《现代信号处理的理论和方法》共110页文档
现代信号处理
求离散时间信号x(t)为严格平稳随机信号的条件。
1.2相关函数、协方差函数、功率谱密度
1.2.1自相关函数、自协方差函数、功率谱密度
二阶统计量 相关函数:信号 x(t ) Rxx ( ; t ) E{x(t ) x* (t )} 协方差函数: Cxx ( ; t ) E{[ x(t ) mx (t )][ x(t ) mx (t )]*} 高阶统计量(k 3) k 阶矩: (t1 , , tk ) E{x(t t1 ) x(t t2 ) x(t tk )} k 阶累积量(cumulant) c(t1 , , tk ) cum{x(t t1 ), x(t t2 ), , x(t tk )}
2. 两个随机信号的二阶统计量(续)
互协方差函数
C xy ( ) E [ x(t ) mx ][ y (t ) m y ]* 不含直流分量
两个减去均值的信号存在共性部分(确定量)和非共性部 分(随机量),而共性部分相乘总是取相同符合,使得该 部分加强,从而保留下来;而两个信号的非共性部分是随 机的,它们的乘积有时为正,有时为负,通过数学期望的 平均运算后,会相互抵消。这表明,互协方差函数能把两 个信号的共性部分提取出来,并抑制掉非共性部分。因此 互协方差函数描述了两个信号之间的相关程度。但这种相 关程度是用绝对量衡量的,不方便,对互协方差进行归一 化,得到互相关系数,两个信号间的相关程度就直观了。
“零均值化”:均值不为0的信号减去其均值 注:一些书将“零均值化”信号的相关函数的Fourier变换 定义为功率谱。
自功率谱密度是实函数,而互功率谱是复函数。其实部称 同相谱,虚部称正交谱。
2. 两个随机信号的二阶统计量(续)
清华大学《现代信号处理》课件
现代信号处理(离散随机信号处理)电子工程系本课程要讨论的主要问题:(1)对信号特性的了解随机信号(随机过程,时间序列––随机过程的一个实现)信号模型→参数估计→现代谱估计:参数化谱估计讨论信号模型及模型参数的估计问题,比较参数谱估计方法和周期图方法的优劣。
(2)对统计意义下最优滤波器设计的研究平稳条件下:Wiener滤波器理论非平稳条件下:Kalman滤波理论上的目标,实际算法可达到的最佳结果(3)对环境的自适应,具备“学习能力”的滤波算法自适应均衡、波束形成、线性自适应滤波器(4)更多信息的利用,挖掘(针对非高斯问题)线性系统、功率谱:二阶矩,高斯过程的完全刻划非线性、多谱:高阶量,循环平稳(5)对时间(空间)–––频率关系的适应性:全局特性与局域特性,小波变换,时频分析信号处理算法设计面向的几个主要因素n信噪比n先验知识n雷达n通信系统n电子对抗n对先验知识的利用:统计基础上的假设、学习过程n算法复杂性与性能要求的匹配性一些进展中的课题盲自适应信号处理序列贝叶斯估计、粒子滤波阵列信号处理等等与信号处理紧密关联的学科人工神经网络统计学习理论模式识别等等教材n张旭东,陆明泉:离散随机信号处理,2005年10月,清华大学出版社主要参考书①S. Haykin, Adaptive Filter theory, Third Edition, Prentice-Hall, 1996,//Fouth Edition 2001 (电子工业出版社均有影印本)①S.M. Kay, Modern Spectral Estimation: Theory & Application,Prentice-Hall, 1988①S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall PTR, 1993.①S. Mallat, A Wavelet Tour of Signal Processing, Academic press, 1998,Second Edition 1999①扬福生, 小波变换的工程分析与应用, 科学出版社, 2000.① D. G. Manolakis, et,al. Statistical and Adaptive Signal Processing, Mcgraw-Hall, 2000.①J. G. Proakis, et al. Algorithms for Statistical Signal Processing, Prentice hall, 2002①张贤达现代信号处理第2版清华大学出版社课程成绩n平时作业10%n2个Matlab作业40%(布置后2周内提交)n期末开卷考试50%1.1随机信号基础被噪声干扰的初相位是随机值的正弦波信号本质上均是随机的,但将信号作为随机信号处理,还是做为确定信号处理,与我们的应用目标和我们的先验知识有关,一般地,我们总是选择对应用有利的处理方式。
现代信号处理
时频分析摘要:随着信息传递速度的提高,信号处理技术要求也在不断提高。
从信号频域可以观测信号特点,但是对于自然中的非平稳信号,仅仅频域观测不能反映信号频率在时间轴上的变化,由此提出了时频分析技术,可以产生时间与频率的联合函数,方便观测信号频率在时间轴上的变化。
在现有的时频分析技术中较为常见的算法有短时傅里叶变换、WVD、线性调频小波等。
本文介绍了以上几种常见的算法和时频分析的相关应用。
关键词:信号处理非平稳信号时频分析一.整体概况在传统的信号处理领域,基于 Fourier 变换的信号频域表示及其能量的频域分布揭示了信号在频域的特征,它们在传统的信号分析与处理的发展史上发挥了极其重要的作用。
但是,Fourier 变换是一种整体变换,即对信号的表征要么完全在时域,要么完全在频域,作为频域表示的功率谱并不能告诉我们其中某种频率分量出现在什么时候及其变化情况。
然而,在许多实际应用场合,信号是非平稳的,其统计量(如相关函数、功率谱等)是时变函数。
这时,只了解信号在时域或频域的全局特性是远远不够的,最希望得到的乃是信号频谱随时间变化的情况。
为此,需要使用时间和频率的联合函数来表示信号,这种表示简称为信号的时频表示。
时频分析的主要研究对象是非平稳信号或时变信号,主要的任务是描述信号的频谱含量是怎样随时间变化的。
时频分析是当今信号处理领域的一个主要研究热点,它的研究始于20世纪40年代,为了得到信号的时变频谱特性,许多学者提出了各种形式的时频分布函数,从短时傅立叶变换到 Cohen 类,各类分布多达几十种。
如今时频分析已经得到了许多有价值的成果,这些成果已在工程、物理、天文学、化学、地球物理学、生物学、医学和数学等领域得到了广泛应用。
时频分析在信号处理领域显示出了巨大的潜力,吸引着越来越多的人去研究并利用它。
1.1基本思想时频分布让我们能够同时观察一个讯号在时域和频域上的相关资讯,而时频分析就是在分析时频分布。
传统上,我们常用傅里叶变换来观察一个讯号的频谱。
现代信号处理算法PPT课件
通信信号处理
— 子空间方法
基于子空间的多用户检测 基于子空间的MIMO信道估计 基于子空间的自适应阵列 基于子空间的波达方向估计 基于子空间的时延和Doppler频移的估计 盲空时信号处理的子空间方法
27
通信信号处理
— 空时编码
基于空时编码的多用户接收机 基于空时编码的信道估计 自适应天线 空时处理的TDMA
作为信息载体的信号处理经历了从模拟到数字,从确 知到随机的发展过程,正阔步迈向以非平稳信号、非 高斯信号为主要研究对象和以非线性、不确定性为主 要特征的智能信号处理时代。
6
序言
通信担负着信息流通的功能,近一、二十年获得异乎 寻常的发展;各种基于因特网和移动网的新业务相继 出现,新概念和新技术层出不穷。标志性技术有:IP 技术、3G,4G移动通信技术、宽带接入技术、基于波 分复用技术的光传送网(WDM-OTN)技术。
10
信号处理的基础(续)
这些论文是:
The past, present, and future of multimedia signal processing. IEEE SP Magazine, July 1997
The past, present, and future of neural networks for signal processing. IEEE SP Magazine, Nov. 1997
30
通信信号处理
— Monte Carlo 统计信号处理
❖ Kalman滤波与Monte Carlo信号处理 - Kalman滤波: 线性状态空间模型问题(过程噪声和观测噪声 服从正态分布),解决高斯噪声情况下参数估计和滤波问题。 - MC处理(又称粒子滤波,particle filtering,使用MC仿真实现 递推Bayes滤波):非线性状态空间模型问题、解决非高斯噪 声情况下的参数估计和滤波问题。
现代信号处理
现代信号处理一 信号分析基础傅里叶变换的不足:()()1()()2j t j tX j x t e dtx t X j e d π∞-Ω-∞∞Ω-∞Ω==ΩΩ⎰⎰1.不具有时间和频率的“定位”功能;2.傅里叶变换对于非平稳信号的局限性;3.傅里叶变换在分辨率上的局限性。
频率不随时间变化的信号,称为时不变信号(又称为平稳信号),频率随时间变化的信号称为时变信号(又称为非平稳信号),傅里叶变换反映不出信号频率随时间变化的行为,只适合于分析平稳信号。
而我们希望知道在哪一时刻或哪一段时间产生了我们所要考虑的频率,现代信号处理主要克服傅里叶变换的不足,这些方法构成了现代信号处理。
分辨率包括频率分辨率和时间分辨率,含义是指对信号能作出辨别的时域或频域的最小间隔。
分辨率的好坏一是取决于信号的特点,二是取决于信号的长度,三是取决于所用的算法。
克服傅里叶变换不足的主要方法有:方法一:STFT (Short Time Fourier Transform )方法二:联合时频分析Cohen 分布,联合时频分析Wigner 分布 方法三:小波变换方法四:信号的子带分解,将信号的频谱均匀或非均匀地分解成若干部分,每一个部分都对应一个时间信号。
方法五:信号的多分辨率分析,与方法四类似,为了适应在不同频段对时域和频域分辨率的不同要求,可以将信号的频谱做非均匀分解。
明确概念:时间中心、时间宽度、频率中心和频带宽度 信号能量:2221()()()2E x t x t dt X j d π===ΩΩ<∞⎰⎰时间中心:21()()t t x t dt Eμ=⎰ 频率中心:21()()2x d EμπΩ=ΩΩΩ⎰ 时间宽度:22201()()t t t x t dt E ∞-∞∆=-⎰频率宽度:22221=()2X d Eπ∞Ω-∞∆ΩΩΩ-Ω⎰ 时宽和带宽:2,2t T B Ω=∆=∆品质因数=信号的带宽/信号的频率中心。
不定原理:给定信号x(t),若()0t t →∞=,则12t Ω∆∆≥当且仅当x(t)为高斯信号,即2()t x t Ae α-=等号成立。
第5讲 现代信号处理方法(2+2)
缺乏时频分析能力、多分辨率分析能力,难以分析非平稳信号
6
第5讲现代信号处理方法
5-1 5-2 5-3 5-4 5-5 傅里叶变换存在的问题 短时傅里叶变换 连续小波 离散小波与小波包 故障诊断中的应用
机械动态信号分析与处理
第5讲现代信号处理方法
5-2 短时傅里叶变换
FT
STFT
x( f ) x(t) e
机械动态信号分析与处理
第5讲现代信号处理方法
分析的时间位置,也即时间中心。
5-3 连续小波
函数 f (t ) 的连续小波变换定义为:
1 WT (a, b) a
x(t ) (
t b t b )dt x(t ), ( ) b是时移 a a
待分析序列 基函数
a是尺度因子
把基本小波作伸缩。 思考:时域伸缩,频域?
- 2jft
dt
x(t, f) [x(t) h(t - t' )] e-2jft dt
矩形窗
h(t )
高斯窗
h(t )
三角窗
h(t )
8
机械动态信号分析与处理
短时傅里叶变换
第5讲现代信号处理方法
非平稳信号
20Hz 80Hz 120Hz
h(t )
利用高斯窗STFT对非平稳信号进行分析
×
x(t)
X
0 a 1
35
机械动态信号分析与处理
连续小波---运算过程示意图
第5讲现代信号处理方法
(s,t)
Inner product
×
x(t)
X
50
a 1
36
现代信号处理
R x(y)E {x(t)y*(t)}
互协方差函数
C x(y ) E {x ( [ t)x ]y ( [ t )y ] * } Rxy()x*y
互相关系数
xy()
Cxy()
Cxx(0)Cyy(0)
主要性质
1.对零均值随机信号,相关函数与协方差函数
非平稳即不具有广义平稳。 例1.1.1
随机信号的遍历性
均方遍历:一个平稳信号,其n阶矩及较
低阶的所有矩都与时间无关,对所k 有1, ,n
和所有整数 t1,,tk ,恒有
N l i E m 2 N 1 1t N N x (t t1) x (t tk)(t1, ,tk)2 0
及 ,其k阶矩有界,并满足
( t 1 , ,t k ) ( t 1 , ,t k )
广义平稳(协方差平稳、弱平稳):均值为常 数,二阶矩有界,协方差函数与时间无关。
严格平稳:概率密度函数与时间无关。
3者关系 广义平稳是n=2的n阶平稳; 严格平稳一定广义平稳,反之则不一定;
等价
2. 0 时,自相关函数退化为二阶矩
Rxx(0)E{x(t)2}
3. 0时,协方差函数退化为方差 Cx(x0)Rx(x0)x2
4. R* xx()Rxx() 5. C* xx()Cxx() 6. C x(x)C x(x 0),
R* xy()Ryx()
白噪声
互功率谱密度
定义
P x(yf) Cx(y )ej2fd
互功率谱的实部称为同相谱,虚部称为正交谱。
相干函数
定义 C(f) Pxy(f)
特点
现代信号处理课件
P( H 0 ) H1 Lnl ( z ) Ln Ln ........( 1 28 ) H0 P( H1 )
则有 η=1,Lnη=0
21:20 24
§1-3最大后验概率准则 Maximum Posteriori Probability
称为最大后验概率准则,常简称为MAP准则。
即 p(z |H0) < p(z |H1)----(1-30) 时 判决为H1,否则判决为H0。 P(z | Hi), i=0, 1 为在给定观测值为z的条件下,Hi为真的概率, 此值为后验概率。
最大后验概率准则与最小总错误概率准则是等价的
21:20
26
例1: 设一个二元通信系统发送1V,0V的信号,受到2 为1/12w加性高斯噪声的干扰。系统发送1V 0V信号的 概率分别是0.6和0.4,代价分别为C00= -2, C01=8, C10= 6,
假设――所要检验的对象的可能情况或状态
检验――检测系统所做的判决过程
21:20 13
检测分类
二元检测:只有两种可能的假设
多元检测:有多个可能的假设 复合假设:信号是一随机过程的实现,其均 值或方差可处于某个数值范围内
序列检测:按取样观测值出现的次序进行处 理和判决
21:20 14
二元假设检验可能的情况
H0假设为真,判决H0(正确);代价-C00 H1假设为真,判决H0(漏警);代价-C01
H0假设为真,判决H1(虚警);代价-C10 H1假设为真,判决H1(正确);代价-C11
21:20 15
贝叶斯准则(Bayes)
代价、风险最小
源有两个输出,两个输出发生的概率已知,即先验概率已知P(H0), P(H1)分 别为假设H0和H1发生的概率。
汽车故障诊断技术-现代信号处理方法概论
250
300
0 样本点 n/个
检测出脉冲信号
并实例分析
模拟齿轮的裂纹故障 实验中采样频率为20kHz 转速1500r/min,齿数30 Wf(a,b)2
齿轮振动信号的尺度谱图
t=4ms, a=1.3~1.5
t=44ms, a=1.3~1.5
齿轮振动信号
齿轮振动信号时域图(a=1.3)
x(t)
X
200 a 1
连续小波---运算过程示意图
0
(s,t)
×
Inner product
x(t)
X
200 a 1
连续小波---运算过程示意图
(s,t)
×
Inner product
x(t)
X
0 a 10
连续小波---运算过程示意图
(s,t)
×
Inner product
x(t)
X
50 a 10
小波包
从时域来看小波包分解
每一层的小波包数目比上一层中的小波包数目增加一倍 每个小波包的数据长度比上一层小波包数据长度减半 每个小波包的时域分辨率比上一层小波包的时域分辨率减半
小波包
从频域来看小波包分解
每个小波包数据是原始信号在不同频率段上的成分 小波包的频带相邻,并且带宽相等 分解的层数越多,频率段划分得越细
第5层小波包分解 23号小波包重构
轴的转动周期
一个周期内约有9 个冲击,与理论分 析相符,说明小 波包分解有效
故障诊断中的应用---轴承外圈剥落
最高分析频率
f = fs /2 = 20/2 = 10 KHz 每个小波包的频率带宽为
d = f /32 =312.5 Hz 频谱图中的频率范围
中科院课件--《现代信号处理的理论和方法》Chapter+1
d3
0 -5 0 1 100 200 300 400
a4
0 -5 0 100 200 300 400
d4
0 -1 0 100 200 300 400
4、 盲信号处理技术
利用系统的输出观测数据,通过某种信号处 理的手段,获取我们感兴趣的有关信息。 盲源分离、盲均衡、盲系统辨识
第一章 信号分析基础
x(n)
↓2
d3(n)
H0(z)
↓2
H1(z)
↓2
H0(z)
↓2
a3(n)
j=1 j=2
H0(z) a2(n)
↓2
信号的二进制分解
j=3
x(t ) sin(2 f1t ) sin(2 f 2t ) sin(2 f3t ) s1 (t ) s2 (t ) s3 (t ) f1 1Hz, f 2 20Hz, f3 40Hz, f s 200 Hz, N 400
x ( n)
v0 (n)
↑M
u0 ( n )
G0(z)
x1 (n)
H1(z) ↓M
v1 (n)
↑M
u1 (n)
G1(z)
xM 1 (n)
HM-1(z) ↓M
vM 1 (n)
↑M
uM 1 (n)
GM-1(z)
ˆ ( n) x
M 通道滤波器组
例 假定要传输如图所示信号x(t),它由两个正弦信号加白噪 声组成。若用数字方法,其传输过程包括对x(t)的数字化、 量化、编码及调制等步骤。若对信号用抽样率fs进行抽样, 每一个抽样数据为16bit,那么其1s数据所需bit数是16fs。对 其抽样信号x(n)作傅里叶变换,频谱如图所示。
中科院课件--《现代信号处理的理论和方法》Chapter+3
2、 STFT的时间、频率分辨率
由定义可知,STFT实际分析的是信号的局部谱,局部谱的 特性决定于该局部内的信号,也决定于窗函数的形状和长度。
Gt, f
v
g
ut
e j2 fue-j2vudu G
v f
e j 2 v f t
频域加窗G v f :
STFTz (t,
f
)
1、连续短时傅里叶变换的定义
STFTz (t, f )
z
(u
)
g
*
(u
t
)
e-j2
fu
du
z u g*(u t), ej2 fu z u , g(u t)ej2 fu
z u, gt, f (u)
不断地移动t,即不断地移动窗函数g u的中心位置,
取出信号在分析时间点t附近的傅立叶变换(称之为 “局部频谱”)。
STFTz (t, f )
e j2 f0u g(u t)e-j2 fudu G
f f0
e-j2 f f0 t
STFT的频率分辨率由g(u)的频谱G f 的宽度决定。
例1、若g(u) 1,u,则G f f ,则
STFTz (t, f ) Z f
STFT 即减为简单的FT,不能给出任何时间定位信息。
(t)
amn mn (t)
m n
amn (t mT )e j2 nFt
m n
amn
t
g*
t mT
e j 2 nFt dt
t
gm* n
t
dt
t 是g t 的对偶函数, mn t 是gmn t 的对偶Gabor基函数。
Gabor变换与STFT的区别与联系:
现代信号处理
2015年12月20日
机械工程学院机自所动态室
3
第七章 基于第二代小波变换的信号处理
7.1 第二代小波变换原理 7.2 预测器和更新器 7.3 第二代小波包分析 7.4 冗余第二代小波变换
2015年12月20日
机械工程学院机自所动态室
4
第七章 基于第二代小波变换的信号处理
7.1 第二代小波变换原理 7.2 预测器和更新器 7.3 第二代小波包分析 7.4 冗余第二代小波变换
(7.1.5)
右边界受影响的情况有 D 种,预测器统一表示为
P(se ) p1se (L' N 1) p2se (L' N 2) ... pN se (L' )
(7.1.6)
L'为偶样本序列 se 的长度。
2015年12月20日
机械工程学院机自所动态室
8
7.1 第二代小波变换原理
(7.2.3)
2015年12月20日
机械工程学院机自所动态室
16
7.2 预测器和更新器
7.2.2 更新器系数计算方法
设在更新阶段,更新器U 的个数为 N~(N~ 2D~ ,D~ 为正整 数),预测器 P 的个数为N(N 2D ,D 为正整数)。
将 P 和 U 代入第二代小波重构等效高通滤波器表达式, 则得到重构等效高通滤波器 g表达式如下
2015年12月20日
机械工程学院机自所动态室
10
7.1 第二代小波变换原理
第二代小波变换的重构过程由三部分组成:恢复更新、
恢复预测和合并。其过程实现如图7.1.3所示。
s
se
重构
-U
P
(merge)
S
d
现代信号处理的理论和方法》2
c4 x 1 , 2 cum x1 , x2 , x3 , x4 E x t x t 1 x t 2 x t 3 E x t x t 1 E x t 2 x t 3 E x t x t 2 E x t 1 x t 3 E x t x t 3 E x t 1 x t 2 E x1 , x2 , x3 , x4 cum x1 , x2 , x3 , x4 cum x1 , x2 cum x3 , x4 cum x1 , x3 cum x 2 , x4 cum x1 , x4 cum x2 , x3
应用:
高阶谱可以自动抑制各种加性高斯噪声; 高阶谱可以用来重构信号的幅度和相位; 高阶谱可以用来检测时间序列的非线性结构。
高阶矩与高阶累积量的定义
单个随机变量x的高阶矩与高阶累积量:
函数g(x)的均值: E g x f ( x) g x dx
def
q
注:求和取遍所有可能的划分。
集合I={1,2,3}的分割
(1)、分割为一个子集合:q=1
I 1,2,3 mx I cumx t x t 1 x t 2
(2)、分割为两个子集合:q=2
I1 1 , 2,3 mx I1 cum x t cum x t 1 x t 2 I 2 2 , 1,3 mx I 2 cum x t 1 cum x t x t 2 I 3 3 , 1, 2 mx I 3 cum x t 2 cum x t x t 1
中科院课件---《现代信号处理的理论与方法》课程回顾祥解
时频分布 : P t,
R t, , e j
WVD :Wx t,
R t, , e j
AF : Ax , v R t, , e jvt
n
EMD : x t ck rn k 1
时频分析
❖ 线性时频分析方法(STFT,Gabor变换,WT) 使用时间和频率的联合函数描述信号的频谱 随时间的变化情况;
《现代信号处理的理论与方法》课程回顾
❖ 信号分析基础 ❖ 时频分析方法 ❖ 高阶统计和高阶谱方法 ❖ 多抽样率信号处理技术 ❖ 盲信号处理技术
解析信号
❖ 对于实信号s(t),它的Hilbert变换为:
sˆt
st ht
st 1
t
1
s
d
t
由此可得解析信号为:
zt st jsˆt ate jt
幅值和相位分别为:
at s2 t sˆ2 t
t
arctan
sˆt st
瞬时频率
❖ 瞬时频率:表征了信号在局部时间点上的瞬态频 率特性,整个持续期上的瞬时频率反映了信号频 率的时变规律。
fi
t
1
2
d dt
arg
zt
1
0 E
'(t) | x(t) |2 dt
➢ 信号的中心频率是其瞬时频率在整个时间轴上的加 权平均。
amn Gabor展开系数; g(t) 母函数;
gmn (t) m, n阶Gabor基函数,它是由g(t)做移位和调制生成的。
❖ Gabor变换与STFT的区别与联系:
➢ STFT的窗函数必须是窄窗,而Gabor变换的窗函数 无此限制,可以将Gabor变换看成是一种加窗的傅 立叶变换,它的适用范围比STFT适用范围更广泛;
现代信号处理的理论和方法》Chapter1PPT课件
信号的多分辨率分析
对频带的不均匀剖分产生了不同的时间、频率分辨 率,对快变信号需要好的时间分辨率,对慢变信号 需要好的频率分辨率。
d1(n)
H1(z)
↓2
x(n)
d2(n)
a1(n)
现代信号处理的理论与方法
预修课程
概率论与数理统计 信号与系统 数字信号处理 随机过程
课程特点及主要内容
以平稳随机信号处理技术为基础,主要讲授 现代数字信号处理的新理论和新技术。
非平稳随机信号的处理方法; 非高斯信号处理方法; 多抽样率信号处理技术; 盲信号处理技术
成绩评定
课堂作业 40% 闭卷考试 60%
盲源分离、盲均衡、盲系统辨识
第一章 信号分析基础
1.1 随机信号的统计描述 1.2 信号的时间和频率 1.3 信号的时间分辨率和频率分辨率 1.4 信号的时宽和带宽 1.5 信号的分解
1.1.1 信号的分类
信号的分类:
➢ 确定性信号 ➢ 随机信号:
✓ 平稳随机信号 ✓ 非平稳随机信号
1.1.2 随机信号的统计描述
➢均值、均方值和方差:
mx(n)E[X(n)] x(n)pXn(x,n)dx
Dx2(n)E[ X(n)2]
1、高阶统计和高阶谱方法
功率谱只揭示了该随机序列的幅度信息,而 没有反映出其相位信息。要准确描述随机信 号,仅使用二阶统计量是不够的,还要使用 高阶统计量。
2、 时频分析技术
有效地克服了傅里叶变换存在的不足
FT
X(j )x(t),ej t
X (t, ) x(t),t,
现代信号处理完整版.doc
意:正态和白色是两个不同的概念,前者指信号取值 服从的规律,后者指信号不同时刻的相关性 信号的比较与区分——独立性、相关性与正交性(1) 两个随机序列 x(n)和 y(n)是统计独立的,若联合概 率密 度 函 数 f XY x, y 等于 x(n) 的概率密度函数
f X x 与 y(n) 的概率密度函数 fY y 的乘积。即
m q
q
传递函数 H ( z )
q
1 ak z k
k 1
r 0 p
br z r
B( z ) A( z )
结合
S x(z ) 2
m q
q
[ bk m bk ] z m
k 0
q |m|
若 u(n)是一个方差为 2 的白噪声,则 x(n)的功率谱
设 {x(n), n 0,1,2 N 1}为随机序列
f XY ( x, y ) f X ( x) fY ( y );(2)两个随机序列 x(n)和
y(n)是统计不相关的,若对于所有的 m,它们的互协
X (e j ) x(n)e-jm
m 0
N 1
限方差的平稳 ARMA 或 MA 模型都可以表示成唯一的、 阶数可能是无穷大的 AR 模型;同样地任何一个有限 方差的平稳 ARMA 或 AR 模型都可以表示成唯一的, 阶 数可能是无穷大的 MA 模型。
y(n m )] 互相关函数 R xy(m ) E[x(n )
高斯(正态)随机序列
R x( m )
一、
设
1 2 π
π
-π
S x(ej ) ejm d
维纳-辛钦公式 J.Tukey )
中科院课件--《现代信号处理的理论和方法》Chapter+4
类型I 多相表示: H ( z) z
l 0 M 1 l
h(Mn l ) z
n 0 n 0
Mn
z l El ( z M )
l 0
M 1
其中,El ( z ) h( Mn l ) z
n
el (n) z n
是一个半带滤波器要设计一个的且功率互补的满足可以先设计一个半带滤波器再利用谱分解方法将其分解为谱分解定理如果功率谱pxx是平稳随机序列xn的有理谱那么一定存在一个零极点均在单位圆内的有理函数hz满足我们总可以用单位圆内部的零极点组成一个系统hz该系统自然是最小相位系统又因为系统系数是实数圆外的零极点必定与圆内的零极点共轭对称
L2
图5.3.1信号的插值 注:见胡广书《现代信号处理教程》图5.3.1
频域表示:
x n 和 (n)各自DTFT 之间的关系: V (e j )
n
( n) e
j n
n
x ( n L )e
j n
k
x(k )e jkL
谱等于原信号 x(n ) 的频谱先作M倍的扩展,再在 轴上作 2 k k 1, 2, , M 1 的移位,幅度降为原来 的1/M后再叠加。
M=3
f s 2Mf c
图5.2.2 信号抽取后频谱的变化 注:见胡广书《现代信号处理教程》图5.2.2
M=2
Y (e j )
1 j / 2 j / 2 X ( e ) X ( e ) 2
c | | L H (e ) 0 其它
j
图5.3.3 插值后的滤波 注:见胡广书《现代信号处理教程》图5.3.3
现代信号处理第3章
F ( x)
W ( l ) W ( 0 x) y l W ( r ) W ( 0 x) yr
X n xk e j 2nk / N
k 0
N 1
(3.1.20)
式中,X n X (n), n 0, 1, 2,..., N 1, xk x(k )
2013年10月16日 机械工程学院机自所动态室 13
3.1 信号的频谱和FFT算法及应用
3.1.4 快速傅里叶变换(FFT) FFT先对原数据序列按奇、偶逐步进行抽取。 原始序列 第一次抽取 第二次抽取 第三次抽取 x0 x0 x0 x0 x1 x2 x4 x4 x2 x4 x2 x2 x3 x6 x6 x6 x4 x1 x1 x1 x5 x3 x5 x5
2013年10月16日 3
机械工程学院机自所动态室
3.1 信号的频谱和FFT算法及应用
3.1.1 傅里叶级数与离散频谱
根据傅里叶级数理论,任何周期性信号 x(t ) 均可展开为 若干简谐信号的叠加。
x(t ) a0 (an cos n 0t bn sin n 0t )
n 1
2013年10月16日
X ( ) 频谱的例子,见p45。
w(t )
机械工程学院机自所动态室
10
3.1 信号的频谱和FFT算法及应用
傅里叶变换的性质
1、线性叠加性质 若 x1 (t ) X 1 ( ) ,则 x2 (t ) X 2 ( )
a1 x1 (t ) a2 x2 (t ) a1 X 1 ( ) a2 X 2 ( )