数据挖掘综述PPT课件
合集下载
第1章 《数据挖掘》PPT绪论
Wisdom
Knowledge
Information
Data
3 of 43
1.1数据挖掘基本概念
第一章 绪论
1.1.1 数据挖掘的概念
数据挖掘、数据库、人工智能
• 数据挖掘是从数据中发掘知识的过程,在这个过程中人工智能和数据库技术可以作 为挖掘工具,数据可以被看作是土壤,云平台可以看作是承载数据和挖掘算法的基 础设施 。在挖掘数据的过程中需要用到一些挖掘工具和方法,如机器学习的方法。 当挖掘完毕后,数据挖掘还需要对知识进行可视化和展现。
21 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
• WEKA WEKA 是一个基于JAVA 环境下免费开源的数据挖掘工作平台,集合了大量能承担数据 挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及 在新的交互式界面上的可视化。
22 of 43
1.3数据挖掘常用工具
•R • Weka • Mahout • RapidMiner • Python • Spark MLlib
第一章 绪论
20 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
•R R是用于统计分析和图形化的计算机语言及分析工具,提供了丰富的统计分析和数据挖 掘功能,其核心模块是用C、C++和Fortran编写的。
为了提高系统的决策支持能力,像ERP、SCM、HR等一些应用系统也逐渐与数据 挖掘集成起来。多种理论与方法的合理整合是大多数研究者采用的有效技术。
12 of 43
1.2 数据挖掘起源及发展历史
第一章 绪论
3 数据挖掘面临的新挑战
随着物联网、云计算和大数据时代的来临,在大数据背景下数据挖掘要面临的挑 战,主要表现在以下几个方面:
Knowledge
Information
Data
3 of 43
1.1数据挖掘基本概念
第一章 绪论
1.1.1 数据挖掘的概念
数据挖掘、数据库、人工智能
• 数据挖掘是从数据中发掘知识的过程,在这个过程中人工智能和数据库技术可以作 为挖掘工具,数据可以被看作是土壤,云平台可以看作是承载数据和挖掘算法的基 础设施 。在挖掘数据的过程中需要用到一些挖掘工具和方法,如机器学习的方法。 当挖掘完毕后,数据挖掘还需要对知识进行可视化和展现。
21 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
• WEKA WEKA 是一个基于JAVA 环境下免费开源的数据挖掘工作平台,集合了大量能承担数据 挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及 在新的交互式界面上的可视化。
22 of 43
1.3数据挖掘常用工具
•R • Weka • Mahout • RapidMiner • Python • Spark MLlib
第一章 绪论
20 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
•R R是用于统计分析和图形化的计算机语言及分析工具,提供了丰富的统计分析和数据挖 掘功能,其核心模块是用C、C++和Fortran编写的。
为了提高系统的决策支持能力,像ERP、SCM、HR等一些应用系统也逐渐与数据 挖掘集成起来。多种理论与方法的合理整合是大多数研究者采用的有效技术。
12 of 43
1.2 数据挖掘起源及发展历史
第一章 绪论
3 数据挖掘面临的新挑战
随着物联网、云计算和大数据时代的来临,在大数据背景下数据挖掘要面临的挑 战,主要表现在以下几个方面:
1-数据挖掘简介PPT课件
数据挖掘案例
基金会数据挖掘案例
基本情况
项目情况:对60人发出家庭箱项目邀请,有11人响应 目标:预测哪些人对家庭箱项目产生响应—建立分类模型 字段信息:捐赠人名、捐赠金额、捐赠次数、区域、职业、 地址、邮编、联系电话、回信时间、性别、年龄等12个字 段信息
Jef is YES!
物以类聚,人以群分
人为地选取细分维度
– 客户价值 – 地域 – 活跃程度 – ……
市场
维度灾难的发生
– 维度增长 – 细分数目指数增长 – 人脑仅能处理有限
的维度
聚类示意
基于欧氏距离的三维空间中的聚类
d(i, j) (| xi x j |2 | yi y j |2 | zi z j |2)
海量
多样性
互联网搜索、手机通 话记录及传感器网络 等造成了数据的多样 性。
数据被创建和移动的 速度越来越快。
特征
高速
易变性
大数据具有多层结构, 意味着大数据会呈现 出多变的形式和类型。
什么是数据挖掘?
数据挖掘是大数据应用的一项关键技术。然而当人类还 在茹毛饮血的上古时代早已进行着数据挖掘的行为
为了快速并准确捕获猎物,人类的祖先必须细心观察猎物的 习性、预测猎物的行为,才能战胜猎物、存活下去
[不分类:答案(2)] 若你的老板想要知道,会来我们店里消费的顾客有那几种类型? 你应该利用下列那一个算法,来解答你老板的困惑? (1) Apriori (2) EM (3) Neural Network (4) Logistic Regression
[不分类:答案(1)] 罗吉斯回归(Logistic Regression)算法,可用来解决何种问题? (1) 分类(Classification) (2) 分群(Clustering) (3) 关联(Association) (4) 序列型样(Sequential Pattern)
数据挖掘基础 数据挖掘概念ppt课件
数据挖掘的数据源包括数据库、数据仓库、Web或其他数据存储库。
层次聚类树树状图
A
B
C
D
E
1.1 数据挖掘概述
1.1.2 数据挖掘常用算法概述
第一章 数据挖掘概念
在面对海量数据时,需要使用一定的算法,才能从中挖掘出有用的信息,下面介绍数 据挖掘中常用的算法。
1. 分类算法 (1) 决策树算法 决策树算法是一种典型的分类算法,首先利用已知分类的数据构造决策树,然后利用 测试数据集对决策树进行剪枝,每个决策树的叶子都是一种分类,最后利用形成的 决策树对数据进行分类。决策树的典型算法有ID3,C4.5,CART等。
1.1 数据挖掘概述
1.1.3 数据挖掘常用工具概述
第一章 数据挖掘概念
2. Clementine(SPSS) 软件 Clementine是SPSS所发行的一种资料探勘工具,集成了分类、聚类和关联规则
等算法,Clementine提供了可视化工具,方便用户操作。其通过一系列节点来执行 挖掘过程,这一过程被称作一个数据流,数据流上面的节点代表了要执行的操作。 Clementine的资料可视化能力包含散布图、平面图及Web分析。
1.1 数据挖掘概述
第一章 数据挖掘概念
1.1.3 数据挖掘常用工具概述
1. Weka软件
Weka(Waikato Environment for Knowledge Analysis)的全名是怀卡托智能 分析环境,是一款免费与非商业化的数据挖掘软件,基于Java环境下开源的机器学 习与数据挖掘软件。Weka的源代码可在其官方网站下载。它集成了大量数据挖掘算 法,包括数据预处理、分类、聚类、关联分析等。用户既可以使用可视化界面进行 操作,也可以使用Weka提供的接口,实现自己的数据挖掘算法。图形用户界面包括 Weka Knowledge Flow Environment和Weka Explorer。用户也可以使用Java语 言调用Weka提供的类库实现数据挖掘算法,这些类库存在于weka.jar中。
层次聚类树树状图
A
B
C
D
E
1.1 数据挖掘概述
1.1.2 数据挖掘常用算法概述
第一章 数据挖掘概念
在面对海量数据时,需要使用一定的算法,才能从中挖掘出有用的信息,下面介绍数 据挖掘中常用的算法。
1. 分类算法 (1) 决策树算法 决策树算法是一种典型的分类算法,首先利用已知分类的数据构造决策树,然后利用 测试数据集对决策树进行剪枝,每个决策树的叶子都是一种分类,最后利用形成的 决策树对数据进行分类。决策树的典型算法有ID3,C4.5,CART等。
1.1 数据挖掘概述
1.1.3 数据挖掘常用工具概述
第一章 数据挖掘概念
2. Clementine(SPSS) 软件 Clementine是SPSS所发行的一种资料探勘工具,集成了分类、聚类和关联规则
等算法,Clementine提供了可视化工具,方便用户操作。其通过一系列节点来执行 挖掘过程,这一过程被称作一个数据流,数据流上面的节点代表了要执行的操作。 Clementine的资料可视化能力包含散布图、平面图及Web分析。
1.1 数据挖掘概述
第一章 数据挖掘概念
1.1.3 数据挖掘常用工具概述
1. Weka软件
Weka(Waikato Environment for Knowledge Analysis)的全名是怀卡托智能 分析环境,是一款免费与非商业化的数据挖掘软件,基于Java环境下开源的机器学 习与数据挖掘软件。Weka的源代码可在其官方网站下载。它集成了大量数据挖掘算 法,包括数据预处理、分类、聚类、关联分析等。用户既可以使用可视化界面进行 操作,也可以使用Weka提供的接口,实现自己的数据挖掘算法。图形用户界面包括 Weka Knowledge Flow Environment和Weka Explorer。用户也可以使用Java语 言调用Weka提供的类库实现数据挖掘算法,这些类库存在于weka.jar中。
数据挖掘及应用数据挖掘概述ppt课件
Past KDD (Knowledge Discovery and Data Mining) Meetings
• KDD-2019, 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose,
《数据挖掘技术:市场营销、销售与客户关系管理领域的应用》 数据挖掘指的是一种态度,它表明商业活动应该基于认知,分析获得的决 策比没有任何分析所得的决策好得多,经过测算的结果更有利于商业盈利。
• SAS 软件研究所对数据挖掘所下的定义是:
数据挖掘是按照既定的业务目标, 对大量的企业数据进行探索、揭示隐 藏其中的规律性并进一步将之模型化的先进、有效的方法。
国内数据挖掘研究进展
• 1993年国家自然科学基金首次支持我们对该 领域的研究项目。
• 2019年度的国家社会科学基金在统计学类中
首次对该领域的研究予以支持。
• 全国数据库学术会议(NDBC,National DataBase Academic Conference)
• 重要的杂志有计算机学报、软件学报和计算机 研究与发展等。
• KDD-99, 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 15-18, 2019, San Diego, CA, USA.
• KDD-98, 4th International Conference on Knowledge Discovery and Data Mining, August 27-31, 2019, New York, NY, USA.
数据挖掘精品PPT课件
ห้องสมุดไป่ตู้
(2)聚类分析 物以类聚,人以群分,聚类分析技术试图找出数据 集中的数据的共性和差异,并将具有共性对象聚合 在相应的簇中。聚类分析已广泛应用与客户细分、 定向营销、信息检索等领域。 聚类与分类是容易混淆的两个概念。聚类是一种无 指导的观察式学习,没有预先定义的类。 (3)关联分析 关联分析是发现特征之间的相互依赖关系,通常是 在给定的数据集中发现频繁出现的模式知识(又称 关联规则)。关联规则广泛用于市场营销、事务分 析等领域。
数据挖掘概念首次出现在1989年举行的第十一届 国际联合人工智能学术会议上,其思想主要来自 于机器学习、模式识别、统计和数据库系统。国 内对数据挖掘的研究起步较晚,1993年国家自然 科学基金首次支持该领域的研究。此后,国家、 各省自然科学基金委,国家社科基金,“863”、 “973”项目,国家、各省的科技计划,每年都 有相关项目支持。众多研究机构和大学都成立专 门的项目组。从事数据挖掘研究与应用的人员越 来越多。现今,数据挖掘的基本理论问题逐步得 到了解决,现在更多的是数据挖掘的应用。
7.2.2 基于规则的分类器 基于规则的分类器是使用一组“if...then...” 规则来对记录进行分类的技术。为了建立基于规则 的分类器,需要提取一组规则来识别数据集的属性 和类标号之间的关键联系。提取分类规则的方法有 两大类,直接方法和间接方法。直接方法是直接从 数据中提取分类规则,间接方法是从其他分类模型 中提取分类规则。
7.2 分类 分类任务就是确定对象属于哪个预定义的目标类。 分类问题是一个普遍存在的问题,有许多不同的 应用。例如,根据电子邮件的标题和内容检查出 垃圾邮件,对一大堆照片区分出哪些是猫哪些是 狗。分类任务就是通过学习得到一个目标函数, 把每个属性集x映射到一个预先定义的类标号y。 目标函数也称分类模型。
(2)聚类分析 物以类聚,人以群分,聚类分析技术试图找出数据 集中的数据的共性和差异,并将具有共性对象聚合 在相应的簇中。聚类分析已广泛应用与客户细分、 定向营销、信息检索等领域。 聚类与分类是容易混淆的两个概念。聚类是一种无 指导的观察式学习,没有预先定义的类。 (3)关联分析 关联分析是发现特征之间的相互依赖关系,通常是 在给定的数据集中发现频繁出现的模式知识(又称 关联规则)。关联规则广泛用于市场营销、事务分 析等领域。
数据挖掘概念首次出现在1989年举行的第十一届 国际联合人工智能学术会议上,其思想主要来自 于机器学习、模式识别、统计和数据库系统。国 内对数据挖掘的研究起步较晚,1993年国家自然 科学基金首次支持该领域的研究。此后,国家、 各省自然科学基金委,国家社科基金,“863”、 “973”项目,国家、各省的科技计划,每年都 有相关项目支持。众多研究机构和大学都成立专 门的项目组。从事数据挖掘研究与应用的人员越 来越多。现今,数据挖掘的基本理论问题逐步得 到了解决,现在更多的是数据挖掘的应用。
7.2.2 基于规则的分类器 基于规则的分类器是使用一组“if...then...” 规则来对记录进行分类的技术。为了建立基于规则 的分类器,需要提取一组规则来识别数据集的属性 和类标号之间的关键联系。提取分类规则的方法有 两大类,直接方法和间接方法。直接方法是直接从 数据中提取分类规则,间接方法是从其他分类模型 中提取分类规则。
7.2 分类 分类任务就是确定对象属于哪个预定义的目标类。 分类问题是一个普遍存在的问题,有许多不同的 应用。例如,根据电子邮件的标题和内容检查出 垃圾邮件,对一大堆照片区分出哪些是猫哪些是 狗。分类任务就是通过学习得到一个目标函数, 把每个属性集x映射到一个预先定义的类标号y。 目标函数也称分类模型。
《数据挖掘》PPT课件
➢ 数据挖掘应用系统开发 ➢ 数据挖掘技术的新应用 ➢ 数据挖掘软件发展
2020/12/9
数据库研究所
9
高级数据挖掘
课程的教学目的
➢ 让学生掌握数据挖掘的基本概念、算法和高级技术; ➢ 将这些概念、算法和技术应用于实际问题。
复旦大学计算机科学技术学 院基本情况
➢ 主要研究方向
▪ 媒体计算 ▪ 数据库与数据科学 ▪ 网络与信息安全 ▪ 智能信息处理 ▪ 人机接口和服务计算 ▪ 理论计算机科学 ▪ 软件工程与系统软件
2020/12/9
数据库研究所
6
复旦大学数据挖掘课程的设置
总体目标
➢ 掌握大规模数据挖掘与分析的基本流程 ➢ 掌握数据挖掘的基本算法 ➢ 掌握对实际数据集进行挖掘的系统能力
数据仓库与数据挖掘
数据库系统
2020/12/9
数据库研究所
8
数据仓库与数据挖掘
课程的教学目的
➢ 掌握数据仓库数据挖掘原理、技术和方法,掌握建立数据挖掘应用 系统的方法,了解相关前沿的研究。
教学内容
➢ 数据挖掘、数据仓库的基本概念
▪ 数据仓库设计和应用 ▪ 数据挖掘的基本技术
• 关联分析、分类分析、聚类分析、异常分析和演化分析等;联机分析处理OLAP技术;
➢ involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems.
➢ The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.
2020/12/9
数据库研究所
9
高级数据挖掘
课程的教学目的
➢ 让学生掌握数据挖掘的基本概念、算法和高级技术; ➢ 将这些概念、算法和技术应用于实际问题。
复旦大学计算机科学技术学 院基本情况
➢ 主要研究方向
▪ 媒体计算 ▪ 数据库与数据科学 ▪ 网络与信息安全 ▪ 智能信息处理 ▪ 人机接口和服务计算 ▪ 理论计算机科学 ▪ 软件工程与系统软件
2020/12/9
数据库研究所
6
复旦大学数据挖掘课程的设置
总体目标
➢ 掌握大规模数据挖掘与分析的基本流程 ➢ 掌握数据挖掘的基本算法 ➢ 掌握对实际数据集进行挖掘的系统能力
数据仓库与数据挖掘
数据库系统
2020/12/9
数据库研究所
8
数据仓库与数据挖掘
课程的教学目的
➢ 掌握数据仓库数据挖掘原理、技术和方法,掌握建立数据挖掘应用 系统的方法,了解相关前沿的研究。
教学内容
➢ 数据挖掘、数据仓库的基本概念
▪ 数据仓库设计和应用 ▪ 数据挖掘的基本技术
• 关联分析、分类分析、聚类分析、异常分析和演化分析等;联机分析处理OLAP技术;
➢ involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems.
➢ The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.
数据挖掘课件
07
数据挖掘实践案例
电商用户行为分析
1 2
用户购买行为分析
分析用户的购买记录,识别用户的购买习惯和偏 好,为电商企业提供精准的产品推荐和营销策略 。
用户活跃度分析
分析用户的登录、浏览、搜索等行为,评估用户 的活跃度和兴趣,优化网站内容和结构。
3
用户满意度分析
通过用户评价和反馈,了解用户对产品的满意度 和需求,及时调整产品和服务,提高用户满意度 和忠诚度。
层次聚类算法的优缺点
层次聚类算法能够得到完整的聚类树,但计算复杂度高,且需要预先确定簇的数量或截断 线。
05
分类与回归
决策树算法
决策树算法概述
ID3算法
决策树是一种常见的分类与回归算法,通 过树形结构来表达决策过程。
ID3算法是决策树学习算法的一种,它根据 信息增益来选择划分属性。
C4.5算法
CART算法
C4.5算法是ID3算法的改进版,它引入了增 益率的概念,解决了ID3算法对可取值数目 较多的属性有所偏好的问题。
CART算法是一种采用二叉树结构的决策树 学习算法,概述
距离度量
K近邻算法是一种基本的分 类与回归算法,它根据距离 来衡量样本之间的相似性。
信用卡欺诈检测
01
异常交易检测
监测信用卡交易记录,及时发现 异常交易,如大额交易、异地交 易等,防止欺诈行为。
02
欺诈模式识别
03
实时监控与警报
通过对历史欺诈行为进行分析, 发现欺诈模式和特征,建立欺诈 检测模型。
实时监测信用卡交易,触发警报 机制,及时通知银行和持卡人, 防止欺诈行为。
股票价格预测
填充缺失值
对于缺失的数据,可以采 用不同的方法进行填充, 如用平均值、中位数或模 式匹配等方法。
数据挖掘概述PPT课件
还有很多案例都可以印证,现在的社会是一个 信息爆炸的社会。是在信息的潮流中随波逐流 还是“到中流击水,浪遏飞舟”?
第5页/共63页
数据挖掘技术的另一个产生动力 2.数据过量而知识贫乏 现代人了解古代的主要方式主要是通过前人留 下的记录,但是这些记录往往是零碎的、不完 全的。例如?
想象一下,如果后人希望了解现在人们的生活 状况,他们面临的已不再是信息缺失,而是需 要从浩如烟海的资料中有选择性的收集他们认 为有用的信息,若没有一定技术支持,其难度 恐怕可以用“浪里淘金”或“大海捞针”来形 容。
一、引例 例1。如果你在当当的购书网站并购买过书籍或音 像制品,以后再浏览该网站时经常看到类似的提示: “欢迎你,下面是我们给您推荐的新书和VCD。” 然后就可以在网页的某个位置看到几本新书或VCD 的名字及其相关链接。 网站怎么知道读者可能会对这些物品干兴趣?
这是因为网站采用了新的技术来了解顾客的潜在需求, 比如:网站从顾客的购买清单中发现你买的书与张三 买过的书有几本是相同的,但是还有些书张三已经买 了,而你却还没买,网站会据此认为你们的阅读偏好 相近,从而你会对那些书也干兴趣。
6
鲑鱼,尿布,啤酒
7
面包,茶,糖鸡蛋
8
咖啡,糖,鸡,鸡蛋
9
面包,尿布,啤酒,盐
10
茶,鸡蛋,小甜饼,尿布,啤酒
从这个销售数据中可以得出什么结论?
第2页/共63页
简单分析发现,有6个顾客买了啤酒,而其中5个人 买了尿布,或说,5个买了尿布的顾客都买了啤酒。
从数据挖掘的角度就是得到了如下的很强的关联规则:
第18页/共63页
则S2与S6之间的相异度为10,而相似度为1/11, 有min_d=2,max_d=29,因此,也可以定义相似度 为1-(10-2)/(29-2)=19/27。
第5页/共63页
数据挖掘技术的另一个产生动力 2.数据过量而知识贫乏 现代人了解古代的主要方式主要是通过前人留 下的记录,但是这些记录往往是零碎的、不完 全的。例如?
想象一下,如果后人希望了解现在人们的生活 状况,他们面临的已不再是信息缺失,而是需 要从浩如烟海的资料中有选择性的收集他们认 为有用的信息,若没有一定技术支持,其难度 恐怕可以用“浪里淘金”或“大海捞针”来形 容。
一、引例 例1。如果你在当当的购书网站并购买过书籍或音 像制品,以后再浏览该网站时经常看到类似的提示: “欢迎你,下面是我们给您推荐的新书和VCD。” 然后就可以在网页的某个位置看到几本新书或VCD 的名字及其相关链接。 网站怎么知道读者可能会对这些物品干兴趣?
这是因为网站采用了新的技术来了解顾客的潜在需求, 比如:网站从顾客的购买清单中发现你买的书与张三 买过的书有几本是相同的,但是还有些书张三已经买 了,而你却还没买,网站会据此认为你们的阅读偏好 相近,从而你会对那些书也干兴趣。
6
鲑鱼,尿布,啤酒
7
面包,茶,糖鸡蛋
8
咖啡,糖,鸡,鸡蛋
9
面包,尿布,啤酒,盐
10
茶,鸡蛋,小甜饼,尿布,啤酒
从这个销售数据中可以得出什么结论?
第2页/共63页
简单分析发现,有6个顾客买了啤酒,而其中5个人 买了尿布,或说,5个买了尿布的顾客都买了啤酒。
从数据挖掘的角度就是得到了如下的很强的关联规则:
第18页/共63页
则S2与S6之间的相异度为10,而相似度为1/11, 有min_d=2,max_d=29,因此,也可以定义相似度 为1-(10-2)/(29-2)=19/27。
数据挖掘综述-PPT文档资料
1.3 支持数据挖掘技术的技术基础
海量数据搜集
强大的多处理器计算机
数据挖掘算法
1.4 从商业数据到商业信息的进化
进化阶段 数据搜集 (60年代) 商业问题 “过去五年中我的 总收入是多少?” 支持技术 计算机、磁带和磁盘 关系数据库 (RDBMS),结构化 查询语言(SQL), ODBC Oracle、 Sybase、Informix、 IBM、Microsoft 联机分析处理 (OLAP)、多维数据 库、数据仓库 产品厂家 IBM,CDC 产品特点 提供历史性 的、静态的 数据信息2 数据挖掘的定义
2.1 技术上的定义
2.2 商业角度的定义
2.3 数据挖掘与传统分析方法的区别
2.1数据挖掘在技术上的定义
数据挖掘(Data Mining)就是从大量的、 不完全的、有噪声的、模糊的、随机的实 际应用数据中,提取隐含在其中的、人们 事先不知道的、但又是潜在有用的信息和 知识的过程。
3.3 业内现状
最近,业内的一次高级技术调查将数据挖 掘和人工智能列为“未来三到五年内将对 工业产生深远影响的五大关键技术”之首, 并且还将并行处理体系和数据挖掘列为未 来五年内投资焦点的十大新兴技术前两位。
3.4 出版物及工具
有不少KDD电子出版物,其中以半月刊Knowledge Discovery Nuggets最为权威。在网上还有许多自由论坛, 如DM Email Club等。至于DMKD书籍,可以在任意一家 计算机书店找到十多本。 目前,世界上比较有影响的典型数据挖掘系统有:SAS公 司的Enterprise Miner、IBM公司的Intelligent Miner、SGI 公司的SetMiner、SPSS公司的Clementine、Sybase公司 的Warehouse Studio、RuleQuest Research公司的See5、 还有CoverStory、EXPLORA、Knowledge Discovery Workbench、DBMiner、Quest等。还可以访问 datamininglab.网站,该网站提供了许多数据挖掘系统和 工具的性能测试报告。
数据挖掘PPT全套课件
记录数据
记录(数据对象)的汇集,每个记录包含固定的数 据字段(属性)集
Tid Refund Marital Taxable Status Income Cheat
1 Yes 2 No 3 No 4 Yes 5 No 6 No 7 Yes 8 No 9 No 10 No
10
Single 125K No
和三维结构的DNA数据)
数据库技术、 并行技术、分 布式技术
数据挖掘的任务
预测 – 使用已知变量预测未知变量的值.
描述 – 导出潜在联系的模式(相关、趋势、聚类、异
常).
数据挖掘的任务
分类 [预测] 聚类 [描述] 关联分析 [描述] 异常检测 [预测]
分类 例子
Tid Refund Marital Taxable Status Income Cheat
矿石硬度、{好, 较好,最好}、 成绩
中值、百分位、 秩相关、游程 检验、符号检 验
日历日期、摄氏、 均值、标准差、
华氏温度
皮尔逊相关、
t和F检验
绝对温度、货币 量、计数、年龄 、质量、长度、 电流
几何平均、调 和平均、百分 比变差
属性类 型
标称
变换 任何一对一变换
序数
值的保序变换
新值 = f(旧值)
– (1)统计学的抽样、估计、假设检验
– (2)人工智能、模式识别、机器学习
的搜索算法/建摸技术、学习理论
– (3)最优化、进化算法、
信息论、信号处理、 可视化、信息检索
统计学
人工智能、 机器学习
– (4)数据库技术、并行计算
和模式识别
、分布式计算
传统的方法可能不适合
数据挖掘
《数据挖掘综述》PPT课件.ppt
3.3 业内现状
最近,业内的一次高级技术调查将数据挖 掘和人工智能列为“未来三到五年内将对 工业产生深远影响的五大关键技术”之首 并且还将并行处理体系和数据挖掘列为未 来五年内投资焦点的十大新兴技术前两位。
3.4 出版物及工具
有不少KDD电子出版物,其中以半月刊Knowledge Discovery Nuggets最为权威。在网上还有许多自由论坛, 如DM Email Club等。至于DMKD书籍,可以在任意一家 计算机书店找到十多本。
2.3 数据挖掘与传统分析方法的区别
数据挖掘与传统的数据分析(如查询、报表、 联机应用分析)的本质区别是数据挖掘是在 没有明确假设的前提下去挖掘信息、发现 知识.
数据挖掘所得到的信息应具有先未知,有效 和可实用三个特征.
3 数据挖掘的研究历史和现状
3.1 研究历史 3.2 国内现状 3.3 业界现状 3.4 出版物及工具
在各种层次 上提供回溯 的、动态的 数据信息
数据挖掘 (正在流
行)
“下个月波士顿的销 售会怎么样?为什 么?”
高级算法、多处理器 计算机、海量数据库
Pilot、Lockheed、 IBM、SGI、其他 初创公司
提供预测性 的信息
2 数据挖掘的定义
2.1 技术上的定义 2.2 商业角度的定义 2.3 数据挖掘与传统分析方法的区别
目前的数据库系统可以高效地实现数据 的录入、查询、统计等功能,但无法发现 数据中存在的关系和规则,无法根据现有 的数据预测未来的发展趋势。
1.3 支持数据挖掘技术的技术基础
海量数据搜集 强大的多处理器计算机 数据挖掘算法
1.4 从商业数据到商业信息的进化
进化阶段
商业问题
支持技术
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘所得到的信息应具有先未知,有效 和可实用三个特征.
3 数据挖掘的研究历史和现状
3.1 研究历史 3.2 国内现状 3.3 业界现状 3.4 出版物及工具
3.1 研究Βιβλιοθήκη 史3.2 国内现状1993年国家自然科学基金首次支持我们对该领域 的研究项目。目前,国内的许多科研单位和高等 院校竞相开展知识发现的基础理论及其应用研究, 这些单位包括清华大学、中科院计算技术研究所、 空军第三研究所、海军装备论证中心等。其中, 北京系统工程研究所对模糊方法在知识发现中的 应用进行了较深入的研究,北京大学也在开展对 数据立方体代数的研究,华中理工大学、复旦大 学、浙江大学、中国科技大学、中科院数学研究 所、吉林大学等单位开展了对关联规则开采算法 的优化和改造;南京大学、四川联合大学和上海 交通大学等单位探讨、研究了非结构化数据的知 识发现以及Web数据挖掘。
4. 数据挖掘研究的内容
目前DMKD的主要研究内容包括:
基础理论、发现算法、数据仓库、可视 化技术、定性定量互换模型、知识表示方 法、发现知识的维护和再利用、半结构化 和非结构化数据中的知识发现以及网上数 据挖掘等。
数据挖掘所发现的知识最常见的有以下 几类:
4.1 广义知识 (Generalization) 4.2 关联知识 (Association) 4.3 分类知识(Classification & Clustering) 4.4 预测型知识(Prediction) 4.5 偏差型知识(Deviation)
数据源必须是真实的、大量的、含噪声的; 发现的是用户感兴趣的知识;发现的知识要可接 受、可理解、可运用;
2.1数据挖掘的定义
商业角度的定义
数据挖掘是一种新的商业信息处理技术,其 主要特点是对商业数据库中的大量业务数据进行 抽取、转换、分析和其他模型化处理,从中提取 辅助商业决策的关键性数据。
按企业既定业务目标,对大量的企业数据进 行探索和分析,揭示隐藏的、未知的或验证已知 的规律性,并进一步将其模型化的先进有效的方 法。
数据挖掘技术在入侵 检测系统中的应用
1 入侵检测系统
1.1 入侵检测系统的概念 1.2 入侵检测系统的作用 1.3 入侵检测系统的分类
1.1 入侵检测系统的概念
James Anderson在1980年提出入侵检 (Intrusion Detection )的概念, Dorothy Denning在1987年建立了第一个入侵检测模 型,取名为IDES(入侵检测专家系统)。
从网络和主机上收集信息,并进行分析, 检测并判断出是否有入侵行为或安全问题。
1.2 入侵检测系统的作用
是位于防火墙之后的第二道安全闸门 它通过收集和分析网络行为、安全日志、审计 入
侵检测图片、数据、其它网络上可以获得的信息 以及计算机系统中若干关键点的信息,检查网络 或系统中是否存在违反安全策略的行为和被攻击 的迹象 是一种积极主动地安全防护技术,提供了对内部 攻击、外部攻击和误操作的实时保护,在网络系 统受到危害之前拦截和响应入侵
2.2 商业角度定义
按企业既定业务目标,对大量的企业数据进行探 索和分析,揭示隐藏的、未知的或验证已知的规 律性,并进一步将其模型化的先进有效的方法。
2.3 数据挖掘与传统分析方法的区别
数据挖掘与传统的数据分析(如查询、报表、 联机应用分析)的本质区别是数据挖掘是在 没有明确假设的前提下去挖掘信息、发现 知识.
目前,世界上比较有影响的典型数据挖掘系统有:SAS公 司的Enterprise Miner、IBM公司的Intelligent Miner、SGI 公司的SetMiner、SPSS公司的Clementine、Sybase公司 的Warehouse Studio、RuleQuest Research公司的See5、 还有CoverStory、EXPLORA、Knowledge Discovery Workbench、DBMiner、Quest等。还可以访问.网站,该 网站提供了许多数据挖掘系统和工具的性能测试报告。
原始数据可以是结构化,如关系数据库中的数据; 也可以是半结构化的,如文本、图形和图像数据; 甚至是分布在网络上的异构型数据。
发现知识的方法可以是数学的,也可以是非数学 的;可以是演绎的,也可以是归纳的。
发现的知识可以被用于信息管理,查询优化,决 策支持和过程控制等,还可以用于数据自身的维 护。
1.3 入侵检测系统的分类
根据检测的数据来源
基于主机(HIDS) 基于网络(NIDS)
根据检测方式
异常监测(Anomaly detection) 误用检测(Misuse detection)/特征检测(Signaturebased detection)
1.3 入侵检测系统的分类
根据部署方式
3.3 业内现状
最近,业内的一次高级技术调查将数据挖 掘和人工智能列为“未来三到五年内将对 工业产生深远影响的五大关键技术”之首, 并且还将并行处理体系和数据挖掘列为未 来五年内投资焦点的十大新兴技术前两位。
3.4 出版物及工具
有不少KDD电子出版物,其中以半月刊Knowledge Discovery Nuggets最为权威。在网上还有许多自由论坛, 如DM Email Club等。至于DMKD书籍,可以在任意一家 计算机书店找到十多本。
集中式 分布式
2 数据挖掘
2.1 数据挖掘的定义 2.2 商业角度的定义 2.3 数据挖掘与传统分析方法的区别
2.1数据挖掘的定义
技术上的定义
数据挖掘(Data Mining)是从大量的、不完 全的、有噪声的、模糊的、随机的实际应用数据 中,提取隐含在其中的、人们事先不知道的、但 又是潜在有用的信息和知识的过程。
4.1 广义知识(Generalization)
广义知识指类别特征的概括性描述知识。 根据数据的微观特性发现其表征的、带有 普遍性的、较高层次概念的知识,反映同 类事物共同性质,是对数据的概括、精炼 和抽象。
广义知识的发现方法和实现技术有很多, 如数据立方体、面向属性的归约等。
3 数据挖掘的研究历史和现状
3.1 研究历史 3.2 国内现状 3.3 业界现状 3.4 出版物及工具
3.1 研究Βιβλιοθήκη 史3.2 国内现状1993年国家自然科学基金首次支持我们对该领域 的研究项目。目前,国内的许多科研单位和高等 院校竞相开展知识发现的基础理论及其应用研究, 这些单位包括清华大学、中科院计算技术研究所、 空军第三研究所、海军装备论证中心等。其中, 北京系统工程研究所对模糊方法在知识发现中的 应用进行了较深入的研究,北京大学也在开展对 数据立方体代数的研究,华中理工大学、复旦大 学、浙江大学、中国科技大学、中科院数学研究 所、吉林大学等单位开展了对关联规则开采算法 的优化和改造;南京大学、四川联合大学和上海 交通大学等单位探讨、研究了非结构化数据的知 识发现以及Web数据挖掘。
4. 数据挖掘研究的内容
目前DMKD的主要研究内容包括:
基础理论、发现算法、数据仓库、可视 化技术、定性定量互换模型、知识表示方 法、发现知识的维护和再利用、半结构化 和非结构化数据中的知识发现以及网上数 据挖掘等。
数据挖掘所发现的知识最常见的有以下 几类:
4.1 广义知识 (Generalization) 4.2 关联知识 (Association) 4.3 分类知识(Classification & Clustering) 4.4 预测型知识(Prediction) 4.5 偏差型知识(Deviation)
数据源必须是真实的、大量的、含噪声的; 发现的是用户感兴趣的知识;发现的知识要可接 受、可理解、可运用;
2.1数据挖掘的定义
商业角度的定义
数据挖掘是一种新的商业信息处理技术,其 主要特点是对商业数据库中的大量业务数据进行 抽取、转换、分析和其他模型化处理,从中提取 辅助商业决策的关键性数据。
按企业既定业务目标,对大量的企业数据进 行探索和分析,揭示隐藏的、未知的或验证已知 的规律性,并进一步将其模型化的先进有效的方 法。
数据挖掘技术在入侵 检测系统中的应用
1 入侵检测系统
1.1 入侵检测系统的概念 1.2 入侵检测系统的作用 1.3 入侵检测系统的分类
1.1 入侵检测系统的概念
James Anderson在1980年提出入侵检 (Intrusion Detection )的概念, Dorothy Denning在1987年建立了第一个入侵检测模 型,取名为IDES(入侵检测专家系统)。
从网络和主机上收集信息,并进行分析, 检测并判断出是否有入侵行为或安全问题。
1.2 入侵检测系统的作用
是位于防火墙之后的第二道安全闸门 它通过收集和分析网络行为、安全日志、审计 入
侵检测图片、数据、其它网络上可以获得的信息 以及计算机系统中若干关键点的信息,检查网络 或系统中是否存在违反安全策略的行为和被攻击 的迹象 是一种积极主动地安全防护技术,提供了对内部 攻击、外部攻击和误操作的实时保护,在网络系 统受到危害之前拦截和响应入侵
2.2 商业角度定义
按企业既定业务目标,对大量的企业数据进行探 索和分析,揭示隐藏的、未知的或验证已知的规 律性,并进一步将其模型化的先进有效的方法。
2.3 数据挖掘与传统分析方法的区别
数据挖掘与传统的数据分析(如查询、报表、 联机应用分析)的本质区别是数据挖掘是在 没有明确假设的前提下去挖掘信息、发现 知识.
目前,世界上比较有影响的典型数据挖掘系统有:SAS公 司的Enterprise Miner、IBM公司的Intelligent Miner、SGI 公司的SetMiner、SPSS公司的Clementine、Sybase公司 的Warehouse Studio、RuleQuest Research公司的See5、 还有CoverStory、EXPLORA、Knowledge Discovery Workbench、DBMiner、Quest等。还可以访问.网站,该 网站提供了许多数据挖掘系统和工具的性能测试报告。
原始数据可以是结构化,如关系数据库中的数据; 也可以是半结构化的,如文本、图形和图像数据; 甚至是分布在网络上的异构型数据。
发现知识的方法可以是数学的,也可以是非数学 的;可以是演绎的,也可以是归纳的。
发现的知识可以被用于信息管理,查询优化,决 策支持和过程控制等,还可以用于数据自身的维 护。
1.3 入侵检测系统的分类
根据检测的数据来源
基于主机(HIDS) 基于网络(NIDS)
根据检测方式
异常监测(Anomaly detection) 误用检测(Misuse detection)/特征检测(Signaturebased detection)
1.3 入侵检测系统的分类
根据部署方式
3.3 业内现状
最近,业内的一次高级技术调查将数据挖 掘和人工智能列为“未来三到五年内将对 工业产生深远影响的五大关键技术”之首, 并且还将并行处理体系和数据挖掘列为未 来五年内投资焦点的十大新兴技术前两位。
3.4 出版物及工具
有不少KDD电子出版物,其中以半月刊Knowledge Discovery Nuggets最为权威。在网上还有许多自由论坛, 如DM Email Club等。至于DMKD书籍,可以在任意一家 计算机书店找到十多本。
集中式 分布式
2 数据挖掘
2.1 数据挖掘的定义 2.2 商业角度的定义 2.3 数据挖掘与传统分析方法的区别
2.1数据挖掘的定义
技术上的定义
数据挖掘(Data Mining)是从大量的、不完 全的、有噪声的、模糊的、随机的实际应用数据 中,提取隐含在其中的、人们事先不知道的、但 又是潜在有用的信息和知识的过程。
4.1 广义知识(Generalization)
广义知识指类别特征的概括性描述知识。 根据数据的微观特性发现其表征的、带有 普遍性的、较高层次概念的知识,反映同 类事物共同性质,是对数据的概括、精炼 和抽象。
广义知识的发现方法和实现技术有很多, 如数据立方体、面向属性的归约等。