最新二级减速器课程设计书

合集下载

二级减速器_课程设计_轴的设计

二级减速器_课程设计_轴的设计

轴的设计1 --------------3丿>X LLXX |丿L图1传动系统的总轮廓图一、轴的材料选择及最小直径估算根据工作条件,小齿轮的直径较小(),采用齿轮轴结构, 选用45钢,正火,硬度HB =170~2 17。

[p = 4>冷—按扭转强度法进行最小直径估算,即* ;二初算轴径,若最小 直径轴段开有键槽,还要考虑键槽对轴的强度影响。

勺值由表26— 3确定:4〕=112 1、高速轴最小直径的确定= 112x11^^= 1536 wn由’,因高速轴最小直径处安装联轴器,设有一个键槽。

贝y_上「宀工,由于减速器输入轴通过联轴器与电动机轴相联结, 则外伸段轴径与电动机 轴径不得相差太大,否则难以选择合适的联轴器,取 “皿一0"・,心■■■■rillJ'_1_ 1—为电动机轴直径,由前以选电动机查表6-166 : d.T 临, 仁一怡勺KH J ™,综合考虑各因素,取仏-彳加!2、中间轴最小直径的确定 忍沁=4挖轴承,取为标准值"血。

3、低速轴最小直径的确定二、轴的结构设计1、高速轴的结构设计图2(1)、各轴段的直径的确定 "11:最小直径,安装联轴器尙:密封处轴段,根据联轴器轴向定位要求,以及密封圈的标准查表6-85(采 用毡圈密封),f 一竹泗"口:滚动轴承处轴段,% _ 4伽酬,滚动轴承选取30208。

"14 :过渡轴段,取%严亦:滚动轴承处轴段%认—加朋 (2)、各轴段长度的确定h :由联轴器长度查表6-96得,/二60血,取JVBK,因中间轴最小直径处安装滚动—-112x 刃耳?二 47_5Lnm30,因低速轴最小直径处安装联轴器,设有一键槽,则九訓心1卩门%)⑴用円川5厠rf3«=4?lm ,参见联轴器的选择,查表6-96,就近取联轴器孔径的标准值.:由箱体结构、轴承端盖、装配关系确定y血味:由滚动轴承确定U 79仃:由装配关系及箱体结构等确定気—尊额■:由滚动轴承、挡油盘及装配关系确定y 山血心:由小齿轮宽度片_帧曲确定,取陰—40nm2、中间轴的结构设计图3(1)、各轴段的直径的确定:最小直径,滚动轴承处轴段,心厂虬厂娅廊,滚动轴承选30206 如:低速级小齿轮轴段"H一'2血% :轴环,根据齿轮的轴向定位要求“卫—弓曲% :高速级大齿轮轴段“甘一«加£ :滚动轴承处轴段氐一血一曲期(2)、各轴段长度的确定仃:由滚动轴承、装配关系确定:由低速级小齿轮的毂孔宽度人—7加确定» 一①临* :轴环宽度亦:由高速级大齿轮的毂孔宽度伽确定釘汕伽5 :由滚动轴承、挡油盘及装配关系等确定・-322湍3、低速轴的结构设计如:滚动轴承处轴段 %一舫™,滚动轴承选取30210"11 :低速级大齿轮轴段“卫一乜伽如:轴环,根据齿轮的轴向定位要求伽%:过渡轴段,考虑挡油盘的轴向定位%-57伽% :滚动轴承处轴段虫厂'% :密封处轴段,根据联轴器的轴向定位要求,以及密封圈的标准(采用毡圈密封)心厂烁酬血?:最小直径,安装联轴器的外伸轴段(2)、各轴段长度的确定仃:由滚动轴承、挡油盘及装配关系确定—购”伽d由低速级大齿轮的毂孔宽确定^一川阳期仏:轴环宽度J帕用併:由装配关系、箱体结构确定bflrnn从:由滚动轴承、挡油盘及装配关系确定仁-?】75帧从:由箱体结构、轴承端盖、装配关系确定用:由联轴器的毂孔宽人—®伽确定J —轴的校核一、校核高速轴1、轴上力的作用点位置和支点跨距的确定 齿轮对轴的力作用点按简化原则应在齿轮宽度的中点,轴上安装的 30208轴承,从表6-67可知它的负荷作用中心到轴承外端面的距离为 a=16_9ranwl7mn ,支点跨距 I 二朋二(m 。

二级减速器课程设计说明书

二级减速器课程设计说明书

二级减速器课程设计说明书一、设计任务设计一个用于特定工作条件的二级减速器,给定的输入功率、转速和输出转速要求,以及工作环境和使用寿命等限制条件。

二、传动方案的拟定经过对各种传动形式的比较和分析,最终选择了展开式二级圆柱齿轮减速器。

这种方案结构简单,尺寸紧凑,能够满足设计要求。

三、电动机的选择1、计算工作机所需功率根据给定的工作条件和任务要求,计算出工作机所需的功率。

2、确定电动机的类型和型号综合考虑功率、转速、工作环境等因素,选择合适的电动机类型和型号。

四、传动比的计算1、总传动比的计算根据电动机的转速和工作机的转速要求,计算出总传动比。

2、各级传动比的分配合理分配各级传动比,以保证减速器的结构紧凑和传动性能良好。

五、齿轮的设计计算1、高速级齿轮的设计计算根据传动比、功率、转速等参数,进行高速级齿轮的模数、齿数、齿宽等参数的设计计算。

2、低速级齿轮的设计计算同理,完成低速级齿轮的相关设计计算。

六、轴的设计计算1、高速轴的设计计算考虑扭矩、弯矩等因素,确定高速轴的直径、长度、轴肩尺寸等。

2、中间轴的设计计算进行中间轴的结构设计和强度校核。

3、低速轴的设计计算完成低速轴的设计计算,确保其能够承受工作中的载荷。

七、滚动轴承的选择与计算根据轴的受力情况和转速,选择合适的滚动轴承,并进行寿命计算。

八、键的选择与校核对连接齿轮和轴的键进行选择和强度校核,以确保连接的可靠性。

九、箱体结构的设计考虑减速器的安装、润滑、密封等要求,设计合理的箱体结构。

包括箱体的壁厚、加强筋、油标、放油螺塞等的设计。

十、润滑与密封1、润滑方式的选择根据齿轮和轴承的转速、载荷等因素,选择合适的润滑方式。

2、密封方式的选择为防止润滑油泄漏和外界灰尘进入,选择合适的密封方式。

十一、设计总结通过本次二级减速器的课程设计,对机械传动系统的设计过程有了更深入的理解和掌握。

在设计过程中,充分考虑了各种因素对减速器性能的影响,通过计算和校核确保了设计的合理性和可靠性。

(完整版)二级减速器课程设计说明书

(完整版)二级减速器课程设计说明书

1 设计任务书1。

1设计数据及要求表1-1设计数据1.2传动装置简图图1—1 传动方案简图1.3设计需完成的工作量(1) 减速器装配图1张(A1)(2) 零件工作图1张(减速器箱盖、减速器箱座—A2);2张(输出轴-A3;输出轴齿轮-A3) (3) 设计说明书1份(A4纸)2 传动方案的分析一个好的传动方案,除了首先应满足机器的功能要求外,还应当工作可靠、结构简单、尺寸紧凑、传动效率高、成本低廉以及使用维护方便。

要完全满足这些要求是困难的。

在拟定传动方案和对多种方案进行比较时,应根据机器的具体情况综合考虑,选择能保证主要要求的较合理的传动方案。

现以《课程设计》P3的图2-1所示带式输送机的四种传动方案为例进行分析。

方案a 制造成本低,但宽度尺寸大,带的寿命短,而且不宜在恶劣环境中工作。

方案b 结构紧凑,环境适应性好,但传动效率低,不适于连续长期工作,且制造成本高.方案c 工作可靠、传动效率高、维护方便、环境适应性好,但宽度较大。

方案d 具有方案c 的优点,而且尺寸较小,但制造成本较高。

上诉四种方案各有特点,应当根据带式输送机具体工作条件和要求选定。

若该设备是在一般环境中连续工作,对结构尺寸也无特别要求,则方案c a 、均为可选方案。

对于方案c 若将电动机布置在减速器另一侧,其宽度尺寸得以缩小。

故选c 方案,并将其电动机布置在减速器另一侧。

3 电动机的选择3.1电动机类型和结构型式工业上一般用三相交流电动机,无特殊要求一般选用三相交流异步电动机.最常用的电动机是Y 系列笼型三相异步交流电动机。

其效率高、工作可靠、结构简单、维护方便、价格低,适用于不易燃、不易爆,无腐蚀性气体和无特殊要求的场合.此处根据用途选用Y 系列三相异步电动机3.2选择电动机容量3.2.1工作机所需功率w P 卷筒3轴所需功率:1000Fv P W ==100082.01920⨯=574.1 kw 卷筒轴转速:min /13.5914.326582.0100060100060r D v n w =⨯⨯⨯=⨯=π3。

二级减速器课程设计说明书

二级减速器课程设计说明书

二级减速器课程设计说明书一、引言二级减速器是一种用于降低机械设备速度和提高输出转矩的重要装置。

本课程设计说明书旨在介绍二级减速器的设计原理、结构和工作原理,并提供详细的步骤和指导,帮助学生完成二级减速器的课程设计。

二、设计背景在工程设计中,常常需要将高速运动的电机转速降低,同时增加输出扭矩以满足特定的工作需求。

二级减速器作为一种常用的传动装置,可以有效地实现这一目标。

由于二级减速器的设计和制造需要综合考虑多个因素,包括负载要求、轴承和齿轮的选择等,因此,本课程设计旨在增强学生对二级减速器设计的理解和应用。

三、设计目标本课程设计的目标是设计一台满足以下要求的二级减速器:1. 输入转速:500 rpm2. 输出转速:50 rpm3. 额定输出扭矩:1000 Nm4. 功率损失小于5%5. 整机尺寸紧凑,便于安装和维护四、设计过程1. 步骤一:确定输入和输出参数在设计二级减速器之前,首先需要明确输入和输出的转速和扭矩要求。

根据设计目标,确定输入转速为500 rpm,输出转速为50 rpm,额定输出扭矩为1000 Nm。

2. 步骤二:选择传动比根据输入和输出参数,计算所需的传动比。

传动比可以通过输出转速除以输入转速来计算。

在本案例中,传动比为50/500=0.1。

3. 步骤三:选择齿轮参数根据传动比,选择合适的齿轮组合。

需要考虑齿轮的模数、齿数、齿轮材料等因素。

同时,还需进行齿轮强度和齿面接触疲劳寿命的校核,确保设计的齿轮组合符合强度和寿命要求。

4. 步骤四:结构设计根据齿轮的选择,进行减速器结构的设计。

需要确定减速器的轴承类型、轴承尺寸、轴承布局等。

同时,还需进行结构强度校核,确保减速器在工作状态下能够承受额定扭矩和载荷。

5. 步骤五:优化设计对设计结果进行优化,考虑减速器整机的尺寸、重量和功率损失。

优化设计可以通过修改齿轮组合、调整传动比等方式来实现。

最终的设计结果应满足课程设计的要求,并在实际应用中具有较好的性能和可靠性。

二级减速箱体课程设计

二级减速箱体课程设计

二级减速箱体课程设计一、课程目标知识目标:1. 学生能够理解二级减速箱体的基本结构及其在机械设备中的作用。

2. 学生能够掌握二级减速箱体的工作原理,包括齿轮传动、轴承支承等关键概念。

3. 学生能够描述并分析二级减速箱体的主要设计参数,如齿轮模数、齿数、减速比等。

技能目标:1. 学生能够运用CAD软件绘制二级减速箱体的三视图,提高空间想象能力和绘图技能。

2. 学生能够通过计算和分析,确定二级减速箱体的主要尺寸,培养解决实际工程问题的能力。

3. 学生能够运用所学知识,对二级减速箱体进行简单的故障分析和维修建议,提高实践操作能力。

情感态度价值观目标:1. 培养学生对机械设计的兴趣,激发创新意识,提高学习积极性。

2. 培养学生的团队协作精神,使学生学会在讨论和合作中共同解决问题。

3. 增强学生的环保意识,认识到机械设备在设计、制造和使用过程中应关注节能、减排。

本课程针对高年级学生,结合学科特点,注重理论知识与实践操作的结合,旨在提高学生的综合运用能力。

课程目标具体、可衡量,便于教师进行教学设计和评估,同时符合学生的认知发展水平和教学要求。

通过本课程的学习,学生将能够掌握二级减速箱体的设计原理,为未来从事相关工作打下坚实基础。

二、教学内容1. 二级减速箱体的基本概念与结构:- 介绍二级减速箱体的定义、分类及其在机械传动系统中的应用。

- 分析二级减速箱体的结构组成,包括齿轮、轴、轴承、箱体等。

2. 二级减速箱体工作原理:- 阐述齿轮传动原理,包括齿轮啮合、受力分析等。

- 讲解轴承支承作用,分析轴承的类型及选用原则。

3. 二级减速箱体设计参数:- 介绍齿轮模数、齿数、压力角等设计参数的计算方法。

- 讲解减速比、传动效率等性能参数的确定。

4. 二级减速箱体CAD绘图:- 教授运用CAD软件绘制二级减速箱体三视图的步骤与方法。

- 指导学生完成二级减速箱体的CAD绘图实践。

5. 二级减速箱体故障分析与维修:- 分析二级减速箱体常见故障原因及维修方法。

机械设计课程设计二级减速器设计说明书

机械设计课程设计二级减速器设计说明书

机械设计课程设计二级减速器设计说明书一、设计任务设计一个二级减速器,用于将电动机的高转速降低到所需的工作转速。

减速器的技术参数如下:输入轴转速:1400rpm输出轴转速:300rpm减速比:4.67工作条件:连续工作,轻载,室内使用。

二、设计说明书1.总体结构二级减速器主要由输入轴、两个中间轴、两个齿轮、输出轴和箱体等组成。

输入轴通过两个中间轴上的齿轮与输出轴上的齿轮相啮合,从而实现减速。

2.零件设计(1)齿轮设计根据减速比和转速要求,计算出齿轮的模数、齿数、压力角等参数。

选择合适的齿轮材料和热处理方式,保证齿轮的强度和使用寿命。

同时,要进行轮齿接触疲劳强度和弯曲疲劳强度的校核。

(2)轴的设计根据齿轮和轴承的类型、尺寸,计算出轴的直径和长度。

采用适当的支撑方式和轴承类型,保证轴的刚度和稳定性。

同时,要进行轴的疲劳强度校核。

(3)箱体的设计箱体是减速器的支撑和固定部件,应具有足够的强度和刚度。

根据减速器的尺寸和安装要求,设计出合适的箱体结构。

同时,要考虑到箱体的散热性能和重量等因素。

3.装配图设计根据零件设计结果,绘制出减速器的装配图。

装配图应包括所有零件的尺寸、配合关系、安装要求等详细信息。

同时,要考虑到维护和修理的方便性。

4.设计总结本设计说明书详细介绍了二级减速器的设计过程,包括总体结构、零件设计和装配图设计等部分。

整个设计过程严格遵循了机械设计的基本原理和规范,保证了减速器的性能和使用寿命。

通过本课程设计,提高了机械设计能力、工程实践能力和创新思维能力。

二级减速器课程设计完整版

二级减速器课程设计完整版

二级减速器课程设计完整版一、课程背景在机械设计领域中,减速器是一种常见的机械传动装置,用于调节机械设备的输出转速,实现输出力矩的放大或减小。

二级减速器作为减速器的一种,具有结构复杂、传动效率高等特点,广泛应用于各种工业领域。

因此,对于二级减速器的设计原理和结构特点有着重要的研究意义。

本课程将详细介绍二级减速器的设计原理和计算方法,帮助学习者深入了解二级减速器的工作原理和设计过程。

二、课程内容1. 二级减速器的分类和工作原理- 正斜齿轮传动、斜齿轮传动和蜗杆传动的特点和适用范围- 二级减速器的传动比计算方法和选择原则2. 二级减速器的结构设计- 二级减速器的零部件设计要点和特点- 主要零部件的材料选择和加工工艺3. 二级减速器的热处理和装配- 热处理对二级减速器性能的影响和作用- 二级减速器的装配步骤和注意事项4. 二级减速器的性能测试和调试- 对二级减速器进行性能测试的方法和工具- 二级减速器的调试原则和步骤三、课程目标通过本课程的学习,学生将能够掌握二级减速器的设计原理和计算方法,了解二级减速器的结构特点和制造工艺,具备二级减速器的设计和调试能力。

同时,通过实际操作和案例分析,提高学生对于机械设计的实践能力和解决问题的能力,为将来从事机械设计相关工作打下坚实的基础。

四、课程教学安排- 第一阶段:介绍二级减速器的分类和工作原理,包括传动比的计算和选择方法。

学生需要通过课堂理论学习和案例分析,掌握相关理论知识。

- 第二阶段:实践操作,包括二级减速器结构设计、材料选择和加工工艺的实际操作。

学生将根据教师指导,完成二级减速器零部件的设计和制作。

- 第三阶段:实验室测试和调试,学生将在实验室进行二级减速器的性能测试和调试操作。

通过实验数据的分析和处理,学生将掌握二级减速器的调试原则和方法。

五、课程评估本课程的评估方式将采用学习报告、设计作业和实验成绩相结合的方式。

学生需要完成相关的作业和实验报告,通过对课程内容的掌握和实践操作的表现,来评估学生的学习效果和能力提升情况。

二级直齿轮减速器课程设计说明书

二级直齿轮减速器课程设计说明书

第一章传动方案的分析与拟定1.1 课程设计的设计内容设计带式运输机的传动机构,其传动转动装置图如下图-1所示。

图1.1带式运输机的传动装置1.2原始数据带 圆周力F/N 带速v(m/s)滚筒直径D/mm6850 0.7 3401.3工作条件带式输送机在常温下连续工作、单向运转;空载起动,工作载荷有轻微冲击;输送带工作速度V的允许误差为±5%;二班制(每天工作8h),要求减速器设计寿命为8年,大修期为2-3年,中批量生产;三相交流电源的电压为390、220V。

第二章传动方案的选择带式运输机的传动方案如下图所示图2-1 两级圆柱齿器1-电动机;2-联轴器;3两级圆柱齿轮减速器;4-滚筒;5-输送带采用二级圆柱齿轮传动,结构尺寸小,齿轮传动效率高,传动平稳,适合于较差环境下长期工作,考虑到以上原因所以选择此传动方案第三章 原动机的选择3.1 选择电动机的类型按按照设计要求以及工作条件,选用一般Y 型全封闭自扇冷式笼型三相异步电动机,电压为380V 。

3.2选择电动机的容量3.2.1工作机所需的有效功率KW Fv P w 795.410007.068501000=⨯==式中:w P —工作机所需的有效功率(KW ) F —带的圆周力(N )v —带的工作速度(m/s )3.2.2 电动机的输出功率)(KW P P wd η=式中:η为传动系统的总效率,按下式计算4232241ηηηηη=96.097.099.098.0224⨯⨯⨯= 816.0=其中,根据文献【2】中表3-3(按一般齿轮传动查得) η1——一对滚动轴承效率,η1=0.98 η2——联轴器的效率,η2=0.99η3——闭式圆柱齿轮的传动效率,η3=0.97 η4——运输机滚筒的效率,η4=0.96 故 KW P P wd 88.5816.0795.4===η因载荷平稳,电动机的功率稍大于d P 即可,根据文献【2】中表12-1所示Y 系列三相异步电动机的技术参数,可选择电动机的额定功率P e =7.5KW 。

二级减速器课程设计说明书

二级减速器课程设计说明书

二级减速器课程设计说明书目录一、设计任务书 (2)二、减速箱传动方案的拟定及说明 (3)三、运动参数计算 (3)一、电机的选择 (3)二、传动比的分配 (4)三、传动件运动和动力参数计算 (5)四、各传动零件的设计计算 (6)一、皮带轮的设计计算 (6)二、齿轮的设计 (8)三、各轴的设计 (12)四、减速器的箱体(箱盖)设计 (25)五、减速器的润滑 (27)六、减速器附件 (28)四、设计小结 (31)参考资料 (32)一、设计任务书带式运输机两级斜齿轮圆柱齿轮减速箱传动方案1、输送胶带2、传动滚筒3、两级圆柱齿轮减速器4、V带传动5、电动机原始数据:1. 带式运输机上圆周力F=6000N;2. 带式运输机上圆周速度V=0.75m/s;3. 带式运输机直径D=300mm;4. 工作情况:两班制,连续单向运转,载荷平稳5. 工作年限:10年(每年按300天计算)6. 工作环境:室内,清洁;7. 动力来源:电力,三相交流,电压380V;8. 检修间隔期:四年一次大修,两年一次中修;半年一次小修;9. 制造条件及生产批量:一般机械厂生产,中批量生产。

二、减速箱传动方案的拟定及说明一、工作机器特征的分析由设计任务书可知:该减速箱用于带式运输机,工作速度不高(V=0.75m/s),圆周力不大(P=6000N),因而传递的功率也不会太大。

由于工作运输机工作平稳,转向不变,使用寿命10年,故减速箱应尽量设计成闭式。

箱体内用油液润滑,轴承用脂润滑。

要尽可能使减速箱外形及体内零部件尺寸小,结构简单紧凑,造价低廉,生产周期短,效率高。

二、传动方案的拟定及说明根据设计任务书中已给定的传动方案及传动简图,分析其有优缺点如下:优点:(1)、电动机与减速器是通过皮带进行传动的,在同样的张紧力下,三角皮带较平带传动能产生更大的摩擦力,而且三角皮带允许的中心中距较平带大,传动平稳,结构简单,使用维护方便,价格低廉。

故在第一级(高速级)采用三角皮带传动较为合理,这样还可以减轻电动机因过载产生的热量,以免烧坏电机,当严重超载或有卡死现象时,皮带打滑,可以起保护电机的作用。

二级减速器课程设计书

二级减速器课程设计书

二级减速器课程设计书-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN目录一课程设计书2二设计要求2三设计步骤21. 传动装置总体设计方案 32. 电动机的选择 43. 确定传动装置的总传动比和分配传动比 54. 计算传动装置的运动和动力参数 55. 设计V带和带轮 66. 齿轮的设计 87. 滚动轴承和传动轴的设计 198. 键联接设计 269. 箱体结构的设计 2710.润滑密封设计 3011.联轴器设计 30四设计小结31五参考资料32一. 课程设计书设计课题:设计一用于带式运输机上的两级展开式圆柱齿轮减速器.运输机连续单向运转,载荷变化不大,空载起动,卷筒效率为(包括其支承轴承效率的损失),减速器小批量生产,使用期限8年(300天/年),两班制工作,运输容许速度误差为5%,车间有三相交流,电压380/220V表一:1.减速器装配图一张(A1)。

绘制轴、齿轮零件图各一张(A3)。

3.设计说明书一份。

三. 设计步骤1. 传动装置总体设计方案2. 电动机的选择3. 确定传动装置的总传动比和分配传动比4. 计算传动装置的运动和动力参数5. 设计V带和带轮6. 齿轮的设计7. 滚动轴承和传动轴的设计8. 键联接设计9. 箱体结构设计10. 润滑密封设计11. 联轴器设计1.传动装置总体设计方案:1. 组成:传动装置由电机、减速器、工作机组成。

2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,初步确定传动系统总体方案如:传动装置总体设计图所示。

选择V 带传动和二级圆柱斜齿轮减速器(展开式)。

传动装置的总效率a η5423321ηηηηηη=a =×398.0×295.0××=;1η为V 带的效率,n2为轴承的效率,3η为第一对齿轮的效率,4η为联轴器的效率,5η为卷筒轴滑动轴承的效率(因是薄壁防护罩,采用开式效率计算)。

二级减速器课程设计完整版 精选1篇

二级减速器课程设计完整版 精选1篇

二级减速器课程设计完整版一、引言减速器是一种常见的机械传动装置,广泛应用于各种机械设备中。

在工业生产中,为了满足不同的传动需求,需要设计和制造不同类型的减速器。

本文以二级减速器为例,对减速器的原理、结构、设计方法和计算过程进行了详细的阐述。

二、减速器原理1. 基本原理减速器是一种通过改变输入轴和输出轴的转速比来实现速度调节的机械传动装置。

其基本原理是通过齿轮的啮合和分离,将输入轴的高速旋转转换为输出轴的低速旋转或反之。

2. 分类及特点根据齿轮的数量和排列方式,减速器可以分为单级减速器、双级减速器和多级减速器等。

其中,单级减速器具有结构简单、体积小、重量轻等优点,但传动比范围有限;双级减速器和多级减速器则可以实现较大的传动比范围,但结构复杂、体积较大、重量较重。

三、减速器结构1. 齿轮副齿轮副是减速器的核心部件,其齿数、模数和压力角等参数直接影响到减速器的性能。

在设计过程中,需要根据工作条件和要求选择合适的齿轮副参数。

2. 箱体箱体是减速器的外壳,用于保护内部齿轮副和其他零件。

箱体的形状和尺寸应根据所设计的减速器类型和工作要求进行选择。

3. 轴承和密封装置轴承用于支撑齿轮副,并在工作过程中承受径向载荷和轴向载荷。

密封装置用于防止润滑油泄漏,提高减速器的使用寿命。

四、减速器设计方法1. 确定工作条件和要求在设计减速器之前,需要充分了解其工作条件和要求,包括额定功率、额定转速、扭矩、工作环境温度、润滑方式等。

这些参数将直接影响到减速器的选材、结构和性能。

2. 选择合适的齿轮副参数根据工作条件和要求,选择合适的齿轮副参数,包括齿数、模数和压力角等。

这些参数将直接影响到齿轮副的传动比范围、承载能力、噪声和振动等性能指标。

3. 确定齿轮副布局方案根据齿轮副参数,确定齿轮副的布局方案,包括主从齿轮的位置、数量和排列方式等。

合理的布局方案可以提高减速器的传动效率和稳定性。

4. 计算齿轮副尺寸和强度根据齿轮副参数和布局方案,计算齿轮副的尺寸和强度,包括齿顶圆跳动、齿根弯曲应力等。

机械课程设计二级减速器

机械课程设计二级减速器

机械课程设计二级减速器一、课程目标知识目标:1. 让学生掌握二级减速器的结构原理,理解其工作过程及在各领域中的应用。

2. 使学生了解并掌握减速器设计中涉及的计算方法,如齿轮传动、轴承寿命等。

3. 帮助学生掌握机械设计的基本流程,包括设计要求分析、方案设计、计算校核等。

技能目标:1. 培养学生运用CAD软件进行二级减速器零部件的绘制和装配能力。

2. 培养学生运用相关计算公式和软件进行二级减速器参数计算和校核的能力。

3. 提高学生实际操作能力,能够根据设计要求完成二级减速器的组装和调试。

情感态度价值观目标:1. 激发学生对机械设计的兴趣,培养其创新意识和实践能力。

2. 培养学生严谨的科学态度和团队协作精神,使其在设计和制作过程中体验到合作与分享的快乐。

3. 增强学生的环保意识,使其在设计过程中注重节能和可持续发展。

课程性质:本课程为机械设计实践课程,结合理论知识,注重培养学生的实际操作能力和创新能力。

学生特点:学生已具备一定的机械基础知识,具有较强的求知欲和动手能力,但缺乏实际设计经验。

教学要求:教师应结合学生特点,采用任务驱动、分组合作等教学方法,引导学生主动参与,注重理论与实践相结合,提高学生的综合能力。

通过本课程的学习,使学生能够将理论知识应用于实际工程设计中,达到学以致用的目的。

二、教学内容1. 理论知识:- 二级减速器的基本结构、原理及其应用领域。

- 齿轮传动原理,齿轮参数的计算与选择。

- 轴承类型及选用,轴承寿命计算。

- 减速器设计中涉及的力学知识,如强度计算、刚度计算等。

2. 实践操作:- 利用CAD软件进行二级减速器零部件的绘制、装配。

- 根据设计要求,进行二级减速器的参数计算和校核。

- 二级减速器的组装、调试及性能测试。

3. 教学大纲:- 第一周:二级减速器基本结构、原理学习,了解其应用领域。

- 第二周:齿轮传动原理学习,进行齿轮参数计算与选择。

- 第三周:轴承类型及选用,轴承寿命计算方法学习。

二级减速器课程设计

二级减速器课程设计

二级减速器课程设计课程背景二级减速器是一种机械传动装置,广泛应用于各种机械设备中,如汽车、工厂机械等。

理解和掌握二级减速器的原理和设计方法对于机械工程师来说非常重要。

本课程旨在帮助学生全面了解二级减速器的原理、结构和设计方法,并通过实际设计案例进行实践。

课程目标本课程的目标是:1.理解二级减速器的基本原理和工作过程;2.掌握常见二级减速器的结构和特点;3.掌握二级减速器的设计方法和工程计算;4.运用所学知识,进行二级减速器的实际设计和优化。

课程大纲第一章:二级减速器基本原理• 1.1 机械传动概述• 1.2 二级减速器的作用和应用领域• 1.3 二级减速器的基本原理和工作方式第二章:常见二级减速器结构• 2.1 平行轴二级减速器• 2.2 锥齿轮二级减速器• 2.3 行星齿轮二级减速器第三章:二级减速器设计方法• 3.1 设计准则和要求• 3.2 功率和转速计算• 3.3 传动比的选择• 3.4 齿轮的设计和选型第四章:二级减速器实际设计案例• 4.1 平行轴二级减速器设计• 4.2 锥齿轮二级减速器设计• 4.3 行星齿轮二级减速器设计课程教学安排本课程分为理论学习和实践设计两部分,具体安排如下:•第1-2周:第一章二级减速器基本原理的讲解•第3-4周:第二章常见二级减速器结构的讲解•第5-6周:第三章二级减速器设计方法的讲解•第7-10周:第四章二级减速器实际设计案例的讲解和实践课程评估方式本课程的评估方式采用综合评价的方法,包括平时表现、作业、考试等方面。

•平时表现(20%):包括课堂参与和讨论、作业完成情况等。

•作业(30%):包括课后作业和设计实践。

•期末考试(50%):考核学生对课程内容的理解和应用能力。

参考书目•《机械设计手册》•《齿轮传动设计手册》•《齿轮传动的设计与计算》以上是《二级减速器课程设计》的大纲,希望通过本课程的学习,能够使学生对二级减速器有全面的了解,并具备进行二级减速器设计和优化的能力。

二级减速器课程设计

二级减速器课程设计
)
[ 1]= = =200MPa
[ 2]= = = MPa
2)校核计算
= MPa
MPa
因 , 故弯曲强度足够。
低速机齿轮传动计算
已知条件:输入功率 =,小齿轮转速

传动比 =,工作寿命为8年(年工作日250天),两班制。
(1)选定齿轮类型、材料和齿数
1)选用斜齿圆柱齿轮传动
2)材料选择。由表[1]选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。

电动机中心高H =160mm,外伸轴段D×E=42×110mm。
}
第四
分配减速器的各级传动比
按展开二级圆柱齿轮减速器推荐高速级传动比 ,取 ,得
所以 =
计算各轴的动力和动力参数
(1)计算各轴转速
Ⅰ轴 = = =
[
Ⅱ轴 = = =
Ⅲ轴 = = =
卷通轴 = =
(2)计算各轴输入功率、输出功率
Ⅰ轴 = =×=9kw
15
11
"
380
970
87
2
2
Y180M-2
@
30
22
380
2940
89
2
{
7
确定电动机转速
卷筒转速为
=90
按推荐的传动比合理范围,取V带传动的传动比
二级圆柱齿减速器的传动比为
~
则从电动机到卷筒轴的总传动比合理范围为 。
故电动机转速的可选范围为
可见,电动机同步转速可选 、和 两种。根据相同容量的两种转速,从上表中查出两个电动机型号,再将总传动比合理分配给V带和减速器,就得到两种传动比方案,如下表所示。

机械课程设计~二级减速器(设计教程)

机械课程设计~二级减速器(设计教程)

η 卷筒效率 2_________
η3_________低速级联轴器效率
η4_________ III轴轴承效率
η5_________低速级齿轮啮合效率
η6__________ II轴轴承效率
η7_________高速级齿轮啮合效率
η I轴轴承效率 8__________
η9_________高速级联轴器效率
正式装配图
1)各视图应能完整表达箱内外结构(达到使 他人能拆图的目的)
2)符合制图国家标准,零件编号,标题栏, 明细表,技术要求等应齐全。
3)标注尺寸
a.特性尺寸:齿轮中心距及公差值。
b.外廓尺寸:长*宽*高 ,包括外伸端轴长。
c.安装尺寸:地脚螺钉孔径及定位尺寸、孔 距、外伸端轴中心高。
d.配合尺寸:齿轮与轴、轴承内外圈、键槽、 外伸端与联轴器。装配图上标注公差代号。
5、验算传动系统速度误差
输送带速实际Vw在求解过程中与理论V 发生了变化,故应验算系统误差。
[( V-Vw)/V]100%<±5% 若不满足应重新计算。
6、计算轴类零件
1)初估I 、II、 III轴径,注意第I 根轴是否 设计成齿轮轴,对 II轴进行弯扭合成强度验算。 2)轴承的选择,同一根轴上的两个轴承型号 相同。对II轴上的轴承进行寿命计算。 3)键的选择,对 II轴上的键进行强度校核。 提示: 力的结果取整数,
6 4 16 5
7000 0.4 150
6 4 16 5
3
6000 0.3 150
7 5 16 5
机械设计课程设计
(第二次布置)
天津理工大学机械工程学院
第二阶段设计的主要内容:
1、草图设计(仪器图) 2、装配图(CAD ) 3、撰写论文 草图设计是装配图设计的规划和准备阶段 装配图设计是对草图的进一步细化和完善 特点:“算画结合”边画边算

二级减速器课程设计说明书

二级减速器课程设计说明书

二级减速器课程设计说明书一、设计任务本次课程设计的任务是设计一个用于特定工作条件的二级减速器。

该减速器需要将输入的转速降低到指定的输出转速,并传递一定的扭矩。

二、设计要求1、确定传动方案,包括齿轮类型、轴的布置等。

2、完成零部件的设计计算,如齿轮、轴、轴承等。

3、绘制装配图和零件图。

三、传动方案的确定1、考虑到传动比、效率和结构紧凑性等因素,选择了展开式二级圆柱齿轮减速器。

2、第一级为斜齿圆柱齿轮传动,第二级为直齿圆柱齿轮传动。

3、电机通过联轴器与高速轴相连,低速轴通过联轴器输出动力。

四、电机的选择1、根据工作机的功率要求和工作条件,初选电机型号。

2、计算电机的转速,以确定传动比的分配。

五、传动比的分配1、综合考虑齿轮的强度、尺寸和润滑等因素,合理分配各级传动比。

2、计算实际总传动比,并与理论传动比进行比较。

六、齿轮的设计计算1、第一级斜齿圆柱齿轮确定齿轮的材料、精度等级。

按齿面接触强度进行初步设计计算。

按齿根弯曲强度进行校核计算。

确定齿轮的主要参数,如模数、齿数、螺旋角等。

2、第二级直齿圆柱齿轮同样按照上述步骤进行设计和校核计算。

七、轴的设计计算1、高速轴初步估算轴的直径。

进行轴的结构设计,确定轴上各段的长度和直径。

进行强度校核计算,包括弯扭合成强度和疲劳强度校核。

2、中间轴和低速轴重复上述步骤进行设计和校核。

八、轴承的选择与校核1、根据轴的受力情况,选择合适类型的轴承。

2、计算轴承的寿命,确保其满足使用要求。

九、键的选择与校核1、选择合适尺寸的键,用于连接轴与齿轮等零件。

2、对键进行强度校核。

十、箱体及附件的设计1、设计箱体的结构和尺寸,保证足够的强度和刚度。

2、选择合适的密封方式、通气器、油标等附件。

十一、装配图的绘制1、按照机械制图标准,绘制减速器的装配图。

2、清晰表达各零部件的装配关系和结构形状。

十二、零件图的绘制1、选取重要的零件,如齿轮、轴等,绘制零件图。

2、标注尺寸、公差、表面粗糙度等技术要求。

机械课程设计二级减速器设计

机械课程设计二级减速器设计

二、电动机的选择:(1)电动机型号的选择:根据电动机转速P 电=5.5kw ,传动不逆转,则同步转速n=1500rpm;选择电动机型号Y132S-4,P 额=7.5KW ,满载电流I=11.6A ,效率η=85.5%,功率因数cos φ=0.84;堵转电流/额定电流=7.0A;堵转转矩/额定转矩=2.2;最大转矩/额定转矩=2.2(2)电动机主要外形和安装尺寸如下: 三、确定传动装置的总传动比和分配传动比1. 确定总传动比:4286.2735960===总电总n n i 电n 为电动机满载转速;总n 为盘磨机主轴转速;总i 为传动装置总传动比2.分配传动比:锥总i i i i ⋅⋅=21;21i i 分别为两对斜齿轮的传动比;3~2=锥i ,取5.2=锥i ,则有97.105.24286.2721===⋅锥总i i i i21)3.1~2.1(i i = 63.31=∴i 02.32=i四、计算传动装置的运动和动力参数为进行传动件的设计计算,要推算出各轴的转速和转矩(或功率),如将传动装置各轴由高速至低速依次定为1轴、2轴……同时每对轴承的传动效率η1=0.99 圆柱齿轮的传动效率η2=0.96 联轴器的传动效率η3=0.99 圆锥齿轮的传动效率η4=0.95则可按电动机到工作机运动传递路线推算,得到各轴的运动和动力参数。

1.计算各轴转速:m in /9601r n n m == m in /9602r n n m ==min /46.26463.3960123r i n n ===min /57.8702.346.264234r i n n ===min /57.8745r n n == min /03.355.257.8756r i n n ===锥 m n 为电动机满载转速;654321n n n n n n 分别为轴1至轴6的转速;2.各轴输入功率:kw P P d 5.51==kw P P d 39.599.099.05.5122=⨯⨯=⋅=η 3112ηηη⨯= kw P P 12.596.099.039.52323=⨯⨯=⋅=η 2123ηηη⨯= kw P P 87.496.099.012.53434=⨯⨯=⋅=η 2134ηηη⨯= kw P P 77.499.099.087.44545=⨯⨯=⋅=η 3145ηηη⨯= kw P P 49.495.099.077.45656=⨯⨯=⋅=η 4156ηηη⨯=5645342312ηηηηη分别为相邻两轴间的传动效率 3.各轴输出功率:kw P P d 5.5'1==kw P P 34.599.039.512'2=⨯=⋅=η kw P P 76.299.079.213'3=⨯=⋅=ηkw P P 82.499.087.414'4=⨯=⋅=η kw P P 72.499.077.415'5=⨯=⋅=η kw P P 45.499.049.416'6=⨯=⋅=η4.各轴输入转矩:m N n P T d ⋅=⨯=⨯=71.549605.595509550电电m N T T d ⋅==71.541m N T T ⋅=⨯⨯=⋅=62.5399.099.071.541212ηm N i T T ⋅=⨯⨯⨯=⋅⋅=99.18496.099.063.362.5323123η m N i T T ⋅=⨯⨯⨯=⋅⋅=96.53096.099.002.399.18434234η m N T T ⋅=⨯⨯=⋅=39.52099.099.096.5304545η m N i T T ⋅=⨯⨯⨯=⋅⋅=57.122395.099.05.239.5205656η锥5.各轴输出转矩:m N T T d ⋅==71.54'1m N T T ⋅=⨯=⋅=08.5399.062.5312'2η m N T T ⋅=⨯=⋅=14.18399.099.18413'3ηm N T T ⋅=⨯=⋅=65.52599.096.53014'4η m N T T ⋅=⨯=⋅=19.51599.039.52015'5η m N T T ⋅=⨯=⋅=33.121199.057.122316'6η根据上述运算过程,运动和动力参数计算结果整理于下表:五、传动零件的设计计算1.高速齿轮的计算注:参考资料未标表示机械设计第八版,机原为机械原理表1 高速级圆柱斜齿轮1传动参数表2.低速齿轮的计算表2 低速级圆柱斜齿轮传动参数表3.锥齿轮的计算注:课设-机械设计课程设计指导书表3锥齿轮传动参数表六、轴的计算计算及说明结果1.轴的初选:材料45钢 []55~35=t τ 97~1120=Amm n P A d n 7.7719605.391003302==≥ 66.1805.117.77=⨯ mm n P A d 26.8564.4625.12100333303==≥ 19.2805.126.85=⨯ mm n P A d 38.1787.574.87100334404==≥ 4005.138.17=⨯ mm n P A d 37.9187.574.77100335505==≥ mm n P A d 50.4235.034.49100336606==≥ 对于直径100mm d ≤的轴,轴径增大5%至7%2.轴的校核P362表15-1P370表15-3 P371 P371材力第3章切向力N d T F t 87.394674.931099.18422333=⨯⨯==P231七、键联接的选择和计算1.键的选择键2 10 8 0.4-0.6 42 0.063 5.0 3.3 0.25-0.4键3 10 8 0.4-0.6 62 0.063 5.0 3.3 键41490.4-0.6700.1555.03.32.键的校核:计算及说明结果低速轴上键4的校核:[]MPa p 120~100=σ[]p p dkl T σσ<=⨯⨯⨯==6.856245096.5302000200082==hk机械手册P581表7-3机械手册P580八、滚动轴承的选择和计算1.轴承的选择序号轴承代号基本尺寸基本额定负荷KN 极限转速 安装尺寸 质量 dDBCC脂润滑 r dDrkg1 7305AC 25 62 17 21.5 15.8 9500 19.1 32 55 1 0.23 2 7306AC 30 72 19 25.2 18.5 8500 31.1 37 65 1 0.35 3 7310AC 50 110 27 55.5 44.556003360 100 2 1.32计算及说明结果2.轴承的校核 查表可知,68.0=e派生轴向力N F V d 34.120944.177868.068.0F 11=⨯==N F V d 126.19595.28668.068.0F 22=⨯==34.1209116.1297126.19599.110112=>=+=+d d a F F F左边为放松边,右边为压紧边N F F F d a a 116.1297126.19599.110121=+=+=P322表13-7N F F d a 126.19522==e F F V a >==73.044.1778116.129711,则41.01=X ,87.01=Y e F F V a ===68.095.286126.19522,则12=X ,02=Y 轴承受轻微冲击,则载荷系数2.1=p fNF F f P a V p 18.2229)116.129787.044.177841.0(2.1)(11111=⨯+⨯⨯=Y +X =N F F f P a V p 34.344)95.2861(2.1)(22222=⨯⨯=Y +X =左轴承h P C n L h 636161094.218.22295550057.8760106010⨯=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⨯=ε左h h L L >左 ,符合要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录123一课程设计书 2456二设计要求278三设计步骤29101. 传动装置总体设计方案 3 112. 电动机的选择 4 123. 确定传动装置的总传动比和分配传动比 5 134. 计算传动装置的运动和动力参数 5 145. 设计V带和带轮 6 156. 齿轮的设计 8 167. 滚动轴承和传动轴的设计 19 178. 键联接设计 26 189. 箱体结构的设计 27 1910.润滑密封设计 3012011.联轴器设计 3021四设计小结312223五参考资料32242526272829一. 课程设计书30设计课题:31设计一用于带式运输机上的两级展开式圆柱齿轮减速器.运输机连续单向运转,载荷变化不大,空载起动,卷筒效率为0.96(包括其支承轴承效率的损失),减速3233器小批量生产,使用期限8年(300天/年),两班制工作,运输容许速度误差为5%,车间有三相交流,电压380/220V3435表一:236二. 设计要求371.减速器装配图一张(A1)。

382.CAD绘制轴、齿轮零件图各一张(A3)。

393.设计说明书一份。

40三. 设计步骤41421. 传动装置总体设计方案2. 电动机的选择43443. 确定传动装置的总传动比和分配传动比454. 计算传动装置的运动和动力参数465. 设计V带和带轮476. 齿轮的设计3487. 滚动轴承和传动轴的设计498. 键联接设计509. 箱体结构设计5110. 润滑密封设计5211. 联轴器设计53541.传动装置总体设计方案:55561. 组成:传动装置由电机、减速器、工作机组成。

572. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,58要求轴有较大的刚度。

593. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。

6061其传动方案如下:4565 初步确定传动系统总体方案如:传动装置总体设计图所示。

66 选择V 带传动和二级圆柱斜齿轮减速器(展开式)。

67 传动装置的总效率a η68 5423321ηηηηηη=a =0.96×398.0×295.0×0.97×0.96=0.759;69 1η为V 带的效率,n2为轴承的效率,70 3η为第一对齿轮的效率,4η为联轴器的效率,71 5η为卷筒轴滑动轴承的效率(因是薄壁防护罩,采用开式效率计算)。

72 737462.电动机的选择 7576 电动机所需工作功率为: P =P /η=1900×1.3/1000×0.759=3.25kW, 77 执行机构的曲柄转速为n =Dπ60v1000⨯=82.76r/min ,78经查表按推荐的传动比合理范围,V 带传动的传动比i =2~4,二级圆柱斜79 齿轮减速器传动比i =8~40,80则总传动比合理范围为i =16~160,电动机转速的可选范围为n =i ×n 81 =(16~160)×82.76=1324.16~13241.6r/min 。

82 综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比, 83 选定型号为Y112M —4的三相异步电动机,额定功率为4.084 额定电流8.8A ,满载转速=m n 1440 r/min ,同步转速1500r/min 。

85868778889 90 9192939495969798 3.确定99传动装100 置的总101 传动比102和分配传动比103104 (1) 总传动比105由选定的电动机满载转速n 和工作机主动轴转速n ,可得传动装置总传动比106 为a i =n /n =1440/82.76=17.40 107 (2) 分配传动装置传动比108 a i =0i ×i109 式中10,i i 分别为带传动和减速器的传动比。

110方案 电动机型号额定功率 P ed kw电动机转速 minr电动机重量N参考价格 元传动装置的传动比 同步转速 满载转速总传动比 V 带传动 减速器1 Y112M-44 1500 1440 470230 16.152.37.02中心高外型尺寸 L ×(AC/2+AD )×HD底脚安装尺寸A ×B地脚螺栓孔直径K轴伸尺寸D ×E装键部位尺寸F ×GD132 515× 345× 315 216 ×17812 36× 8010 ×418为使V 带传动外廓尺寸不致过大,初步取0i =2.3,则减速器传动比为i =0/i i a 111 =17.40/2.3=7.57112 根据各原则,查图得高速级传动比为1i =3.24,则2i =1/i i =2.33 113114 4.计算传动装置的运动和动力参数 115 (1) 各轴转速116 I n =0/i n m =1440/2.3=626.09r/min 117 Ⅱn =1/ Ⅰi n =626.09/3.24=193.24r/min118 Ⅲn = Ⅱn / 2i =193.24/2.33=82.93 r/min119 Ⅳn =Ⅲn =82.93 r/min 120 (2) 各轴输入功率121 ⅠP =d p ×1η=3.25×0.96=3.12kW122 ⅡP =Ⅰp ×η2×3η=3.12×0.98×0.95=2.90kW 123 ⅢP =ⅡP ×η2×3η=2.97×0.98×0.95=2.70kW124 ⅣP =ⅢP ×η2×η4=2.77×0.98×0.97=2.57kW 125 则各轴的输出功率:126 'ⅠP =ⅠP ×0.98=3.06 kW1279'ⅡP =ⅡP ×0.98=2.84 kW128 'ⅢP =ⅢP ×0.98=2.65kW 129 'ⅣP =ⅣP ×0.98=2.52 kW 130 (3) 各轴输入转矩 131 1T =d T ×0i ×1η N·m132电动机轴的输出转矩d T =9550mdn P =9550×3.25/1440=21.55 N· 133所以: ⅠT =d T ×0i ×1η =21.55×2.3×0.96=47.58 N·m134 ⅡT =ⅠT ×1i ×1η×2η=47.58×3.24×0.98×0.95=143.53 N·m135 ⅢT =ⅡT ×2i ×2η×3η=143.53×2.33×0.98×0.95=311.35N·m136 ⅣT =ⅢT ×3η×4η=311.35×0.95×0.97=286.91 N·m 137 输出转矩:'ⅠT =ⅠT ×0.98=46.63 N·m138 'ⅡT =ⅡT ×0.98=140.66 N·m139 'ⅢT =ⅢT ×0.98=305.12N·m 140 'ⅣT =ⅣT ×0.98=281.17 N·m 141运动和动力参数结果如下表1426.齿轮的设计143144(一)高速级齿轮传动的设计计算1451461471.齿轮材料,热处理及精度148考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜149齿轮150(1)齿轮材料及热处理1011① 材料:高速级小齿轮选用45#钢调质,齿面硬度为小齿轮 151 280HBS 取小齿齿数1Z =24152高速级大齿轮选用45#钢正火,齿面硬度为大齿轮 240HBS Z 2=i ×153 Z 1=3.24×24=77.76 取Z 2=78. 154 ② 齿轮精度155 按GB/T10095-1998,选择7级,齿根喷丸强化。

156157 2.初步设计齿轮传动的主要尺寸158 按齿面接触强度设计1592131)][(12H E H d t t Z Z u u T K d σεφα⨯±⨯≥160确定各参数的值: 161 ①试选t K =1.6162 查课本215P 图10-30 选取区域系数 Z H =2.433 163 由课本214P 图10-26 78.01=αε 82.02=αε164 则6.182.078.0=+=αε165 ②由课本202P 公式10-13计算应力值环数166 N 1=60n 1j h L =60×626.09×1×(2×8×300×8)16712=1.4425×109h168 N 2= =4.45×108h #(3.25为齿数比,即3.25=12Z Z ) 169③查课本203P 10-19图得:K 1H N =0.93 K 2H N =0.96 170 ④齿轮的疲劳强度极限171 取失效概率为1%,安全系数S=1,应用202P 公式10-12得:172[H σ]1=SK H HN 1lim 1σ=0.93×550=511.5 MPa 173174 [H σ]2=SK H HN 2lim 2σ=0.96×450=432 MPa 175许用接触应力176 MPa H H H 75.4712/)4325.511(2/)][]([][21=+=+=σσσ177178 ⑤查课本由198P 表10-6得:E Z =189.8MP a 179 由201P 表10-7得: d φ=1180 T=95.5×105×11/n P =95.5×105×3.19/626.09181 =4.86×104N.m182 3.设计计算183 ①小齿轮的分度圆直径d t 1184132131)][(12H E H d t t Z Z u u T K d σεφα⨯+⨯≥185=mm 53.49)75.4718.189433.2(25.324.46.111086.46.12243=⨯⨯⨯⨯⨯⨯⨯186 ②计算圆周速度υ187 =⨯=10006011 n d t πυs m /62.110006009.62653.4914.3=⨯⨯⨯188 ③计算齿宽b 和模数nt m 189 计算齿宽b190 b=t d d 1⨯φ=49.53mm 191 计算摸数m n 192 初选螺旋角β=14︒193nt m =mm Z d t 00.22414cos 53.49cos 11=⨯=β 194④计算齿宽与高之比hb195齿高h=2.25 nt m =2.25×2.00=4.50mm196h b =5.453.49 =11.01 197⑤计算纵向重合度198 βε=0.3181Z Φd 14tan 241318.0tan ⨯⨯⨯=β=1.90319914⑥计算载荷系数K 200 使用系数A K =1201 根据s m v /62.1=,7级精度, 查课本由192P 表10-8得 202 动载系数K V =1.07,203 查课本由194P 表10-4得K βH 的计算公式: 204K βH =)6.01(18.012.12d φ++ 2d φ⨯+0.23×103-×b205=1.12+0.18(1+0.6⨯1) ×1+0.23×103-×49.53=1.42 206 查课本由195P 表10-13得: K βF =1.35 207 查课本由193P 表10-3 得: K αH =αF K =1.2 208 故载荷系数:209K =K K K αH K βH =1×1.07×1.2×1.42=1.82 210 ⑦按实际载荷系数校正所算得的分度圆直径211d 1=d t1tK K /3=49.53×6.182.13=51.73mm 212⑧计算模数n m213n m =mm Z d 09.22414cos 73.51cos 11=⨯=β 2144. 齿根弯曲疲劳强度设计21515由弯曲强度的设计公式216 n m ≥)][(cos 212213F S F ad Y Y Z Y KT σεφββ∂∂ 217218 ⑴ 确定公式内各计算数值219① 小齿轮传递的转矩=48.6kN·m220 确定齿数z221因为是硬齿面,故取z =24,z =i z =3.24×24=77.76222 传动比误差 i =u =z / z =78/24=3.25 223 Δi=0.032%5%,允许 224 ② 计算当量齿数225z =z /cos=24/ cos 314︒=26.27226 z =z /cos=78/ cos 314︒=85.43227 ③ 初选齿宽系数228 按对称布置,由表查得=1229 ④ 初选螺旋角 230 初定螺旋角=1423116⑤ 载荷系数K232 K =K K K K =1×1.07×1.2×1.35=1.73233 ⑥ 查取齿形系数Y和应力校正系数Y234 查课本由197P 表10-5得:235齿形系数Y =2.592 Y =2.211236 应力校正系数Y =1.596 Y =1.774237238 ⑦ 重合度系数Y239端面重合度近似为=[1.88-3.2×(2111Z Z +)]βcos =[1.88-3.2240 ×(1/24+1/78)]×cos14︒=1.655241=arctg (tg /cos)=arctg (tg20/cos14︒)=20.64690242 =14.07609243 因为=/cos ,则重合度系数为Y =0.25+0.75 cos /=244 0.673245⑧ 螺旋角系数Y246 轴向重合度=09.214sin 53.49⨯⨯πo =1.825,24717Y =1-=0.78248249 ⑨ 计算大小齿轮的][F S F F Y σαα250安全系数由表查得S =1.25251 工作寿命两班制,8年,每年工作300天252小齿轮应力循环次数N1=60nkt =60×271.47×1×8×300×2×8=253 1.955×10254 大齿轮应力循环次数N2=N1/u =6.255×10/3.24=0.6032×10 255 查课本由204P 表10-20c 得到弯曲疲劳强度极256 限257 小齿轮a FF MP 5001=σ 大齿轮a FF MP 3802=σ 258 查课本由197P 表10-18得弯曲疲劳寿命系数: 259 K 1FN =0.86 K 2FN =0.93 260 取弯曲疲劳安全系数 S=1.4261[F σ]1=14.3074.150086.011=⨯=S K FF FN σ 262[F σ]2=43.2524.138093.022=⨯=S K FF FN σ 2631801347.014.307596.1592.2][111=⨯=F S F F Y σαα264 01554.043.252774.1211.2][222=⨯=F S F F Y σαα265大齿轮的数值大.选用.266267 ⑵ 设计计算 268 ① 计算模数269mm mm m n 26.1655.124101554.014cos 78.01086.473.122243=⨯⨯⨯⨯⨯⨯⨯⨯≥270 对比计算结果,由齿面接触疲劳强度计算的法面模数m n 大于由齿根弯曲疲劳271 强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m n =2mm 但为了同时272 满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d 1=51.73mm 来计算273 应有的齿数.于是由:274z 1=n m ︒⨯14cos 73.51=25.097 取z 1=25275 那么z 2=3.24×25=81 276 ② 几何尺寸计算277计算中心距 a=βcos 2)(21n m z z +=︒⨯+14cos 22)8125(=109.25mm278 将中心距圆整为110mm 279 按圆整后的中心距修正螺旋角28019β=arccos01.1425.10922)8125(arccos 2)(21=⨯⨯+=Z +Z αn m281因β值改变不多,故参数αε,βk ,h Z 等不必修正. 282 计算大.小齿轮的分度圆直径283d 1=01.14cos 225cos 1⨯=βn m z =51.53mm 284d 2=01.14cos 281cos 2⨯=βn m z =166.97mm 285计算齿轮宽度286 B=mm mm d 53.5153.5111=⨯=Φ 287 圆整的 502=B 551=B288289 (二) 低速级齿轮传动的设计计算290 ⑴ 材料:低速级小齿轮选用45#钢调质,齿面硬度为小齿轮 280HBS 取291 小齿齿数1Z =30292速级大齿轮选用45#钢正火,齿面硬度为大齿轮 240HBS z 2=2.33×293 30=69.9 圆整取z 2=70. 294 ⑵ 齿轮精度295 按GB/T10095-1998,选择7级,齿根喷丸强化。

相关文档
最新文档