·黑龙江省大庆模拟)将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为 .【举一反三】(2020·江苏省宿迁模拟)已知a =log 0.55,b =log 32,c =20.3,d =⎝⎛⎭⎫122,从这四个数中任取一个数m ,使函数f (x )=13x 3+mx 2+x +2有极值点的概率为( )A.14B.12C.34D .1高频考点三 与长度、角度有关的几何概型【例3】(2020·浙江省舟山模拟)在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形的面积大于20 cm 2的概率为 ( )A.16 B.13 C.23D.45【方法技巧】长度、角度等测度的区分方法(1)如果试验的结果构成的区域的几何度量可用长度表示,则把题中所表示的几何模型转化为长度,然后求解.解题的关键是构建事件的区域(长度).(2)当涉及射线的转动、扇形中有关落点区域问题时,应以角度的大小作为区域度量来计算概率,且不可用线段的长度代替,这是两种不同的度量手段.【变式探究】(2020·安徽省芜湖模拟)如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在ⅰDAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为 .高频考点四 与体积有关的几何概型【例4】(2020·江西省南昌模拟)在一个球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为( )A.6πB.32πC.3πD.233π 【方法技巧】与体积有关的几何概型问题如果试验的结果所构成的区域的几何度量可用空间几何体的体积表示,则其概率的计算公式为: P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积,求解的关键是计算事件的总体积以及事件A 的体积.【变式探究】(2020·广东省江门模拟)在棱长为2的正方体ABCD A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为 .高频考点五 与面积有关的几何概型【例5】(2020·山东省淄博模拟)七巧板是我国古代劳动人民的发明之一,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的,如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率是( )A.14B.18C.38D.316【变式探究】(2020·山东省滨州模拟)已知关于x ,y 的不等式组⎩⎪⎨⎪⎧x -y -2≤0,2x +y -4≤0,x ≥0表示的平面区域为M ,在区域M 内随机取一点N (x 0,y 0),则3x 0-y 0-2≤0的概率为( )A.56B.34C.35D.13【举一反三】(2020·陕西省宝鸡模拟)在区间(0,2)内随机取一个实数a ,则满足⎩⎪⎨⎪⎧2x -y ≥0,y ≥0,x -a ≤0的点(x ,y )构成区域的面积大于1的概率是( )A.18B.14C.12D.34专题11.2 古典概型与几何概型【考情分析】1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率.3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义. 【重点知识梳理】 知识点一 基本事件的特点 (1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 知识点二 古典概型具有以下两个特征的概率模型称为古典的概率模型,简称古典概型. (1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果. (2)每一个试验结果出现的可能性相同.【特别提醒】如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=m n.知识点三 古典概型的概率公式 P (A )=事件A 包含的可能结果数试验的所有可能结果数.知识点四 几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.知识点五 几何概型的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. 知识点六 几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).【典型题分析】高频考点一 古典概型的概率计算【例1】【2020·浙江卷】盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______,()E ξ=_______. 【答案】13,1 【解析】因为0ξ=对应事件为第一次拿红球或第一次拿绿球,第二次拿红球,所以1111(0)4433P ξ==+⨯=,随机变量0,1,2ξ=,212111211(1)434324323P ξ==⨯+⨯⨯+⨯⨯=, 111(2)1333P ξ==--=,所以111()0121333E ξ=⨯+⨯+⨯=.【变式探究】(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A ,B ,C ,D ,E ,F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(ⅰ)试用所给字母列举出所有可能的抽取结果;(ⅰ)设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. 【解析】(1)由已知,老、中、青员工人数之比为6ⅰ9ⅰ10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人. (2)(ⅰ)从已知的6人中随机抽取2人的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{B ,C },{B ,D },{B ,E },{B ,F },{C ,D },{C ,E },{C ,F },{D ,E },{D ,F },{E ,F },共15种.(ⅰ)由表格知,符合题意的所有可能结果为{A ,B },{A ,D },{A ,E },{A ,F },{B ,D },{B ,E },{B ,F },{C ,E },{C ,F },{D ,F },{E ,F },共11种.所以,事件M 发生的概率P (M )=1115.【方法规律】有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键【变式探究】(1)(2019·全国卷ⅰ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23B.35C.25D.15(2)(2019·全国卷ⅰ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B.14 C.13 D.12【答案】(1)B (2)D【解析】(1)设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.故选B.(2)设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.故选D 。
高考数学一轮复习---古典概型与几何概型知识点与题型复习
古典概型与几何概型知识点与题型复习一、基础知识1.古典概型(1)古典概型的特征:①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;,②等可能性:每个基本事件出现的可能性是相等的.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性. (2)古典概型的概率计算的基本步骤:①判断本次试验的结果是否是等可能的,设出所求的事件为A ;②分别计算基本事件的总数n 和所求的事件A 所包含的基本事件个数m ; ③利用古典概型的概率公式P (A )=mn ,求出事件A 的概率.(3)频率的计算公式与古典概型的概率计算公式的异同(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个; ②每个基本事件出现的可能性相等. (3)计算公式:P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).几何概型应用中的关注点(1)关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. (2)确定基本事件时一定要选准度量,注意基本事件的等可能性.二、考点解析考点一 古典概型例、(1)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112B.114C.115D.118(2)将一枚质地均匀的骰子投掷两次,得到的点数依次记为a 和b ,则方程ax 2+bx +1=0有实数解的概率是( )A.736B.12C.1936D.518跟踪训练1.已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x +b 为减函数的概率是( ) A.310 B.35 C.25 D.152.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518B.49C.59D.793.将A ,B ,C ,D 这4名同学从左至右随机地排成一排,则“A 与B 相邻且A 与C 之间恰好有1名同学”的概率是( )A.12B.14C.16D.18 考点二 几何概型类型(一) 与长度有关的几何概型例1、在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215 B.715 C.35 D.1115 类型(二) 与面积有关的几何概型例2、(1)如图,六边形ABCDEF 是一个正六边形,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是( )A.14B.13C.23D.34(2)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2B.4π3C.2π2D.2π3类型(三) 与体积有关的几何概型例3、已知在四棱锥P ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O ABCD 的体积不小于23的概率为________.类型(四) 与角度有关的几何概型例4、如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.跟踪训练1.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF BCE 内自由飞翔,则它飞入几何体F AMCD 内的概率为( )A.34B.23C.13D.122.在区间[0,π]上随机取一个数x ,则事件“sin x +cos x ≥22”发生的概率为________. 3.向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________.课后作业1.2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径22 mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( ) A.363π10 mm 2 B.363π5 mm 2 C.726π5 mm 2 D.363π20mm 2 2.甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”,从上述回答分析,丙是第一名的概率是( )A.15B.13C.14D.163.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为( ) A.110 B.15 C.310 D.254.如图是一个边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A.π8B.π16C.1-π8D.1-π165.已知圆C :x 2+y 2=1,直线l :y =k (x +2),在[-1,1]上随机选取一个数k ,则事件“直线l 与圆C 相离”发生的概率为( )A.12 B.2-22 C.3-33 D.2-326.从1~9这9个自然数中任取7个不同的数,则这7个数的平均数是5的概率为________.7.一个三位数的百位,十位,个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称这个三位数为“好数”(如213,134),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“好数”的概率是________.8.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.9.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.10.在某大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加A 岗位服务的概率.提高训练1.甲、乙二人约定7:10在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是( )A.18B.14C.38D.582.如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A.17B.27C.37D.473.已知等腰直角△ABC 中,∠C =90°,在∠CAB 内作射线AM ,则使∠CAM <30°的概率为________.4.已知P 是△ABC 所在平面内一点,且PB ―→+PC ―→+2P A ―→=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A.14B.13C.12D.235.点集Ω={(x ,y )|0≤x ≤e ,0≤y ≤e},A ={(x ,y )|y ≥e x ,(x ,y )∈Ω},在点集Ω中任取一个元素a ,则a ∈A 的概率为( )A.1eB.1e 2 C.e -1e D.e 2-1e26.如图,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( ) A.p 1=p 2 B.p 1=p 3 C.p 2=p 3 D.p 1=p 2+p 37.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),其中a ∈{1,2,3,4},b ∈{1,2,3,4},且a ,b 取到其中每个数都是等可能的,则直线l :y =x 与双曲线C 的左、右支各有一个交点的概率为( ) A.14 B.38 C.12 D.588.在区间[0,1]上随机取两个数a ,b ,则函数f (x )=x 2+ax +14b 有零点的概率是________.。
几何概型、古典概型常考经典好题(史上最全面含答案)
几何概型、古典概型常考经典题(史上最全面)1.在长为2的线段AB 上任意取一点C ,则以线段AC 为半径的圆的面积小于π的概率为( ) A .14 B.12 C .34 D.π42.已知正棱锥S-ABC 的底面边长为4,高为3,在正棱锥内任取一点P ,使得V P-ABC <12V S-ABC 的概率是( ) A .34 B.78 C .12 D.143.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为( )A .12 B.32 C .13 D.144.在区间⎣⎢⎡⎦⎥⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈[1, 2 ]的概率是( ) A .12 B.34 C .38 D.585.若m ∈(0,3),则直线(m +2)x +(3-m)y -3=0与x 轴、y 轴围成的三角形的面积小于98的概率为________.6.如图,正四棱锥S-ABCD 的顶点都在球面上,球心O 在平面ABCD 上,在球O 内任取一点,则这点取自正四棱锥内的概率为________.7.平面区域A 1={}(x ,y )|x 2+y 2<4,x ,y ∈R ,A 2={(x ,y )||x |+|y |≤3,x ,y ∈R}.在A 2内随机取一点,则该点不在A 1内的概率为________.8.在边长为4的等边三角形OAB 及其内部任取一点P ,使得OA ―→·OP ―→≤4的概率为( )A.12B.14C.13D.189.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为35,则AD AB =________. 10.某人对某台的电视节目进行了长期的统计后得出结论,他任意时间打开电视机看该台节目时,看不到广告的概率为910,那么该台每小时约有________分钟的广告.11.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.12.在面积为S 的ABC ∆ 的边AB 上任取一点P ,则PBC ∆的面积大于4S 的概率为 .13.在ABC ∆中,060,2,6ABC AB BC ∠===,在BC 上任取一点D ,则使ABD ∆为钝角三角形的概率为( )A .16B .13C .12D .23 14.从区间[0,1]上随机抽取2n 个数1212,,,,,,,n n x x x y y y ,构成n 个数对11(,)x y ,22(,)x y ,[来源:学+,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为__________. A .4n m B .2n m C .4m n D .m n15. 在等腰Rt △ABC 中, (1)在斜边A B 上任取一点M ,求AM 的长小于AC 的长的概率.(2)过直角顶点C 在ACB ∠内作一条射线CM ,与线段AB 交于点M ,求AM<AC 的概率.(3)已知P 是△ABC 所在平面内一点,PB +PC +2PA =0,现将一粒黄豆随机撒在△PBC 内,则黄豆落在△PBC 内的概率是( )A .14B .13C .23D .1216.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率。
1.3古典概型与几何概型
所含的总取法为 aPbi1[(a b i)!] 故
P(B)
a
Pbi
1[(a b (a b)!
i)!]
a Pbi 1 Pai b
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
及两个球全是黑球的概率
解 (2) 已知 在 10 个球中任取两球的取法有C120 种 在 10 个球中取到一个白球和一个黑球的取法有C13C17 种 在 10 个球中取两个球均是黑球的取法有C32种 记B为事件“刚好取到一个白球一个黑球” C为事件
“两个球均为黑球” 则
P(B)
C13 C17 C120
P(D)
Ckn
(N 1)nk Nn
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
解 (ab)次取球的总取法为(ab)! 记(1) (2) (3)中的事件 分别为A B C
总数为24 记(1) (2) (3) (4)的事件分别为A B C D
(1) A有两种排法 故有
P(A)
2 24
1 12
(2) B有2(3!)12种排法 故有
P(B)
12 24
1 12
例113 将标号为1 2 3 4的四个球随意地排成一行 求下 列各事件的概率
(1)各球自左至右或自右至左恰好排成1 2 3 4的顺序 (2)第1号球排在最右边或最左边 (3)第1号球与第2号球相邻
等价于将n个球全部放到其余N1个箱子中 共有(N1)n种放
高考数学一轮复习专题训练—古典概型与几何概型
古典概型与几何概型考纲要求1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率;3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义.知识梳理1.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(3)古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.2.几何概型 (1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法.2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)概率为0的事件一定是不可能事件.()答案(1)×(2)×(3)√(4)×解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B .415C .35D .非以上答案答案 A解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p =615=25. 3.如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.答案 0.6解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4≈30200,∴S ≈0.6.4.(2020·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B .25C .12D .45答案 A解析 从O ,A ,B ,C ,D 这5个点中任取3点,取法有{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种,其中取到的3点共线的只有{O ,A ,C },{O ,B ,D }这2种取法,所以所求概率为210=15.故选A.5.(2019·全国Ⅲ卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B .14C.13 D .12答案 D解析 设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.6. (2021·郑州模拟)公元前5世纪下半叶,希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自阴影部分的概率是________.答案π+68π+4解析 上方阴影部分的面积等于△AOB 的面积,S △AOB =12×2×2=2,下方阴影部分面积等于14×π×22-⎣⎡⎦⎤14×π×22-12×2×2=π2+1,所以根据几何概型概率公式得所求概率P =2+π2+14π+2=π+68π+4.考点一 古典概型的简单计算1.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B .35C .25D .15答案 B解析 设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.2.(2021·安徽江南十校质量检测)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A.15 B .13C .35D .23答案 A解析 6拆成两个正整数的和的所有基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的为(3,3),所以所求概率为15,故选A.3.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________. 答案 19解析 列表如下:1 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112点数的和共有点数和为5的概率P =436=19.感悟升华 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. 考点二 古典概型与其他知识的简单交汇【例1】 (1)(2020·郑州一模)已知集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任取k ∈A ,则幂函数f (x )=x k 为偶函数的概率为________(结果用数值表示).(2)(2021·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 答案 (1)14 (2)12解析 (1)集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任意k ∈A 的基本事件总数为8,当k =±2时,幂函数f (x )=x k 为偶函数,从而幂函数f (x )=x k 为偶函数包含的基本事件个数为2,∴幂函数f (x )=x k 为偶函数的概率p =14.(2)∵m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p=36=12. 感悟升华 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【训练1】 设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( ) A.18 B .14C .13D .12答案 A解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ⊥(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.考点三 古典概型与统计的综合应用【例2】 某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量为[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量为[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a3,c1),(b1,b2),(b1,c1),(b2,c1),共15种取法,其中满足条件的有(a1,b1),(a1,b2),(a1,c1),(a2,b1),(a2,b2),(a2,c1),(a3,b1),(a3,b2),(a3,c1),(b1,c1),(b2,c1),共11种,故参加节目的2户来自不同组的概率P(A)=1115.感悟升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出的信息,准确从题中提炼信息是解题的关键.【训练2】海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为6300=1 50,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415.即这2件商品来自相同地区的概率为415.考点四 几何概型角度1 与长度(角度)有关的几何概型【例3】 (1)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215B .715C .35D .1115(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.答案 (1)D (2)34解析 (1)因为f (x )=-x 2+mx +m 的图象与x 轴有公共点,所以Δ=m 2+4m ≥0,所以m ≤-4或m ≥0,所以在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率p =[-4--6]+9-09--6=1115. (2)过点C 作CN 交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠ACN 内时,AM <AC ,又∠A =45°,所以∠ACN =67.5°,故所求概率为p =67.5°90°=34.感悟升华 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 角度2 与面积有关的几何概型【例4】 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225 B .1625C .1725D .1825答案 C解析 设这两个数是x ,y ,则试验所有的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1确定的平面区域,满足条件的事件包含的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1,x +y <65确定的平面区域,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫452=1725,所以这两个数之和小于65的概率是1725.感悟升华 几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率. 角度3 与体积有关的几何概型【例5】 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 由题意得该圆柱的体积V =π×12×2=2π.圆柱内满足点P 到点O 的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V 1=12×43π×13=23π,所以所求概率p =V -V 1V =23.感悟升华 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 (1)(2021·西安一模)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( ) A.12B .13C .24D .23(2) (2020·新疆一模)剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.剪纸艺术通过一把剪刀、一张纸就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.π64B .π32C .π16D .π8答案 (1)C (2)D解析 (1)圆x 2+y 2=1的圆心为(0,0), 圆心到直线y =k (x +3)的距离为|3k |k 2+1, 要使直线y =k (x +3)与圆x 2+y 2=1相交,则|3k |k 2+1<1,解得-24<k <24. ∴在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为24-⎝⎛⎭⎫-242=24. (2)设黑色小圆的半径为r .由题意得2r +2r +2×2r =1,解得r =18,所以白色区域的面积为π·⎝⎛⎭⎫122-4×π·⎝⎛⎭⎫182-π·⎝⎛⎭⎫142=π8.所以在正方形图案上随机取一点,该点取自白色区域的概率为π81×1=π8.故选D. 基础巩固一、选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B .14C .34D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.故选A.2.袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数: 343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B .16C .29D .518答案 C解析 由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29.故选C.3. (2021·河北六校联考)《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A.a 21-p r 2B .a 21+p r 2C.a1-p rD .a1+p r答案 A解析 由几何概型的概率计算公式,得πr 2-a 2πr 2=p ,化简得π=a 21-p r 2.故选A.4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( ) A.12 B .13C .34D .25答案 B解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.5.某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15—8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( )A.23 B .58C .13D .38答案 D解析 该职工在7:50至8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率p =1540=38.故选D.6.(2021·合肥质检)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC的概率为( ) A.13 B .49C .827D .1927答案 D解析 作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC, ∴V P -ABC ≤13V S -ABC 的概率p =1-827=1927.二、填空题7.(2020·太原模拟)下课以后,教室里还剩下2位男同学和1位女同学,若他们依次随机走出教室,则第2位走出的是女同学的概率是________.答案 13解析 2位男同学记为男1,男2,则三位同学依次走出教室包含的基本事件有:男1男2女,男1女男2,女男1男2,男2男1女,男2女男1,女男2男1,共6种,其中第2位走出的是女同学包含的基本事件有2种.故第2位走出的是女同学的概率是p =26=13.8.在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 ∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a , 则所求概率为33a a =33.9.(2021·郑州质量预测改编)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故p =212=16.三、解答题10.(2020·成都诊断)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030.(2)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M)=715.11.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=1115.能力提升12.(2021·长春质检)我国古人认为宇宙万物是由金、木、水、火、土这五种元素构成的,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出.这五种物质属性的相生相克关系如图所示,若从这五种物质中随机选取三种,则取出的三种物质中,彼此间恰好有一个相生关系和两个相克关系的概率为()A.35 B .12C .25D .13答案 B解析 (列举法)依题意,三种物质间相生相克关系如下表,金木水 金木火 金木土 金水火 金水土 金火土 木水火 木水土 木火土 水火土 × √√√×××√×√所以彼此间恰好有一个相生关系和两个相克关系的概率p =510=12,故选B.13.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.14.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.。
高考常考基础题9 古典概型和几何概型
高考常考基础题9 古典概型和几何概型1.(2020全国Ⅰ文4)设O为正方形ABCD的中心,在,,,,O A B C D中任取3点,则取到的3点共线的概率为()A.15B.25C.12D.452.(2020全国Ⅱ文理4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者(A.10名B.18名C.24名D.32名3.(2020江苏4】将一颗质地均匀的正方体骰子先后掷2次,观向上的点数,则点数和为5的概率是.4.(2019全国III文4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.85.(2020全国Ⅰ文17)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?6.(2019北京文17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2 000元的人数有变化?说明理由.7.(2019全国II文14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.。
高考文数学母题题源训练:古典概型、几何概型
【母题来源】2014重庆卷文-15【母题原题】某校早上8:00开始上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)所以()1151592202032 DEFABCDSP AS ∆⨯⨯===⨯正方形所以答案应填:932.【命题意图】本题考查不等式表示的平面区域、几何概型等知识,意在考查数形结合思想、转化与化归思想,同时考查考生运算能力.【方法技巧】将实际问题转化为几何概型中的长度、角度、面积、体积等常见几何概型的求解问题,构造出随机事件A对应的几何图形,利用几何图形的度量来求随机事件的概率,根据实际问题的具体情况,合理设置参数,建立适当的坐标系,在此基础上将试验的每一个结果一一对应于该坐标系的点,便可构造出度量区域.1.【2014高考陕西卷文第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D2.【2014高考湖北卷文第5题】随机投掷两枚均匀的投骰子,他们向上的点数之和不超过5的概率为1P ,点数之和大于5的概率为2P ,点数之和为偶数的概率为3P ,则( ) A . 321P P P << B . 312P P P << C . 231P P P << D . 213P P P <<3.【2014高考湖南卷文第3题】对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p ==4.【2014高考湖南卷文第5题】在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( )4.5A 3.5B 2.5C 1.5D5.【2014高考江西卷文3第题】掷两颗均匀的骰子,则点数之和为5的概率等于( )1.18A 1.9B 1.6C 1.12D6.【2014高考辽宁卷文第6题】若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2πB .4πC .6πD .8π7.【2014高考广东卷文第12题】从字母a 、b 、c 、d 、e 中任取两个不同的字母,则取到字母a 的概率为 . 【答案】【解析】所有的基本事件有(),a b 、(),a c 、(),a d 、(),a e 、(),b c 、(),b d 、(),b e 、(),c d 、(),c e 、(),d e ,8.【2014高考浙江卷文第14题】在三张奖劵中有一、二等各一张,另有一张无奖,甲乙两人各抽取一张,两人都中奖的概率为 .9.【2014高考上海卷文第13题】为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).10.【2014高考全国1卷文第13题】将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.11.【2014高考全国2卷文第13题】甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.12.【2014高考江苏卷第4题】 从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 .13.【山东省德州市2014届高三上学期期末考试】如图,设D 是边长为l 的正方形区域,E 是D 内函数y x =与2y x =所构成(阴影部分)的区域,在D 中任取一点,则该点在E 中的概率是( )14.【山东省济南外国语学校2014届高三上学期期中考试】已知}02,0,4|),{(},0,0,6|),{(≥-≥≤=≥≥≤+=Ωy x y x y x A y x y x y x ,若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为 ( )A .92 B .32 C .31 D .9115.【辽宁省铁岭市第一高级中学2013—2014学年高三上学期期中考试试题理】连续抛掷两次骰子,得到的点数分别为m,n ,记向量()(),,1,1a m n b →→==-的夹角为θ,则0,2πθ⎛⎤∈ ⎥⎝⎦的概率是( ) A.512 B. 12 C. 712 D. 5616.【2014高考福建卷文第13题】如图,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为___________.17.【2014高考山东文第16题】海关对同时从C B A ,,三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如右表所示,工作人员用分层抽样的方法从这些商品中共抽取6件进行检测.(1)求这6件样品中来自C B A ,,各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.地区 ABC数量5015010018.【2014高考陕西文第19题】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)0 1000 2000 3000 4000车辆数(辆)500 130 100 150 120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.19.【2014高考四川文第16题】一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.+=”的概率;(Ⅰ)求“抽取的卡片上的数字满足a b c(Ⅱ)求“抽取的卡片上的数字a,b,c不完全相同”的概率.20.【2014高考天津文第15题】某校夏令营有3名男同学C B A ,,和3名女同学Z Y X ,,,其年级情况如下表: 一年级 二年级 三年级 男同学A B C 女同学X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(1)用表中字母列举出所有可能的结果(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.21.【2014高考重庆文第17题】20名学生某次数学考试成绩(单位:分)的频数分布直方图如下:(I )求频率分布直方图中a 的值;(II )分别球出成绩落在[)6050,与[)7060,中的学生人数; (III )从成绩在[)7050,的学生中人选2人,求此2人的成绩都在[)7060,中的概率. 【答案】(I )0.005a =;(II )2,3;(III )310. 【解析】。
高中数学高考总复习----古典概型与几何概型巩固练习题(含答案解析)
高中数学高考总复习----古典概型与几何概型巩固练习题(含答案解析)1.(2015广东高考)已知5件产品有两件次品,其余为合格品.现从5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.12.在由数字1、2、3、4、5所组成的没有重复数字的二位数中,得到的数不能被5和2整除的概率为()A.0.2B.O.4C.0.6D.0.83.已知三棱锥SABC,在三棱锥内任取一点P,使得V P-ABC<V SABC的概率是()A. B.C. D.4.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是()A. B.C. D.5.平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平等线相碰的概率是()A. B.C. D.6.在△ABC中,角A、B、C所对的边分别是a、b、c,A=30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a、b,则满足条件的三角形有两个解的概率是()A. B.C. D.7.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A. B.C. D.8.在区间(0,1)内任取两个实数,则这两个实数的和大于的概率为()A. B.C. D.9.以连续两次抛掷一枚骰子得到的点数、得点,则点在圆内的概率为.10.某大学有包括甲、乙两人在内的5名大学生,自愿参加2010年上海世博会的服务,这5名大学生中3人被分配到城市足迹馆,另2人被分配到沙特馆.如果这样的分配是随机的,则甲、乙两人被分配到同一馆的概率是________.11.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是________.12.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是________.13.(2015重庆高考)在区间上随机地选择一个数p,则方程有两个负根的概率为.14.若不等式组表示的平面区域为M,x2+y2≤1所表示的平面区域为N,现随机向区域M内抛一粒豆子,则豆子落在区域N内的概率为________.15.(2015菏泽一模)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)计算甲班7位学生成绩的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.16.已知函数f(x)=-x2+ax-b.(1)若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;(2)若a,b都是从区间[0,4]任取的一个数,求f(1)>0成立时的概率.【参考答案】1.【答案】B【解析】这是一个古典概型,从5件产品任取2件的取法为;基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为故选B.2.【答案】B【解析】总的事件数为,得到的数不能被5和2整除的个位数只能为1或3,有,故所求概率为0.4.3.【答案】A【解析】当P在三棱锥的中截面与下底面构成的三棱台内时符合要求,由几何概型知,4.【答案】A【解析】5.【答案】A【解析】∵硬币的半径为r,∴当硬币的中心到直线的距离d>r时,硬币与直线不相碰.∴6.【答案】A【解析】要使△ABC有两个解,需满足的条件是,因为A=30°,所以,满足此条件的a,b的值有b=3,a=2;b=4,a=3;b=5,a=3;b=5,a=4;b=6,a=4;b=6,a=5,共6种情况,所以满足条件的三角形有两个解的概率是7.【答案】B【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此8.【答案】A【解析】设这两个实数分别为x,y,则,满足的部分如图中阴影部分所示.所以这两个实数的和大于的概率为9.【答案】【解析】连续两次抛掷一枚骰子得到的结果有种,点落在圆内的有,,,共4种,故所求的概率为.10.【答案】【解析】依题意得,甲、乙两人被分到同一馆的概率是.11.【答案】【解析】若用{1,2,3,4,5,6}代表6处景点,显然甲、乙两人在最后一个小时浏览的景点可能为{1,1}、{1,2}、{1,3}、…、{6,6},共36种;其中满足题意的“同一景点相遇”包括{1,1}、{2,2}、{3,3}、…、{6,6},共6个基本事件,所以所求的概率为.12.【答案】【解析】以A、B、C为圆心,以1为半径作圆,与△ABC交出三个扇形,当P落在其内时符合要求.∴13.【答案】【解析】方程有两个负根等价于解关于p的不等式组可得或所求概率为14.【答案】解析:如图,△AOB为区域M,扇形COD为区域M内的区域N,A(3,3),B(1,-1),S△AOB=,S扇形COD=,所以豆子落在区域N内的概率为15.【解析】(1)∵甲班学生的平均分是85,∴,∴x=5,∵乙班学生成绩的中位数是83,∴y=3;(2)甲班7位学生成绩的方差为s2==40;(3)甲班成绩在90分以上的学生有两名,分别记为A,B,乙班成绩在90分以上的学生有三名,分别记为C,D,E,从这五名学生任意抽取两名学生共有10种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)其中甲班至少有一名学生共有7种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E).记“从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生”为事件M,则.答:从成绩在90分以上的学生中随机抽取两名学生,甲校至少有一名学生的概率为.16.【解析】(1)a,b都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N=5×5=25个.函数有零点的条件为Δ=a2-4b≥0,即a2≥4b.因为事件“a2≥4b”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),所以事件“a2≥4b”的概率为,即函数f(x)有零点的概率为.(2)a,b都是从区间[0,4]任取的一个数,f(1)=-1+a-b>0,即a-b>1,此为几何概型.所以事件“f(1)>0”的概率为【巩固练习】1.(2015鄂州三模)已知函数若a是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为()A. B. C. D.2.某公共汽车每15分钟一班,乘客甲随机的到达车站,则甲等待的事件不超过3分钟的概率为()A. B. C. D.3.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于()A. B.C. D.4.在△ABC中,角A、B、C所对的边分别是a、b、c,A=30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a、b,则满足条件的三角形有两个解的概率是()A. B.C. D.5.在长为10的线段AB上任取一点M,以AM为半径作圆,则该圆的面积在和之间的概率为()A. B. C. D.6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A. B.C. D.7.已知P是△ABC所在平面内一点,++2=0,现将一粒黄豆随机撒在△PBC内,则黄豆落在△PBC内的概率是()A. B.C. D.8.在区间(0,1)内任取两个实数,则这两个实数的和大于的概率为()A. B.C. D.9.一个盒子内部有如图所示的六个小格子,现有桔子、苹果和香蕉各两个,将这六个水果随机地放入这六个格子里,每个格子放一个,放好之后每行、每列的水果种类各不相同的概率是()A. B.C. D.10.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π有零点的概率为()A. B.C. D.11.(2015江西二模)在区间内随机取两个数a,b,则使得函数有零点的概率为.12.若m∈(0,3),则直线(m+2)x+(3-m)y-3=0与x轴、y轴围成的三角形的面积小于的概率为________.13.(2015河东区一模)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)现往袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和不大于4的概率.14.(14分)设有关于的一元二次方程.(Ⅰ)若是从1,2,3,4,5四个数中任取的一个数,是从1,2,3,4三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若是从区间[1,5]任取的一个数,是从区间[1,4]任取的一个数,求上述方程有实根的概率.15.已知复数z=x+y i(x,y∈R)在复平面上对应的点为M.(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.【参考答案】1.【答案】D【解析】求导可得要满足题意需有两个不等实根即即,又a,b的取法共种,其中满足的有共6种故所求的概率为故选D.2.【答案】A【解析】甲等待的事件不超过3分钟的概率为.3.【答案】D【解析】在正六边形中,6个顶点选取4个,共有15种结果.选取的4点能构成矩形只有对边的4个顶点(例如AB与DE),共有3种,故所求概率为.4.【答案】A【解析】要使△ABC有两个解,需满足的条件是,因为A=30°,所以,满足此条件的a,b的值有b=3,a=2;b=4,a=3;b=5,a=3;b=5,a=4;b=6,a=4;b=6,a=5,共6种情况,所以满足条件的三角形有两个解的概率是5.【答案】A【解析】以半径为准,概率为.6.【答案】A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此P(A)=7.【答案】D【解析】由题意可知,点P位于BC边的中线的中点处.记黄豆落在△PBC内为事件D,则P(D)=8.【答案】A【解析】设这两个实数分别为x,y,则,满足的部分如图中阴影部分所示.所以这两个实数的和大于的概率为9.【答案】A【解析】依题意,将这六个不同的水果分别放入这六个格子里,每个格子放入一个,共有A66=720种不同的放法,其中满足放好之后每行、每列的水果种类各不相同的放法共有96种(此类放法进行分步计数:第一步,确定第一行的两个格子的水果放法,共有种放法;第二步,确定第二行的两个格子的水果放法,有种放法,剩余的两个水果放入第三行的两个格子),因此所求的概率等于10.【答案】B【解析】因为f(x)=x2+2ax-b2+π有零点,所以Δ=4a2-4(π-b2)≥0,即a2+b2-π≥0,由几何概型的概率计算公式可知所求概率为11.【答案】【解析】两个数a、b在区间内随机取,以a为横坐标、b为纵坐标建立如图所示直角坐标系,可得对应的点(a,b)在如图的正方形OABC及其内部任意取,其中A(0,4),B(4,4),C(4,0),O为坐标原点,若函数有零点,则解之得,满足条件的点(a,b)在直线a-2b=0的下方,且在正方形OABC内部的三角形,其面积为正方形OABC的面积为函数有零点的概率为12.【答案】【解析】直线与两个坐标轴的交点分别为(,0),(0,),又当m∈(0,3)时,,∴··<,解得0<m<2,∴P=三、解答题13.【解析】(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝,1红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和不大于4的有10种情况,所以概率为.14.【解析】设事件为“方程有实根”.当,时,方程有实根的充要条件为.(Ⅰ)基本事件共20个:事件中包含个基本事件,所以事件发生的概率为.(Ⅱ)试验的全部结果构成的区域为,∴,构成事件的区域为,∴,所以所求的概率为.15.【解析】(1)记“复数z为纯虚数”为事件A.∵组成复数z的所有情况共有12个:-4,-4+i,-4+2i,-3,-3+i,-3+2i,-2,-2+i,-2+2i,0,i,2i,且每种情况出现的可能性相等,属于古典概型,其中事件A包含的基本事件共2个:i,2i,∴所求事件的概率为P(A)==.(2)依条件可知,点M均匀地分布在平面区域内,属于几何概型,该平面区域的图形为下图中矩形OABC围成的区域,面积为S=3×4=12.而所求事件构成的平面区域为其图形如图中的三角形OAD(阴影部分).又直线x+2y-3=0与x轴、y轴的交点分别为A(3,0)、D(0,),∴三角形OAD的面积为S1==.∴所求事件的概率为。
17.2 古典概型与几何概型
17、概率17.2 古典概型与几何概型【知识网络】1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率。
2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。
【典型例题】[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .13(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ()A .61B .365 C .121 D .21 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为()A .56B .12C .13D .16(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3S”的概率为 .(5)任意投掷两枚骰子,出现点数相同的概率为 .[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。
[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.[例4]抛掷骰子,是大家非常熟悉的日常游戏了.某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.方案1:总点数是几就送礼券几十元.方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.【课内练习】1. 某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是 ()A .15B .524C .1081D .5122. 盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P 1,第8个人摸出红球的概率是P 8,则()A .P 8=18P 1B .P 8=45P 1 C .P 8=P 1D .P 8=03. 如图,A 、B 、C 、D 、E 、F 是圆O 的六个等分点,则转盘指针不落在阴影部分的概率为( )A .12B .13C .23D .144. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为()A .12B .13C .14D .235. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 .6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为 .7. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交AB 于P ,则同时满足:∠AOP ≥45°且∠BOP ≥75°的概率为 .8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.(1)共有多少个基本事件?(2)小曹能乘上上等车的概率为多少?第3题图C9.设A为圆周上一定点,在圆周上等可能的任取一点P与A连结,倍的概率.10.正面体ABCD的体积为V,P是正四面体ABCD的内部的点.①设“V P-ABC≥14V”的事件为X,求概率P(X);②设“V P-ABC≥14V且V P-BCD≥14V”的事件为Y,求概率P(Y).17、概率17.2 古典概型与几何概型A 组1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为 ( )A .2π B .2ππ- C D .4π2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( )A .12B .13C .14D .163. 已知椭圆22221x y a b+=(a >b >0)及内部面积为S=πab ,A 1,A 2是长轴的两个顶点,B 1,B 2是短轴的两个顶点,点P 是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA 1A 2为钝角三角形的概率为1; ②△PB 1B 2为直角三角形的概率为0;③△PB 1B 2为钝角三角形的概率为ba ;④△PA 1A 2为钝角三角形的概率为ba ;⑤△PB 1B 2为锐角三角形的概率为a ba-。
高中数学题库——古典概型与几何概型
15.(2017·江西新余一中、宜春一中高三联考)把半径为2的圆分成相等的四弧,再将四弧围成星形放在半径为2的圆内,现在往该圆内任投一点,此点落在星形内的概率为___41π-___.6.(2017·江西新余一中高三调研一) 已知圆22:20C x y x +-=,在圆C 中任取一点P ,则点P 的横坐标小于1的概率为( ) A .14 B .12 C .2πD .以上都不对 6.B 【解析】将2220x y x +-=配方得22(1)1x y -+=,故C(1,0),所以在圆内且横坐标小于1的点的集合恰为一个半圆面,所以所求的概率为12.8.(2017·江西吉安一中高三月考一)已知函数()cos6xf x π=,集合{}1,2,3,4,5,6,7,8,9M =,现在从M 中任取两个不同的元素,m n ,则()()0f m f n =的概率为( A ) A .512 B .712 C .718 D .794.(2017·江西赣中南五校高三测试一)墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为 的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( A )A. B. C. D.与a 的取值有关(2017·江西高三调研一)10(2017·吉林吉化一中高三检测).在区间⎝⎛⎭⎫0,π2上随机取一个数x ,使得0<tan x <1成立的概率是( )A . 18B . 13C . 12D .2π3.(2017·湖南师大附中高三月考一) 有一长、宽分别为50,30m m 的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同,一人在池中心(对角线交点)处呼唤工作人员,其声音可传出 152m ,则工作人员能及时听到呼唤(出现在声音可传到区域) 的概率是( B ) A .34B .38C .316πD .12332π+(2017·湖南长沙长郡中学高三周测)4.(2017·湖南长沙长郡中学高三入学考试)分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m n >的概率为( A ) A .710 B .310 C .35 D .25(2017·湖南长沙长郡中学高三周测)A9.(2017·湖南长沙长郡中学高三入学考试)若不等式组1010102x y x y y ⎧⎪+-≤⎪-+≥⎨⎪⎪+≥⎩表示的区域Ω,不等式2211()24x y -+≤表示的区域为Γ,向Ω区域均匀随机撒360颗芝麻,则落在区域Γ中芝麻约为( A )A .114B .10C .150D .507.(2017·湖南双峰一中高三月考一) 在区间上随机取两个实数y x ,,得82≤+y x 的概率为( ) A .41 B .163 C .169 D .43【答案】D12.(2017·湖南衡阳八中、永州四中高三联考一)[文科]在不等式组,所表示的平面区域内随机地取一点M ,则点M 恰好落在第二象限的概率为( ) A . B . C . D .【答案】B18.(2017·江西九江一中高三测试)(本小题满分12分) 已知函数a bx ax x f +-=2)(2(,a b R ∈ )(Ⅰ)若a 从集合{0,1,2,3}中任取一个元素,b 从集合{0,1,2,3}中任取一个元素,求方程()0f x =有.实根的概率; (Ⅱ)若b 从区间[0,2]中任取一个数,a 从区间[0,3]中任取一个数,求方程()0f x =没.有.实根的概率. 解:(1) b a ,取值情况是:)3,3(),2,3(),1,3(),0,3)(3,3(),2,2(),1,2(),0,2()3,1(),2,1(),1,1(),0,1)(3,0(),2,0(),1,0(),0,0(其中第一数表示a 的取值,第二数表示b 的取值.即基本事件总数为16.………2分 设“方程()0f x =恰有两个不相等实根”为事件A ,当0,0≥≥b a 时,“方程()0f x =恰有两个不相等实根”即为“a b ≥或0=a ” 于是此时b a ,取值情况:)3,3(),2,2(),1,1(),3,2(),3,1(),2,1(),3,0(),2,0(),1,0(),0,0(即A 包含的基本事件数为10.……4分∴“方程()0f x =恰有两个不相等实根”的概率851610)(==A P .………………6分 (2) b 从区间]2,0[中任取一个数,a 从区间]3,0[中任取一个数,则试验的全部结果构成区域{}20,30),(≤≤≤≤b a b a这是一个长方形区域,其面积632=⨯=ΩS ………………………8分 设“方程()0f x =没有实根”为事件B ,则事件B 所构成的区域为{}b a b a b a >≤≤≤≤,20,30),(其面积422216=⨯⨯-=MS. (10)分由几何概型的概率计算公式可得:“方程()0f x =没有实根”的概率3264)(==B P .………………………12分8.(2017·湖北枣阳阳光中学高三质检)在区间[01],上随机取两个数x y ,,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则A .1212p p <<B .2112p p << C .2112p p << D .1212p p << 8.D 【解析】 试题分析:试题分析:因为[01]x y ∈,,,对事件“12x y +≤”,如图(1)阴影部分1S ,对为事件“12xy ≤”,如图(2)阴影部分2S ,由图知,阴影部分的面积从下到大依次是1212S S <<,正方形的面积为111⨯=,根据几何概型公式可得1212p p <<.故选D .考点:几何概型.【名师点睛】本题考查几何概型概率问题,解题关键是确定平面区域及其面积.与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题.(2017·湖北枣阳鹿头中学高三月考)从52张扑克牌(没有大小王)中随机的抽一张牌,这张牌是J 或Q 或K 的概率为_______. 14.3136.(2017·湖北枣阳鹿头中学高三月考)在不等式组02,02x y ≤≤⎧⎨≤≤⎩所表示的平面区域内任取一点P ,若点P 的坐标(x,y)满足y kx ≥的概率为34,则实数k =( ) (A) 4 (B)2 (C)23 (D)126.D 【解析】试题分析:在平面直角坐标系上画出不等式组02,02x y ≤≤⎧⎨≤≤⎩所表示的平面区域,区域的面积为4,过原点作直线y kx ≥,可以从选择之中选取一个k 值,在正方形内使直线上方的面积为S ,且3443=⨯=S ,恰好选择D . 17.(2017·湖北枣阳高级中学高三月考)(本题12分)掷两枚骰子,求所得的点数之和为6的概率.17.点数之和为6”的概率为P=536. 【解析】 以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=536. 9.(2017·湖北枣阳期中高三开学测试)在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个x ,sin x 的值介于12-与12之间的概率为( ) (A)13 (B)2π (C)12 (D)23【解析】试题分析:在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个x ,试验结果构成的长度为π,当,66x ππ⎛⎫∈- ⎪⎝⎭,sin x 的值介于12-与12之间,长度为3π,有几何概型的概率计算公式当133P ππ==.考点:几何概型的概率计算公式.6.(2017·湖北利川一中高三月考)如图,矩形长为6,宽为2,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96颗,以此实验数据为依据可以估算出椭圆的面积约为A . 3.84 B. 4.84 C. 8.16 D. 9.16 C5.(2017·湖北重点中学高三起点考试)先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为( ). A. 121 B.61 C. 41 D.31C(2017·河南中原名校高三质检一)13.(2017·河北石家庄高三摸底)E 为正方形ABCD 内一点,则AEB ∠为钝角的概率是 。
高考数学最新真题专题解析—古典概型与几何概型(文科)
高考数学最新真题专题解析—古典概型与几何概型(文科)考向一古典概型【母题来源】2022年高考全国甲卷(文科)【母题题文】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A. 15B.13C.25D. 23【答案】C【试题解析】从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()() 1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,6 15种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62 155=.故选:C.【命题意图】本题主要考查古典概型的的概率计算公式,属于基础题.【命题方向】这类试题在考查题型上主要以选择填空形式出现,试题难度不大,多为抵挡题目,是历年高考的热点.常见的命题角度有:(1)列举法求古典概型的概率;(2)树状图法求古典概型的概率.【得分要点】(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率. 考向二 几何概型【母题来源】2021年高考全国卷(理科)【母题题文】在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为( ) A .79B .2332C .932D .29【答案】B【试题解析】设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y⎧⎫=<<<+⎨⎬⎩⎭,分别求出,A Ω对应的区域面积,根据几何概型的的概率公式即可解出. 【详解】 如图所示:设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111S Ω=⨯=.设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中的阴影部分,其面积为133********A S =-⨯⨯=,所以()2332A S P A S Ω== 【命题意图】本题主要考查几何概型的的概率计算公式,属于基础题.【命题方向】这类试题在考查题型上主要以选择填空形式出现,试题难度不大,多为抵挡题目,是历年高考的热点. 常见的命题角度有:(1)由长度比求几何概型的概率;(2)由面积比求几何概型的概率;(3)由体积比求几何概型的概率; (4)由角度比求几何概型的概率. 【得分要点】(1)能运用模拟方法估计概率. (2)了解几何概型的意义. 真题汇总及解析 一、单选题1.(河南省平顶山市2021-2022学年高一下学期期末数学试题)6把不同的钥匙中只有1把可以打开某个锁,从中任取2把能将该锁打开的概率为( ) A .23 B .12C .13D .16【答案】C 【解析】 【分析】将6把钥匙编号为a 、b 、c 、d 、e 、f ,不妨设能打开锁的为钥匙a ,列举出所有的基本事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.将6把钥匙编号为a、b、c、d、e、f,不妨设能打开锁的为钥匙a.从中任取2把,有:ab、ac、ad、ae、af、bc、bd、be、bf、cd、ce、cf、de、df、ef,共15种情况,能将锁打开的情况有5种,分别为ab、ac、ad、ae、af,故所求概率为51 153=.故选:C.2.(2022·广东茂名·二模)甲、乙、丙三人是某商场的安保人员,根据值班需要甲连续工作2天后休息一天,乙连续工作3天后休息一天,丙连续工作4天后休息一天,已知3月31日这一天三人均休息,则4月份三人在同一天工作的概率为()A.13B.25C.1130D.310【答案】B【解析】【分析】列举出三人所有工作日,由古典概型公式可得.【详解】解:甲工作的日期为1,2,4,5,7,8,10, (29)乙工作的日期为1,2,3,5,6,7,9,10, (30)丙工作的日期为1,2,3,4,6,7,8,9, (29)在同一天工作的日期为1,2,7,11,13,14,17,19,22,23,26,29∴三人同一天工作的概率为122305P==.3.(2022·安徽·合肥市第六中学模拟预测(文))“田忌赛马”的故事千古流传,故事大意是:在古代齐国,马匹按奔跑的速度分为上中下三等.一天,齐王找田忌赛马,两人都从上、中、下三等马中各派出一匹马,每匹马都各赛一局,采取三局两胜制.已知田忌每个等次的马,比齐王同等次的马慢,但比齐王较低等次的马快.若田忌不知道齐王三场比赛分别派哪匹马上场,则田忌获胜的概率为()A.12B.13C.14D.16【答案】D【解析】【分析】设齐王有上、中、下三等的三匹马A、B、C,田忌有上、中、下三等的三匹马a、b、c,列举出所有比赛的情况,以及齐王第一场比赛会派出上等马的比赛情况和田忌使自己获胜时比赛的情况,结合古典概型的概率公式可求得所求事件的概率.【详解】设齐王有上、中、下三等的三匹马A,B,C,田忌有上、中、下三等的三匹马a,b,c,所有比赛的方式有:Aa,Bb,Cc;Aa,Bc,Cb;Ab,Ba,Cc;Ab,Bc,Ca;Ac,Ba,Cb;Ac,Bb,Ca,一共6种.其中田忌能获胜的方式只有Ac,Ba,Cb1种,故此时田忌获胜的概率为16.故选:D.4.(2022·四川省泸县第二中学模拟预测(理))甲、乙两名同学均打算高中毕业后去A,B,C三个景区中的一个景区旅游,甲乙去A,B,C三个景区旅游的概率分别如表:则甲、乙去不同景区旅游的概率为( )去A 景区旅游 去B 景区旅游 去C 景区旅游 甲 0.4 0.2 乙 0.3 0.6D .0.52【答案】A 【解析】 【分析】由题可得甲、乙去同一景区旅游的概率,然后利用对立事件的概率公式即得. 【详解】由题可得甲乙去A ,B ,C 三个景区旅游的概率分别如表:去A 景区旅游 去B 景区旅游 去C 景区旅游 甲 0.4 0.2 0.4 乙 0.10.30.60.40.60.34+⨯=, 故甲、乙去不同景区旅游的概率为10.340.66-=. 故选:A.5.(2022·陕西·西北工业大学附属中学模拟预测(文))在区间[-2,12]中任取一个数x ,则[]8,13x ∈的概率为( )A .514B .27C .25D .13【答案】B 【解析】 【分析】根据几何概型的概率公式可求出结果. 【详解】根据几何概型的概率公式得[]8,13x ∈的概率为128212(2)7-=--. 故选:B.6.(2022·北京·北大附中三模)有一副去掉了大小王的扑克牌(每副扑克牌有4种花色,每种花色13张牌),充分洗牌后,从中随机抽取一张,则抽到的牌为“红桃”或“A ”的概率为( ) A .152B .827C .413D .1752【答案】C 【解析】 【分析】直接根据古典概型概率计算公式即可得结果. 【详解】依题意,样本空间包含样本点为52,抽到的牌为“红桃”或“A ”包含的样本点为16, 所以抽到的牌为“红桃”或“A ”的概率为1645213=,故选:C. 7.(2022·河北邯郸·二模)甲、乙两人玩一个传纸牌的游戏,每个回合,两人同时随机从自己的纸牌中选一张给对方.游戏开始时,甲手中的两张纸牌数字分别为1,3,乙手中的两张纸牌数字分别为2,4.则一个回合之后,甲手中的纸牌数字之和大于乙手中的纸牌数字之和的概率为( ) A .12 B .14C .34D .38【答案】B 【解析】 【分析】用列举法,结合古典概型计算公式进行求解即可. 【详解】甲手中的两张纸牌数字用{}1,3表示,乙手中的两张纸牌数字用{}2,4表示,一个回合之后,甲、乙两人手中的两张纸牌数字分别为:(1){}{}2,314、,; (2){}{}4,321、,;(3){}{}1,234、,:(4){}{}1,423、,共4种情况, 其中甲手中的纸牌数字之和大于乙手中的纸牌数字之和共有一种情况, 所以甲手中的纸牌数字之和大于乙手中的纸牌数字之和的概率为14,故选:B 8.(2022·河南省杞县高中模拟预测(理))在区间[]0,1上随机取两个数,则这两个数差的绝对值大于12的概率为( ) A .34B .12C .14D .18【答案】C 【解析】 【分析】设在[]0,1上取的两数为x ,y ,满足12x y ->,画出不等式表示的平面区域,结合面积比的几何概型,即可求解. 【详解】设在[]0,1上取的两数为x ,y ,则12x y ->,即12x y ->,或12x y -<-.画出可行域,如图所示,则12x y ->,或12x y -<-所表示的区域为图中阴影部分,易求阴影部分的面积为14,故所求概率11414P ==; 故选:C.9.(2022·全国·哈师大附中模拟预测(文))若在区间[]1,1-内随机取一个实数t ,则直线y tx =与双曲线2214xy -=的左、右两支各有一个交点的概率为( )A .14B .12C .18D .34【答案】B 【解析】 【分析】求出双曲线渐近线的斜率,根据已知条件可得出t 的取值范围,结合几何概型的概率公式可求得所求事件的概率. 【详解】双曲线的渐近线斜率为12±,则12t <,即1122t -<<,故所求概率为12P =, 故选:B.10.(2022·陕西·西北工业大学附属中学模拟预测(理))甲、乙两人约定某日上午在M 地见面,若甲是7点到8点开始随机到达,乙是7点30分到8点30分随机到达,约定,先到者没有见到对方时等候10分钟,则甲、乙两人能见面的概率为( ). A .13B .16C .59D .38【答案】B 【解析】 【分析】从早上7点开始计时,设甲经过x 十分钟到达,乙经过y 十分钟到达,可得x 、y 满足的不等式线组对应的平面区域为如图的正方形ABCD ,而甲乙能够见面,x 、y 满足的平面区域是图中的四边形EFGH .分别算出图中正方形和四边形的面积,根据面积型几何概型的概率公式计算可得. 【详解】解:从早上7点开始计时,设甲经过x 十分钟到达,乙经过y 十分钟到达, 则x 、y 满足0639x y ≤≤⎧⎨≤≤⎩,作出不等式组对应的平面区域,得到图中的正方形ABCD ,若甲乙能够见面,则x 、y 满足||1x y -≤, 该不等式对应的平面区域是图中的四边形EFGH ,6636ABCD S =⨯=,114422622EFGH BEHBFGS SS=-=⨯⨯-⨯⨯= 因此,甲乙能见面的概率61366EFGH ABCD S P S ===故选:B.二、填空题11.【2020·天津市红桥区高考二模】一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这一颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为________.【答案】1 12【解析】基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P=186×6×6=112.12.(2022·黑龙江·哈尔滨三中一模(理))关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学,每人随机写下一个x、y 都小于1的正实数对(),x y,再统计x、y两数能与1构成钝角三角形时的数对(),x y 的个数m,最后再根据m来估计π的值.假如统计结果是36m=,那么π的估计值为______.【答案】3.2【解析】【分析】(,)x y 表示的点构成一个正方形区域,x 、y 两数能与1构成钝角三角形时的数对(),x y 表示的点构成图中阴影部分,分别求出其面积,由几何概型概率公式求得其概率后可得.【详解】(,)x y 表示的点构成一个正方形区域,如图正方形OABC (不含边界),x 、y 两数能与1构成钝角三角形满足条件2211x y x y +>⎧⎨+<⎩,(,)x y 表示的点构成的区域是图中阴影部分(不含边界), 因此所求概率为113642142120P ππ-==-=,估计 3.2π≈.故答案为:3.213.(2022·河南·模拟预测)现有四张正面分别标有数字-1,0,-2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张记作m 不放回,再从余下的卡片中取一张记作n .则点(),P m n 在第二象限的概率为______. 【答案】16【解析】【分析】列出所有可能的情况,根据古典概型的方法求解即可【详解】由题,点(),P m n 所有可能的情况为()1,0-,()1,2--,()1,3-,()0,1-,()0,2-,()0,3,()2,1--,()2,0-,()2,3-,()3,1-,()3,0,()3,2-共12种情况,其中在第二象限的为()2,3-,()1,3-,故点(),P m n 在第二象限的概率为21126= 故答案为:1614.(2021·江西·新余市第一中学模拟预测(理))寒假即将来临,小明和小强计划去图书馆看书,约定上午8:00~8:30之间的任何一个时间在图书馆门口会合.两人商量好提前到达图书馆的人最多等待对方10分钟,如果对方10分钟内没到,那么等待的人先进去.则两人能够在图书馆门口会合的概率是_________.【答案】59【解析】先把两人能够会合转化为几何概型,利用几何概型的概率公式直接求解.【详解】设小明到达的时刻为8时x 分,小强到达的时刻为8时y 分,其中030,030x y ≤≤≤≤,则当|x-y |≤10时,两人能够在图书馆门口会合.如图示:两人到达时刻(x ,y )构成正方形区域,记面积为S ,而事件A :两人能够在图书馆门口会合构成阴影区域,记其面积为S 1 所以1900-22005()=9009S P A S ⨯==. 故答案为:59.【点睛】(1)几何概型的两个特征——无限性和等可能性,只有同时具备这两个特点的概型才是几何概型;(2)几何概型通常转化为长度比、面积比、体积比.三、解答题15.(2022·安徽·合肥市第八中学模拟预测(文))2022年2月20日,北京冬奥会在鸟巢落下帷幕,中国队创历史最佳战绩,北京冬奥会的成功举办推动了我国冰雪运动的及,让越来越多的青少年爱上了冰雪运动.某校体育组组织了一次冰雪运动趣味知识竞赛,并对成绩前15名的参赛学生进行奖励,奖品为冬奥吉祥物冰墩墩玩偶,现将100名喜爱冰雪运动的学生参赛成绩制成如下频率分布表,若第三组与第五组的频之和是第一组的6倍,试回答以下问题; 成绩分组 (50,60] (60,70] (70,80] (80,90] (90,100] 频率 b 0.26 a 0.18 0.06(2)如果规定竞赛成绩在(80,90]为“良好”,竟赛成绩在(90,100]为“优秀”,从受奖励的15名学生中利用分层抽样抽取5人,现从这5人中抽取2人,试求这2人成绩恰有一个“优秀”的概率.【答案】(1)0.08,0.42b a ==,估计值为85 (2)35【解析】【分析】(1)由题意结合频率之和等于1得出,a b ,再由频率、频数的关系得出受奖励的分数线的估计值;(2)分别求出良好、优秀的人数,再由分层抽样的性质结合列举法得出所求概率.(1)0.06610.260.18a b a b +=⎧⎨+=--⎩,∴0.08,0.42b a == 竞赛成绩在[90,100]分的人数为0.061006⨯=,竞赛成绩在[80,90)的人数为0.1810018⨯=,故受奖励分数线在[80,90)之间,设受奖励分数线为x ,则900.180.060.1510x -⨯+= 解得85x =,故受奖励分数线的估计值为85.(2)由(1)知,受奖励的15人中,分数在[85,90]的人数为9,分数在(90,100]的人数为6,利用分层抽样,可知分数在[85,90]的抽取3人,分数在(90,100]的抽取2人,设分数在(90,100]的2人分别为1A ,2A ,分数在[85,90]的3人分别为1B ,2B ,3B ,所有的可能情况有(1A ,2A ),(1A ,1B ),(1A ,2B ),(1A ,3B ),(2A ,1B ),(2A ,2B ),(2A ,3B ),(1B ,2B ),(1B ,2B ),(2B ,3B ),共10种, 满足条件的情况有(1A ,1B ),(1A ,2B ),(1A ,3B ),(2A ,1B ),(2A ,2B ),(2A ,3B )共6种,故所求的概率为63105P ==.16.(2020·江苏·一模)2021年江苏省高考实行“312++”模式,“312++”模式是指“3”为全国统考科目语文、数学、外语,所有考生必考;“1”为首选科目,考生须在高中学业水平考试的物理、历史2个科目中选择1科;“2”为再选科目,考生可在化学、生物、政治、地理4个科目中选择2科,共计6个考试科目.(1)若学生甲在“1”中选物理,在“2”中任选2科,求学生甲选化学和生物的概率;(2)设2220x ax b ++=是关于x 的一元二次方程,若[]0,3a ∈,[]0,2b ∈,求方程有实数根的概率.【答案】(1)16;(2)23【解析】【分析】(1)记学生甲选化学和生物为事件A ,求事件A 包含的基本事件的个数和总的基本事件的个数,由古典概型计算公式即可求解;(2)记方程有实根为事件B ,由几何概型概率公式计算即可求解.【详解】(1)记学生甲选化学和生物为事件A ,学生甲在“1”中选物理,在“2”中任选2科,包含的基本事件有:(化,生),(化,政),(化,地),(生,政)(生,地),(政,地)共有6个, 事件A 包含的基本事件为(化,生),共1个,所以()16P A =.(2)记方程2220x ax b ++=有实根为事件B ,总的基本事件区域为(){},|03,02a b a b ≤≤≤≤的面积,若方程2220x ax b ++=有实根,则22440a b ∆=-≥,即220a b -≥, 可得()()0a b a b +-≥,所以a b ≥,事件B 发生包含的区域为(){},|,03,02a b a b a b ≥≤≤≤≤的面积, 作图如下:所以事件B 发生的概率为()1322222323P B ⨯-⨯⨯==⨯,所以方程有实数根的概率为23.。
高考考点 考点33 古典概型、几何概型 含答案
1.(2021·湖北)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≥12”的概率,p 2为事件“|x -y |≤12”的概率,p 3为事件“xy≤12”的概率,则( )A .p 1<p 2<p 3B .p 2<p 3<p 1C .p 3<p 1<p 2D .p 3<p 2<p 12.(2020·湖北)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18B.14C.34D.78 3.(2020·陕西)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )A.15B.25C.35D.454.(2020·新课标全国Ⅰ)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.785.(2021·江苏)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.6.(2021·福建)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x2,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于________.7.(2020·重庆)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________(用数字作答).8.(2020·福建)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.9.(2020·辽宁)正方形的四个顶点A(-1,-1),B(1,-1),C(1,1),D(-1,1)分别在抛物线y=-x2和y=x2上,如图所示,若将一个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是________.10.(2020·江西)10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.11.(2020·山东)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.1.(2021·四川成都模拟)一个边长为2 m ,宽1 m 的长方形内画有一个中学生运动会的会标,在长方形内随机撒入100粒豆子,恰有60粒落在会标区域内,则该会标的面积约为( )A.35 m 2B.65 m 2C.125 m 2D.185 m 22.(2021·广东佛山模拟)某校高三年级学生会主席团共有5名同学组成,其中有3名同学来自同一班级,另外两名同学来自另两个不同班级.现从中随机选出两名同学参加会议,则两名选出的同学来自不同班级的概率为( )A. 0.35B. 0.4C. 0.6D. 0.73.(2021·贵州模拟)设实数a ,b 均为区间[0,1]内的随机数,则关于x 的不等式bx 2+ax +14<0有实数解的概率为( )A.12B.16C.13D.234.(2021·广东广州模拟)在平面直角坐标系xOy 中,设不等式组⎩⎪⎨⎪⎧-1≤x ≤1,0≤y ≤2所表示的平面区域是W ,从区域W 中随机取点M (x ,y ),则|OM |≤2的概率是________.5.(2021·青岛一模)在长为12 cm 的线段AB 上任取一点C ,现作一矩形,使邻边长分别等于线段AC 、CB 的长,则该矩形面积大于20 cm 2的概率为________.6.(2021·江南十校模拟)已知集合A ={(x ,y )||x |+|y |≤2,x ,y ∈Z }集合B ={(x ,y )|x 2+y 2≤2,x ,y ∈Z }在集合A 中任取一个元素a ,则a ∈B 的概率是________.7.(2021·山东莱芜模拟)已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是12.(1)求n 的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .①记“2≤a +b ≤3”为事件A ,求事件A 的概率;②在区间[0,2]内任取2个实数x ,y ,求事件“x 2+y 2>(a -b )2 恒成立”的概率.考点33 古典概型、几何概型【两年高考真题演练】1.B [在直角坐标系中,依次作出不等式⎩⎨⎧0≤x ≤1,0≤y ≤1,x +y ≥12,|x -y |≤12,xy ≤12的可行域如图所示:依题意,p 1=S 曲边多边形BACDE S 四边形OCDE, p 2=S 曲边多边形BOAFDG S 四边形OCDE ,p 3=S 曲边多边形GEOCF S 四边形OCDE, 因为S △ABO =S △BEG =S △DGF ,所以p 2<p 3<p 1.故选B.]2.D [如图,由题意知平面区域Ω1的面积S Ω1=S △AOM =12×2×2=2.Ω1与Ω2的公共区域为阴影部分,面积S 阴=SΩ1-S △ABC =2-12×1×12=74.由几何概型得该点恰好落在Ω2内的概率P =S 阴S Ω1=742=78.故选D.] 3.C [从5个点取2个共有C 25=10种取法,而不小于正方形边长的只有4条边与2条对角线,共6种,所以P =610=35.]4.D 由题意知基本事件总数为24=16,对4名同学平均分组共有C 24A 22=3(种), 对4名同学按1,3分组共有C 14种,所以周六、周日都有同学参加共有3×A 22+C 14A 22=14(种).由古典概型得所求概率为1416=78.]5.56 [这两只球颜色相同的概率为16,故两只球颜色不同的概率为1-16=56.]6.512 [由几何概型的概率公式:P =1-⎠⎛12x 2d x 4=512.]7.932 [用x 轴表示小张到校时刻,用y 轴表示小王到校时刻,建立如图直角坐标系.设小张到校的时刻为x ,小王到校的时刻为y ,则x -y ≥5.由题意,知0≤x ≤20,0≤y ≤20,可得可行域如图所示,其中,阴影部分表示小张比小王至少早5分钟到校.由⎩⎨⎧x -y =5,x =20得A (20,15). 易知B (20,20),C (5,0),D (20,0).由几何概型概率公式,得所求概率P =S △ACD S 正方形ODBE=12×15×1520×20=932.]8.2e 2 [根据题意y =e x 与y =ln x 互为反函数,图象关于y =x 对称,所以两个阴影部分的面积相等.联立y =e 与y =e x 得x =1,所以阴影部分的面积S =2⎠⎛01(e -e x )d x =2(e x -e x )⎪⎪⎪10=2[(e -e)-(0-1)]=2,又正方形面积为e 2,由几何概型可知所求概率为2e 2.]9.23 [由题意可知空白区域的面积为∫1-1[x 2-(-x 2)]d x =23x 3⎪⎪⎪⎪1-1=43.又正方形的面积为4,∴阴影部分的面积为4-43=83,∴所求概率为834=23.]10.12 [本题属于古典概型,由古典概型概率公式可得所求概率为C 13C 37C 410=12.] 11.解 (1)因为样本容量与总体中的个体数的比是650+150+100=150, 所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3,C 1,C 2.则抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=415,即这2件商品来自相同地区的概率为415.【一年模拟试题精练】1.B [由几何概型的概率计算公式可知,会标的面积约为60100×2=65,故选B.]2.D [来自同一班级的3名同学,用1,2,3表示,来自另两个不同班级2名同学用A ,B 表示,从中随机选出两名同学参加会议,共有12,13,1A ,1B ,23,2A ,2B ,3A ,3B ,AB 共10种,这两名选出的同学来自不同班级,共有1A ,1B ,23,2A ,2B ,3A ,3B 共7种,故这两名选出的同学来自不同班级概率P =710=0.7.]3.C [由题意,若b =0,a ≠0时不等式bx 2+ax +14<0有实数解; 若b ≠0,则Δ=a 2-b >0;作出平面区域如下,关于x 的不等式bx 2+ax +14<0有实数解的概率为图中阴影部分与正方形的面积比,S 阴=⎪⎪⎪⎪⎠⎛01a 2d a =13a 310=13;故S 阴S 正方形=131=13;故选C.] 4.2π+3312 [作出可行域如图所示:不等式组⎩⎪⎨⎪⎧-1≤x ≤1,0≤y ≤2所表示的平面区域W 是图中正方形ABCD ,则正方形ABCD 的面积是2×2=4.从区域W 中随机取点M (x ,y ),使|OM |≤2,则点M 落在图中阴影部分.在Rt △AOM 中,MA =3,∠AOM =π3,所以阴影部分的面积是2⎝ ⎛⎭⎪⎪⎫12×1×3+12×π6×22=3+2π3,故所求的概率是3+2π34=2π+3312.]5.23 [设AC =x ,则BC =12-x ,矩形的面积S =x (12-x )>20, ∴x 2-12x +20<0,∴2<x <10,由几何概率的求解公式可得,矩形面积大于20 cm 2的概率P =10-212=23.] 6.913 [满足集合A 的点有:(-2,0),(-1,-1),(-1,0),(-1,1),(0,-2),(0,-1),(0,0),(0,1),(0,2),(1,-1),(1,0),(1,1),(2,0)共13个,满足集合B 的有:(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共9个,则a∈B的概率是913.]7.解(1)依题意共有小球n+2个,标号为2的小球n个,从袋子中随机抽取1个小球,取到标号为2的小球的概率为nn+2=12,得n=2.(2)①从袋子中不放回地随机抽取2个小球共有12种结果,而满足2≤a+b≤3的结果有8种,故P(A)=812=23.②由①可知,(a-b)2≤4,故x2+y2>4,(x,y)可以看成平面中的点的坐标,则全部结果所构成的区域为Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},由几何概型得概率为P=4-14π×224=1-π4.。
(完整版)古典概念与几何概型(带答案).docx
古典概型与几何概型1.【 2018 年理新课标 I 卷】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形的三边所围成的区域记为I ,黑色部分记为IIABC的斜边,其余部分记为BC,直角边AB, AC.△ ABCIII.在整个图形中随机取一点,此点取自I , II, III的概率分别记为p1, p2, p3,则A. p 1=p2B. p1=p3C. p 2=p3D. p1=p2+p3【答案】 A【解析】分析:首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2, p3的关系,从而求得结果 .详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选 A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果 .2.【 2018 年理新课标 I卷】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】 A详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为 0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以 A 项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以 B 项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选 A.3.【 2018 年理数全国卷II 】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过 30 的素数中,随机选取两个不同的数,其和等于30 的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30 的素数,再确定两个不同的数的和等于30 的取法,最后根据古典概型概率公式求概率.详解:不超过30 的素数有2,3, 5, 7, 11, 13, 17, 19, 23, 29,共10 个,随机选取两个不同的数,共有种方法,因为 ,所以随机选取两个不同的数,其和等于 30 的有 3 种方法,故概率为 ,选 C.4.【2017 课标 1,理】 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称 .在正方形内随机取一点, 则此点取自黑色部分的概率是1π A .B .48 C .1π D .24【答案】 B【解析】【考点】几何概型5. 【 2017 山东,理8】从分别标有 1, 2 , , 9 的 9 张卡片中不放回地随机抽取2 次,每次抽取 1 张.则抽到的 2 张卡片上的数奇偶性不同 的概率是(A )5( B )4(C )5(D )18997 9【答案】 C【考点】古典概型6.【2017 江, 7】函数 f ( x)6 x x2的定域 D .在区[ 4,5]上随机取一个数x ,x D 的概率是▲.【答案】59【考点】几何概型概率7.( 2016 年全国 I 高考)某公司的班在7:30, 8:00, 8:30 ,小明在7:50至 8:30 之到达站乘坐班,且到达站的刻是随机的,他等不超10 分的概率是( A )1123 3(B)2( C)3( D)4【答案】 B8、( 2016 年全国 II 高考)从区0,1随机抽取2n 个数x1,x2,⋯,x n,y1,y2,⋯,y n,构成 n 个数x1 , y1, x2 , y2,⋯, x n , y n,其中两数的平方和小于 1 的数共有m个,用随机模的方法得到的周率的近似( A)4n( B)2n(C)4m( D)2m m m n n【答案】 C9.( 2016 年山高考)在[-1,1]上随机的取一个数k,事件“直y = kx 与( x-5)2 + y2 = 9 相交” 生的概率3【答案】.410.【2015 高考广东,理 4】袋中共有 15 个除了颜色外完全相同的球,其中有 10 个白球, 5个红球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 古典概型与几何概型[考纲要求]1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率.3.了解随机数的意义,能运用模拟方法估计概率.4.了解几何概型的意义.突破点一 古典概型[基本知识]1.基本事件的特点(1)任何两个基本事件都是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.3.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( )(3)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋,测其重量,属于古典概型.( )(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.( ) 答案:(1)× (2)× (3)× (4)√二、填空题1.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为________.答案:2 52.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________.答案:9 103.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.答案:5 6[典例](2018·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.[解](1)因为甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.②由①,不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.所以事件M发生的概率P(M)=5 21.[方法技巧]1.求古典概型概率的步骤(1)判断本试验的结果是否为等可能事件,设出所求事件A;(2)分别求出基本事件的总数n与所求事件A中所包含的基本事件个数m;(3)利用公式P(A)=mn,求出事件A的概率.2.求基本事件个数的三种方法(1)列举法:把所有的基本事件一一列举出来,此方法适用于情况相对简单的试验题.(2)列表法:将基本事件用表格的方式表示出来,通过表格可以弄清基本事件的总数,以及要求的事件所包含的基本事件数.(3)树状图法:树状图法是使用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段.[针对训练]1.(2018·全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4 D.0.3解析:选D设2名男同学为a,b,3名女同学为A,B,C,从中选出两人的情形有(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C),共10种,而都是女同学的情形有(A,B),(A,C),(B,C),共3种,故所求概率为310=0.3.2.(2019·大同一中月考)甲、乙两人玩一种游戏,在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(1)求甲赢且编号和为8的事件发生的概率.(2)这种游戏规则公平吗?试说明理由.解:(1)设“两个编号和为8”为事件A,则事件A包括的基本事件有(2,6),(3,5),(4,4),(5,3),(6,2),共5个.又甲、乙两人取出的数字共有6×6=36个等可能的结果,故P(A)=5 36.(2)这种游戏规则是公平的.设甲赢为事件B,乙赢为事件C,由题可知甲赢即两编号和为偶数所包含的基本事件数有(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6),共18个.所以甲赢的概率P(B)=1836=12,故乙赢的概率P(C)=1-12=12=P(B),所以这种游戏规则是公平的.突破点二几何概型[基本知识]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的两个基本特点(1)无限性:在一次试验中可能出现的结果有无限多个; (2)等可能性:每个试验结果的发生具有等可能性. 3.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积). [基本能力]一、判断题(对的打“√”,错的打“×”)(1)在一个正方形区域内任取一点的概率是零.( )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( )答案:(1)√ (2)√ (3)√二、填空题1.已知球O 内切于棱长为2的正方体,若在正方体内任取一点,则这一点不在球内的概率为________.答案:1-π62.已知四边形ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为________.答案:1-π43.已知函数f (x )=2x (x <0),其值域为D ,在区间(-1,2)上随机取一个数x ,则x ∈D 的概率是________.答案:13[全析考法]考法一 与长度、角度有关的几何概型[例1] (1)(2019·成都毕业班摸底)在区间[-4,1]上随机地取一个实数x ,若x 满足|x |<a的概率为45,则实数a 的值为( ) A.12B .1C .2D .3(2)(2019·福州四校联考)如图,在圆心角为90°的扇形AOB 中,以圆心O 为起点在上任取一点C 作射线OC ,则使得∠AOC 和∠BOC 都不小于30°的概率是( ) A.13 B.23C.12D.16[解析] (1)设集合A ={x ||x |<a }=(-a ,a )(a >0),若0<a ≤1,则A ⊆[-4,1],由几何概型的意义,得P (A )=a -(-a )1-(-4)=45,解得a =2,不符合题意,若a >1,则P (A )=1-(-a )1-(-4)=45,解得a =3,符合题意,故选D. (2)记事件T 是“作射线OC ,使得∠AOC 和∠BOC 都不小于30°”,如图,记的三等分点为M ,N ,连接OM ,ON ,则∠AON =∠BOM=∠MON =30°,则符合条件的射线OC 应落在扇形MON 中,所以P (T )=∠MON ∠AOB =30°90°=13,故选A. [答案] (1)D (2)A[方法技巧]1.与长度有关的几何概型如果试验的结果构成的区域的几何度量可用长度表示,可直接用概率的计算公式求解.2.与角度有关的几何概型当涉及射线的转动,扇形中有关落点区域问题时,应以角的大小作为区域度量来计算概率,且不可用线段的长度代替,这是两种不同的度量手段.考法二 与面积有关的几何概型[例2] (1)(2019·惠州调研)我国古代数学家赵爽在《周髀算经》一书中给出了勾股定理的绝妙证明.如图是赵爽的弦图.弦图是一个以勾股形(即直角三角形)之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积称为朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实=弦2,化简得:勾2+股2= 弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷1 000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A .866B .500C .300D .134(2)(2019·齐齐哈尔八中模拟)如图,四边形ABCD 为正方形,G 为线段BC 的中点,四边形AEFG 与四边形DGHI 也为正方形,连接EB ,CI ,则向多边形AEFGHID 中投掷一点,该点落在阴影部分内的概率为( ) A.13 B.25 C.38 D.12[解析] (1)设勾为a ,则股为3a ,所以弦为2a ,小正方形的边长为3a -a ,所以题图中大正方形的面积为4a 2,小正方形的面积为(3-1)2a 2,所以小正方形与大正方形的面积比为(3-1)24=1-32,所以落在黄色图形(小正方形)内的图钉数大约为⎝⎛⎭⎫1-32×1 000≈134.(2)设正方形ABCD 的边长为1,则可求得S 总=3,S 阴影=2×12×52×1×25=1,所以所求概率为P =13,故选A. [答案] (1)D (2)A[方法技巧]求解与面积有关的几何概型的关键点 求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.考法三 与体积有关的几何概型[例3] (2019·陕西部分学校摸底)在球O 内任取一点P ,则点P 在球O 的内接正四面体中的概率是( )A.112πB.312πC.239πD.36π[解析] 设球O 的半径为R ,球O 的内接正四面体的棱长为2a ,所以正四面体的高为233a ,所以R 2=⎝⎛⎭⎫63a 2+⎝⎛⎭⎫23a 3-R 2,即3a =2R ,所以正四面体的棱长为26R 3,底面面积为12×26R 3×2R =233R 2,高为4R 3,所以正四面体的体积为8327R 3,又球O 的体积为4π3R 3,所以P 点在球O 的内接正四面体中的概率为239π,故选C. [答案] C[方法技巧]求解与体积有关的几何概型的关键点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.[集训冲关]1.[考法一]已知函数f (x )=3sin x +3cos x ,当x ∈[0,π]时,f (x )≥ 3的概率为( ) A.13 B.12 C.15 D.14解析:选B f (x )=3sin x +3cos x =23sin ⎝⎛⎭⎫x +π3, ∵x ∈[0,π],∴x +π3∈⎣⎡⎦⎤π3,4π3,令f (x )≥ 3, 得sin ⎝⎛⎭⎫x +π3≥12,得π3≤x +π3≤5π6,∴0≤x ≤π2, ∴f (x )≥ 3的概率为12. 2.[考法三]在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解析:正方体的体积为2×2×2=8,以O 为球心,1为半径且在正方体内部的半球的体积为12×43πr 3=12×43π×13=23π,则点P 到点O 的距离大于1的概率为:1-23π8=1-π12. 答案:1-π123.[考法二]某人随机地在如图所示的正三角形及其外接圆区域内部投针(不包括三角形边界及圆的外界),则针扎到阴影区域(不包括边界)的概率为________.解析:设正三角形的边长为a ,圆的半径为R ,则正三角形的面积为34a 2.由正弦定理得2R =a sin 60°,即R =33a .所以圆的面积S =πR 2=13πa 2.由几何概型的概率计算公式得概率P =34a 213πa 2=334π. 答案:334π突破点三 概率与统计的综合问题[典例] (2019·广西南宁毕业班摸底)广场舞是现代城市群众文化、娱乐发展的产物,也是城市精神文明建设成果的一个重要象征.2018年某校社会实践小组对某小区参与广场舞的群众进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们的年龄分成6组:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80],得到如图所示的频率分布直方图.(1)计算这40名广场舞者中年龄分布在[40,70)的人数;(2)若从年龄在[20,40)的广场舞者中任选2名,求这2名广场舞者中恰有一人年龄在[30,40)的概率.[解](1)由题知,这40名广场舞者中年龄分布在[40,70)的人数为(0.02+0.03+0.025)×10×40=30.(2)由频率分布直方图可知,年龄在[20,30)的有2人,分别记为a1,a2,年龄在[30,40)的有4人,分别记为b1,b2,b3,b4.现从这6人中任选2人,共有如下15种选法:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4).其中恰有一人年龄在[30,40)的有8种,故这2名广场舞者中恰有一人年龄在[30,40)的概率P=8 15.[方法技巧]破解概率与统计图表综合问题的“三步曲”[针对训练](2019·贵阳摸底)某高校学生社团为了解“大数据时代”下大学生就业情况的满意度,对20名毕业生进行问卷调查(满分100分),得到如图所示的茎叶图.(1)计算男生打分的平均分,观察茎叶图,评价男、女生打分的分散程度;(2)从打分在80分以上的毕业生中随机抽取3人,求有2女1男被抽中的概率.解:(1)男生打分的平均分为110×(55+53+62+65+71+70+73+74+86+81)=由茎叶图知,女生打分比较集中,男生打分比较分散.(2)由图可知打分在80分以上的有3女2男,记3名女生分别为A 1,A 2,A 3,2名男生分别为B 1,B 2,从中随机抽取3人的基本事件为A 1A 2A 3,A 1A 2B 1,A 1A 2B 2,A 1A 3B 1,A 1A 3B 2,A 1B 1B 2,A 2B 1B 2,A 2A 3B 1,A 2A 3B 2,A 3B 1B 2,共10个,记“有2女1男被抽中”为事件A ,则A 包含的基本事件为A 1A 2B 1,A 1A 2B 2,A 1A 3B 1,A 1A 3B 2,A 2A 3B 1,A 2A 3B 2,共6个,故有2女1男被抽中的概率为35. [课时跟踪检测]1.(2019·长沙长郡中学选拔性考试)长郡中学要从师生推荐的参加讲课比赛的3名男教师和2名女教师中,任选2人参加讲课比赛,则选取的2人恰为一男一女的概率为( )A.25B.35C.13D.23解析:选B 从3名男教师和2名女教师中任选2人参加讲课比赛,基本事件总数为10,选取的2人恰为一男一女包含的基本事件个数为6,故选取的2人恰为一男一女的概率为P =m n =610=35.故选B. 2.(2019·合肥质检)某小组有男生8人,女生3人,从中随机抽取男生1人,女生2人,则男生甲和女生乙都被抽到的概率为( )A.16B.18C.112D.124解析:选C 某小组有男生8人,分别记为M 甲,M 2,M 3,M 4,M 5,M 6,M 7,M 8,女生3人,分别记为W 乙,W 2,W 3.从中随机抽取男生1人,女生2人的基本事件为(M 甲,W 乙,W 2),(M 甲,W 乙,W 3),(M 甲,W 2,W 3),…,(M 8,W 乙,W 2),(M 8,W 乙,W 3),(M 8,W 2,W 3),共24个,男生甲和女生乙都被抽到的基本事件为(M 甲,W 乙,W 2),(M 甲,W 乙,W 3),共2个,所以男生甲和女生乙都被抽到的概率为224=112.故选C. 3.(2019·广西五市联考)在{3,5}和{2,4}两个集合中各取一个数组成一个两位数,则这个数能被5整除的概率是( )A.12B.13C.14D.16解析:选C 在{3,5}和{2,4}两个集合中各取一个数组成的两位数有:32,34,52,54,23,25,43,45,共8个,其中能被5整除的两位数有:25,45,共2个,故所求概率P =28=14,选C. 4.(2019·成都外国语学校月考)《九章算术》中有如下问题:今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:已知直角三角形的两直角边长分别为8步和15步,问其内切圆的直径为多少步.现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概A.3π10B.3π20 C .1-3π10 D .1-3π20 解析:选D 直角三角形的斜边长为82+152=17,设内切圆的半径为r ,则8-r +15-r =17,解得r =3.∴内切圆的面积为πr 2=9π,∴豆子落在内切圆外的概率P =1-9π12×8×15=1-3π20. 5.(2019·长春质检)如图,扇形AOB 的圆心角为120°,点P 在弦AB 上,且AP =13AB ,延长OP 交弧AB 于点C ,现向扇形AOB 内投一点,则该点落在扇形AOC 内的概率为( )A.14B.13C.27D.38解析:选A 设OA =3,则AB =33,AP =3,由余弦定理可求得OP =3,则∠AOP=30°,所以扇形AOC 的面积为3π4,又扇形AOB 的面积为3π,从而所求概率为3π43π=14. 6.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为π3,若在圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是( )A .2-33πB .4-63πC .413-32πD .423 解析:选B 设圆的半径为r ,根据扇形面积公式和三角形面积公式得阴影部分的面积S =24×⎝⎛⎭⎫16πr 2-34r 2=4πr 2-63r 2,圆的面积S ′=πr 2,所以此点取自树叶(即图中阴影部分)的概率为S S ′=4-63π,故选B. 7.已知函数f (x )=13x 3+ax 2+b 2x +1,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( )A.79B.13C.59D.23 解析:选D f ′(x )=x 2+2ax +b 2,要使函数f (x )有两个极值点,则有Δ=(2a )2-4b 2>0,即a 2>b 2.由题意知所有的基本事件有9个,即(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.满足a 2>b 2的有6个基本事件,即(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),所以所求事件的概率为69=23. 8.(2019·安阳模拟)在边长为a 的正三角形内任取一点P ,则点P 到三个顶点的距离均大于a 2的概率是( ) A .1112-36π B .1-36π C .13D .14解析:选B 如图,正△ABC 的边长为a ,分别以它的三个顶点为圆心,a 2为半径,在△ABC 内部画圆弧,得到三个扇形,则点P 在这三个扇形外,因此所求概率为34a 2-12×π×⎝⎛⎭⎫a 2234a 2=1-36π,故选B.9.(2019·石家庄毕业班摸底)一个三位数,个位、十位、百位上的数字依次为x ,y ,z ,当且仅当y >x ,y >z 时,称这样的数为“凸数”(如243),现从集合{1,2,3,4}中取出三个不相同的数组成一个三位数,则这个三位数是“凸数”的概率为( )A.23B.13C.16D.112 解析:选B 从集合{1,2,3,4}中取出三个不相同的数组成一个三位数共有24个结果:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432,其中是“凸数”的是132,142,143,231,241,243,341,342,共8个结果,所以这个三位数是“凸数”的概率为824=13,故选B. 10.(2018·全国卷Ⅰ)如图,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3解析:选A 法一:∵S △ABC =12AB ·AC ,以AB 为直径的半圆的面积为12π·⎝⎛⎭⎫AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·⎝⎛⎭⎫AC 22=π8AC 2,以BC 为直径的半圆的面积为12π·⎝⎛⎭⎫BC 22=π8BC 2,∴S Ⅰ=12AB ·AC ,S Ⅲ=π8BC 2-12AB ·AC , S Ⅱ=⎝⎛⎭⎫π8AB 2+π8AC 2-⎝⎛⎭⎫π8BC 2-12AB ·AC =12AB ·AC . ∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=S ⅠS 总,p 2=S ⅡS 总, ∴p 1=p 2.故选A.法二:不妨设△ABC 为等腰直角三角形,AB =AC =2,则BC =22,所以区域Ⅰ的面积即△ABC 的面积,为S 1=12×2×2=2, 区域Ⅱ的面积S 2=π×12-⎣⎢⎡⎦⎥⎤π×(2)22-2=2, 区域Ⅲ的面积S 3=π×(2)22-2=π-2. 根据几何概型的概率计算公式,得p 1=p 2=2π+2,p 3=π-2π+2, 所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,故选A.11.甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污损,记甲、乙的平均成绩分别为x -甲,x -乙,则x -甲>x -乙的概率是________.解析:设污损处的数字为m ,由15(84+85+87+90+m +99)=15(86+87+91+92+94),得m =5,即当m =5时,甲、乙两人的平均成绩相等.m 的取值有0,1,2,3,…,9,共10种可能,其中,当m =6,7,8,9时,x -甲>x -乙,故所求概率为410=25. 答案:2512.(2018·湖北武汉模拟)某路公交车在6:30,7:00,7:30准时发车,小明同学在 6:50至7:30之间到达该车站乘车,且到达该站的时刻是随机的,则他等车时间不超过10分钟的概率为________.解析:小明同学在6:50至7:30之间到达该车站乘车,总时长为40分钟,公交车在6:30,7:00,7:30准时发车,他等车时间不超过10分钟,则必须在6:50至7:00或7:20至7:30之间到达,时长为20分钟,则他等车时间不超过10分钟的概率P =2040=12. 答案:1213.(2019·南京模拟)口袋中有形状、大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为________.解析:从袋中一次随机摸出2个球,共有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}6个基本事件,其中摸出的2个球的编号之和大于4包含的基本事件有{1,4},{2,3},{2,4},{3,4},共4个,因此摸出的2个球的编号之和大于4的概率为46=23. 答案:2314.已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是12. (1)求n 的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .①记“2≤a +b ≤3”为事件A ,求事件A 的概率;②在区间[0,2]内任取2个实数x ,y ,求事件“x 2+y 2>(a -b )2恒成立”的概率.解:(1)依题意共有小球n +2个,标号为2的小球n 个,从袋子中随机抽取1个小球,取到标号为2的小球概率为n n +2=12,得n =2. (2)①从袋子中不放回地随机抽取2个小球,(a ,b )所有可能的结果为(0,1),(0,2),(0,2),(1,2),(1,2),(2,2),(1,0),(2,0),(2,0),(2,1),(2,1),(2,2),共有12种,而满足2≤a +b ≤3的结果有8种,故P (A )=812=23. ②由①可知,(a -b )2≤4,故x 2+y 2>4,(x ,y )可以看成平面中的点的坐标,则全部结果所构成的区域为Ω={}(x ,y )|0≤x ≤2,0≤y ≤2,x ,y ∈R ,由几何概型得概率为P =22-14π·2222=1-π4. 15.(2019·昆明适应性检测)某校为了解高一学生周末的阅读时间,从高一年级中随机抽取了100名学生进行调查,获得了每人的周末阅读时间(单位:h),按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示.(1)求图中a 的值;(2)估计该校高一学生周末阅读时间的中位数;(3)在[1,1.5),[1.5,2)这两组中采用分层抽样的方法抽取7人,再从这7人中随机抽取2人,求抽取的2人恰好都在同一个组的概率.解:(1)由频率分布直方图可知,周末阅读时间在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]的频率分别为0.08,0.20,0.25,0.07,0.04,0.02,由1-(0.04+0.08+0.20+0.25+0.07+0.04+0.02)=0.5×a +0.5×a .解得a =0.30.(2)设中位数为m h.因为前5组的频率之和为0.04+0.08+0.15+0.20+0.25=0.72>0.5,而前4组的频率之和为0.04+0.08+0.15+0.20=0.47<0.5,所以2≤m <2.5.由0.50×(m -2)=0.5-0.47,解得m =2.06.故可估计该校高一学生周末阅读时间的中位数为2.06 h.(3)由题意得周末阅读时间在[1,1.5),[1.5,2)中的学生分别有15人、20人,按分层抽样的方法应分别抽取3人、4人,分别记作A ,B ,C 及a ,b ,c ,d ,从7人中随机抽取2人,共有AB ,AC ,Aa ,Ab ,Ac ,Ad ,BC ,Ba ,Bb ,Bc ,Bd ,Ca ,Cb ,Cc ,Cd ,ab ,ac ,ad ,bc ,bd ,cd ,共21种,抽取的2人在同一组的有AB ,AC ,BC ,ab ,ac ,ad ,bc ,bd ,cd,共9种,故所求概率P=921=37..。