流体动力学理论基础流体运动学
流体力学基础知识
目 录 Contents
一 绪论 二 流体静力学 三 流体运动学 四 流体动力学
第一章: 绪论
1.1 流体力学的研究对象
流体力学是研究流体平衡与运动的规律以及它与固 体之间相互作用规律的科学。
其中流体包括液体和气体,相对于固体,它在力学 上表现出以下特点: 流体不能承受拉力。 流体在宏观平衡状态下不能承受剪切力。 对于牛顿流体(如水、空气等)其切应力与应变的时间 变化率成比例,而对弹性体(固体)来说,其切应力则 与应变成比例。
• 数值方法 计算机数值方法是现代分析手段中发展最快的方法之一
1.4 流体力学的发展史
• 第一阶段(16世纪以前):流体力学形成的萌芽阶段 • 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学
成为一门独立学科的基础阶段 • 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方
向发展——欧拉、伯努利 • 第四阶段(19世纪末以来)流体力学飞跃发展
体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶) 流体力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1612年 伽利略——物体沉浮的基本原理 • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
1.2 连续介质模型
• 连续介质 流体微元——具有流体宏观特性的最小体积的流体团
• 理想流体 不考虑粘性的流体
• 不可压缩性 ρ=c
1.3 流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充
流体动力学基础
ax
u t
2x t 2
ax (a,b, c,t)
3)
ay
v t
2 y t 2
ay (a,b,c,t)
(3-
az
w t
2z t 2
az (a,b,c,t)
4
同样,流体的密度、压强和温度也可写成a、b、c、 的函数,即ρ= ρ (a,b,c,),P=P (a,b,c,),t=t (a,b,c,)。
式中,括弧内D可D( t以) 代 表(描t )述 (流V体 运)(动)的任一物理(量3-,10)
如密度、温度、压强,可以是标量,也可以是矢量。
D( )
称为全导数, 称为当地导数,
称为迁移导D数t 。
( )
(V )( )
t
11
2019/6/14
由上述可知,采用欧拉法描述流体的流动,常常比采 用拉格朗日法优越,其原因有三。一是利用欧拉法得到的 是场,便于采用场论这一数学工具来研究。二是采用欧拉 法,加速度是一阶导数,而拉格朗日法,加速度是二阶导 数,所得的运动微分方程分别是一阶偏微分方程和二阶偏 微分方程,在数学上一阶偏微分方程比二阶偏微分方程求 解容易。三是在工程实际中,并不关心每一质点的来龙去 脉。基于上述三点原因,欧拉法在流体力学研究中广泛被 采用。当然拉格朗日法在研究爆炸现象以及计算流体力学 的某些问题中还是方便的。
零,即
0
t
因此,定常流动时流体加速度可简化成 a (V )V
(3-12) (3-13)
2019/6/14
由式(3-13)可知,在定常流动中只有迁移加速度。例 如图3-2中,当水箱的水位保持不变时,2点到3点流体质 点的速度减小,而4点到5点速度增加,都是由于截面变化 而引起的迁移加速度。若迁移加速度为零,则为均匀流动,
流体动力学基础和方程讲解
① 理想 ② 不可压缩均质流体 ③ 在重力作用下 ④ 作恒定流动 ⑤ 并沿同一流线(或微元流束)流动。
第4章 流体动力学基础
§4.2 元流的伯努利方程
4.2.2 元流伯努利方程的物理意义和几何意义
1、物理意义
z
p
g
u2 2g
c0
位能—— z 压力能—— p
g
势能—— z p
动能—— u 2 2g
§4.2 元流的伯努利方程
4.2.1 无黏性流体运动微分方程的伯努利积分
理想流体的运动微分方程只有在少数特殊情况下才能求解。 在下列几个假定条件下:
(1)不可压缩理想流体的恒定流动; (2)沿同一微元流束(也就是沿流线)积分; (3)质量力只有重力。 即可求得理想流体微元流束的伯努利方程
§4.2 元流的伯努利方程
(p1 pdx) 2 x
(p1 pdx) 2 x
§4.1 流体的运动微分方程
受力分析: 1、表面力:
p p dx p p dx
x 2
x 2
(p1 pdx) 2 x
x轴正方向 x轴负方向
PM
(p 1 2
p dx)dydz x
PN
(p
1 2
p x
dx)dydz
2、质量力: FBxXdxdydz
§4.2 元流的伯努利方程
元流能量方程的应用——毕托管测速原理。
pA
u
2 A
pB
+0
g 2g g
uA2 pB pA h
2g g g
机械能—— z p u 2 2g
Bernoulli方程表明,对于理想流体,其位置能、压力能和动能可以互相 转换,但总和不变。Bernoulli方程为能量守恒方程在理想液体中的应用或 表现形式。
流体力学
流体力学基本方程
连 续 性 方 程
动 量 方 程
动 量 矩 方 程
伯 努 利 方 程
能 量 方 程
第一节 描述流体运动的两种方法
流体的流动是由充满整个流动空间的无限多个流体 质点的运动构成的。充满运动流体的的空间称为流场。
研
欧拉法
究
方
着眼于整个流场的状态,即研究表征流场内流体流动 特性的各种物理量的矢量场与标量场
7.湿周 水力半径 当量直径
湿周——在总流的有效截面上,流体与固体壁面的接触长度。
水力半径——总流的有效截面积A和湿周之比。
圆形截面管道的几何直径
d 2 4A d 4R d x
D
R
A x
非圆形截面管道的当量直径
4A 4R x
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
二、欧拉法
欧拉法(euler method)是以流体质点流经流场中 各空间点的运动来研究流动的方法。 ——流场法
研究对象:流场
它不直接追究质点的运动过程,而是以充满运动
流体质点的空间——流场为对象。研究各时刻质点在 流场中的变化规律。将个别流体质点运动过程置之不 理,而固守于流场各空间点。通过观察在流动空间中 的每一个空间点上运动要素随时间的变化,把足够多 的空间点综合起来而得出的整个流体的运动情况。
由欧拉法的特点可知,各物理量是空间点x,y,z和时 间t的函数。所以速度、密度、压强和温度可表示为:
v v x,y,z,t = x,y,z,t p p x,y,z,t T T x,y,z,t
1.速度
u ux, y, z, t
流体的运动学基础
流体的运动学基础流体的运动学是研究流体在没有外力作用下的运动规律和特性的学科。
它广泛应用于物理学、力学、航空航天工程、水利工程等领域。
本文将介绍流体运动学的基本概念和我们对流体运动的理解。
一、流体的运动学基本概念流体是一种特殊物质形态,它具有没有固定形状和可变容积的特点。
流体的运动学主要研究宏观量,比如流体的速度、加速度、流速等。
下面我们将介绍一些流体运动学的基本概念。
1. 流动性流动性是流体运动学的基本特性之一。
流体分为液体和气体两种,液体的分子间作用力较大,分子难以突破内聚力,因此具有较小的可压缩性;而气体的分子间距离较大,分子间作用力相对较小,因此具有较大的可压缩性。
流动性使得流体能够运动和在容器或管道中传输。
2. 流速与流量流速是指单位时间内通过某一截面的流体的体积。
在流动过程中,流体的流速可能是不均匀的,因此为了描述整个流体的流动情况,我们引入了流量的概念。
流量是指单位时间内通过某一截面的流体的质量或体积。
在实际应用中,我们通常更关注流量而不是流速。
3. 流线与流管流线是指在不同时刻,流体质点所通过的路径连成的曲线。
流线能够直观地表达出流体运动的路径和轨迹。
当流体运动具有稳定性和不可压缩性时,流线也是连续的。
流管是由流线围成的管道,它能够将流体流动的区域划分出来。
二、流体的运动学方程流体的运动学方程是描述流体在运动过程中物理量变化规律的方程。
常见的流体的运动学方程包括欧拉方程和纳维-斯托克斯方程。
1. 欧拉方程欧拉方程描述的是连续介质中的流体运动,它是基于质点的视角建立的。
欧拉方程可表达为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的流速,∇是偏微分运算符。
2. 纳维-斯托克斯方程纳维-斯托克斯方程描述的是流体在宏观尺度上的运动规律,它是基于控制体的视角建立的。
纳维-斯托克斯方程可表达为:∂v/∂t + v·∇v = -∇p/ρ + ν∇^2v + f其中,∂v/∂t是流体的加速度,v是流体的流速,p是压强,ρ是密度,ν是运动黏度,f是外力项。
流体动力学基础
3 流体运动学基础流体运动学主要讨论流体的运动参数(例如速度和加速度)和运动描述等问题。
运动是物体的存在形式,是物体的本质特征。
流体的运动无时不在,百川归海、风起云涌是自然界流体运动的壮丽景色。
而在工程实际中,很多领域都需要对流体运动规律进行分析和研究。
因此,相对于流体静力学,流体运动学的研究具有更加深刻和广泛的意义。
3.1 描述流体运动的二种方法为研究流体运动,首先需要建立描述流体运动的方法。
从理论上说,有二种可行的方法:拉格朗日(Lagrange)方法和欧拉(Euler)方法。
流体运动的各物理量如位移、速度、加速度等等称为流体的流动参数。
对流体运动的描述就是要建立流动参数的数学模型,这个数学模型能反映流动参数随时间和空间的变化情况。
拉格朗日方法是一种“质点跟踪”方法,即通过描述各质点的流动参数来描述整个流体的流动情况。
欧拉方法则是一种“观察点”方法,通过分布于各处的观察点,记录流体质点通过这些观察点时的流动参数,同样可以描述整个流体的流动情况。
下面分别介绍这二种方法。
3.1.1拉格朗日(Lagrange)方法这是一种基于流体质点的描述方法。
通过描述各质点的流动参数变化规律,来确定整个流体的变化规律。
无数的质点运动组成流体运动,那么如何区分每个质点呢?区分各质点方法是根据它们的初始位置来判别。
这是因为在初始时刻(t =t 0),每个质点所占的初始位置(a,b,c )各不相同,所以可以据此区别。
这就像长跑运动员一样,在比赛前给他们编上号码,在任何时刻就不至于混淆身份了。
当经过△t 时间后,t = t 0+△t ,初始位置为a,b,c )的某质点到达了新的位置(x ,y ,z ),因此,拉格朗日方法需要跟踪质点的运动,以确定该质点的流动参数。
拉格朗日方法在直角坐标系中位移的数学描述是:⎪⎭⎪⎬⎫===),,,(),,,(),,,(t c b a z z t c b a y y t c b a x x (3-1)式中,初始坐标(a,b,c )与时间变量t 无关,(a,b,c,t )称为拉格朗日变数。
流体运动学基础(new)
1. 定义 流动参量是几个坐标变量的函数,即为几维流动。 v v ( x) 一维流动 v v ( x, y ) 二维流动 v v ( x, y , z ) 三维流动
2 .实际流体力学问题均为三元流动。工程中一般根据具体情况加以 简化。
一、基本概念
3.1 研究流体运动的方法
运动要素:表征流体运动状态的物理量 运动要素之间的规律 ① 每一运动要素都随空间与时间在变化; ② 各要素之间存在着本质联系。 场的概念:流体的运动是以空间坐标和时间为变量描述的,或者说流体 运动空间的每一点、某时刻都对应着描述流体运动状态的参量的一个确定 的值,即物理的场 场的描述方法:Largrange法和Euler法 场的分类: 矢量场 标量场 稳定场 时变场
第三章 流体运动学基础
• 第1节 研究流体运动的方法 • 第2节 基本概念
• 第3节 连续方程
• 第4节 相邻点运动描述――流体微团运动分析 • 第5节 流体质点的加速度 • 第6节 势流理论
研究内容:流体运动的位移、速度、加速度和转向等随时间和坐标的 变化规律,不涉及力问题,但从中得出结论为流体动力学的研究奠定 基础。
均匀流有如下特征:
(1)均匀流的过水断面(有效截面)是平面,并且有效截面的形状与 尺寸沿流程不变;
(2)均匀流中同一流线上各点的流速相等,各有效截面上的流速分布 相同,平均流速相同; (3)均匀流有效截面上的流体动压强分布规律与流体静力学中流体静 压强分布规律相同,也就是在均匀流有效截面上同样存在各点静水头等于 常数的特征,即
五.流量和平均流速
3.2 基本概念
v dA v cos(v, n)dA vn dA
简述流体动力学和流体运动学的区别
简述流体动力学和流体运动学的区别摘要:一、引言二、流体动力学与流体运动学的概念及定义三、流体动力学的主要研究内容四、流体运动学的主要研究内容五、两者之间的区别与联系六、实例说明七、结论正文:一、引言在物理学领域,流体动力学和流体运动学是两个密切相关但又有所区别的学科。
了解这两者的区别,有助于我们更好地把握它们在实际应用中的作用。
二、流体动力学与流体运动学的概念及定义1.流体动力学:研究流体在受到外部力作用下产生加速度、压力变化等现象的学科,主要关注流体内部的力学性质和流体与固体之间的相互作用。
2.流体运动学:研究流体在空间中的运动状态和速度分布等现象,不考虑流体内部的力学性质和流体与固体之间的相互作用。
三、流体动力学的主要研究内容1.流体受力分析:包括质量守恒定律、动量守恒定律、能量守恒定律等。
2.流体运动方程:描述流体运动的基本方程,如Navier-Stokes方程。
3.流体与固体的相互作用:如边界层、湍流、旋涡等。
4.流体内部的力学性质:如粘性、热传导等。
四、流体运动学的主要研究内容1.流体运动状态的描述:如速度、加速度、压力分布等。
2.流体速度场的分析:包括速度矢量、流线、涡度等。
3.流体运动的稳定性:如层流稳定性、湍流稳定性等。
4.流体运动的数学模型:如边界层模型、湍流模型等。
五、两者之间的区别与联系1.区别:流体动力学关注流体内部的力学性质和流体与固体之间的相互作用,而流体运动学主要关注流体在空间中的运动状态和速度分布。
2.联系:流体动力学和流体运动学互相补充,流体动力学为流体运动学提供了理论基础,流体运动学则为流体动力学提供了实际应用场景。
六、实例说明1.在船舶设计中,流体动力学主要用于分析船体与水之间的相互作用,如阻力、推进性能等;而流体运动学则用于研究船体周围的水流状态,如速度分布、压力分布等。
2.在航空航天领域,流体动力学用于分析飞行器与大气之间的相互作用,如升力、阻力、气动热等;流体运动学则用于研究飞行器周围的流场,如速度场、压力场等。
流体力学(流体运动学)
u x = u x ( x, y , z , t )
u y = u y ( x, y , z , t )
p = p ( x, y, z, t)
u z = u z ( x, y , z , t )
实际中,恒定流只是相对的,绝对的恒定流是不存在的。本课 程主要研究恒定流动问题。
二、迹线和流线
1、迹线 、
三、一维、二维、三维流动 一维、二维、
流体的运动要素是空间坐标和时间的函数。按照流体运动要素 与空间坐标有关的个数(维数),可以把流体分为一维流、二维流 、三维流。 一维(一元)流动,若流场中的运动参数仅与一个空间自变量 有关,这种流动称为一维流动。即
u = u ( x, t)
之为二维流动。
p = p ( x, t )
随时间的变化率,称为当地加速度(时变加速度)。后三项之和 则表示流体质点在同一时间内,因坐标位置变化而形成的加速度, 称为位变加速度(迁移加速度)。
同理可得:
ay =
duy dt
=
∂uy ∂t
+ ux
∂uy ∂x
+ uy
∂uy ∂y
+ uz
∂uy ∂z
du z ∂u z ∂u z ∂u z ∂u z az = = + ux + uy + uz dt ∂t ∂x ∂y ∂z
这种通过描述每一质点的运动达到了解流体运动的方法,称为拉格朗日法 拉格朗日法。 拉格朗日法 表达式中的自变量(a,b,c),称为拉格朗日变量 拉格朗日变量。 ( , , ) 拉格朗日变量 流体质点的速度为
∂x (a , b, c, t ) ux = ∂t ∂y ( a , b, c, t ) uy = ∂t ∂z (a , b, c, t ) uz = ∂t
流体力学-知识点
第一章 流体的基本概念质量力:f X i Yj Z k =++表面力:0lim =limA A P T p AAτ∆→∆→∆∆=∆∆/w w g s γργγρρ== =/体积压缩系数:111dV d V dpdp Kρβρ=-==温度膨胀系数: 11dV d V dTdTραρ==-pRT ρ= =du du T Adydyμμτμνρ= =第二章 流体静力学欧拉平衡微分方程:()dp Xdx Ydy Zdz ρ=++0p p h γ=+ vv a v p p p p p h γ'=-=-=12sin A p l Kl A γα⎛⎫=+= ⎪⎝⎭匀加速水平直线运动中液体的平衡:0arctan s a a ap p x z ax gz C z x g g g γα⎛⎫⎛⎫=+--+==- ⎪ ⎪⎝⎭⎝⎭=匀角速度旋转运动容器中液体的平衡:2222220222s r r rp p z z C z g g g ωωωγ⎛⎫=+--== ⎪⎝⎭静止液体作用于平面壁上的总压力:1.解析法:C c c D C C J P h A p A y y y Aγ===+2.图解法:静水总压力大小等于压强分布图的体积,其作用线通过压强分布图的形心,该作用线与受压面的交点即是压力中心D 。
第三章 流体运动学基础欧拉法:速度为()()(),,,,,,,,,x x y y z z u u x y z t u u x y z t u u x y z t ⎧=⎪=⎨⎪=⎩加速度为x x x x x xx y z y y y y y y x y z z z z z zz x y zdu u u u u a u u u dt t x y zdu u u u u a u u u dt t x y z du u u u u a u u u dt t x y z ∂∂∂∂⎧==+++⎪∂∂∂∂⎪∂∂∂∂⎪==+++⎨∂∂∂∂⎪⎪∂∂∂∂==+++⎪∂∂∂∂⎩()u a u u t ∂=+⨯∇∂0utu t⎧∂≠⎪⎪∂⎨∂⎪=⎪∂⎩非恒定流: 恒定流: ()()u u u u ⎧⨯∇≠⎪⎨⨯∇=⎪⎩非均匀流: 均匀流: 流线微分方程:xyzdx dy dz u u u ==迹线微分方程:xyzdx dy dz dt u u u ===流体微团运动分解:1.亥姆霍兹(Helmhotz )速度分解定理 2.微团运动分解 (1)平移运动(2)线变形运动 线变形速度:x xy y z z u xu y u z θθθ∂⎧=⎪∂⎪∂⎪=⎨∂⎪⎪∂=⎪∂⎩(3)角变形运动 角变形速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=+⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=+⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=+⎪∂∂⎪⎝⎭⎩ (4)旋转运动 旋转角速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=-⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=-⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=-⎪∂∂⎪⎝⎭⎩3.有旋运动与无旋运动定义涡量:2xyzij k u xy z u u u ω∂∂∂Ω==∇⨯=∂∂∂有旋流:0Ω≠ 无旋流:0Ω= 即y z x z y xu u y z u u z x u u xy ∂⎧∂=⎪∂∂⎪⎪∂∂=⎨∂∂⎪∂⎪∂=⎪∂∂⎩ 或 000x y z ωωω⎧=⎪=⎨⎪=⎩平面无旋运动:1.速度势函数(简称势函数)(),,x y z ϕ (1)存在条件:不可压缩无旋流。
流体力学四章节流体运动学
(4.6)
w
iw x
jw y
k
w
z
w
w
2 x
w
2 y
w
2 z
ppx,y,z,t
(4.7)
x,y,z,t
第7页
退出 返回
(4.8)
第四章 流体运动学
第一节 流体运动的描述
因为质点在流场内是连续的,所以流体加速度的各分量为
同样
dwx wx wx x wx y wx z dt t x t y t z t
A
a
t0 et0
1
B
b
t0 1 et0
将A,B,C值代入前式得到
Cc
xaett00 1et t1
ybet0t01et t1 zc
这就是流场中的迹线方程式,也就是质点空间坐标的拉格朗日表达式,它
表示一迹线族。若某一个质点,当 t0 0时其起始位置 a 1,b2,c 3,
则这个质点的迹线方程式为 x2et t1 y3et t1 z 3
D D B t B tw x B xw y B yw z B zB t wBtwB (4.11)
(三)两种描述方法的关系 拉格朗日法和欧拉法两种表达式可以互换。例如,从拉格朗日法的坐标 位置表达式(4.1),可以求出用x,y,z,t 表示的拉格朗日变数a,b, c 的关系式
第9页 退出 返回
第四章 流体运动学
y,
z, t
wz
z t
wz x,
y,
z,
t
(b)
第10页 退出 返回
第四章 流体运动学
第一节 流体运动的描述
将(b)式进行积分,则
x F1C1, C2, C3, t
流体力学第三章流体动力学(1)
(2)流线的作法
流线的作法如下:在流速场中任取一点1(如下图),绘出
在某时刻通过该点的质点的流速矢量u1,再在该矢量上取距
点1很近的点2处,标出同一时刻通过该处的另一质点的流速
矢量u2……如此继续下去,得一折线1 2 3 4 5 6……,若
折线上相邻各点的间距无限接近,其极限就是某时刻流速场 中经过点1的流线。
(b)非恒定流
mt1 流线 mt2
迹线 mt3
且与迹线重合。
3. 均匀流和非均匀流 划分依据:按流速的大小和方向是否沿程变化
(1)均匀流
流速沿程不变的流动称为均匀流
在均匀流时不存在迁移加速度,即 auuo s
其流线为彼此平行的直线
例:等直径直管中的液流或者断面形状和水深不变的长直渠道中的水流 都是均匀流。
ux
uz x
uy
uz y
uz
uz z
质点的加速度由两部分组成:
auuu t s
欧拉加速度
ax
ux t
ux
ux x
uy
ux y
uz
ux z
ay
uy t
ux
uy x
uy
uy y
uz
uy z
az
uz t
ux
பைடு நூலகம்
uz x
uy
uz y
uz
uz z
①时变加速度(当地加速度)——流动过程中液体由于速度 随时间变化而引起的加速度; ——等号右边第一项是时变 加速度 ②位变加速度(迁移加速度)——流动过程中液体由于速度 随位置变化而引起的加速度。 ——后三项是位变加速度
(1) (a,b,c)=Const , t为变数,可以得出某个指定质点在任意时刻 所处的位置。 (2) (a,b,c)为变数, t =Const ,可以得出某一瞬间不同质点在空 间的分布情况。
第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程
第三章流体运动学与动力学基础主要内容z基本概念z欧拉运动微分方程z连续性方程——质量守恒*z伯努利方程——能量守恒** 重点z动量方程——动量守恒** 难点z方程的应用第一节研究流体运动的两种方法z流体质点:物理点。
是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。
z空间点:几何点,表示空间位置。
流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。
拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。
一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。
2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。
3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t)y = y(a,b,c,t)z = z(a,b,c,t)4、适用情况:流体的振动和波动问题。
5、优点:可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。
缺点:不便于研究整个流场的特性。
二、欧拉法(站岗法、流场法)Eulerian method1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。
2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。
3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。
位置: x = x(x,y,z,t) y = y(x,y,z,t) z = z(x,y,z,t) 速度: u x =u x (x,y,z,t ) u y =u y (x,y,z,t ) u z =u z (x,y,z,t )同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B d 2ຫໍສະໝຸດ d x既有角变形又有旋转
d1
O
A
存在不在质点连线方向的速度梯 度是产生旋转和角变形的原因
流体微团的旋转运动
u u dy
B y
dy
v
O u dx
u dydt y
C
C
B
d2
dy
v v dx
A x O
A
d1
dx
v dxdt x
流体微团的旋转运动
d1tand1xvddxxdtxvdt
udydt
控制体
控制体:
被流体所流过的,相对于某个坐标系来说,固 定不变的任何体积称之为控制体。 ➢ 控制体的边界面,称之为控制面。 ➢ 控制面总是封闭表面。 ➢ 占据控制体的诸流体质点随着时间而改变 。
控制体
控制体边界(控制面)的特点:
➢ 控制面相对于座标系是固定的。 ➢ 在控制面上可以有质量交换。 ➢ 在控制面上,受到控制体以外物体加在控
•uuvw0 x y z
四、流体微团的运动
流体质点间的相对运动 流体微团的线变形运动 流体微团的角变形运动 流体微团的旋转运动 流体微团运动的合成
流体微团
流体微团:
流体微团是指体积微小,随流体一起运动的 一团流体物质。 ➢ 包含无数个流体质点。 ➢ 各流体质点间存在相对位置变化。 ➢ 能够体现膨胀、变形、转动等尺度变化。
流体动力学理论基础
流体运动学
本章内容
流体运动的描述方法 流场的基本概念 流体运动的质量守恒方程 流体微团的运动
三、流体运动的质量守恒方程
连续性、系统和控制体 一维恒定总流的连续性方程 三维流动的连续性方程
连续性
在流体力学的研究中,把流体看作是连续介 质,即使是在运动流体内部,流体质点也是连续 充满所占据的空间,彼此间不会出现空隙。流体 的这种性质称为连续性,用数学形式表达出来就 是连续性方程,它是物质不灭定律在流体力学中 的具体体现,实质上是质量守恒方程。
vdxvdy x y
亥姆霍兹速度分解定理
uu0
udxudy x y
在u的表达式中加入
1vdy1vdy 2x 2x
得
uu 0 u xd x 1 2 u y+ x v d y 1 2 x v u y dy
亥姆霍兹速度分解定理
vv0
vdxvdy x y
在v的表达式中加入
1 1u 2 x y z 2 uvw
流体微团的角变形运动
d2 tand2ydy
udt y
旋转角度:d1 2d1-d21 2 x v- u ydt
流体微团的旋转运动
旋转角速度:单位时间内流体微团的旋转角度。
同理
z ddt12xvuy
x
12
w y
vz
y 12uz wx
流体微团的旋转运动
旋转角速度的矢量表达式:
xi y jzk
1 2 w y v z i 1 2 u z w x j 1 2 x v u y k i jk
流体微团的线变形运动
x方向上流体微团的线变形量为
uuxdxdtudtuxdxdt
同理y方向上流体微团的线变形量为
vyvdydtvdt yvdydt
存在各质点在连线方向的速度梯度是产生线变形的原因
流体微团的线变形运动
线变形速率: 单位时间内流体线的相对伸长。
xx
u dxdt x
dxdt
u x
同理
同理:My
(uy)
y
dxdydzdt
Mz
(uz)dxdydzdt
z
dt时间内,控制体总净流出质量:
M M xM yM z(xux)(yuy)(zuz)dxdydz
u d xd d y( id u v )d zx dd t yd zd t
三维流动的连续性方程
由质量守恒:控制体总净流出质量,必等于控制体内由于
密度变化而减少的质量,即
u dx d v y d dxz d w y d dx z d d yd x
x
y
z
t
uvw 0
t x y z
•u0
t
三维流动的连续性方程
恒定流
•u0
t
0
t
•u u v w 0
x y z
三维流动的连续性方程
不可压缩流体
D•u0
Dt D 0 Dt
体积变形速率:
1ddV 1 xx yy zzdxdydzd
dVdt dxdydzdt
xxyyzz
uv w x y z
体积变形速率等于三个方向线变形速率之和。
流体微团的角变形与旋转运动
B d 2
B d 2
d x
d1
O
AO
d1 A
只有角变形
只有旋转
d1d2dx
流体微团的角变形与旋转运动
x
亥姆霍兹速度分解定理
M0点的运动速度
u0 u0(x, y,t) v0 v0(x, y,t)
M点的运动速度
uu(xdx,ydy,t) vv(xdx,ydy,t)
亥姆霍兹速度分解定理
对M点的运动速度采用泰勒级数展开
uu(xdx,ydy,t)u0
udxudy x y
vv(xdx,ydy,t)v0
流动质点间的相对运动
刚体的运动特点
平移、转动
流动质点间的相对运动
流体质点的运动特点
流动质点间的相对运动
一般情况下,任一流体微元的运动可以 分解为三个运动:随同任意极点的平移,对 于通过这个极点的瞬时轴的旋转运动以及变 形运动。
亥姆霍兹速度分解定理
y
O
z
M (xd,xyd)y dr M0(x, y)
yyyv
zz
w z
流体微团的线变形运动
体积变形速率: 单位时间内流体微团体积的相对变化。 dt时间内流体微团的体积变化量
d d V d x x d xd x y y d d y d t y z z d z t z dd x
xxyyzzdxdydzdt
流体微团的线变形运动
1 udx1 udx 2y 2y
得
v 1 v u 1 v u vv0 yd y 2 x y d x 2 x y dx
亥姆霍兹速度分解定理
M点速度与M0点速度和速度空间变化率
uu0
uxdx12uyxvdy12xvuydy
vv0yvdy12xvuydx12xvuydx
平移、线变形、角变形、转动
制体之内物体上的力。 ➢ 在控制面上可以有能量交换。
三维流动的连续性方程
连续性方程的微分形式
实质:质量守恒
z y
dmx
dmx’
dz
o
x
dt时间内x方向:
dy dx
流入质量
dmx uxdydzdt
流出质量 净流出质量
dm x' ux(xux)dxdydzdt
Mxdm x' dm x( xux)dxdydzdt