经济博弈论概述.pptx

合集下载

复旦大学经济博弈论课件--经济博弈论242页PPT

复旦大学经济博弈论课件--经济博弈论242页PPT

30.11.2019
课件
3
2.1.1 上策均衡
上策:不管其它博弈方选择什么策略,一博弈方 的某个策略给他带来的得益始终高于其它的策 略,至少不低于其他策略的策略
囚徒的困境中的“坦白”;双寡头削价中“低 价”。
上策均衡:一个博弈的某个策略组合中的所有策 略都是各个博弈方各自的上策,必然是该博弈 比较稳定的结果
课件
17
竞争:个体利益最大化
q1R 1(q2,q3)4 81 2q21 2q3
11 q2R 2(q 1,q3)4 82q 12q3 q 3R 3(q 1,q2)4 81 2q 11 2q2
q1 *q2 *q3 *24 u1*u2 *u3 *576
Q*72
u*1728
21
二、混合策略、混合策略博弈 和混合策略纳什均衡
混合策略:在博弈G {S1, Sn;u1, un中},博弈方 i的策略
空间为 Si {si1, sik},则博弈方 i以概率分布 pi (pi1, pik)
随机在其 k个可选策略中选择的“策略”,称为一个“混合策
略”,0其p中ij 1 j1, 对,k
u 1 u 1 ( P 1 ,P 2 ) P 1 q 1 c 1 q 1 ( P 1 c 1 ) q 1 (P 1 c 1 )a 1 ( b 1 P 1 d 1 P 2 )
u 2 u 2 ( P 1 ,P 2 ) P 2 q 2 c 2 q 2 ( P 2 c 2 ) q 2 (P 2 c 2 )a 2 ( b 2 P 2 d 2 P 1 )
上策均衡不是普遍存在的
30.11.2019
课件
4
2.1.2 严格下策反复消去法
严格下策:不管其它博弈方的策略如何变化, 给一个博弈方带来的收益总是比另一种策略 给他带来的收益小的策略

经济博弈论168页PPT

经济博弈论168页PPT
位博弈论专 家纳什、泽尔腾和海萨尼。 2019年诺奖授予两位博弈论与信息经济学研究 专家莫里斯、维克瑞; 2019年诺奖授予阿克洛夫、斯彭斯、斯蒂格利 茨,表彰他们在柠檬市场、信号传递和信号 甄别等非对称信息理论研究中的开创性贡献。 2019年诺奖授予有以色列和美国双重国籍的罗 伯特·奥曼和美国人托马斯·谢林,以表彰他们 在博弈论领域作出的贡献。
2
经典博弈论
合作博弈强调群体理性(group rationality),就是从群体的角度 考虑策略的选择,使得整体收益 最大。所以合作博弈研究的是参 与者在达成合作时如何分配合作 得到的收益,即收益分配问题。
约翰·冯·诺依曼 (J. von Neumann )
《Theory of games and economic behavior》 (1944)
争当少数者博弈
6
智猪博弈
小猪和大猪住在猪圈的一边(食槽在这里),开启食物的 开关在另一头,谁去踩,谁丧失先机。如何小猪去踩开关, 等小猪回来的时候大猪已经把大部分食物吃完。如果大猪 去踩开关,等大猪回来的时候小猪已经把一半的食物吃完。
对于小猪来说,最佳策略是等待大猪去踩开关,然后“搭 便车”获得小部分食物。然而,当大猪不去踩开关的时候, 小猪也要冒风险去踩开关。例如腾讯毫无顾忌地跟风,做 QQ旋风,做拍拍,做滔滔。因为不甘心的小猪早早把新技 术研发的前期搞定了,大猪们只需要悄悄跟随,适当的时 候踢开挡路的,就可以了。
组合。此时,每一个理性的参与者都不会有单独改变策略,因为
当其他人不改变策略时如果他改变策略他的收益将会降低 。
例如:在两人合作博弈中,当参与者A采取其最优策略a*,参与者B也采取其 最优策略b*,如果B仍采取b*,而A却采取另一种策略a,那么A的收益不会超 过他采取原来的策略a*的收益。这一结果对B亦是如此。

经济博弈论ppt课件

经济博弈论ppt课件
• 例二:黔馿之技
1.3.2博弈论的基本概念
• 例三:市场进入阻扰博弈在位者
默许
高成本的情况
进入者
进入
不进入
40,50
-10,0
0,300
0,300
在位者
默许
阻止
低成本的情况
进入者
阻止
开发
不开发
30,100
-10,0
0,400
0,400
1.4 博弈论的分类
1.4.1博弈方的数量
1.4.2博弈中的策略
• 例一古诺寡头竞争模型
设一市场有1,2厂商生产同样的产品。如果厂
商1的产量为q1 ,厂商2的产量为q2,则市场总
一只鹦鹉训练成一个经济学家,因为它只需要学习两
个词:供给和需求。
• 博弈论专家坎多瑞引申说:要成为现代经济学家,这
只鹦鹉必须再多学一个词,就是“纳什均衡”。
• 张维迎认为:“近几十年来,经济学一直在为其他学
科提供武器,但恐怕没有任何其他工具比博弈论更有
力了”。
1.3博弈论的基本概念
• 1.3.1 博弈论的定义
• 例:囚徒困境
囚徒 2
坦 白
不坦白
坦 白
-5, -5
0, -8
不坦白
-8, 0
-1, -1
两个罪犯的得益矩阵
1.3.2博弈论的基本概念
• 参与人(player):一个博弈中的决策主体,
他的目的是通过选择策略以最大化自己的支付
(效用水平)。参与人可能是自然人,也可能
是团体,如企业、国家甚至可能是若干个国家
卡尼曼(Kahneman)
• 2005:冲突和合作:罗伯特·奥曼(Robert
J.Aumann)和托马斯·谢林(Thomas C.Schelling

第六章、合作博弈 《经济博弈论基础》PPT课件

第六章、合作博弈 《经济博弈论基础》PPT课件
与摩根斯特恩提出来的概念,有时被 记为VN-M解。记所有可能分配组成的集合为E(V),则稳定 集定义如下:
• 定义4:对于n人合作博弈(N,V),分配集 W E(V )为稳定集, 则W满足:
(1)(内部稳定性)不存在 x, y W ,满足 x y; (2)(外部稳定性)对 y W ,x W,使得 x y 。
(N,V),有 i[U V ] i[U] i[V ]
4、夏普利值(Shapley value)
• 公理 (S1)反映了帕累托最优性的要求,表示分配收益时,不
七、策略型博弈向特征函数型博弈的转化
对于特征函数的上述求法,主要的批评是:它忽略 了联盟外局中人使联盟面临最坏处境时,自己也将付 出代价(有时代价很高)。
Harsayni认为,特征函数的取值应该由联盟与其对 立联盟(联盟外所有局中人形成的联盟)之间的一次 谈判而决定。
第二节 合作博弈解
一、合作博弈求解思路 合作博弈理论求解的目的: 得到博弈的“理性”最终分配,主要方法有 两种:优超与赋值。
(2) 分配:合作博弈的一个分配是指对n个局中人来说,存
在一个向量 x (x1,, xn ) ,满足:
(1) xi V (N) ;(2) xi V (i)。
其中V(N)表示n个局中人总的最大收益,V(i)表示局中人i不 与任何人结盟时的收益。
三、分配定义中两个条件的含义
条件(1)是群体理性,说明个人分配的收益和正好 是各种联盟形式总的最大收益;
七、策略型博弈向特征函数型博弈的转化
V(Φ)=0,没有人的联盟是不会有任何收益的;
V(1)=0,局中人2能使局中人1面临的最坏情形是局中人2取
策略
s
1 2
,局中人1将不得不在0与-1之间选择。

《经济博弈论》PPT课件

《经济博弈论》PPT课件
13
二、应用
博 弈上 方 1下
博弈方2 左中 右 1,0 1,3 0,1 0,4 0,2 2,0
该博弈不存在上策均衡
14
严格下策反复消去法:
博 弈上 方 1下
博弈方2 左中 右 1,0 1,3 0,1 0,4 0,2 2,0
博 弈

方 1

博弈方2 左中 1,0 1,3 0,4 0,2
策略组合(上,中)
➢ 由此导出了博弈分析中的严格下策反复消去法。
11
例:囚徒困境
对囚徒困境博弈中的两个博弈方来说不管对方的策略如何,各自 两种可选策略中的“坦白”策略都比“不坦白”策略来得好
囚徒 乙
坦白
不坦白
囚 坦白 徒 甲
不坦白
-5, -5 -8, 0
0, -8 -1, -1
两个罪犯的得益矩阵
这时我们称“不坦白”是两个博弈中的相对于“坦白”策略的 “严格下策”。
此时该方法失效,失效的根源是策略的相互依存性, 他们之间可能没有严格的依存关系。
严格下策反复消去法是博弈分析的标准工具之一。
16
2.1.3 划线法
博弈方的最终目标都是实现自身的最大得益。 在具有策略和利益相互依存性的博弈问题中,各个博弈
方的得益既取决于自己选择的策略,还与其他博弈方选 择的策略有关,因此,博弈方在决策时必须考虑其他博 弈方的存在和策略选择。
24
箭头法分析囚徒困境
囚 坦白 徒 1 不坦白
囚徒2 坦白 -5,-5
-8,0
不坦白 0,-8 -1,-1
25
箭头法分析例子
博弈方2




弈 方

1, 0
1, 3

经济博弈论概述(ppt 242页)

经济博弈论概述(ppt 242页)

著名经济学家泰勒尔(Jean Tirole)说: “正 如理性预期使宏观经济学发生革命一 样,博弈论广泛而深远地改变了经济学 家的思维方式”
如果情况确实如此,对今天的经济学家来说 ,不懂得博弈论显然是不行了。
博弈论为何如此热门?
诺贝尔经济学奖偏爱博弈论研究
1994年诺贝尔经济学授予 约翰·纳什 约翰·海萨尼 莱因哈德·泽尔腾
如个体厂商为了获得更高利润,期待通过集团形成卖方 垄断;
消费者为了寻求更低的价格,期待通过集团形成买方垄 断;
工人们为了得到更高的工资待遇,期待通过工会形成讨 价还价的势力等等。
以夏普利值为例来看合作问题
例题1
假定某议会共有100个席位,议员分属4个党派 :红党43席,蓝党33席,绿党16席,白党8席;
2012年:诺贝尔经济学奖授予 埃尔文·罗斯(Alvin Roth) 罗伊德·夏普利(Lloyd Shapley)。
埃尔文·罗斯(Alvin E.Roth) 罗伊德·夏普利(Lloyd S.Shapley)
他们的贡献:
稳定的匹配理论与市场设计的实践
经济学是研究资源最优配置问题的,而真实世界 里配置资源的方式多种多样,市场、价格机制是 经济学研究最多的。
一般观点认为合作博弈理论要比非合作博弈理论更为重要, 因为,如果人们的合作是有利可图的,参与博弈的理性人怎 么会放弃合作而采取非合作态度呢?
我们知道,在任何真实的博弈局势中,无论合 作博弈还是非合作博弈,如果我们仔细地考察 人们为达成一个协议而能做什么的话,那么原 则上我们就应该有可能把它模型化,然后通过 分析这个博弈的均衡(解)来预测其结果。
1996年诺贝尔经济学授予
威廉·维克瑞 詹姆斯·莫里斯
2001年诺贝尔经济学授予

《经济博弈论》教材教学课件

《经济博弈论》教材教学课件
略选择,策略和利益相互依存,策略的关键作用 游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖
寡头市场厂商的产量决策;市场开发竞争中策略较量和策 略依存;投标拍卖 政治、军事——美国和伊拉克、以色列和巴勒斯坦 政治、军事和社会的决策较量 博弈论不能称作游戏理论,也不完全称作对策论
1.1.2 一个非技术性定义
企业之间相互沟通信誓旦旦,价格战仍然会爆发;美 苏两国经常会晤,甚至签订核不扩散条约,但军费一年 高过一年。这些现象都反映了上面所说明的问题。
囚徒困境说明了什么?
在(坦白、坦白)这个组合中,囚徒1和囚徒2都不 能通过单方面的改变行动增加自己的收益,于是谁 也没有动力游离这个组合,因此这个组合是纳什均 衡。
《经济博弈论》教材 教学课件
第一章 导论
本章介绍博弈论的基本概念,包括什么 是博弈和博弈论,给出一些经典博弈例子。 对博弈分类和博弈理论的结构作一些讨论, 对博弈论的发展历史等作简单介绍。目标是 让读者对博弈论的内容和博弈模型有更直观 的概念和印象,本教材的基本内容,以及博 弈分析的基本思想方法等形成初步的认识, 为后面各章展开详细分析作好铺垫和准备。
定义:博弈就是一些个人、队组或其他组织,面对一 定的环境条件,在一定的规则下,同时或先后,一次 或多次,从各自允许选择的行为或策略中进行选择并 加以实施,各自取得相应结果的过程。
四个核心方面
博弈的参加者(Player)——博弈方(单人、两人和多人)
各博弈方的策略(Strategies)或行为(Actions) (有 限策略、无限策略)
有人提出:利用囚徒困境解决反腐败 问题。个体理性与团体理性的矛盾。
囚徒 2
坦白
不坦白
囚坦白 徒 1
不坦白

《经济博弈论(第三版)》 谢识予 PPT课件

《经济博弈论(第三版)》 谢识予 PPT课件

24
5
5
5
5
25
25
25
3
43
3
11
33
33
33
7
3
3
7
49
21
21
二、n个厂商连续产量
n
Q qi i 1
n
P P(Q) P( qi ) i 1
n
qi P qi P( qi ) i 1
n
n
qi P( qi ) cqi qi[P( qi ) c]
i 1
i 1
1.3 博弈结构和博弈分类
1.4 博弈论历史和发展简述
1.4.1博弈论的早期研究 1.4.2博弈论的形成 1.4.3博弈论的成长和发展 1.4.4博弈论的成熟及与主流经济
学的融合
1.4.1博弈论的早期研究
博弈论历史没有公认答案 对具有策略依存特点决策问题的研究可上溯
到18世纪初甚至更早 博弈论真正的发展在本世纪 博弈论总体上仍然是发展中的学科
1.3.6 博弈方的能力和理性
完全理性和有限理性
完全理性:有完美的分析判断能力和不会犯选择行为 的错误
有限理性:博弈方的判断选择能力有缺陷
个体理性和集体理性
个体理性:一个体利益最大为目标 集体理性:追求集体利益最大化 合作博弈:允许存在有约束力协议的博弈 非合作博弈:不允许存在有约束力协议的博弈
2000年前我国古代的“齐威王田忌赛马” 1500年前巴比伦犹太教法典“婚姻合同问题”
等。
1838年古诺寡头模型。 1883年伯特兰德寡头竞争模型。 1913年齐默罗象棋博弈定理 、“逆推归纳法” 1921-1927年波雷尔混合策略的第一个现代表述,
有数种策略两人博弈的极小化极大解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年的诺贝尔经济学奖就授给了夏普利(L. S. Shapley)和罗斯(A. E. Roth),表彰他 们在“for the theory of stable allocations and the practice of market design”
夏普利与夏普利值
我们熟悉的夏普利,是他在合作博弈上所做的 贡献,即夏普利值。
一般观点认为合作博弈理论要比非合作博弈理论更为重要, 因为,如果人们的合作是有利可图的,参与博弈的理性人怎 么会放弃合作而采取非合作态度呢?
我们知道,在任何真实的博弈局势中,无论合 作博弈还是非合作博弈,如果我们仔细地考察 人们为达成一个协议而能做什么的话,那么原 则上我们就应该有可能把它模型化,然后通过 分析这个博弈的均衡(解)来预测其结果。
1996年诺贝尔经济学授予
威廉·维克瑞 詹姆斯·莫里斯
2001年诺贝尔经济学授予
乔治.A.阿克洛尔夫 A.斯潘塞 约瑟夫.E.斯蒂格尼兹 2005诺贝尔经济学授予 罗伯特·奥曼 托马斯·谢林
2007年:诺贝尔经济学奖授予 赫维茨(Hurwicz) 马斯金(Maskin) 梅耶森(Myerson)
在前六次的诺奖获得者中,他们都可以说是在 非合作博弈领域的大家(我们这门课实际上也 是讨论在非合作博弈理论基础上的经济层面的 应用问题),而夏普利则是合作博弈领域的巨 头。
所谓非合作和合作博弈的区分,简单来说就是 非合作主要是个体之间的博弈,而合作博弈则 处理群体与群体之间的博弈,例如医生与医院 、学生与学校这类群体间的博弈。
假定对于一般议题的任何提案,议会实行一人 一票并且多数通过的投票规则。
假设由于党纪的约束,议员对于任何议题,都 只能按照党的意志投票。
每个党团面对其他3个党可能组成的联盟
议会共有4个“议会党团”,每1个议会党团,都 有可能面对其他3个议会党团组成的各种可能的联 盟。
合作博弈的概念是冯·诺依曼(John von Neumann)和摩根 斯顿( Oskar Morgenstern)在他们的《博弈论与经济行为》 (1944)一书中首次提出。到50年代,合作博弈理论的发展 到达鼎盛时期,其中包括纳什(Nash,1950)和夏普利 (Shapley,1953)的“讨价还价模型”,Gillies和 Shapley(1953)关于合作博弈中的“核”的概念,以及其他 一些人的贡献。
经济博弈论
参考书
《博弈与信息》艾里克·拉斯缪森著,北京大学出版社 《博弈论》Drew.Fudenberg & Jean Tirol, [美]朱•弗登博格
,[法]让•梯若尔,经济科学出版社 《博弈论—矛盾冲突分析》Roger B.Myerson,中国经济出版社 《博弈论基础》Gibbons,R1992 Priceton Univ.Press 《博弈论与信息经济学》张维迎,北京大学出版社 《博弈论》施锡铨 上海财经大学出版社 《经济博弈论》谢识予,复旦大学出版社
2012年:诺贝尔经济学奖授予 埃尔文·罗斯(Alvin Roth) 罗伊德·夏普利(Lloyd Shapley)。
埃尔文·罗斯(Alvin E.Roth) 罗伊德·夏普利(Lloyd S.Shapley)
他们的贡献:
稳定的匹配理论与市场设计的实践
经济学是研究资源最优配置问题的,而真实世界 里配置资源的方式多种多样,市场、价格机制是 经济学研究最多的。
不仅如此,在现实社会中,竞争是一切社会、经济关系的 根本基础,不合作是基本的,而合作常常又是令人难以捉 摸的、是有条件的和暂时的。
即便如此,人们并没有放弃对合作博弈理论研究的兴趣。
因为,在现实社会中,确实存在有很多类似于“为共同目 的而一起行动”的合作问题,如各种形式的联盟。
联盟通常是那些有着共同利益的一群(两个或两个以上) 人,为了试图增进他们的共同利益一起行动所组成的集团
不幸得很,在合作博弈理论中,各种合作博弈解的概念是 针对不同情况、不同理由给出了不同的解释,如
核心(core)、沙普利值(Shapely value)、核仁 (nucleolus)、核(kernel)、谈判集以及稳定集 (stable set)等等,
但没有一种解能够具有纳什均衡在非合作博弈中具有的 核心地位,也许正是这一点使合作博弈理论的应用研究 受到了极大地挑战。
但是有一些市场里头,价格的作用受到多种限制 ,可能是来自法律等正式规则的限制,也可能是 来自习俗或伦理道德等非正式制合
才能结成夫妻。
问题是情投意合这种分配方式讲究“配对”, 而且这种配对最好还需要“稳定”,麻烦的是 还不能依靠传统的价格机制,在这种情况下经 济学应该怎么办呢?
夏普利值也是这个合作博弈领域最为突出的贡 献,不过有意思的是,这一次的诺贝尔经济学 奖的贡献却没有颁给“夏普利值”,而是稳定 配对理论。
合作博弈
在博弈论中,合作的概念是重要的。 我们现在能够阅读到的各种版本的博弈论教科 书,以及本课程将要介绍的主要是经典博弈理 论,都是建立在参与人理性的、非合作基础之 上的。 事实上,在非合作博弈理论还没有完全建立起 来之前,合作博弈理论一直是博弈论专家们研 究关注的领域。
如个体厂商为了获得更高利润,期待通过集团形成卖方 垄断;
消费者为了寻求更低的价格,期待通过集团形成买方垄 断;
工人们为了得到更高的工资待遇,期待通过工会形成讨 价还价的势力等等。
以夏普利值为例来看合作问题
例题1
假定某议会共有100个席位,议员分属4个党派 :红党43席,蓝党33席,绿党16席,白党8席;
著名经济学家泰勒尔(Jean Tirole)说: “正 如理性预期使宏观经济学发生革命一 样,博弈论广泛而深远地改变了经济学 家的思维方式”
如果情况确实如此,对今天的经济学家来说 ,不懂得博弈论显然是不行了。
博弈论为何如此热门?
诺贝尔经济学奖偏爱博弈论研究
1994年诺贝尔经济学授予 约翰·纳什 约翰·海萨尼 莱因哈德·泽尔腾
相关文档
最新文档