初中数学专题04几何最值存在性问题(解析版)
二次函数与几何的动点及最值、存在性问题(解析版)-2024中考数学
![二次函数与几何的动点及最值、存在性问题(解析版)-2024中考数学](https://img.taocdn.com/s3/m/c4a46f7186c24028915f804d2b160b4e767f813c.png)
二次函数与几何的动点及最值、存在性问题目录题型01平行y轴动线段最大值与最小值问题题型02抛物线上的点到某一直线的距离问题题型03已知点关于直线对称点问题题型04特殊角度存在性问题题型05将军饮马模型解决存在性问题题型06二次函数中面积存在性问题题型07二次函数中等腰三角形存在性问题题型08二次函数中直角三角形存在性问题题型09二次函数中全等三角形存在性问题题型10二次函数中相似三角形存在性问题题型11二次函数中平行四边形存在性问题题型12二次函数中矩形存在性问题题型13二次函数中菱形存在性问题题型14二次函数中正方形存在性问题二次函数常见存在性问题:(1)等线段问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再利用点到点或点到直线的距离公式列出方程或方程组,然后解出参数的值,即可以将线段表示出来.【说明】在平面直角坐标系中该点在某一函数图像上,设该点的横坐标为m,则可用含m字母的函数解析式来表示该点的纵坐标,简称“设横表纵”或“一母式”.(2)平行y轴动线段最大值与最小值问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再用纵坐标的较大值减去较小值,再利用二次函数的性质求出动线段的最大值或最小值.(3)求已知点关于直线对称点问题:先求出直线解析式,再利用两直线垂直的性质(两直线垂直,斜率之积等于-1)求出已知点所在直线的斜率及解析式,最后用中点坐标公式即可求出对称点的坐标.(4)“抛物线上是否存在一点,使其到某一直线的距离为最值”的问题:常常利用直线方程与二次函数解析式联立方程组,求出切点坐标,运用点到直线的距离公式进行求解.(5)二次函数与一次函数、特殊图形、旋转及特殊角度综合:图形或一次函数与x 轴的角度特殊化,利用与角度有关知识点求解函数图像上的点,结合动点的活动范围,求已知点与动点是否构成新的特殊图形.2.二次函数与三角形综合(1)将军饮马问题:本考点主要分为两类:①在定直线上是否存在点到两定点的距离之和最小;②三角形周长最小或最大的问题,主要运用的就是二次函数具有对称性.(2)不规则三角形面积最大或最小值问题:利用割补法将不规则三角形分割成两个或以上的三角形或四边形,在利用“一母式”将动点坐标表示出来,作线段差,用线段差来表示三角形的底或高,用面积公式求出各部分面积,各部分面积之和就是所求三角形的面积.将三角形的面积用二次函数的结构表示出来,再利用二次函数的性质求出面积的最值及动点坐标.(3)与等腰三角形、直角三角形的综合问题:对于此类问题,我们可以利用两圆一线或两线一圆的基本模型来进行计算.问题分情况找点画图解法等腰三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为等腰三角形以AB为腰分别以点A ,B 为圆心,以AB 长为半径画圆,与已知直线的交点P 1,P 2,P 4,P 5即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标以AB 为底作线段AB 的垂直平分线,与已知直线的交点P 3即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标问题分情况找点画图解法直角三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为直角三角形以AB为直角边分别过点A ,B 作AB 的垂线,与已知直线的交点P 1,P 4即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB 2=BP 2+AP 2;②BP 2=AB 2+AP 2;③AP 2=AB 2+BP 2列方程解出坐标以AB 为斜边以AB 的中点Q 为圆心,QA 为半径作圆,与已知直线的交点P 2,P 3即为所求注:其他常见解题思路有:①作垂直,构造“三垂直”模型,利用相似列比例关系得方程求解;②平移垂线法:若以AB 为直角边,且AB 的一条垂线的解析式易求(通常为过原点O 与AB 垂直的直线),可将这条直线分别平移至过点A 或点B 得到相应解析式,再联立方程求解.(4)与全等三角形、相似三角形的综合问题:在没有指定对应点的情况下,理论上有六种情况需要讨论,但在实际情况中,通常不会超过四种,要注意边角关系,积极分类讨论来进行计算.情况一探究三角形相似的存在性问题的一般思路:解答三角形相似的存在性问题时,要具备分类讨论思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及动态问题要以静制动,动中求静,具体如下:①假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应点(尤其是以文字形式出现求证两个三角形相似的题目),或者涉及动点问题,因动点问题中点的位置的不确定,此时应考虑不同的对应关系,分情况讨论;②确定分类标准.在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角对应来分类讨论;③建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.情况二探究全等三角形的存在性问题的思路与探究相似三角形的存在性问题类似,但是除了要找角相等外,还至少要找一组对应边相等.3.二次函数与四边形的综合问题特殊四边形的探究问题解题步骤如下:①先假设结论成立;②设出点坐标,求边长;③建立关系式,并计算.若四边形的四个顶点位置已确定,则直接利用四边形边的性质进行计算;若四边形的四个顶点位置不确定,需分情况讨论:a.探究平行四边形:①以已知边为平行四边形的某条边,画出所有的符合条件的图形后,利用平行四边形的对边相等进行计算;②以已知边为平行四边形的对角线,画出所有的符合条件的图形后,利用平行四边形对角线互相平分的性质进行计算;③若平行四边形的各顶点位置不确定,需分情况讨论,常以已知的一边作为一边或对角线分情况讨论.b.探究菱形:①已知三个定点去求未知点坐标;②已知两个定点去求未知点坐标,一般会用到菱形的对角线互相垂直平分、四边相等的性质列关系式.c.探究正方形:利用正方形对角线互相垂直平分且相等的性质进行计算,一般是分别计算出两条对角线的长度,令其相等,得到方程再求解.d.探究矩形:利用矩形对边相等、对角线相等列等量关系式求解;或根据邻边垂直,利用勾股定理列关系式求解.题型01平行y轴动线段最大值与最小值问题1(2023·广东东莞·一模)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC =3,顶点为D.(1)求此函数的关系式;(2)在AC 下方的抛物线上有一点N ,过点N 作直线l ∥y 轴,交AC 与点M ,当点N 坐标为多少时,线段MN 的长度最大?最大是多少?(3)在对称轴上有一点K ,在抛物线上有一点L ,若使A ,B ,K ,L 为顶点形成平行四边形,求出K ,L 点的坐标.(4)在y 轴上是否存在一点E ,使△ADE 为直角三角形,若存在,直接写出点E 的坐标;若不存在,说明理由.【答案】(1)y =x 2+2x -3(2)当N 的坐标为-32,-154 ,MN 有最大值94(3)K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12(4)存在,点E 的坐标为0,32 或0,-72或0,-1 或0,-3【分析】(1)由OA =OC =3求得A -3,0 ,C 0,-3 ,再分别代入抛物线解析式y =x 2+bx +c ,得到以b ,c 为未知数的二元一次方程组,求出b ,c 的值即可;(2)求出直线AC 的解析式,再设出M 、N 的坐标,把MN 表示成二次函数,配方即可;(3)根据平行四边形的性质,以AB 为边,以AB 为对角线,分类讨论即可;(4)设出E 的坐标,分别表示出△ADE 的平分,再分每一条都可能为斜边,分类讨论即可.【详解】(1)∵抛物线y =x 2+bx +c 经过点A ,点C ,且OA =OC =3,∴A -3,0 ,C 0,-3 ,∴将其分别代入抛物线解析式,得c =-39-3b +c =0,解得b =2c =-3 .故此抛物线的函数表达式为:y =x 2+2x -3;(2)设直线AC 的解析式为y =kx +t ,将A -3,0 ,C 0,-3 代入,得t =-3-3k +t =0 ,解得k =-1t =-3 ,∴直线AC 的解析式为y =-x -3,设N 的坐标为n ,n 2+2n -3 ,则M n ,-n -3 ,∴MN =-n -3-n 2+2n -3 =-n 2-3n =-n +32 +94,∵-1<0,∴当n =-32时,MN 有最大值,为94,把n =-32代入抛物线得,N 的坐标为-32,-154,当N 的坐标为-32,-154 ,MN 有最大值94;(3)①当以AB 为对角线时,根据平行四边形对角线互相平分,∴KL 必过-1,0 ,∴L 必在抛物线上的顶点D 处,∵y =x 2+2x -3=x +1 2-4,∴K -1,4 ,L -1,-4②当以AB 为边时,AB =KL =4,∵K 在对称轴上x =-1,∴L 的横坐标为3或-5,代入抛物线得L -5,12 或L 3,12 ,此时K 都为-1,12 ,综上,K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12 ;(4)存在,由y =x 2+2x -3=x +1 2-4,得抛物线顶点坐标为D -1,-4 ∵A -3,0 ,∴AD 2=-3+1 2+0+4 2=20,设E 0,m ,则AE 2=-3-0 2+0-m 2=9+m 2,DE 2=-1-0 2+-4-m 2=17+m 2+8m ,①AE 为斜边,由AE 2=AD 2+DE 2得:9+m 2=20+17+m 2+8m ,解得:m =-72,②DE 为斜边,由DE 2=AD 2+AE 2得:9+m 2+20=17+m 2+8m ,解得:m =32,③AD 为斜边,由AD 2=ED 2+AE 2得:20=17+m 2+8m +9+m 2,解得:m =-1或-3,∴点E 的坐标为0,32 或0,-72或0,-1 或0,-3 .【点睛】本题主要考查待定系数法求二次函数解析式,二次函数图象与性质,平行四边形的判定与性质以及勾股定理等知识,会运用待定系数法列方程组,两点间距离公式求MN 的长,由平行四边形的性质判定边相等,运用勾股定理列方程.2(2023·河南南阳·统考一模)如图,抛物线与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴的交于点C 0,-4 ,点P 是第三象限内抛物线上的一个动点,设点P 的横坐标为m ,过点P 作直线PD ⊥x 轴于点D ,作直线AC 交PD 于点E .已知抛物线的顶点P 坐标为-3,-254.(1)求抛物线的解析式;(2)求点A 、B 的坐标和直线AC 的解析式;(3)求当线段CP =CE 时m 的值;(4)连接BC ,过点P 作直线l ∥BC 交y 轴于点F ,试探究:在点P 运动过程中是否存在m ,使得CE =DF ,若存在直接写出m 的值;若不存在,请说明理由.【答案】(1)y =14x 2+32x -4(2)A -8,0 ,B 2,0 ,y =-12x -4(3)-4(4)存在,m =2-25或m =-4【分析】(1)运用待定系数法即可求得抛物线的解析式;(2)令y =0,解方程即可求得点A 、B 的坐标,再运用待定系数法即可求得直线AC 的解析式;(3)过点C 作CF ⊥PE 于点F ,根据等腰三角形的性质可得点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,可得F m ,18m 2+12m -4 ,再由点F 与点C 的纵坐标相同建立方程求解即可;(4)过C 作CH ⊥PD 于H ,设P m ,14m 2+32m -4 ,由PF ∥BC ,可得直线PF 解析式为y =2x +14m 2-12m -4,进而可得OF =14m 2-12m -4 ,再证得Rt △CHE ≅Rt △DOF HL ,得出∠HCE =∠FDO ,进而推出∠FDO =∠CAO ,即tan ∠FDO =tan ∠CAO ,据此建立方程求解即可.【详解】(1)解:∵抛物线的顶点坐标为-3,-254∴设抛物线的解析式为y =a x +3 2-254,把点C 0,-4 代入,得:-4=9a -254,解得:a =14,∴y =14x +3 2-254=14x 2+32x -4,∴该抛物线的解析式为y =14x 2+32x -4.(2)解:令y =0,得14x 2+32x -4=0,解得:x 1=-8,x 2=2,∴A -8,0 ,B 2,0 ,,设直线AC 的解析式为y =kx +b ,则-8k +b =0b =-4 ,解得:k =-12b =-4 ,∴直线AC 的解析式为y =-12x -4.(3)解:如图,过点C 作CF ⊥PE 于点F ,∵CP =CE ,∴EF =PF ,即点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,∴F m ,18m 2+12m -4 ,∵PE ∥y 轴,CF ⊥PE ,∴CF ∥x 轴,∴18m 2+12m -4=-4,解得:m =-4或m =0(不符合题意,舍去),∴m =-4.(4)解:存在m ,使得CE =DF ,理由如下:如图:过C 作CH ⊥PD 于H ,设P m,14m2+32m-4,由B2,0,C0,-4,由待定系数法可得直线BC解析式为y=2x-4,根据PF∥BC,设直线PF解析式为y=2x+c,将P m,14m2+32m-4代入得:1 4m2+32m-4=2m+c,∴c=14m2-12m-4,∴直线PF解析式为y=2x+14m2-12m-4,令x=0得y=14m2-12m-4,∴F0,14m2-12m-4,∴OF=14m2-12m-4,∵∠CHD=∠PDO=∠COD=90°,∴四边形CODH是矩形,∴CH=OD,∵CE=DF,∴Rt△CHE≅Rt△DOF HL,∴∠HCE=∠FDO,∵∠HCE=∠CAO,∴∠FDO=∠CAO,∴tan∠FDO=tan∠CAO,∴OF OD =OCOA,即14m2-12m-4-m=48=12,∴1 4m2-12m-4=-12m或14m2-12m-4=12m,解得:m=-4或m=4或m=2-25或m=2+25,∵P在第三象限,∴m=2-25或m=-4.【点睛】本题属于二次函数综合题,主要考查了待定系数法求函数解析式、二次函数综合应用、等腰三角形性质、矩形判定及性质、相似三角形判定及性质、解直角三角形等知识点,解题的关键是用含m的代数式表示相关点坐标和相关线段的长度.3(2023·山东聊城·统考三模)抛物线y=-x2+bx+c与x轴交于点A3,0,与y轴交于点C0,3,点P 为抛物线上的动点.(2)若P 为直线AC 上方抛物线上的动点,作PH ∥x 轴交直线AC 于点H ,求PH 的最大值;(3)点N 为抛物线对称轴上的动点,是否存在点N ,使直线AC 垂直平分线段PN ?若存在,请直接写出点N 的纵坐标;若不存在,请说明理由.【答案】(1)b =2,c =3(2)PH 取得最大值为94(3)存在,2-2或2+2【分析】(1)将坐标代入解析式,构建方程求解;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,则PM =m ;待定系数法确定直线AC 的解析式为y =-x +3,从而确定PH =m -m 2-2m =-m 2+3m =-m -32 2+94,解得PH 最大值为94;(3)如图,设PN 与AC 交于点G ,可设直线PN 的解析式为y =x +p ,设点N (1,n ),求得y =x +(n -1);联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1,所以点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n2+1 -n =2,由二次函数解析式构建方程-(-n +3)2+2(-n +3)+3=2,解得n =2±2;【详解】(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A 3,0 ,与y 轴交于点C 0,3 ,∴-9+3b +c =0c =3,解得:b =2c =3 ,∴b =2,c =3;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,∴PM =m ,∵PH ∥x 轴,∴点H 的纵坐标为-m 2+2m +3,设直线AC 的解析式为y =kx +n ,∴3k +n =0n =3 ,解得:k =-1n =3 ,∴直线AC 的解析式为y =-x +3.∴-m 2+2m +3=-x +3,∴x =m 2-2m ,∴H m 2-2m ,-m 2+2m +3 ,∴PH =m -m 2-2m =-m 2+3m =-m -322+94,∴当m =32时,PH 取得最大值为94(3)存在点N ,使直线AC 垂直平分线段PN ,点N 的纵坐标为2-2或2+2如图,设PN 与AC 交于点G ,∵AC 垂直平分PN ,直线AC 的解析式为y =-x +3∴可设直线PN 的解析式为y =x +p 设点N (1,n ),则n =1+p ∴p =n -1,∴y =x +(n -1)联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1∴点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n 2+1 -n =2∴-(-n +3)2+2(-n +3)+3=2,解得n =2±2∴点N 的纵坐标为2-2或2+2.【点睛】本题考查利用二次函数解析式及点坐标求待定参数、待定系数法确定函数解析式、二次函数极值及其它二次函数综合问题,利用直线间的位置关系、点线间的位置关系,融合方程的知识求解坐标是解题的关键.题型02抛物线上的点到某一直线的距离问题1(2023·广东梅州·统考二模)探究求新:已知抛物线G 1:y =14x 2+3x -2,将抛物线G 1平移可得到抛物线G 2:y =14x 2.(1)求抛物线G 1平移得到抛物线G 2的平移路径;(2)设T 0,t ,直线l :y =-t ,是否存在这样的t ,使得抛物线G 2上任意一点到T 的距离等于到直线l 的距离?若存在,求出t 的值;若不存在,试说明理由;(3)设H 0,1 ,Q 1,8 ,M 为抛物线G 2上一动点,试求QM +MH 的最小值.参考公式:若点M x 1,y 1 ,N x 2,y 2 为平面上两点,则有MN =x 1-x 22+y 1-y 2 2.【答案】(1)将G 1向左平移-6个单位,向上平移11个单位(2)存在,1(3)9【分析】(1)设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,列方程组即可求解;(2)设P x 0,x 204为抛物线G 2上的一点,根据题意列方程即可;(3)点H 坐标与(2)中t =1时的T 点重合,过点M 作MA ⊥l ,垂足为A ,如图所示,则有MH =MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值.【详解】(1).解:设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,由平移法则可知14(x +a )2+3(x +a )-2+b =14x 2,整理可得14x 2+3+12a x +14a 2+3a -2+b =14x 2,可得方程组3+12a =014a 2+3a -2+b =0,解得a =-6b =11 ;∴平移路径为将G 1向左平移-6个单位,向上平移11个单位;(2)解:存在这样的t ,且t =1时满足条件,设P x 0,x 204为抛物线G 2上的一点,则点P 到直线l 的距离为x 204+t ,点P 到点T 距离为(x 0-0)2+x 204-t2,联立可得:x 204+t =(x 0-0)2+x 204-t2,两边同时平方合并同类项后可得x 20-x 20t =0解得:t =1;(3)解:点H 坐标与(2)中t =1时的T 点重合,作直线l :y =-1,过点M 作MA ⊥直线l ,垂足为A ,如图所示,则有MH =MA ,此时QM +MH =QM +MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值即QM +MA =QA =8-(-1)=9∴QM +MH 的最小值为9;【点睛】本题考查二次函数综合题,涉及到线段最小值、平移性质等,灵活运用所学知识是关键.2(2023·湖北宜昌·统考一模)如图,已知:点P 是直线l :y =x -2上的一动点,其横坐标为m (m 是常数),点M 是抛物线C :y =x 2+2mx -2m +2的顶点.(1)求点M 的坐标;(用含m 的式子表示)(2)当点P 在直线l 运动时,抛物线C 始终经过一个定点N ,求点N 的坐标,并判断点N 是否是点M 的最高位置?(3)当点P 在直线l 运动时,点M 也随之运动,此时直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),A ,B 两点到y 轴的距离之和为d .①求m 的取值范围;②求d 的最小值.【答案】(1)M -m ,-m 2-2m +2(2)N (1,3),点N 是点M 的最高位置(3)①m ≤-52或m ≥32;②d 取得最小值为2【分析】(1)将抛物线解析式写成顶点式即可求解;(2)根据解析式含有m 项的系数为0,得出当x =1时,y =3,即N (1,3),根据二次函数的性质得出-m 2-2m +2=-m +1 2+3的最大值为3,即可得出点N 是点M 的最高位置;(3)①根据直线与抛物线有交点,联立方程,根据一元二次方程根的判别式大于等于0,求得m 的范围,即可求解;②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,根据x 1+x 2=-2m +1,分情况讨论,求得d 是m 的一次函数,进而根据一次函数的性质即可求解.【详解】(1)解:y =x 2+2mx -2m +2=x +m 2-m 2-2m +2,∴顶点M -m ,-m 2-2m +2 ,(2)解:∵y =x 2+2mx -2m +2=x 2+2+2m x -1 ,∴当x =1时,y =3,抛物线C 始终经过一个定点1,3 ,即N (1,3);∵M -m ,-m 2-2m +2 ,-m 2-2m +2=-m +1 2+3,∴M 的纵坐标最大值为3,∴点N 是点M 的最高位置;(3)解:①联立y =x -2y =x 2+2mx -2m +2 ,得x 2+2mx -x -2m +4=0,∵直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),∴Δ=b 2-4ac =2m -1 2-4-2m +4 ,=4m 2+4m -15≥0,∵4m 2+4m -15=0,解得m 1=-52,m 2=32,∴当4m 2+4m -15≥0时,m ≤-52或m ≥32,②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,∴x1+x 2=-2m +1,当m =-3时,如图所示,y A =0,当-3≤m ≤-52时,y 1≥0,y 2≥0,则d =x 1+x 2 =-2m +1 ,∵-2<0,∴当m =-52时,d 取得最小值为-2×-52 +1=5+1=6,当m ≥32时,d =-x 1+x 2 =--2m +1 =2m -1,∴当m =32时,d 取得最小值为2×32-1=2,综上所述,d 取得最小值为2.【点睛】本题考查了二次函数的性质,一元二次方程与二次函数的关系,熟练掌握二次函数的性质是解题的关键.3(2023·云南楚雄·统考一模)抛物线y =x 2-2x -3交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图①,当OP =OA 时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图②,直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m ,求FP OP 的值(用含m 的式子表示).【答案】(1)A (-1,0),B (3,0)(2)0或3-41或3+41(3)13m 【分析】(1)令y =0,解方程可得结论;(2)分两种情形:①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线交抛物线于点D 2,D 3,D 2,D 3符合条件.构建方程组分别求解即可;(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3 ,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,推出x A ⋅x C =x B ⋅x E =-3-b 可得n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q 推出q =-mn -3,推出q =-(3+b )-1-b 3 -3=13b 2+2b ,推出OF =13b 2+b ,可得结论.【详解】(1)解:令y =0,得x 2-2x -3=0,解得:x =3或-1,∴A (-1,0),B (3,0);(2)∵OP =OA =1,∴P (0,1),∴直线AC 的解析式为y =x +1.①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.∵B (3,0),BD 1∥AC ,∴直线BD 1的解析式为y =x -3,由y =x -3y =x 2-2x -3,解得x =3y =0 或x =0y =-3 ,∴D 1(0,-3),∴D 1的横坐标为0.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线l 交抛物线于点D 2,D 3,D 2,D 3符合条件.直线l 的解析式为y =x +5,由y =x +5y =x 2-2x -3 ,可得x 2-3x -8=0,解得:x =3-412或3+412,∴D 2,D 3的横坐标为3-412,3+412,综上所述,满足条件的点D 的横坐标为0,3-412,3+412.(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,∴x A ⋅x C =x B ⋅x E =-3-b∵x A =-1,∴x C =3+b ,∴m =3+b ,∵x B =3,∴x E =-1-b 3,∴n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q∴q =-mn -3,∴q =-(3+b )-1-b 3 -3=13b 2+2b ,∴OF =13b 2+2b ,∴FP OP=13b +1=13(m -3)+1=13m .【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.题型03已知点关于直线对称点问题1(2023·辽宁阜新·统考中考真题)如图,在平面直角坐标系中,二次函数y =-x 2+bx -c 的图象与x 轴交于点A (-3,0)和点B (1,0),与y 轴交于点C .(1)求这个二次函数的表达式.(2)如图1,二次函数图象的对称轴与直线AC :y =x +3交于点D ,若点M 是直线AC 上方抛物线上的一个动点,求△MCD 面积的最大值.(3)如图2,点P 是直线AC 上的一个动点,过点P 的直线l 与BC 平行,则在直线l 上是否存在点Q ,使点B 与点P 关于直线CQ 对称?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2-2x +3;(2)S △MCD 最大=98;(3)Q 1-5,-5 或1+5,5 .【分析】(1)根据抛物线的交点式直接得出结果;(2)作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,先求出抛物线的对称轴,进而求得C ,D 坐标及CD 的长,从而得出过M 的直线y =x +m 与抛物线相切时,△MCD 的面积最大,根据x +m =-x 2-2x +3的△=0求得m 的值,进而求得M 的坐标,进一步求得CD 上的高MQ 的值,进一步得出结果;(3)分两种情形:当点P 在线段AC 上时,连接BP ,交CQ 于R ,设P (t ,t +3),根据CP =CB 求得t 的值,可推出四边形BCPQ 是平行四边形,进而求得Q 点坐标;当点P 在AC 的延长线上时,同样方法得出结果.【详解】(1)解:由题意得,y =-(x +3)(x -1)=-x 2-2x +3;(2)解:如图1,作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,∵OA =OC =3,∠AOC =90°,∴∠CAO =∠ACO =45°,∴∠MEQ =∠AEF =90°-∠CAO =45°,抛物线的对称轴是直线:x =-3+12=-1,∴y =x +3=-1+3=2,∴D (1,2),∵C (0,3),∴CD =2,故只需△MCD 的边CD 上的高最大时,△MCD 的面积最大,设过点M 与AC 平行的直线的解析式为:y =x +m ,当直线y =x +m 与抛物线相切时,△MCD 的面积最大,由x +m =-x 2-2x +3得,x 2+3x +(m -3)=0,由△=0得,32-4(m -3)=0得,m -3=94,∴x 2+3x +94=0,∴x 1=x 2=-32,∴y =--32 2-2×-32 +3=154,y =x +3=-32+3=32,∴ME =154-32=94,∴MQ =ME ⋅sin ∠MEQ =ME ⋅sin45°=94×22=928,∴S △MCD 最大=12×2×928=98;(3)解:如图2,当点P 在线段AC 上时,连接BP ,交CQ 于R ,∵点B 和点Q 关于CQ 对称,∴CP =CB ,设P (t ,t +3),由CP 2=CB 2得,2t 2=10,∴t 1=-5,t 2=5(舍去),∴P -5,3-5 ,∵PQ ∥BC ,∴CR =BR =1,∴CR =QR ,∴四边形BCPQ 是平行四边形,∵1+(-5)-0=1-5,0+(3-5)-3=-5,∴Q 1-5,-5 ;如图3,当点P 在AC 的延长线上时,由上可知:P 5,3+5 ,同理可得:Q 1+5,5 ,综上所述:Q 1-5,-5 或1+5,5 .【点睛】本题考查了二次函数及其图象的性质,一元二次方程的解法,平行四边形的判定和性质,轴对称的性质等知识,解决问题的关键是分类讨论.2(2023·四川甘孜·统考中考真题)已知抛物线y =x 2+bx +c 与x 轴相交于A -1,0 ,B 两点,与y 轴相交于点C 0,-3 .(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,△PBC 的面积与△ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ,试探究,是否存在满足条件的点E ,使得点P 恰好落在直线BC 上,如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】(1)b =-2,c =-3.(2)y =x +1(3)存在,点P 的坐标为1+21,-2+21 或1-21,-2-21【分析】(1)由待定系数法即可求解;(2)S △PBC =S △ABC 得到AP ∥BC ,即可求解;(3)由题意的:∠AEP =∠AEP ,P E =PE ,即可求解.【详解】(1)由题意,得1-b +c =0,c =-3.∴b =-2,c =-3.(2)由(1)得抛物线的解析式为y =x 2-2x -3.令y =0,则x 2-2x -3=0,得x 1=-1,x 2=3.∴B 点的坐标为3,0 .∵S △PBC =S △ABC ,∴AP ∥BC .∵B 3,0,C 0,-3 ,∵AP∥BC,∴可设直线AP的解析式为y=x+m.∵A(-1,0)在直线AP上,∴0=-1+m.∴m=1.∴直线AP的解析式为y=x+1.(3)设P点坐标为m,n.∵点P在直线y=x+1和抛物线y=x2-2x-3上,∴n=m+1,n=m2-2m-3.∴m+1=m2-2m-3.解得m1=4,m2=-1(舍去).∴点P的坐标为4,5.由翻折,得∠AEP=∠AEP ,P E=PE.∵AP∥BC,∴∠PAE=∠AEP '.∴∠PAE=∠PEA.∴PE=PA=4+12=52.2+5-0设点E的坐标为t,t-3,则PE2=t-42.2+t-3-52=52∴t=6±21.当t=6+21时,点E的坐标为6+21,3+21.设P (s,s-3),由P E=AP,P E=PE=52得:s-6-212,2=522+s-3-3-21解得:s=1+21,则点P 的坐标为1+21,-2+21.当t=6-21时,同理可得,点P 的坐标为1-21,-2-21.综上所述,点P 的坐标为1+21,-2+21.或1-21,-2-21【点睛】本题是二次函数的综合题,主要考查了用待定系数法求一次函数、二次函数的解析式,二次函数的性质,此题题型较好,综合性比较强,用的数学思想是分类讨论和数形结合的思想.3(2023·江苏连云港·连云港市新海实验中学校考二模)如图,“爱心”图案是由抛物线y=-x2+m的一部分及其关于直线y=-x的对称图形组成,点E、F是“爱心”图案与其对称轴的两个交点,点A、B、C、D是该图案与坐标轴的交点,且点D的坐标为6,0.(1)求m 的值及AC 的长;(2)求EF 的长;(3)若点P 是该图案上的一动点,点P 、点Q 关于直线y =-x 对称,连接PQ ,求PQ 的最大值及此时Q 点的坐标.【答案】(1)m =6,AC =6+6(2)52(3)2542,Q -234,-12【分析】(1)用待定系数法求得m 与抛物线的解析式,再求出抛物线与坐标轴的交点坐标,进而求得A 的坐标,根据对称性质求得B ,C 的坐标,即可求得结果;(2)将抛物线的解析式与直线EF 的解析式联立方程组进行求解,得到E ,F 的坐标,即可求得结果;(3)设P (m ,-m 2+6),则Q (m 2-6,-m ),可得PQ =2×m -12 2-252 ,即求m -12 2-252的最值,根据二次函数的最值,即可得到m 的值,即可求得.【详解】(1)把D 6,0 代入y =-x 2+m 得0=-6+m解得m =6∴抛物线的解析式为:y =-x 2+6∴A 0,6根据对称性可得B -6,0 ,C 0,-6∴AC =AO +OC =6+6(2)联立y =-x y =-x 2+6解得x =3y =-3 或x =-2y =2 ∴E -2,2 ,F 3,-3∴EF =-2-3 2+2+3 2=52(3)设P (m ,-m 2+6),则Q (m 2-6,-m )∴PQ =m -m 2-6 2+-m 2+6--m 2整理得PQ =2×m -12 2-254 ∵m -12 2≥0∴当m -12 2=0时,即m =12时,m -12 2-254 有最大值为254∴PQ 的最大值为2542∴12 2-6=-234故Q -234,-12【点睛】本题考查二次函数综合应用,涉及待定系数法求函数解析式,两点间的距离公式,求抛物线与一次函数的交点坐标,二次函数的最值等知识,解题的关键是掌握关于直线y =-x 对称的点坐标的关系.题型04特殊角度存在性问题1(2023·山西忻州·统考模拟预测)如图,抛物线y =18x 2+34x -2与x 轴交于A ,B 两点,与y 轴交于点C .P 是直线AC 下方抛物线上一个动点,过点P 作直线l ∥BC ,交AC 于点D ,过点P 作PE ⊥x 轴,垂足为E ,PE 交AC 于点F .(1)直接写出A ,B ,C 三点的坐标,并求出直线AC 的函数表达式;(2)当线段PF 取最大值时,求△DPF 的面积;(3)试探究在拋物线的对称轴上是否存在点Q ,使得∠CAQ =45°?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)A -8,0 ,B 2,0 ,C 0,-2 .y =-14x -2(2)85(3)存在,-3,3 或-3,-253【分析】(1)对于直线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 即求出三个点的坐标,设直线AC 的表达式为y =kx +b ,利用待定系数法求解即可;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,表示出PF =-18m 2-m ,求出PF max =2,再表示出点D 到直线PF 的距离d =85,利用S △DPF =12⋅PF ⋅d 进行求解即可;(3)由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,用解直角三角形的方法求出QH =174,即可求出Q 点坐标,当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,即可求解.【详解】(1)解:对于抛物线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 ,即点A ,B ,C 三点的坐标分别为-8,0 ,2,0 ,0,-2 ,设直线AC 的表达式为y =kx +b ,则-8k +b =0b =-2 ,解得k =-14b =-2 ,∴直线AC 的函数表达式为y =-14x -2;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,PF =-14m -2 -18m 2+34m -2 =-18m 2-m ,当m =--12×-18 =-4时,PF 最大,PF max =-18×(-4)2--4 =2,此时,P -4,-3 ,由B 2,0 ,C 0,-2 ,可得直线BC 的函数表达式为y =x -2,设直线l 的函数表达式为y =x +p ,将P -4,-3 代入可得p =1,∴直线l 的函数表达式为y =x +1,由y =-14x -2y =x +1 ,解得x =-125y =-75,∴D -125,-75 ,点D 到直线PF 的距离d =-125--4 =85,∴S △DPF =12⋅PF ⋅d =12×2×85=85.(3)存在,理由:由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,如下图:设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,则∠ACO =∠QHA ,则tan ∠ACO =tan ∠QHA =4,当x =3时,y =-14x -2=-54,则点H -3,-54 ,由点A ,H 的坐标得,AH =5174,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,设TH =x ,则QT =4x ,则QH =17x ,则AH =AT +TH =5x =5174,则x =174,则QH =17x =174,则174-54=3,则点Q -3,3 ;当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,则直线AQ 的表达式为y =-53x +8 ,当x =-3时,y =-5x +8 =-25,。
专题04 几何计算与几何证明(解析版)
![专题04 几何计算与几何证明(解析版)](https://img.taocdn.com/s3/m/844714a450e2524de5187edd.png)
专题04几何计算与几何证明【提要】平面几何是培养训练人的逻辑思维能力的很好的工具,也是初中数学学习内容的重要组成部分,因此它是初中数学学业考试的重要内容之一.在平面几何中,除了一些证明题外,还有一些计算问题,它也是要经过一定的逻辑推理后,再进行计算.因此熟练掌握几何中的一些重要定义、定理,是解决问题的前提.另外还需注意的是,要把解决常见问题的基本方法加以归类整理,比如证明角相等有哪些常见的方法?证明线段相等有哪些常见的方法?这样在遇到复杂问题时,我们才能运用化归的思想,分析和解决问题.【范例】【例1】如图,在▱ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.【解析】(1)【证明】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC.∵AB=AE,∴∠AEB=∠B.∴∠CBA=∠DAE.∴△ABC≌△EAD.(2)【解析】∵∠DAE=∠BAE,∠DAE=∠AEB,∴∠BAE=∠AEB=∠B.∴△ABE为等边三角形.∴∠BAE=60°.∵∠EAC=25°,∴∠BAC=85°.∵△ABC≌△EAD,∴∠AED=∠BAC=85°.【例2】两个全等的含30°,60°角的三角板ADE和三角板ABC如图所示放置,E、A、C三点在一条直线上,连接BD,取BD的中点M,连接ME、MC,试判断△EMC的形状,并说明理由.【解析】△EMC的形状是等腰直角三角形.证明:连接AM.∵∠DAE=∠ABC=30°,∠BAC=∠ADE=60°.又∵DM =MB , ∴MA =12DB =DM .∵AD =AB ,∴∠MAD =∠MAB =∠MDA =45°,∠DMA =90°. ∴∠MDE =∠MAC =105°. ∴△EDM ≌△CAM .∴EM =MC ,∠DME =∠AMC . 又∠DME +∠EMA =90°, ∴∠EMA +∠AMC =90°. ∴CM ⊥EM .∴△EMC 是等腰直角三角形.【例3】如图,已知:在△ABC 中,D 是边BC 上的中点,且AD =AC ,DE ⊥BC , DE 与AB 相交于点E ,EC 与AD 相交于点F . (1)求证:CF =12AB ;(2)若△FCD 的面积=5,BC =10,求DE 的长.(1)【证明】取AC 的中点G ,连接DG .∵D 是BC 的中点,∴DG ∥AB ,DG =12AB∵DE ⊥BC ,∴DE 是BC 的垂直平分线,BE =CE , ∠EBC =∠ECB ,∵∠GDC =∠EBC ,∴∠GDC =∠ECB . 由AD =AC ,得∠ACD =∠ADC 在△GDC 和△FCD 中,∠GDC =∠FCD ,∠GCD =∠FDC , DC =CD ,得△GDC ≌△FCD , ∴DG =CF ,∴CF =12AB .(2)【解析】作AH ⊥DC ,垂足为H ,则DH =CH . ∵△GDC ≌△FCD , ∴CG =DF =12AC =12AD ,∴F 是AD 的中点,∵S △FCD =5,BC =10, ∴S △FCA =5,DC =5,DH =52,S △ADC =10∵S △ADC =12DC ·AH ,∴AH =4,∵ED ∥AH , ∴ED AH =BD BHED =AH ·BD BH =4×5152=83,∴DE =83.【例4】如图(1),已知⊙O 的弦AB 垂直于直径CD ,垂足为F ,点E 在AB 上,且EA =EC . (1)求证:AC 2=AE ·AB ;(2)延长EC 到点P ,连接PB ,如果PB =PE ,试判断PB 与⊙O 的位置关系,并说明理由.(1)【证明】连接BC.∵直径CD⊥AB,∴AF=BF.∴AC=BC.∴∠A=∠ABC.又∵EA=EC,∴∠A=∠ACE.∴∠ABC=∠ACE.∵∠A=∠A,∴△ACE∽△ABC.∴AEAC=ACAB,即AC2=AE·AB.(2)【解析】连接OB.∵PB=PE,∴∠PBE=∠PEB,即∠PBC+∠EBC=∠A+∠ECA.∴∠PBC=∠EBC=∠A=∠ECA.又∵OB=OC,∴∠OBC=∠OCB.而∠OCB+∠EBC=90°.∴∠OBC+∠PBC=90°,即∠OBP=90°.∴OB⊥PB,∴PB与⊙O的位置关系是相切.【例5】如图(1),正方形ABCD的边长为1,G为CD边上的一个动点(点G与C、D不重合),以CG 为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于点H.(1)求证:①△BCG≌△DCE;②BH⊥DE.(2)试问当点G运动到什么位置时,BH垂直平分DE?请说明理由.(1)【证明】∵四边形ABCD 、四边形GCEF 都是正方形, ∴BC =DC ,∠BCG =∠DCE =90°,CG =CE , ∴△BCG ≌△DCE . ∴∠CBG =∠CDE . ∵∠BGC =∠DGH ,∴∠DHG =∠BCG =90°,即BH ⊥DE . (2)【解析】连接EG .(如图(2))要使BH 垂直平分DE ,必须有GE =GD . 设CG =x .那么GE =2x ,DG =1-x . ∴2x =1-x .解得x =2-1,即当CG =2-1时,BH 垂直平分DE .【训练】1.(2020•宝山区一模)如图,直线:l y =,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线l 于点1B ,以原点O 为圆心,1OB 为半径画弧交x 轴于点2A ;再过点2A 作x 的垂线交直线l 于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,⋯,按此做法进行下去.求:(1)点1B 的坐标和11AOB ∠的度数; (2)弦43A B 的弦心距的长度.【分析】(1)求出11tan AOB ∠的值,11A B 即可解决问题. (2)连接43A B ,作43OH A B ⊥于H .求出OH 即可.【解答】解:(1)Q 直线的解析式y =,11111tan A B AOB OA ∴∠== 1160AOB ∴∠=︒,11OA =,11A B ∴=212OA OB ==,1B ∴.(2)连接43A B ,作43OH A B ⊥于H . 由题意11OA =,22OA =,34OA =,48OA =, 43OA OB =Q ,43OH A B ⊥,4431302A OH A OB ∴∠=∠=︒,4cos308OH OA ∴=︒==g2.(2020•奉贤区一模)如图,已知AB 是O e 的直径,C 是O e 上一点,CD AB ⊥,垂足为点D ,E 是¶BC的中点,OE 与弦BC 交于点F .(1)如果C 是¶AE 的中点,求:AD DB 的值;(2)如果O e 的直径6AB =,:1:2FO EF =,求CD 的长.【分析】(1)连接OC ,根据垂径定理的推论得到OE BC ⊥,¶¶¶AC ECEB ==,根据含30︒的直角三角形的性质计算;(2)根据勾股定理求出BF ,得到BC 的长,证明BFO BDC ∆∆∽,根据相似三角形的性质列出比例式,代入计算得到答案.【解答】解:(1)连接OC , E Q 是¶BC的中点, ∴¶¶ECEB =,OE BC ⊥, C Q 是¶AE 的中点, ∴¶¶AC EC=, ∴¶¶¶AC ECEB ==, 60AOC COE EOB ∴∠=∠=∠=︒, 30OCD ∴∠=︒,在Rt COD ∆中,30OCD ∠=︒, 12OD OC ∴=,:1:3AD DB ∴=;(2)6AB =Q ,:1:2FO EF =, 1OF ∴=,在Rt BOF ∆中,BF =,BC ∴=,CD AB ⊥Q ,OE BC ⊥,90BDC BFO ∴∠=∠=︒,又B B ∠=∠, BFO BDC ∴∆∆∽,∴BO OFBC CD =1CD=,解得,CD =.3.(2020•黄浦区一模)如图,ABC ∆是边长为2的等边三角形,点D 与点B 分别位于直线AC 的两侧,且AD AC =,连接BD 、CD ,BD 交直线AC 于点E .(1)当90CAD ∠=︒时,求线段AE 的长.(2)过点A 作AH CD ⊥,垂足为点H ,直线AH 交BD 于点F , ①当120CAD ∠<︒时,设AE x =,BCEAEFS y S ∆∆=(其中BCE S ∆表示BCE ∆的面积,AEF S ∆表示AEF ∆的面积),求y 关于x 的函数关系式,并写出x 的取值范围; ②当7BCEAEFS S ∆∆=时,请直接写出线段AE 的长.【分析】(1)过点E 作EG BC ⊥,垂足为点G .AE x =,则2EC x =-.根据BG EG =构建方程求出x 即可解决问题.(2)①证明AEF BEC ∆∆∽,可得22BCE AEF S BE S AE ∆∆=,由此构建关系式即可解决问题. ②分两种情形:当120CAD ∠<︒时,当120180CAD ︒<∠<︒时,分别求解即可解决问题. 【解答】解:(1)ABC ∆Q 是等边三角形,2AB BC AC ∴=-=,60BAC ABC ACB ∠=∠=∠=︒.AD AC =Q ,AD AB ∴=,ABD ADB ∴∠=∠,180ABD ADB BAC CAD ∠+∠+∠+∠=︒Q ,90CAD ∠=︒,15ABD ∠=︒,45EBC ∴∠=︒.过点E 作EG BC ⊥,垂足为点G .设AE x =,则2EC x =-. 在Rt CGE ∆中,60ACB ∠=︒,∴sin )EG EC ACB x =∠=-g ,1cos 12CG EC ACB x =∠=-g , 1212BG CG x ∴=-=+, 在Rt BGE ∆中,45EBC ∠=︒,∴11)2x x +=-,解得4x =-所以线段AE 的长是4-(2)①设ABD α∠=,则BDA α∠=,1202DAC BAD BAC α∠=∠-∠=︒-. AD AC =Q ,AH CD ⊥,∴1602CAF DAC α∠=∠=︒-, 又60AEF α∠=︒+Q , 60AFE ∴∠=︒,AFE ACB ∴∠=∠,又AEF BEC ∠=∠Q , AEF BEC ∴∆∆∽,∴22BCE AEF S BE S AE ∆∆=, 由(1)得在Rt CGE ∆中,112BG x =+,)EG x -,222224BE BG EG x x ∴=+=-+,∴2224(02)x x y x x -+=<<.②当120CAD ∠<︒时,7y =,则有22247x x x -+=, 整理得2320x x +-=, 解得23x =或1-(舍弃), 23AE =. 当120180CAD ︒<∠<︒时,同法可得2224x x y x++= 当7y =时,22247x x x ++=,整理得2320x x --=,解得23x =-(舍弃)或1,1AE ∴=.4.(2020•闵行区一模)如图,梯形ABCD 中,//AD BC ,90ADC ∠=︒,2AD =,4BC =,tan 3B =.以AB 为直径作O e ,交边DC 于E 、F 两点.(1)求证:DE CF =; (2)求:直径AB 的长.【分析】(1)直接利用垂径定理结合平行线分线段成比例定理得出DH HC =,进而得出答案; (2)过点A 作AG BC ⊥,垂足为点G ,再利用已知结合勾股定理得出答案. 【解答】(1)证明:过点O 作OH DC ⊥,垂足为H . //AD BC Q ,90ADC ∠=︒,OH DC ⊥, 90BCN OHC ADC ∴∠=∠=∠=︒.////AD OH BC ∴.又OA OB =Q . DH HC ∴=.OH DC ⊥Q ,OH 过圆心,EH HF ∴=,DH EH HC HF ∴-=-.即:DE CF =.(2)解:过点A 作AG BC ⊥,垂足为点G ,90AGB ∠=︒, 90AGB BCN ∠=∠=︒Q , //AG DC ∴. //AD BC Q ,AD CG ∴=.2AD =Q ,4BC =,2BG BC CG ∴=-=.在Rt AGB ∆中,tan 3B =Q , tan 236AG BG B ∴==⨯=g .在Rt AGB ∆中,222AB AG BG =+AB ∴=5.(2020•奉贤区一模)如图,在平行四边形ABCD 中,点E 在边AD 上,点F 在边CB 的延长线上,连接CE 、EF ,2CE DE CF =g. (1)求证:D CEF ∠=∠;(2)连接AC ,交EF 于点G ,如果AC 平分ECF ∠,求证:AC AE CB CG =g g .【分析】(1)根据2CE DE CF =g 且DEC ECF ∠=∠可证明CDE CEF ∆∆∽,即可得结论;(2)根据AC 平分ECF ∠,//AD BC ,可得EAC ECA ∠=∠,进而得E EC =,再证明CGE CAB ∆∆∽,对应边成比例即可.【解答】(1)证明:2CE DE CF =Q g ,即CE CFDE CE=Q 四边形ABCD 为平行四边形,//AD BC ∴,DEC ECF ∴∠=∠, CDE CEF ∴∆∆∽, D CEF ∴∠=∠.(2)如图所示:AC Q 平分ECF ∠,ECA BCA ∴∠=∠,D CEF ∠=∠Q ,D B ∠=∠, CEF B ∴∠=∠,CGE CAB ∴∆∆∽,∴CG CEAC CB=, //AD BC Q ,DAC BCA ∴∠=∠, ECA DAC ∠=∠Q , AE CE ∴=,∴CG AEAC CB=,即AC AE CB CG =g g . 6.(2020•崇明区一模)如图,AC 是O e 的直径,弦BD AO ⊥于点E ,连接BC ,过点O 作OF BC ⊥于点F ,8BD =,2AE =.(1)求O e 的半径; (2)求OF 的长度.【分析】(1)连接OB ,根据垂径定理求出BE ,根据勾股定理计算,得到答案; (2)根据勾股定理求出BC ,根据垂径定理求出BF ,根据勾股定理计算,得到答案. 【解答】解:(1)连接OB , 设O e 的半径为x ,则2OE x =-, OA BD ⊥Q , 142BE ED BD ∴===, 在Rt OEB ∆中,222OB OE BE =+,即222(2)4x x =-+, 解得,5x =,即O e 的半径为5;(2)在Rt CEB ∆中,BC = OF BC ⊥Q ,12BF BC ∴==OF ∴=7.(2020•嘉定区一模)如图,在O e 中,AB 、CD 是两条弦,O e 的半径长为rcm ,弧AB 的长度为1l cm ,弧CD 的长度为2l cm (温馨提醒:弧的度数相等,弧的长度相等,弧相等,有联系也有区别).当12l l =时,求证:AB CD =.【分析】根据弧长公式求得AOB COD ∠=∠,然后利用ASA 证得AOB COD ∆≅∆,即可证得结论. 【解答】解:设AOB m ∠=︒,COD n ∠=︒, 由题意,得1180mr l π=,2180nr l π=, QBG FH DG CH =,∴180180mr nr ππ=, m n ∴=,即AOB COD ∠=∠,OA Q 、OB 、OC 、OD 都是O e 的半径, OA OB OC OD ∴===,OA OC =Q ,AOB COD ∠=∠,OB OD =,()AOB COD SAS ∴∆≅∆ AB CD ∴=.8.(2020•徐汇区一模)如图,在ABC ∆中,5AB AC ==,6BC =,点D 是边AB 上的动点(点D 不与点AB 重合),点G 在边AB 的延长线上,CDE A ∠=∠,GBE ABC ∠=∠,DE 与边BC 交于点F . (1)求cos A 的值;(2)当2A ACD ∠=∠时,求AD 的长;(3)点D 在边AB 上运动的过程中,:AD BE 的值是否会发生变化?如果不变化,请求:AD BE 的值;如果变化,请说明理由.【分析】(1)作AH BC ⊥于H ,BM AC ⊥于M .解直角三角形求出BM ,AM 即可解决问题. (2)设AH 交CD 于K .首先证明AK CK =,设AK CK x ==,在Rt CHK ∆中,理由勾股定理求出x ,再证明ADK CDA ∆∆∽,理由相似三角形的性质构建方程组即可解决问题. (3)结论::5:6AD BE =值不变.证明ACD BCE ∆∆∽,可得56AD AC BE BC ==. 【解答】解:(1)作AH BC ⊥于H ,BM AC ⊥于M . AB AC =Q ,AH BC ⊥,3BH CH ∴==,4AH ∴=, 1122ABC S BC AH AC BM ∆==Q g g g g ,245BC AH BM AC ∴==g ,75AM ∴==, 7cos 25AM A AB ∴==.(2)设AH 交CD 于K .2BAC ACD ∠=∠Q ,BAH CAH ∠=∠,CAK ACK ∴∠=∠,CK AK ∴=,设CK AK x ==,在Rt CKH ∆中,则有222(4)3x x =-+, 解得258x =,258AK CK ∴==, ADK ADC ∠=∠Q ,DAK ACD ∠=∠, ADK CDA ∴∆∆∽,∴255858AD AK DK CD AC AD ====,设AD m =,DK n =, 则有25258825()8mn m n n ⎧=⎪+⎪⎨⎪=+⎪⎩,解得12539m =,625312n =. 12539AD ∴=.(3)结论::5:6AD BE =值不变.理由:GBE ABC ∠=∠Q ,2180BAC ABC ∠+∠=︒,180GBE EBC ABC ∠+∠+∠=︒, EBC BAC ∴∠=∠,EDC BAC ∠=∠Q , EBC EDC ∴∠=∠,D ∴,B ,E ,C 四点共圆,EDB ECB ∴∠=∠,EDB EDC ACD DAC ∠+∠=∠+∠Q ,EDC DAC ∠=∠, EDB ACD ∴∠=∠, ECB ACD ∴∠=∠, ACD BCE ∴∆∆∽,∴56AD AC BE BC ==.9.(2019•杨浦区三模)已知,在ACB ∆和DCE ∆中,90ACB DCE ∠=∠=︒,AC BC =,DC EC =,M 为DE 的中点,连接BE .(1)如图1,当点A 、D 、E 在同一直线上,连接CM ,求证:22AE BECM =-; (2)如图2,当点D 在边AB 上时,连接BM ,求证:222()()22AD BD BM =+.【分析】(1)先证明ACD BCE ∆≅∆,根据全等三角形的性质得出,AD BE =,得出AE AD AE BE DE -=-=,根据直角三角形斜边上的中线性质求出12CM DE =,即可得出结论; (2)同(1)得:ACD BCE ∆≅∆,得出AD BE =,45DAC EBC ∠=∠=︒,得出90ABE ABC EBC ∠=∠+∠=︒,由勾股定理得出222DE BE BD =+,由直角三角形斜边上的中线性质得出2DE BM =,即可得出结论. 【解答】(1)证明:90ACB DCE ∠=∠=︒Q ,AC BC =, 90ACD BCE DCB ∴∠=∠=︒-∠,45BAC ABC ∠=∠=︒, 在ACD ∆和BCE ∆中,AC BCACD BCEDC EC =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,AE AD AE BE DE ∴-=-=, M Q 为DE 的中点,90DCE ∠=︒,11()2222AE BECM DE AE AD ∴==-=-; (2)证明:同(1)得:ACD BCE ∆≅∆,AD BE ∴=,45DAC EBC ∠=∠=︒,90ABE ABC EBC ∴∠=∠+∠=︒,222DE BE BD ∴=+, M Q 为DE 的中点, 2DE BM ∴=,222224BM BE BD AD BD ∴=+=+,222()()22AD BD BM ∴=+. 10.(2019•静安区二模)已知:如图,ABC ∆内接于O e ,AB AC =,点E 为弦AB 的中点,AO 的延长线交BC 于点D ,连接ED .过点B 作BF DE ⊥交AC 于点F . (1)求证:BAD CBF ∠=∠;(2)如果OD DB =.求证:AF BF =.【分析】(1)由等腰三角形的性质得出ABC C ∠=∠,由垂径定理得出AD BC ⊥,BD CD =,证出DE 是ABC ∆的中位线.得出//DE AC ,证出90BFC ∠=︒,由角的互余关系即可得出结论;(2)连接OB .证出ODB ∆是等腰直角三角形,得出45BOD ∠=︒.再由等腰三角形的性质得出OBA OAB ∠=∠.即可得出结论.【解答】(1)证明:如图1所示: AB AC =Q ,ABC C ∴∠=∠, Q 直线AD 经过圆心O ,AD BC ∴⊥,BD CD =, Q 点E 为弦AB 的中点,DE ∴是ABC ∆的中位线.//DE AC ∴,BF DE ⊥Q ,90BPD ∴∠=︒,90BFC ∴∠=︒, 90CBF ACB ∴∠+∠=︒. AB AC =Q , ABC ACB ∴∠=∠,90CBF ABC ∴∠+∠=︒,又AD BC ⊥Q , 90BAD ABC ∴∠+∠=︒, BAD CBF ∴∠=∠;(2)证明:连接OB .如图2所示: AD BC ⊥Q ,OD DB =, ODB ∴∆是等腰直角三角形, 45BOD ∴∠=︒.OB OA =Q , OBA OAB ∴∠=∠. BOD OBA OAB ∠=∠+∠Q ,122.52BAO BOD ∴∠=∠=︒,AB AC =Q ,且AD BC ⊥,245BAC BAO ∴∠=∠=︒. 290∠=︒Q ,即BF AC ⊥,∴在ABF ∆中,904545ABF ∠=︒-︒=︒,ABF BAC ∴∠=∠,AF BF ∴=.11.(2019•嘉定区二模)如图已知:ABC ∆中,AD 是边BC 上的高、E 是边AC 的中点,11BC =,12AD =,DFGH 为边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上.(1)求BD 的长度; (2)求cos EDC ∠的值.【分析】(1)由四边形DFGH 为边长为4的正方形得GF AFBD AD=,将相关线段的长度代入计算可得; (2)先求出CD 、AC 的长,再由E 是边AC 的中点知ED EC =,据此得EDC ACD ∠=∠,再根据余弦函数的定义可得答案.【解答】解:(1)Q 四边形DFGH 为顶点在ABD ∆边长的正方形,且边长为4, //GF BD ∴,4GF DF ==,∴GF AFBD AD=, 12AD =Q ,8AF ∴=,则4812BD =, 解得:6BD =;(2)11BC =Q ,6BD =, 5CD ∴=,在直角ADC ∆中,222AC AD DC =+, 13AC ∴=,E Q 是边AC 的中点,ED EC ∴=,EDC ACD ∴∠=∠,∴5cos cos 13EDC ACD ∠=∠=. 12.(2019•松江区二模)如图,已知ABCD Y 中,AB AC =,CO AD ⊥,垂足为点O ,延长CO 、BA 交于点E ,连接DE .(1)求证:四边形ACDE 是菱形;(2)连接OB ,交AC 于点F ,如果OF OC =,求证:22AB BF BO =g .【分析】(1)首先证明四边形AEDC 是平行四边形,再证明AE AC =即可解决问题. (2)证明BAF BOE ∆∆∽,可得BA BFBO BE=解决问题. 【解答】(1)证明:CO BC ⊥Q , 90BCE ∴∠=︒,AB AC =Q , B ACB ∴∠=∠,90AEC B ∠+∠=︒Q ,90ACE ACB ∠+∠=︒, ACE AEC ∴∠=∠,AE AC ∴=,AE AB ∴=,Q 四边形ABCD 是平行四边形,//BE CD ∴,AB CD AE ==,∴四边形AEDC 是平行四边形,AE AC =Q ,∴四边形AEDC 是菱形.(2)解:连接OB 交AC 于F . Q 四边形AEDC 是菱形,AEC ACE ∴∠=∠, OF OC =Q ,OFC OCF AFB ∴∠=∠=∠, AFB AEO ∴∠=∠,ABF OBE ∠=∠Q , BAF BOE ∴∆∆∽,∴BA BFBO BE=, BA BE BF BO ∴=g g ,2BE BA =Q ,22AB BF BO ∴=g .13.(2019•奉贤区二模)已知:如图,正方形ABCD ,点E 在边AD 上,AF BE ⊥,垂足为点F ,点G 在线段BF 上,BG AF =. (1)求证:CG BE ⊥;(2)如果点E 是AD 的中点,连接CF ,求证:CF CB =.【分析】(1)证明AFB BGC ∆≅∆,通过角的代换即可得到90BGC ∠=︒,即CG BE ⊥; (2)先证明AEB FAB ∆∆∽,得到AE AFAB BF=,根据中点线段关系结合比例式推导出FG BG =,又CG BE ⊥,所以CF CB =.【解答】证明:(1)Q 四边形ABCD 是正方形,AB BC ∴=,90ABC ∠=︒.AF BE ⊥Q ,90FAB FBA ∴∠+∠=︒. 90FBA CBG ∠+∠=︒Q , FAB CBG ∴∠=∠.又AF BG =Q , ()AFB BGC SAS ∴∆≅∆. AFB BGC ∴∠=∠.90BGC ∴∠=︒,CG BE ∴⊥.(2)ABF EBA ∠=∠Q ,90AFB BAE ∠=∠=︒,AEB FAB ∴∆∆∽.∴AE AFAB BF=. Q 点E 是AD 的中点,AD AB =,∴12AE AF AB BF ==. AF BG =Q ,∴12BG BF =,即FG BG =. CG BE ⊥Q ,CF CB ∴=.14.(2019•金山区二模)已知:如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若CAD DBC ∠=∠. (1)求证:四边形ABCD 是正方形.(2)E 是OB 上一点,DH CE ⊥,垂足为H ,DH 与OC 相交于点F ,求证:OE OF =.【分析】(1)由菱形的性质得出//AD BC ,2BAD DAC ∠=∠,2ABC DBC ∠=∠,得出180BAD ABC ∠+∠=︒,证出BAD ABC ∠=∠,求出90BAD ∠=︒,即可得出结论; (2)由正方形的性质得出AC BD ⊥,AC BD =,12CO AC =,12DO BO =,得出90COB DOC ∠=∠=︒,CO DO =,证出ECO EDH ∠=∠,证明()ECO FDO ASA ∆≅∆,即可得出结论.【解答】(1)证明:Q 四边形ABCD 是菱形, //AD BC ∴,2BAD DAC ∠=∠,2ABC DBC ∠=∠, 180BAD ABC ∴∠+∠=︒,CAD DBC ∠=∠Q , BAD ABC ∴∠=∠,2180BAD ∴∠=︒,90BAD ∴∠=︒,∴四边形ABCD 是正方形;(2)证明:Q 四边形ABCD 是正方形, AC BD ∴⊥,AC BD =,12CO AC =,12DO BO =, 90COB DOC ∴∠=∠=︒,CO DO =, DH CE ⊥Q ,垂足为H ,90DHE ∴∠=︒,90EDH DEH ∠+∠=︒,90ECO DEH ∠+∠=︒Q , ECO EDH ∴∠=∠,在ECO ∆和FDO ∆中,90ECO EDHCO DO COE DHE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ECO FDO ASA ∴∆≅∆, OE OF ∴=.15.(2019•奉贤区二模)如图,已知梯形ABCD 中,//AD BC ,90ABC ∠=︒,28BC AB ==,对角线AC 平分BCD ∠,过点D 作DE AC ⊥,垂足为点E ,交边AB 的延长线于点F ,连接CF . (1)求腰DC 的长; (2)求BCF ∠的余弦值.【分析】(1)根据勾股定理求出AC ,求出CE ,解直角三角形求出DE ,根据勾股定理求出DC 即可; (2)根据相似三角形的性质和判定求出AF ,求出CF ,解直角三角形求出即可. 【解答】解:(1)90ABC ∠=︒Q ,28BC AB ==,4AB ∴=,AC ==//AD BC Q , DAC BCA ∴∠=∠, AC Q 平分BCD ∠,DCA ACB ∴∠=∠, DAC DCA ∴∠=∠, AD CD ∴=, DE AC ⊥Q ,1122CE AC ∴==⨯= 在Rt DEC ∆中,90DEC ∠=︒,tan DEDCE CE∠=, 在Rt ABC ∆中,90ABC ∠=︒,41tan 82AB ACB BC ∠===, ∴12DE CE =,CE =QDE ∴在Rt DEC ∆中,由勾股定理得:5DC =; 即腰DC 的长是5;(2)设DF 与BC 相交于点Q ,90FBC FEC ∠=∠=︒Q ,BQF EQC ∠=∠,∴由三角形内角和定理得:AFE ACB∠=∠,90FAD ABC∠=∠=︒Q,AFD BCA∴∆∆∽,∴AD AB AF BC=,5 AD DC==Q,12 ABBC=,∴512 AF=,解得:10AF=,AE CE=Q,FE AC⊥,10CF AF∴==,在Rt BCF∆中,90CBF∠=︒,84 cos105BCBCFCF∠===.16.已知:如图,在ABC∆中,AB BC=,90ABC∠=︒,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.求证:(1)四边形FBGH是菱形;(2)四边形ABCH是正方形.【分析】(1)由三角形中位线知识可得//DF BG,//GH BF,根据菱形的判定的判定可得四边形FBGH是菱形;(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB OH=,OF OG=,又AF CG=,所以OA OC=.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.【解答】证明:(1)Q点F、G是边AC的三等分点,AF FG GC∴==.又Q点D是边AB的中点,//DH BG∴.同理://EH BF .∴四边形FBGH 是平行四边形,连结BH ,交AC 于点O , OF OG ∴=, AO CO ∴=, AB BC =Q ,BH FG ∴⊥,∴四边形FBGH 是菱形;(2)Q 四边形FBGH 是平行四边形, BO HO ∴=,FO GO =.又AF FG GC ==Q ,AF FO GC GO ∴+=+,即:AO CO =.∴四边形ABCH 是平行四边形.AC BH ⊥Q ,AB BC =,∴四边形ABCH 是正方形.17.(2019•普陀区一模)如图,1O e 和2O e 相交于A 、B 两点,12O O 与AB 交于点C ,2O A 的延长线交1O e 于点D ,点E 为AD 的中点,AE AC =,连接OE . (1)求证:11O E O C =;(2)如果1210O O =,16O E =,求2O e 的半径长.【分析】(1)连接1O A ,根据垂径定理得到1O E AD ⊥,根据相交两圆的性质得到1O C AB ⊥,证明Rt △1O EA Rt ≅△1O CA ,根据全等三角形的性质证明结论;(2)设2O e 的半径长为r ,根据勾股定理列出方程,解方程得到答案. 【解答】(1)证明:连接1O A , Q 点E 为AD 的中点, 1O E AD ∴⊥,1O Q e 和2O e 相交于A 、B 两点,12O O 与AB 交于点C , 1O C AB ∴⊥,在Rt △1O EA 和Rt △1O CA 中, 11O A O AAE AC =⎧⎨=⎩, Rt ∴△1O EA Rt ≅△1()O CA HL 11O E O C ∴=;(2)解:设2O e 的半径长为r , 116O E O C ==Q , 21064O C ∴=-=,在Rt △12O EO 中,28O E =,则8AC AE r ==-,在2Rt ACO ∆中,22222O A AC O C =+,即222(8)4r r =-+, 解得,5r =,即2O e 的半径长为5.。
备战中考数学二轮专题归纳提升真题二次函数存在性问题(1)—与三角形相关(解析版)
![备战中考数学二轮专题归纳提升真题二次函数存在性问题(1)—与三角形相关(解析版)](https://img.taocdn.com/s3/m/7596e248793e0912a21614791711cc7931b778ba.png)
专题04 二次函数存在性问题(1)—与三角形相关【典例分析】【例1——最值存在性问题】如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),连接AC,点P为第二象限抛物线上的动点.(1)求a、b、c的值;(2)连接PA、PC、AC,求△PAC面积的最大值;【答案】(1)a=﹣1,b=﹣2,c=3;(2)当m时,S△PAC最大.【解析】解:(1)∵抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点∴,解得:∴a=﹣1,b=﹣2,c=3;(2)如图,过点P作PE∥y轴,交AC于E,∵A(﹣3,0),C(0,3),∴直线AC的解析式为y=x+3,由(1)知,抛物线的解析式为y=﹣x2﹣2x+3,设点P(m,﹣m2﹣2m+3),则E(m,m+3),∴S△ACP PE•(x C﹣x A)[﹣m2﹣2m+3﹣(m+3)]×(0+3)(m2﹣3m)(m )2,∴当m时,S△PAC最大.【练1】如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B 与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.点P为线段MB上一个动点,过点P作PD⊥x轴于点D,若OD=m.(1)求二次函数解析式;(2)设△PCD的面积为S,试判断S有最大值或最小值?若有,求出其最值,若没有,请说明理由;【答案】(1)二次函数的解析式为y=﹣x2+2x+3.(2)当m时,S最大.【解析】解:(1)把B(3,0)、C(0,3)代入y=﹣x2+bx+c,得,解得,∴二次函数的解析式为y=﹣x2+2x+3.(2)S有最大值.如图1,设直线BM的解析式为y=kx+a,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物的顶点坐标为M(1,4),把M(1,4)、B(3,0)代入y=kx+a,得,解得,∴y=﹣2x+6,∵D(m,0),∴P(m,﹣2m+6);由S△PCD PD•OD,得S m(﹣2m+6)=﹣m2+3m;∵当点P与点B重合时,不存在以P、C、D为顶点的三角形,∴1≤m<3,∴S不存在最小值;∵S=﹣m2+3m=﹣(m)2,∴当m时,S最大,∴S的最大值为.【练2】如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当x为多少时,线段PQ长度有最值。
初中数学几何最值存在性问题(word版+详解答案)
![初中数学几何最值存在性问题(word版+详解答案)](https://img.taocdn.com/s3/m/23636089bed5b9f3f80f1c07.png)
几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x 轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC 交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.类型二【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线k y x =相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx+c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【新题训练】1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y 轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y =x (x ﹣b )﹣与y 轴相交于A 点,与x 轴相交于B 、C 两点,且点C 在点B 的右侧,设抛物线的顶点为P .(1)若点B 与点C 关于直线x =1对称,求b 的值;(2)若OB =OA ,求△BCP 的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h ,求出h 与b 的关系;若h 有最大值或最小值,直接写出这个最大值或最小值.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.9.(2020·山东初三期末)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ; (4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 10.(2020·盘锦市双台子区第一中学初三月考)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.11.(2020·四川初三)如图,一次函数122y x =-+的图像与坐标轴交于A 、B 两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.12.(2019·广东初三)如图,已知抛物线y =﹣3x 2+bx +c 与x 轴交于原点O 和点A (6,0),抛物线的顶点为B .(1)求该抛物线的解析式和顶点B 的坐标;(2)若动点P 从原点O 出发,以每秒1个长度单位的速度沿线段OB 运动,设点P 运动的时间为t (s ).问当t 为何值时,△OPA 是直角三角形?(3)若同时有一动点M 从点A 出发,以2个长度单位的速度沿线段AO 运动,当P 、M 其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t (s ),连接MP ,当t 为何值时,四边形ABPM 的面积最小?并求此最小值.13.(2019·山东初三期中)如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.14.(2019·四川中考真题)如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.15.(2019·天津中考真题)已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(,)2QQ b y+在抛物线上,当22AM QM+的最小值为3324时,求b的值.16.(2019·湖南中考真题)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为610?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL 平分矩形的面积时,求抛物线平移的距离.17.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P→M→N→A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.18.(2019·湖南中考真题)已知抛物线2(0)y ax bx c a =++≠过点(1,0)A ,(3,0)B 两点,与y 轴交于点C ,=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当PBC ∆面积最大时,求点P 的坐标; (4)若点Q 为线段OC 上的一动点,问:12AQ QC +是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
专题04 利用导数解决恒成立与存在性问题(解析版)
![专题04 利用导数解决恒成立与存在性问题(解析版)](https://img.taocdn.com/s3/m/148b3225f02d2af90242a8956bec0975f465a4f0.png)
专题04 利用导数解决恒成立与存在性问题常见考点考点一 恒成立问题典例1.已知函数()e xf x ax b =++(e 是自然对数的底数),曲线()y f x =在点()()0,0f 处的切线为y a b =-.(1)求a ,b 的值;(2)若不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,求正实数m 的取值范围.【答案】(1)1a =-,1b =- (2)()0,e 1- 【解析】 【分析】(1)求导,由切线为y a b =-,可得(0)10(0)1f a f b a b=+=⎧⎨=+=-'⎩,运算即得解;(2)参变分离可得e 1x m x <-,令()e 1xg x x=-,求导分析单调性,可得()g x 的最小值为()1e 1g =-,分析即得解 (1)()e x f x ax b =++可得()e x f x a '=+,因为曲线()y f x =在点()()0,0f 处的切线为y a b =-.所以(0)10(0)1f a f b a b =+=⎧⎨=+=-'⎩,解得1a =-,1b =-.(2)由(1)知()e 1xf x x =--,∵不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,∴e xx mx ->在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,即e1xm x<-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立.令()e 1xg x x=-,∵()()2e 1x x g x x ='-,当()()2e 10x x g x x '-==时,解得1x =. ∴当11ex <<时,()0g x '<,()g x 为减函数,当1e x <≤时,()0g x '>,()g x 为增函数,∴()g x 的最小值为()1e 1g =-,∴e 1m <-,∴正实数m 的取值范围为()0,e 1-. 变式1-1.已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.【答案】(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造 函数()h =ln 1x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l x x x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞, 由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0,若直线y g x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则 ()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()h =ln 1,0x x x x +-∈+∞,则(),1=10h x x+>,所以()h x 在()0+∞上单调递增,又()h 1ln1110=+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾.所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1xk x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()11x t x x xx +⎛⎫'=--=- ⎪⎝⎭221110e e ,011e ex x x +∴<≤≤∴<+≤≤+,所以()0t x '<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为,()()e e e e 1ln e e 1ϕ==--,即e e 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明, 对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.变式1-2.已知函数()ln(1)xf x e a x =++.(1)当1a =-时,求函数()f x 的单调区间; (2)若()1f x ≥恒成立,求实数a 的值.【答案】(1)递减区间为(1,0)-,递增区间为(0,)+∞; (2)1-.【解析】 【分析】(1)当1a =-时,求得()11x x xe e f x x +-'=+,令()1x xg x xe e =+-,得到()0g x '>,且()00g =,即可求得函数的单调区间;(2)求得()(1)1x x e a f x x ++'=+,设()(1)xg x x e a =++,当0a ≥时,不满足题意;当0a <时,得到()g x 单调递增,设()0g x =有唯一的零点0x ,使得00(1)0xx e a ++=,结合函数单调性得到()()00min 01[(1)1]ln()ln()1f x f x a x a a a a a x ==-++-+-≥-+-+,再令()ln(),(,0)h a a a a a =-+-∈-∞,结合单调性求得()1f x ≤,即可求解. (1)解:当1a =-时,函数()ln(1)xf x e x =-+,其定义域为(1,)-+∞可得()1111x x xxe e f x e x x +-'=-=++, 令()1x x g x xe e =+-,可得()(2)0xg x e x '=+>,()g x 单调递增,又由()00g =,当(1,0)x ∈-时,()0g x '<,可得()0f x '<,()f x 单调递减; 当,()0x ∈+∞时,()0g x '>,可得()0f x '>,()f x 单调递增, 所以()f x 的递减区间为(1,0)-,递增区间为(0,)+∞. (2)解:由()ln(1)xf x e a x =++,可得()(1)11x xa x e a f x e x x ++'=+=++, 设()(1)xg x x e a =++,当0a ≥时,()0g x >,可得()0f x '>,()f x 单调递增, 当1x →-时,()f x →-∞,不满足题意;当0a <时,由()(2)0xg x x e '=+>,()g x 单调递增,设()0g x =有唯一的零点0x ,即00(1)0xx e a ++=,当0(1,)x x ∈-时,()0g x '<,可得()0f x '<,()f x 单调递减; 当0(,)x x ∈+∞时,()0g x '>,可得()0f x '<,()f x 单调递增,所以()()000000min ln(1)lnln()x xx x af x f x e a x e a e a a ax e-==++=+=+-- 00001ln()()ln()11a ax a a a x a a x x =--+-=-++-++ 001[(1)1]ln()1a x a a x =-++-+-+ 因为010x +>,可得001121x x ++≥+, 当且仅当00x =时,等号成立,所以001(1)111x x ++-≥+,所以001[(1)1]ln()ln()1a x a a a a a x -++-+-≥-+-+,因为()1f x ≥恒成立,即ln()1a a a -+-≥恒成立,令()ln(),(,0)h a a a a a =-+-∈-∞,可得()1ln()1ln()h a a a '=-+-+=-, 当(,1)a ∈-∞-时,()0h a '>,()h a 单调递增; 当(1,0)a ∈-时,()0h a '<,()h a 单调递减, 所以()()11h a h ≤-=,即()1f x ≤,又由()1f x ≥恒成立,即()ln()0h a a a a =-+-=,所以1a =-.变式1-3.已知函数()2ln x x f x ax x =--(a R ∈)恰有两个极值点12,x x 且12x x <.(1)求实数a 的取值范围;(2)若不等式122ln ln 2x x λλ+>+恒成立,求实数λ的取值范围. 【答案】(1)10,2e ⎛⎫ ⎪⎝⎭(2)[)2,+∞ 【解析】 【分析】(1)对()f x 求导后分析其导数的零点(2)将12,x x 代入后消去a ,然后为不等式恒成立问题,换元后分类讨论最值 (1)∵()'ln 2f x x ax =-,依题意得12,x x 为方程ln 20x ax -=的两不等正实数根, ∴0a ≠,ln 2x a x =,令()ln x g x x=,()21ln 'xg x x -=, 当()0,e x ∈时,()'0g x >;当()e,x ∈+∞时,()'0g x <,∴()g x 在(0,e)上单调递增,在()e,+∞上单调递减,且()10g =,当e x >时,()0g x >, ∴()102e ea g <<=,解得102e a <<,故实数a 的取值范围是10,2e ⎛⎫ ⎪⎝⎭; (2)由(1)得11ln 2x ax =,22ln 2x ax =,两式相减得()1212ln ln 2x x a x x -=-,1212ln ln 2x x a x x -=-, ()12122ln ln 2222x x a x x λλλλ+>+⇔+>+()()1112122211222ln2ln ln 221x x x x x x x x x x x x λλλλ⎛⎫+ ⎪+-⎝⎭⇔>+⇔>+--, ∵120x x <<,令()120,1x t x =∈,∴()2ln 21t t t λλ+>+-,即()()()2ln 210t t t λλ+-+-<, 令()()()()2ln 21h t t t t λλ=+-+-,则需满足()0h t <在()0,1上恒成立, ∵()'2ln h t t tλλ=+-,令()2ln I t t tλλ=+-,则()2222't I t t t tλλ-=-=(()0,1t ∈), ①当2λ≥时,()'0I t <,∴()'h t 在()0,1上单调递减,∴()()''10h t h >=, ∴()h t 在(0,1)上单调递增,∴()()10h t h <=,符合题意,②当0λ≤时,()'0I t >,∴()'h t 在()0,1上单调递增,∴()()''10h t h <=, ∴()h t 在()0,1上单调递减,∴()()10h t h >=,不符合题意, ③当02λ<<时,()'012I t t λ>⇔<<,∴()'h t 在,12λ⎛⎫⎪⎝⎭上单调递增,∴()()''10h t h <=, ∴()h t 在,12λ⎛⎫⎪⎝⎭上单调递减,∴()()10h t h >=,不符合题意,综上所述,实数λ的取值范围是[)2,+∞.考点二 存在性问题典例2.已知函数2()(2)ln (0)f x ax a x x a =-++>. (1)讨论函数()f x 的单调性;(2)若存在[1,)x ∈+∞,使得()e 0f x +≤成立,求实数a 的取值范围. 【答案】(1)答案见解析 (2)10,e ⎛⎤⎥⎝⎦ 【解析】 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论对a 进行分类讨论,由min e ()f x ≤-,结合构造函数法以及导数来求得a 的取值范围. (1)已知函数2()(2)ln f x ax a x x =-++,定义域为(0,)+∞,212(2)1(1)(21)()2(2)ax a x ax x f x ax a x x x-++--=-++==',①当02a <<时,11>,()f x 在110,,,2a ⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减; ②当2a =时,2142()0x f x x⎛⎫- ⎪⎝⎭'=≥,函数()f x 在(0,)+∞单调递增; ③当2a >时,112a <,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减. 综上所述,02a <<时,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫⎪⎝⎭上单调递减;2a =时,()f x 在(0,)+∞单调递增;2a >时,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减.(2)若存在[1,)x ∈+∞,使得()e 0f x +≤成立,即使得min e ()f x ≤-.由(1),可知当1a ≥时,()f x 在[1,)+∞上单调递增,()min (1)2f f x ==-, 不满足min e ()f x ≤-; 当01a <<时,11a>min 11()1ln f x f a a a ⎛⎫==--- ⎪⎝⎭,所以e 11ln a a ---≤-,即1ln 1e a a +≥-,令1()ln (01)g x x x x =+<<,∴22111()0x g x x x x-='=-<, ∴1()ln g x x x=+在(0,1)上单调递减,又∵1e 1e g ⎛⎫=- ⎪⎝⎭,由1ln 1e a a +≥-,得10ea <≤.综上,实数a 的取值范围为10,e ⎛⎤⎥⎝⎦.变式2-1.已知函数()()ln 11xf x x x =>-.(1)判断函数()f x 的单调性;(2)已知0λ>,若存在()1,x ∈+∞时使不等式()()1eln 0xx f x λ--≥成立,求λ的取值范围.【答案】(1)函数()y f x =在区间()1,+∞上单调递减; (2)1(0,]e. 【解析】 【分析】(1)求出函数()f x 的导数()f x ',判断()f x '的符号作答.(2)对给定不等式作等价变形,借助(1)脱去法则“f ”,分离参数构造函数,再求出函数最值作答. (1) 函数ln 1xf xx ,1x >,求导得:()()211ln 1x x f x x --'=-,令()11ln g x x x =--,1x >,则()210xg x x-'=<,即函数()y g x =在区间()1,+∞单调递减, 而()10g =,则当()1,x ∈+∞时,()(1)0g x g <=,即()0f x '<, 所以函数()y f x =在区间()1,+∞上单调递减. (2)当1x >时ln 0x >,()()()()()ln 1eln 0e e 1xxxxx f x f f f x x λλλ--≥⇔≥⇔≥-, 因0λ>且1x >,则()e 1,xλ∈+∞,由(1)知,()y f x =在()1,+∞单调递减,则存在()1,x ∈+∞,不等式()()ln e e ln x xxf f x x x x xλλλλ≥⇔≤⇔≤⇔≤成立, 令()()ln 1x x x x ϕ=>,则()21ln xx xϕ-'=,当()1,e x ∈时,()0x ϕ'>,当()e,x ∈+∞时,()0x ϕ'<, 因此,函数()x ϕ在()1,e 上单调递增,在()e,+∞上单调递减,()()max 1e e x ϕϕ==,于是得10eλ<≤, 所以λ的取值范围是1(0,]e. 【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,再利用函数的导数探讨解决问题.变式2-2.已知函数()()222ln f x x a x =++.(1)当5a =-时,求()f x 的单调区间; (2)若存在[]2,e x ∈,使得()2242a f x x x x+->+成立,求实数a 的取值范围. 【答案】(1)单调递减区间为()0,2,单调递增区间为()2,+∞;(2)2e e 2,e 1∞⎛⎫-++⎪-⎝⎭. 【解析】 【分析】(1)当5a =-时,()28ln f x x x =-,得出()f x 的定义域并对()f x 进行求导,利用导数研究函数的单调性,即可得出()f x 的单调区间; (2)将题意等价于()24222ln 0a x a x x ++-+<在[]2,e 内有解,设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <,对()h x 进行求导,令()0h x '=,得出2x a =+,分类讨论2a +与区间[]2,e 的关系,并利用导数研究函数()h x 的单调和最小值,结合()min 0h x <,从而得出实数a 的取值范围. (1)解:当5a =-时,()28ln f x x x =-,可知()f x 的定义域为()0,+∞,则()28282,0x f x x x x x-'=-=>, 可知当()0,2x ∈时,0f x ;当()2,x ∈+∞时,0fx ;所以()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞. (2)解:由题可知,存在[]2,e x ∈,使得()2242a f x x x x+->+成立, 等价于()24222ln 0a x a x x++-+<在[]2,e 内有解, 可设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <, ()()()()()()()22222122422222242x x a a a x a x a h x x xx x ⎡⎤+-+++-+-+⎣⎦∴=--==',令()0h x '=,即()()120x x a ⎡⎤+-+=⎣⎦,解得:2x a =+或1x =-(舍去), 当2e a +≥,即e 2a ≥-时,()0h x '<,()h x 在[]2,e 上单调递减,()()min24e 2e+220e a h x h a +∴==--<,得2e e 2e 1a -+>-,又2e e 2e 2e 1-+>--,所以2e e 2e 1a -+>-; 当22a +≤时,即0a ≤时,()0h x '>,()h x 在[]2,e 上单调递增,()()()min 2622ln 20h x h a a ∴==+-+<,得6ln 40ln 41a ->>-,不合题意; 当22e a <+<,即0e 2a <<-时,则()h x 在[]2,2a +上单调递减,在[]2,e a +上单调递增,()()()()min 22622ln 2h x h a a a a ∴=+=+-++,()ln 2ln 2lne 1a <+<=,()()()22ln 222ln 2222a a a a ∴+<++<+, ()()()22622ln 226224h a a a a a a ∴+=+-++>+--=,即()min 4h x >,不符合题意;综上得,实数a 的取值范围为2e e 2,e 1∞⎛⎫-++ ⎪-⎝⎭.【点睛】思路点睛:本题考查利用导数研究函数的单调性,以及利用导数解决不等式成立的综合问题: (1)利用导数解决单调区间问题,应先确定函数的定义域,否则,写出的单调区间易出错;利用导数解决含有参数的单调性问题,要注意分类讨论和化归思想的应用;(2)利用导数解决不等式的综合问题的一般步骤是:构造新函数,利用导数研究的单调区间和最值,再进行相应证明.变式2-3.已知函数()ln f x x a x =-,()1(0)ag x a x+=->. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若存在[]01x e ∈,,使得()()00f x g x <成立,求a 的取值范围.【答案】(1)极小值为1,无极大值(2)单调递增区间为()1,a ++∞,单调递减区间为()0,1a +.(3)21,1e e ⎛⎫++∞⎪-⎝⎭【解析】 【分析】(1)研究()ln f x x x =-的单调区间,进而求出()f x 的极值;(2)先求()h x ',再解不等式()0h x '>与()0h x '<,求出单调区间,注意题干中的0a >的条件;(3)先把题干中的问题转化为在[]1x e ∈,上有()min 0h x <,再结合第二问研究的()h x 的单调区间,对a 进行分类讨论,求出不同范围下的()min h x ,求出最后结果 (1)当1a =时,()ln f x x x =-,定义域为()0,∞+,()111x f x x x-'=-=令()0f x '=得:1x =,当1x >时,()0f x '>,()f x 单调递增;当01x <<时,()0f x '<,()f x 单调递减,故1x =是函数()f x 的极小值点,()f x 的极小值为()11f =,无极大值 (2)()()()()1ln 0ah x f x g x x a x a x+=-=-+>,定义域为()0,∞+ ()()()222211111x x a a a x ax a h x x x x x+--+---'=--== 因为0a >,所以10a +>,令()0h x '>得:1x a >+,令()0h x '<得:01x a <<+,所以()h x 在()1,a ++∞单调递增,在()0,1a +单调递减.综上:()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +. (3)存在[]01x e ∈,,使得()()00f x g x <成立,等价于存在[]01x e ∈,,使得()00h x <,即在[]1x e ∈,上有()min 0h x <由(2)知,()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +,所以当1a e +≥,即1a e ≥-时,()h x 在[]1x e ∈,上单调递减,故()h x 在x e =处取得最小值,由()()min10a h x h e e a e +==-+<得:211e a >e +-,因为2111e e e +>--,故211e a >e +-. 当11a e <+<,即01a e <<-时,由(2)知:()h x 在()1,1x a ∈+上单调递减,在()1,x a e ∈+上单调递增,()h x 在[]1x e ∈,上的最小值为 令()()12ln 1h a a a a +=+-+因为()0ln 11a <+<,所以()0ln 1a a a <+<,则()2ln 12a a a +-+>,即()12h a +>,不满足题意,舍去综上所述:a 的取值范围为21,1e e ⎛⎫++∞⎪-⎝⎭【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.巩固练习练习一 恒成立问题1.已知函数()1ln x f x x+=. (1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 【答案】(1)1y = (2)(],4∞- 【解析】 【分析】(1)利用导数的几何意义直接求解即可;(2)分离变量可得()()()e 1ln x x k g x x++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围. (1)()2211ln ln x xf x x x--'==-,()10f '∴=,又()11f =, ()f x ∴在1x =处的切线方程为1y =;(2)当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k x f x x++≤+=,令()()()e 1ln x x g x x++=,则()2eln x xg x x -'=, 令()eln h x x x =-,则()ee1x h x xx-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=,()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-.【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤.2.已知函数2()e 1x f x ax x =---. (1)当1a =-时,讨论()f x 的单调性;(2)当0x ≥时,321()22f x x ax ≥-恒成立,求实数a 的取值范围.【答案】(1)()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)274e a -≥【解析】 【分析】(1)直接求导,先确定导数的单调性及零点,即可确定()f x 的单调性;(2)当0x =时, a R ∈,当0x >时,参变分离得3211e 2xx x a x ++-≥,构造函数()h x 求导得()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再构造函数21e 12()x m x x x ---=确定()h x 单调性后,即可求出实数a 的取值范围.(1)当1a =-时,2()e 1x f x x x =+--,()e 21x f x x '=+-,易得()'f x 在R 上递增,又(0)0f '=,故当()0x ∈+∞,时,()0f x '>,()f x 单调递增;故当(),0x ∈-∞时,()0f x '<,()f x 单调递减, 所以()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)当0x =时,不等式321()22f x x ax ≥-恒成立,可得a R ∈;当0x >时,由2321e 122x ax x x ax ---≥-恒成立可得3211e 2xx x a x++-≥恒成立,设3211e 2()x x x h x x ++-=,则()4223333111e 222(2)1e e 22x x x h x x x x x x x x x x x⎛⎫⎛⎫+-⋅-⋅+'+=--+-- ⎪ ⎪⎝⎭⎭=⎝()()()33322211e 22e 1222x x x x x x x x x x x x⎛⎫ ⎪⎝⎭=⎛⎫-+-+-----⎪⎝⎭=-, 可设21e 12()x m x x x ---=,可得e 1()x x m x =--',设e 1,e 1()()x x k x k x x '-=--=,由0x >,可得()0k x '>恒成立,可得()k x 在()0+∞,递增,即()m x '在()0+∞,递增,所以()(0)0m x m ''>=,即()0m x '>恒成立,即()m x 在()0+∞,递增, 所以()(0)0m x m >=,再令()0h x '=,可得2x =,当02x <<时,()0h x '>,()h x 在()0,2上递增,当2x >时,()0h x '<,()h x 在()2,+∞递减,所以2max 7e ()(2)4h x h -==,所以274e a -≥;综上可得274e a -≥. 【点睛】本题关键点在于参变分离构造函数求导后,通过因式分解将导数变为()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再把分子的因式构造成函数21e 12()x m x x x ---=,确定()(0)0m x m >=后,即得()h x '的正负,进而求解.3.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围. 【答案】(1)(],2-∞-(2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】 【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围;(2)把题意转化为2xax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2x e a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--, 因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-, 故m 的取值范围是(],2-∞-; (2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤, 当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==,则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增, 故2mine ()(2)4g x g ==,则2e 4a ≤,综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦.4.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围. 【答案】(1)25y x =+ (2)[1,)-+∞ 【解析】 【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a +->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10x x x x a --+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1)当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=- 又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+. (2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立.等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立.构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x x b x b x a a +>-+-在(2,)x ∈+∞上恒成立等价于e()x h a(1)h x >-在(2,)x ∈+∞上恒成立.因为20e <≤a ,所以2e e ,xx a-≥令函数2()e 1(2)x H x x x -=-+>,则2()e1x H x -'=-,显然()H x '是增函数,则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=,故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10b h x x'=+≥恒成立.所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞) 【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.练习二 存在性问题5.己知函数()2ln f x x ax x =+-.(1)当1a =时,求()f x 的单调区间.(2)存在1≥x ,使得()3112f x x ≥+成立,求整数a 的最小值. 【答案】(1)增区间为()0,∞+,无单减区间 (2)2 【解析】 【分析】(1)利用导数与函数的单调性之间的关系可求得结果; (2)由题意可知,存在1≥x ,使得2111ln 2x a x x x -≥++,构造函数()211ln 12x g x x x x +=+-,其中1≥x ,利用导数分析函数()g x 的单调性,求出()min g x 的取值范围,可求得整数a 的最小值. (1)解:当1a =时,()2ln f x x x x =+-,该函数的定义域为()0,∞+,则()121110f x x x'=+-≥=>,当且仅当2x =时,等号成立, 故函数()f x 的增区间为()0,∞+,无单减区间. (2)解:存在1≥x ,使得231ln 12x ax x x +-≥+成立,即2111ln 2xa x x x -≥++,令()211ln 12x g x x x x +=+-,其中1≥x ,则()min a g x ≥, ()323312ln 3112ln 322x x x x g x x x x-+--'=-+=,令()312ln 32h x x x x =-+-,则()3232324122x x h x x x x-+'=-+=,令()3324m x xx =-+,()2920m x x '=->对任意的1≥x 恒成立,故函数()m x 在[)1,+∞上为增函数,则()()15m x m ≥=, 即()0h x '>对任意的1≥x 恒成立,则函数()h x 为增函数. 因为34532ln 02162h ⎛⎫=-+< ⎪⎝⎭,()22ln 210h =->,所以存在3,22t ⎛⎫∈ ⎪⎝⎭,使得()()312ln 302h t g t t t t '==-+-=,当()1,x t ∈时,()0g x '<,此时函数()g x 单调递减, 当(),x t ∞∈+时,()0g x '>,此时函数()g x 单调递增, 所以,()()3333222min 111131ln 1322224224t t t t t t t t t g xg t t t t +-++++--+-====,3,22t ⎛⎫∈ ⎪⎝⎭, 设()2311422t t t t ϕ=+-,则()3233311324424t t t t t t ϕ-+'=-+=, 令()3324p t t t =-+,则()2920p t t '=->对任意的3,22t ⎛⎫∈ ⎪⎝⎭恒成立,故函数()p t 在3,22⎛⎫⎪⎝⎭上为增函数,则()302p t p ⎛⎫>> ⎪⎝⎭,即()0t ϕ'>对任意的3,22t ⎛⎫∈ ⎪⎝⎭恒成立,故函数()t ϕ在3,22⎛⎫⎪⎝⎭为增函数,故()()322t ϕϕϕ⎛⎫<< ⎪⎝⎭,即()8913728t ϕ<<,即()min 8913728g x <<, 因为a 为整数,所以整数a 的最小值为2. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.6.已知函数()321sin 1,,462f x x x x ππαα⎡⎤=-++∈-⎢⎥⎣⎦,(1)讨论函数()f x 的单调性;(2)证明:存在,62ππα⎡⎤∈-⎢⎥⎣⎦,使得不等式()e xf x > 有解(e 是自然对数的底).【答案】(1)讨论见解析 (2)证明见解析 【解析】 【分析】(1)对原函数求导后利用判别式对α 进行分类讨论即可;(2)理解“有解”的含义,构造函数将原不等式转化为求函数的最大值. (1)()f x 的定义域为R ,()232sin 14f x x x α'=-+, ()22332sin 44sin 44αα⎛⎫∆=--⨯=- ⎪⎝⎭ ,①当,32ππα⎛⎤∈ ⎥⎝⎦时,0∆> ,()0f x '=有两个不等实数根为:x =x ⎛∈-∞ ⎝⎭时,()0f x '>,()f x 单调递增,x ∈⎝⎭时, ()0f x '<,()f x 单调递减,x ⎫∈+∞⎪⎪⎝⎭时,()0f x '>,()f x 单调递增, ②当,63a ππ⎛⎤∈- ⎥⎝⎦时,0∆≤ ,()0f x '≥,所以()f x 在(),-∞+∞上单调递增; (2)不等式()e xf x > 等价于321sin 1e 14x x x x α-⎛⎫-++> ⎪⎝⎭,所以只需证321sin 1e 4xx x x α-⎛⎫-++ ⎪⎝⎭的最大值大于1,因为,62a ππ⎡⎤∈-⎢⎥⎣⎦,11sin 2α-≤-≤,又[)20,x ∈+∞,所以221sin 2x x α-≤,6πα=-时等号成立, 所以3232111sin 1e 1e 442x x x x x x x x α--⎛⎫⎛⎫-++≤+++ ⎪ ⎪⎝⎭⎝⎭, 设函数()32111e 42x g x x x x -⎛⎫=+++ ⎪⎝⎭ ,()()211e 4x g x x x -'=-- , (),1x ∈-∞,()0g x '≥,()g x 单调递增,()1,x ∈+∞,()0g x '<,()g x 单调递减,因为()1111 2.754211e eg +++==> ,所以存在,62a ππ⎡⎤∈-⎢⎥⎣⎦,使不等式()e x f x > 有解. 【点睛】对于第二问使用函数的缩放法是核心, 对原函数321sin 1e 4x x x x α-⎛⎫-++ ⎪⎝⎭由于α的不确定性使得求其最大值很困难, “化繁为简”,“化难为易”的数学思想就显得特别重要,通过本题的计算应该能够体会到这种数学思想,在以后的数学计算中遇到很复杂的计算应该首先考虑这种数学思想.7.已知函数()(1)e 1x f x x ax =---.(1)当0a >时,证明函数()f x 在区间(0,)+∞上只有一个零点;(2)若存在x ∈R ,使不等式()e 1f x <--成立,求a 的取值范围.【答案】(1)证明见解析(2){0|a a <或}e a >【解析】【分析】(1)首先求得导函数的解析式,然后讨论函数的单调性,结合函数的性质即可确定函数零点的个数;(2)首先讨论函数的单调性,然后结合函数的最小值构造新函数,结合构造函数的性质分类讨论即可确定a 的取值范围.(1)证明:当0a >时,()()e ,0,x f x x a x ∞'=-∈+,令()()()(),1e 0x g x f x g x x =+''=>,∴()e x f x x a '=-在(0,)+∞上为增函数,∵()()00,e 0a f a f a a a ''=-<=->,∴()00,x a ∃∈,使()000e 0x f x x a '=-=, ∴当()00,x x ∈时,()0f x '<;当0(,)x x ∈+∞时,0f x ,因此,()f x 在()00,x 上为减函数,()f x 在 0(,)x +∞上为增函数,当()00,x x ∈时,()()020f x f <=-<,当x >时,()()()211120f x x x ax x ax >-+--=-->, 故函数f(x)在(0,)+∞上只有一个零点.(2)解:当0a >时,()e ,x f x x a '=-,由(1)可知,()00f x '=,即00e x a x =, ∴当0x x <时,()0f x '<,()f x 在0(,)x -∞上为减函数,当0x x >时,0f x,()f x 在 0(,)x +∞上为增函数, ∴()()()()()0000220000000min 1e 11e e 11e 1x x x x f x f x x ax x x x x ==---=---=-+--, 由00e x a x =,知00x >, 设()()()21e 10x h x x x x =-+-->,则()()()2e 00x h x x x x '=--<>,∴()h x 在(0,)+∞上为减函数,又()1e 1h =--,∴当001x <<时,()0e 1f x >--,当01x >时,()0e 1f x <--,∴存在0x R ∈,使不等式()01f x e <--成立,此时00e e x a x =>;当0a =时,由(1)知,()f x 在(,0)∞-上为减函数,()f x 在(0,)∞+上为增函数,所以()()02e 1f x f ≥=->--,所以不存在x ∈R ,使不等式 ()e 1f x <--成立,当0a <时,取e 10x a+<<,即e 1ax -<--,所以()1e 1e 1x x ax ---<--, 所以存在x ∈R ,使不等式 ()1f x e <--成立,综上所述,a 的取值范围是{0|a a <或}e a >.【点睛】方法点睛:在解决能成立问题时一般是将不等式能成立问题转化为求函数的最值问题,利用()f x m >能成立max ()f x m ⇔>;()f x m <能成立min ()f x m ⇔<.8.已知函数()()e R x f x ax a =-∈,()ln x g x x=. (1)当1a =时,求函数()f x 的极值;(2)若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立,求实数a 的取值范围.【答案】(1)函数()f x 在(),0∞-上递增,在()0,∞+上递减,极大值为1-,无极小值 (2)12ea ≤ 【解析】【分析】(1)求出函数的导函数,再根据导数的符号求得单调区间,再根据极值的定义即可得解;(2)若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立,问题转化为()2maxln ,0x a x x ⎛⎫≤> ⎪⎝⎭,令()2ln x h x x =,0x >,利用导数求出函数的最大值即可得出答案.(1)解:当1a =时,()e x f x x =-,则()'1e x f x =-,当0x <时,()0f x '>,当0x >时,()0f x '<,所以函数()f x 在(),0∞-上递增,在()0,∞+上递减,所以函数()f x 的极大值为()01f =-,无极小值;(2)解:若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立, 则()ln ,0x ax x x ≤>,即()2ln ,0x a x x≤>, 则问题转化为()2max ln ,0x a x x ⎛⎫≤>⎪⎝⎭,令()2ln x h x x =,0x >, ()432ln 12ln x x x x h x x x --'==,当0x <<()0h x '>,当x >()0h x '<,所以函数()h x 在(递增,在)+∞上递减, 所以()max 12e h x =, 所以12e a ≤.。
初中数学《几何最值问题》典型例题含解析
![初中数学《几何最值问题》典型例题含解析](https://img.taocdn.com/s3/m/b862ac52581b6bd97f19eae1.png)
3
故答案为:2
【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺 乏动手操作习惯,单凭想象造成错误.
5.如图,直角梯形纸片 ABCD,AD⊥AB,AB=8,AD=CD=4,点 E、F 分别在线段 AB、AD 上,将△AEF
沿 EF 翻折,点 A 的落点记为 P.当 P 落在直角梯形 ABCD 内部时,PD 的最小值等于
的最小值为
.
【分析】根据轴对称确定最短路线问题,作点 P 关于 BD 的对称点 P′,连接 P′Q 与 BD 的交点即为所求的 点 K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知 P′Q⊥CD 时 PK+QK 的最小值, 然后求解即可.
【解答】解:如图,∵AB=2,∠A=120°,
∴点 P′到 CD 的距离为 2×
初中数学《最值问题》典型例题
一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个 定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例
初中数学几何最值问题
![初中数学几何最值问题](https://img.taocdn.com/s3/m/027626d725c52cc58bd6becf.png)
初中数学几何最值问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]初中数学几何最值问题在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为几何最值问题.近年来,各地中考题常通过几何最值问题考查学生的实践操作能力、空间想象能力、分析问题和解决问题的能力.本文针对不同类型的几何最值问题作一总结与分析,希望对大家有所帮助.最值问题的解决方法通常有如下6大类:1.三角形的三边关系例1.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.2.两点间线段最短例2 如图2,圆柱底面半径为2cm,高为9 cm,点,A B分别是回柱两底面圆周上的点,且,A B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线长度最短为 .` 3.垂线段最短例3 如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC 上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是____________•4.利用轴对称例4.如上右图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)例5 如图5,正方形ABCD,4AB=,E是BC的中点,点P是对角线AC上一动点,则PE PB+的最小值为 .5.利用二次函数例6在边长为2的等边三角形ABC中,P是BC边上任意一点,过点P分别作 PM⊥A B,PN⊥AC,M、N分别为垂足.(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.6利用圆中直径是最长的弦例7.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.同步练习1.如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD 边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为___________.2.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长。
重难点 几何动点及最值、存在性问题(解析版)--2024年中考数学
![重难点 几何动点及最值、存在性问题(解析版)--2024年中考数学](https://img.taocdn.com/s3/m/ca3e9a10bf1e650e52ea551810a6f524ccbfcbdc.png)
重难点几何动点及最值、存在性问题目录题型01将军饮马问题题型02胡不归问题题型03阿氏圆问题题型04隐圆问题题型05费马点问题题型06瓜豆原理模型题型07等腰(边)三角形存在问题题型08直角三角形存在问题题型09平行四边形存在问题题型10矩形、菱形、正方形存在问题题型11全等/相似存在性问题题型12角度存在性问题【命题趋势】动态几何问题是近年来中考的一个重难点问题,以运动的观点探究几何图形或函数与几何图形的变化规律,从而确定某一图形的存在性问题.随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题.【基本原理】1)基本原理(定点到定点):两点之间,线段最短.2)三角形两边之和>第三边3)基本原理(定点到定线):垂线段最短.4)平行线的距离处处相等.5)基本原理(定点到定圆):点圆之间,点心线截距最短(长).6)基本原理(定线到定圆):线圆之间,心垂线截距最短.7)基本原理(定圆到定圆):圆圆之间,连心线截距最短(长).【解题思路】1)动态几何问题是以几何图形为背景的,几何图形有直线型和曲线型两种,那么动态几何也有直线型的和曲线型的两类,即全等三角形、相似三角形中的动态几何问题,也有圆中的动态问题.有点动、线动、面动,就其运动形式而言,有平移、旋转、翻折、滚动等.根据其运动的特点,又可分为(1)动点类(点在线段或弧线上运动)也包括一个动点或两个动点;(2)动直线类;(3)动图形问题.2)解决动态几何题,通过观察,对几何图形运动变化规律的探索,发现其中的“变量”和“定量”动中求静,即在运动变化中探索问题中的不变性;动静互化抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动与静”的关系;这需要有极敏锐的观察力和多种情况的分析能力,加以想象、结合推理,得出结论.解决这类问题,要善于探索图形的运动特点和规律抓住变化中图形的性质与特征,化动为静,以静制动.解决运动型试题需要用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注--些不变量和不变关系或特殊关系.3)动态几何形成的存在性问题,重点和难点在于应用分类思想和数形结合的思想准确地进行分类,包括等腰(边)三角形存在问题,直角三角形存在问题,平行四边形存在问题,矩形、菱形、正方形存在问题.全等三角形存在问题,相似三角形存在问题等.题型01 将军饮马问题1(2023·辽宁盘锦·中考真题)如图,四边形ABCD 是矩形,AB =10,AD =42,点P 是边AD 上一点(不与点A ,D 重合),连接PB ,PC .点M ,N 分别是PB ,PC 的中点,连接MN ,AM ,DN ,点E 在边AD 上,ME ∥DN ,则AM +ME 的最小值是()A.23B.3C.32D.42【答案】C【分析】根据直线三角形斜边中线的性质可得AM =12BP ,DN =12CP ,通过证明四边形MNDE 是平行四边形,可得ME =DN ,则AM +ME =AM +DN =12BP +CP ,作点C 关于直线AD 的对称点M ,则BP +CP =BP +PM ,点B ,P ,M 三点共线时,BP +PM 的值最小,最小值为BM .【详解】解:∵四边形ABCD 是矩形,∴∠BAP =∠CDP =90°,AD ∥BC ,∵点M ,N 分别是PB ,PC 的中点,∴AM =12BP ,DN =12CP ,MN =12BC ,MN ∥BC ,∵AD ∥BC ,MN ∥BC ,∴MN ∥BC ,又∵ME ∥DN ,∴四边形MNDE 是平行四边形,∴ME =DN ,∴AM +ME =AM +DN =12BP +CP ,如图,作点C 关于直线AD 的对称点M ,连接PM ,BM ,则BP +CP =BP +PM ,当点B ,P ,M 三点共线时,BP +PM 的值最小,最小值为BM ,在Rt △BCM 中,MC =2CD =2AB =210,BC =AD =42,∴BM =BC 2+MC 2=42 2+210 2=62,∴AM +ME 的最小值=12BM =32,故选C .【点睛】本题考查矩形的性质,直线三角形斜边中线的性质,中位线的性质,平行四边形的判定与性质,轴对称的性质,勾股定理,线段的最值问题等,解题的关键是牢固掌握上述知识点,熟练运用等量代换思想.2(2023·广东广州·中考真题)如图,正方形ABCD 的边长为4,点E 在边BC 上,且BE =1,F 为对角线BD 上一动点,连接CF ,EF ,则CF +EF 的最小值为.【答案】17【分析】连接AE 交BD 于一点F ,连接CF ,根据正方形的对称性得到此时CF +EF =AE 最小,利用勾股定理求出AE 即可.【详解】解:如图,连接AE 交BD 于一点F ,连接CF ,∵四边形ABCD 是正方形,∴点A 与点C 关于BD 对称,∴AF =CF ,∴CF +EF =AF +EF =AE ,此时CF +EF 最小,∵正方形ABCD 的边长为4,∴AD =4,∠ABC =90°,∵点E 在AB 上,且BE =1,∴AE =AB 2+BE 2=42+12=17,即CF +EF 的最小值为17故答案为:17.【点睛】此题考查正方形的性质,熟练运用勾股定理计算是解题的关键.3(2023·四川宜宾·中考真题)如图,在平面直角坐标系xOy 中,等腰直角三角形ABC 的直角顶点C 3,0 ,顶点A 、B 6,m 恰好落在反比例函数y =k x第一象限的图象上.(1)分别求反比例函数的表达式和直线AB 所对应的一次函数的表达式;(2)在x 轴上是否存在一点P ,使△ABP 周长的值最小.若存在,求出最小值;若不存在,请说明理由.【答案】(1)y =6,y =-1x +4(2)在x 轴上存在一点P 5,0 ,使△ABP 周长的值最小,最小值是25+42.【分析】(1)过点A 作AE ⊥x 轴于点E ,过点B 作BD ⊥x 轴于点D ,证明△ACE ≌△CBD AAS ,则CD =AE =3,BD =EC =m ,由OE =3-m 得到点A 的坐标是3-m ,3 ,由A 、B 6,m 恰好落在反比例函数y =k x第一象限的图象上得到33-m =6m ,解得m =1,得到点A 的坐标是2,3 ,点B 的坐标是6,1 ,进一步用待定系数法即可得到答案;(2)延长AE 至点A ,使得EA =AE ,连接A B 交x 轴于点P ,连接AP ,利用轴对称的性质得到AP =A P ,A2,-3 ,则AP +PB =A B ,由AB =25知AB 是定值,此时△ABP 的周长为AP +PB +AB =AB +A B 最小,利用待定系数法求出直线A B 的解析式,求出点P 的坐标,再求出周长最小值即可.【详解】(1)解:过点A 作AE ⊥x 轴于点E ,过点B 作BD ⊥x 轴于点D ,则∠AEC =∠CDB =90°,∵点C 3,0 ,B 6,m ,∴OC =3,OD =6, BD =m ,∴CD =OD -OC =3,∵△ABC 是等腰直角三角形,∴∠ACB =90°,AC =BC ,∵∠ACE +∠BCD =∠CBD +∠BCD =90°,∴∠ACE =∠CBD ,∴△ACE ≌△CBD AAS ,∴CD =AE =3,BD =EC =m ,∴OE =OC -EC =3-m ,∴点A 的坐标是3-m ,3 ,∵A 、B 6,m 恰好落在反比例函数y =k x第一象限的图象上.∴33-m =6m ,解得m =1,∴点A 的坐标是2,3 ,点B 的坐标是6,1 ,∴k =6m =6,∴反比例函数的解析式是y =6x,设直线AB 所对应的一次函数的表达式为y =px +q ,把点A 和点B 的坐标代入得,2p +q =36p +q =1 ,解得p =-12q =4 ,∴直线AB 所对应的一次函数的表达式为y =-12x +4,(2)延长AE 至点A ,使得EA =AE ,连接A B 交x 轴于点P ,连接AP ,∴点A 与点A 关于x 轴对称,∴AP =A P ,A 2,-3,∵AP +PB =A P +PB =A B ,∴AP +PB 的最小值是A B 的长度,∵AB =2-6 2+3-1 2=25,即AB 是定值,∴此时△ABP 的周长为AP +PB +AB =AB +A B 最小,设直线A B 的解析式是y =nx +t ,则2n +t =-3 ,解得n =1t =-5 ,∴直线A B 的解析式是y =x -5,当y =0时,0=x -5,解得x =5,即点P 的坐标是5,0 ,此时AP +PB +AB =AB +A B =25+2-6 2+-3-1 2=25+42,综上可知,在x 轴上存在一点P 5,0 ,使△ABP 周长的值最小,最小值是25+42.【点睛】此题考查了反比例函数和一次函数的图象和性质、用到了待定系数法求函数解析式、勾股定理求两点间距离、轴对称最短路径问题、全等三角形的判定和性质等知识,数形结合和准确计算是解题的关键.题型02 胡不归问题1(2022·内蒙古鄂尔多斯·中考真题)如图,在△ABC 中,AB =AC =4,∠CAB =30°,AD ⊥BC ,垂足为D ,P 为线段AD 上的一动点,连接PB 、PC .则PA +2PB 的最小值为.【答案】42【分析】在∠BAC 的外部作∠CAE =15°,作BF ⊥AE 于F ,交AD 于P ,此时PA +2PB =212PA +PB=12PF +PB =2BF ,通过解直角三角形ABF ,进一步求得结果.【详解】解:如图,在∠BAC 的外部作∠CAE =15°,作BF ⊥AE 于F ,交AD 于P ,此时PA +2PB 最小,∴∠AFB =90°∵AB =AC ,AD ⊥BC ,∴∠CAD =∠BAD =12∠BAC =12×30°=15°,∴∠EAD =∠CAE +∠CAD =30°,∴PF =12PA ,∴PA +2PB =212PA +PB =12PF +PB =2BF ,在Rt △ABF 中,AB =4,∠BAF =∠BAC +∠CAE =45°,∴BF =AB •sin45°=4×22=22,∴(PA +2PB )最大=2BF =42,故答案为:42.【点睛】本题考查了等腰三角形的性质,解直角直角三角形,解题的关键是作辅助线.2(2023·湖南湘西·中考真题)如图,⊙O 是等边三角形ABC 的外接圆,其半径为4.过点B 作BE ⊥AC 于点E ,点P 为线段BE 上一动点(点P 不与B ,E 重合),则CP +12BP 的最小值为.【答案】6【分析】过点P 作PD ⊥AB ,连接CO 并延长交AB 于点F ,连接AO ,根据等边三角形的性质和圆内接三角形的性质得到OA =OB =4,CF ⊥AB ,然后利用含30°角直角三角形的性质得到OE =12OA =2,进而求出BE =BO +EO =6,然后利用CP +12BP =CP +PD ≤CF 代入求解即可.【详解】如图所示,过点P 作PD ⊥AB ,连接CO 并延长交AB 于点F ,连接AO∵△ABC 是等边三角形,BE ⊥AC∴∠ABE =∠CBE =12∠ABC =30°∵⊙O 是等边三角形ABC 的外接圆,其半径为4∴OA =OB =4,CF ⊥AB ,∴∠OBA =∠OAB =30°∴∠OAE =∠OAB =12∠BAC =30°∵BE ⊥AC∴OE =12OA =2∴BE =BO +EO =6∵PD ⊥AB ,∠ABE =30°∴PD =12PB ∴CP +12BP =CP +PD ≤CF ∴CP +12BP 的最小值为CF 的长度∵△ABC 是等边三角形,BE ⊥AC ,CF ⊥AB∴CF =BE =6∴CP +12BP 的最小值为6.故答案为:6.【点睛】此题考查了圆内接三角形的性质,等边三角形的性质,含30°角直角三角形的性质等知识,解题的关键是熟练掌握以上知识点.3(2023·辽宁锦州·中考真题)如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =4,按下列步骤作图:①在AC 和AB 上分别截取AD 、AE ,使AD =AE .②分别以点D 和点E 为圆心,以大于12DE 的长为半径作弧,两弧在∠BAC 内交于点M .③作射线AM 交BC 于点F .若点P 是线段AF 上的一个动点,连接CP ,则CP +12AP 的最小值是.【答案】23【分析】过点P 作PQ ⊥AB 于点Q ,过点C 作CH ⊥AB 于点H ,先利用角平分线和三角形的内角和定理求出∠BAF =30°,然后利用含30°的直角三角的性质得出PQ =12AP ,则CP +12AP =CP +PQ ≥CH ,当C 、P 、Q 三点共线,且与AB 垂直时,CP +12AP 最小,CP +12AP 最小值为CH ,利用含30°的直角三角的性质和勾股定理求出AB ,BC ,最后利用等面积法求解即可.【详解】解:过点P 作PQ ⊥AB 于点Q ,过点C 作CH ⊥AB 于点H ,由题意知:AF 平分∠BAC ,∵∠ACB =90°,∠ABC =30°,∴∠BAC =60°,∴∠BAF =12∠BAC =30°,∴PQ =12AP ,∴CP +12AP =CP +PQ ≥CH ,∴当C 、P 、Q 三点共线,且与AB 垂直时,CP +12AP 最小,CP +12AP 最小值为CH ,∵∠ACB =90°,∠ABC =30°,AC =4,∴AB =2AC =8,∴BC =AB 2-AC 2=43,∵S △ABC =12AC ⋅BC =12AB ⋅CH ,∴CH =AC ⋅BC AB =4×438=23,即CP +12AP 最小值为23.故答案为:23.【点睛】本题考查了尺规作图-作角平分线,含30°的直角三角形的性质,勾股定理等知识,注意掌握利用等积法求三角形的高或点的线的距离的方法.题型03 阿氏圆问题1(2023·山东烟台·中考真题)如图,抛物线y =ax 2+bx +5与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4.抛物线的对称轴x =3与经过点A 的直线y =kx -1交于点D ,与x 轴交于点E .(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得△ADM 是以AD 为直角边的直角三角形?若存在,求出所有点M 的坐标;若不存在,请说明理由;(3)以点B 为圆心,画半径为2的圆,点P 为⊙B 上一个动点,请求出PC +12PA 的最小值.【答案】(1)直线AD 的解析式为y =x -1;抛物线解析式为y =x 2-6x +5(2)存在,点M 的坐标为4,-3 或0,5 或5,0(3)41【分析】(1)根据对称轴x =3,AB =4,得到点A 及B 的坐标,再利用待定系数法求解析式即可;(2)先求出点D 的坐标,再分两种情况:①当∠DAM =90°时,求出直线AM 的解析式为y =-x +1,解方程组y =-x +1y =x 2-6x +5 ,即可得到点M 的坐标;②当∠ADM =90°时,求出直线DM 的解析式为y =-x +5,解方程组y =-x +5y =x 2-6x +5 ,即可得到点M 的坐标;(3)在AB 上取点F ,使BF =1,连接CF ,证得BF PB =PB AB ,又∠PBF =∠ABP ,得到△PBF ∽△ABP ,推出PF =12PA ,进而得到当点C 、P 、F 三点共线时,PC +12PA 的值最小,即为线段CF 的长,利用勾股定理求出CF 即可.【详解】(1)解:∵抛物线的对称轴x =3,AB =4,∴A 1,0 ,B 5,0 ,将A 1,0 代入直线y =kx -1,得k -1=0,解得k =1,∴直线AD 的解析式为y =x -1;将A 1,0 ,B 5,0 代入y =ax 2+bx +5,得a +b +5=025a +5b +5=0 ,解得a =1b =-6 ,∴抛物线的解析式为y =x 2-6x +5;(2)存在点M ,∵直线AD 的解析式为y =x -1,抛物线对称轴x =3与x 轴交于点E .∴当x =3时,y =x -1=2,∴D 3,2 ,①当∠DAM =90°时,设直线AM 的解析式为y =-x +c ,将点A 坐标代入,得-1+c =0,解得c =1,∴直线AM 的解析式为y =-x +1,解方程组y =-x +1y =x 2-6x +5 ,得x =1y =0 或x =4y =-3 ,∴点M 的坐标为4,-3 ;②当∠ADM =90°时,设直线DM 的解析式为y =-x +d ,将D 3,2 代入,得-3+d =2,解得d =5,∴直线DM 的解析式为y =-x +5,解方程组y =-x +5y =x 2-6x +5 ,解得x =0y =5 或x =5y =0 ,∴点M 的坐标为0,5 或5,0综上,点M 的坐标为4,-3 或0,5 或5,0 ;(3)如图,在AB 上取点F ,使BF =1,连接CF ,∵PB =2,∴BF PB =12,∵PB AB =24=12,、∴BF PB =PB AB,又∵∠PBF =∠ABP ,∴△PBF ∽△ABP ,∴PF PA =BF PB =12,即PF =12PA ,∴PC +12PA =PC +PF ≥CF ,∴当点C 、P 、F 三点共线时,PC +12PA 的值最小,即为线段CF 的长,∵OC =5,OF =OB -1=5-1=4,∴CF =OC 2+OF 2=52+42=41,∴PC +12PA 的最小值为41.【点睛】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.2(2023·山东济南·一模)抛物线y =-12x 2+a -1 x +2a 与x 轴交于A b ,0 ,B 4,0 两点,与y 轴交于点C 0,c ,点P 是抛物线在第一象限内的一个动点,且在对称轴右侧.(1)求a ,b ,c 的值;(2)如图1,连接BC 、AP ,交点为M ,连接PB ,若S △PMB S △AMB=14,求点P 的坐标;(3)如图2,在(2)的条件下,过点P 作x 轴的垂线交x 轴于点E ,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为α(0°<α<90°),连接E 'B ,E C ,求E B +34E C 的最小值.【答案】(1)a =2,b =-2,c =4(2)P 3,52(3)3374【分析】(1)利用待定系数法求解即可;(2)过点P 作PD ⊥x 轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,求得l BC 的解析式,设P m ,-12m 2+m +4 ,则D m ,-m +4 ,利用相似三角形的判定与性质可得答案;(3)在y 轴上取一点F ,使得OF =94,连接BF ,由相似三角形的判定与性质可得FE =34CE ,可得E B +34E C =BE +E F ,即可解答.【详解】(1)解:将B 4,0 代入y =-12x 2+a -1 x +2a ,得-8+4a -1 +2a =0,∴a =2,∴抛物线的解析式为y =-12x 2+x +4,令x =0,则y =4,∴c =4,令y =0,则0=-12x 2+x +4,∴x 1=4,x 2=-2,∴A -2,0 ,即b =-2;∴a =2,b =-2,c =4(2)过点P 作PD ⊥x 轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,设l BC :y =kx +b ,将0,4 ,4,0 代入得b =44k +b =0 解得:b =4,k =-1,∴l BC :y =-x +4,设P m ,-12m 2+m +4 ,则D m ,-m +4 ,PD =y P -y D =-12m 2+m +4--m +4 =-12m 2+2m ,∵PD ∥HA ,∴△AMH ∽△PMD ,∴PM MA =PD HA,将x =-2代入y =-x +4,∴HA =6,∵S △PMB S △AMB =12PM ⋅h 12AM ⋅h =PM AM =14,∴PD HA =PD 6=14,∴PD =32,∴32=-12m 2+2m ,∴m 1=1(舍),m 2=3,∴P 3,52 ;(3)在y 轴上取一点F ,使得OF =94,连接BF ,根据旋转得性质得出:OE =OE =3,∵OF ⋅OC =94×4=9,∴OE 2=OF ⋅OC ,∴OE OF =OC OE,∵∠COE =∠FOE ,∴△FOE ∽△E OC ,∴FE CE =OE OC =34,∴FE =34CE ,∴E B +34E C =BE +E F ,当B 、E '、F 三点共线时,此时E B +34E C 最小=BF ,最小值为:BF =42+94 2=3374.【点睛】此题考查的是二次函数的综合题意,涉及到相似三角形的判定与性质、二次函数与面积的问题、待定系数法求解析式,旋转的性质等知识.正确的作出辅助线是解此题的关键.题型04 隐圆问题1(2022·山东泰安·中考真题)如图,四边形ABCD 为矩形,AB =3,BC =4.点P 是线段BC 上一动点,点M 为线段AP 上一点.∠ADM =∠BAP ,则BM 的最小值为()A.5B.12C.13-3D.13-2【答案】D【分析】证明∠AMD=90°,得出点M在O点为圆心,以AO为半径的圆上,从而计算出答案.【详解】设AD的中点为O,以O点为圆心,AO为半径画圆∵四边形ABCD为矩形∴∠BAP+∠MAD=90°∵∠ADM=∠BAP∴∠MAD+∠ADM=90°∴∠AMD=90°∴点M在O点为圆心,以AO为半径的圆上连接OB交圆O与点N∵点B为圆O外一点∴当直线BM过圆心O时,BM最短∵BO2=AB2+AO2,AO=12AD=2∴BO2=9+4=13∴BO=13∵BN=BO-AO=13-2故选:D.【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.2(2022·安徽蚌埠·一模)如图,Rt△ABC中,AB⊥BC,AB=8,BC=6,P是△ABC内部的一个动点,满足∠PAB=∠PBC,则线段CP长的最小值为()A.325B.2C.213-6D.213-4【答案】D【分析】结合题意推导得∠APB=90°,取AB的中点O,以点O为圆心,AB为直径作圆,连接OP;根据直角三角形斜边中线的性质,得OP=OA=OB=12AB=4;根据圆的对称性,得点P在以AB为直径的⊙O上,根据两点之间直线段最短的性质,得当点O、点P、点C三点共线时,PC最小;根据勾股定理的性质计算得OC,通过线段和差计算即可得到答案.【详解】∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,取AB的中点O,以点O为圆心,AB为直径作圆,连接OP,∴OP=OA=OB=12AB=4∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,当点O、点P、点C三点共线时,PC最小在Rt△BCO中,∵∠OBC=90°,BC=6,OB=4,∴OC=BO2+BC2=42+62=213,∴PC=OC-OP=213-4∴PC最小值为213-4故选:D.【点睛】本题考查了两点之间直线段最短、圆、勾股定理、直角三角形斜边中线的知识;解题的关键是熟练掌握圆的对称性、两点之间直线段最短、直角三角形斜边中线的性质,从而完成求解.3(20-21九年级上·江苏盐城·期末)如图,⊙M的半径为4,圆心M的坐标为(5,12),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为.【答案】18【分析】由RtΔAPB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P',当点P位于P'位置时,OP'取得最小值,据此求解可得.【详解】解:连接OP,∵PA⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P',当点P位于P'位置时,OP'取得最小值,过点M作MQ⊥x轴于点Q,则OQ=5,MQ=12,∴OM=13,又∵MP'=4,∴OP'=9,∴AB=2OP'=18,故答案是:18.【点睛】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.4(2021九年级·全国·专题练习)如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,则称点P为线段AB的“等角点”.显然,线段AB的“等角点”有无数个,且A、B、P三点共圆.①设A 、B 、P 三点所在圆的圆心为C ,直接写出点C 的坐标和⊙C 的半径;②y 轴正半轴上是否有线段AB 的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由;(2)当点P 在y 轴正半轴上运动时,∠APB 是否有最大值?如果有,说明此时∠APB 最大的理由,并求出点P 的坐标;如果没有请说明理由.【答案】(1)①(4,3)或(4,-3),半径为32;②存在,(0,3+2)或(0,3-2),见解析;(2)有,见解析,(0,7)【分析】(1)①在x 轴的上方,作以AB 为斜边的等腰直角三角形△ACB ,易知A ,B ,P 三点在⊙C 上,圆心C 的坐标为(4,3),半径为32,根据对称性可知点C (4,-3)也满足条件;②当圆心为C (4,3)时,过点C 作CD ⊥y 轴于D ,则D (0,3),CD =4,根据⊙C 的半径得⊙C 与y 轴相交,设交点为P 1,P 2,此时P 1,P 2在y 轴的正半轴上,连接CP 1、CP 2、CA ,则CP 1=CP 2=CA =r =32,得DP 2=2,即可得;(2)如果点P 在y 轴的正半轴上,设此时圆心为E ,则E 在第一象限,在y 轴的正半轴上任取一点M (不与点P 重合),连接MA ,MB ,PA ,PB ,设MB 交于⊙E 于点N ,连接NA ,则∠APB =∠ANB ,∠ANB 是△MAN的外角,∠ANB >∠AMB ,即∠APB >∠AMB ,过点E 作EF ⊥x 轴于F ,连接EA ,EP ,则AF =12AB =3,OF =4,四边形OPEF 是矩形,OP =EF ,PE =OF =4,得EF =7,则OP =7,即可得.【详解】(1)①如图1中,在x 轴的上方,作以AB 为斜边的等腰直角三角形△ACB ,易知A ,B ,P 三点在⊙C 上,圆心C 的坐标为(4,3),半径为32,根据对称性可知点C (4,-3)也满足条件;②y 轴的正半轴上存在线段AB 的“等角点“。
中考几何中的最值问题讲义及答案
![中考几何中的最值问题讲义及答案](https://img.taocdn.com/s3/m/ea54d0770a1c59eef8c75fbfc77da26925c596df.png)
几何中的最值问题一、知识点睛几何中最值问题包括:“面积最值〞及“线段〔与、差〕最值〞.求面积的最值,需要将面积表达成函数,借助函数性质结合取值范围求解; 求线段及线段与、差的最值,需要借助“垂线段最短〞、“两点之间线段最短〞及“三角形三边关系〞等相关定理转化处理.一般处理方法:垂线段最短〔一个定点、一条定直线时〕三角形三边关系〔两边长固定或其与、差固定时〕l l B 1. 点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁到达蜂蜜的最短距离为______cm .第1题图 第2题图2. 如图,点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,假设∠3.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,假设点P,Q分别是AD与AE上的动点,那么DQ+PQ的最小值为 .第3题图第4题图4.如图,在菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上的任意一点,那么PK+QK的最小值为 .5.如图,当四边形PABN的周长最小时,a= .第5题图第6题图6.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点. 假设E、F为边OA 上的两个动点,且EF=2,当四边形CDEF的周长最小时,那么点F的坐标为 .7.如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P在直线MN上运动,那么PA PB-的最大值等于.第7题图第8题图8.点A、B均在由面积为1的一样小矩形组成的网格的格点上,建立平面直角坐标系如下图.假设P是x轴上使得PA PB-的值最大的点,Q是y轴上使得QA+QB 的值最小的点,那么OP OQ⋅=.9.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,那么AM的最小值为_________.第9题图第10题图10.如图,AB=10,P是线段AB上任意一点,在AB的同侧分别以AP与PB为边作等边△APC与等边△BPD,那么CD长度的最小值为.11.如图,点P在第一象限,△ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是________.假设将△ABP中边PA的长度改为22,另两边长度不变,那么点P 到原点的最大距离变为_________.第11题图 第12题图12. 动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如下图,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.假设限定点P 、Q 分别在AB 、AD 边上移动,那么点A ′在BC 边上可移动的最大距离为 .13. 如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .〔1〕当P 落在线段CD 上时,PD 的取值范围为 ;〔2〕当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .14. 在△ABC 中,∠BAC =120°,AB=AC =4,M 、N两点分别是边AB 、AC 上的动点,将△AMN 沿MN 翻折,A 点的对应点为A ′,连接BA ′,那么BA ′的最小值是_________.【参考答案】1. 152.6 3.45.74 6.〔73,0〕 7.5 8.3 9.125 10.511.12.2 13.(1)84-≤≤PD ;(2) 814. 4A B C D。
重难点 几何最值问题(解析版)
![重难点 几何最值问题(解析版)](https://img.taocdn.com/s3/m/634685a480c758f5f61fb7360b4c2e3f572725b3.png)
重难点几何最值问题中考数学中《几何最值问题》部分主要考向分为五类:一、将军饮马类最值二、动点辅助圆类最值三、四点共圆类最值四、瓜豆原理类最值五、胡不归类最值几何最值问题虽然在中考数学中经常考察的是将军饮马类和辅助圆类,剩余几种虽然不经常考察,但是考到的时候难度都比较大,所以也需要理解并掌握不同类型的几何最值问题的处理办法,这样到考到的时候才能有捷径应对。
考向一:将军饮马类最值一动”“两定一动”“两定普通动”两定“一动”“两两动”“两定两动”“两定异侧将军饮马:构造平行四边形AMNA`,转化AM 为A`N ,之后再对称连接求A`N +NB 的最小值即可A`构造平行四边形AA`NM 则AM 转化为A`N ,之后再依据两点之间线段最短,连接A`B 即为A 、之间陆地距离的最小值1.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C 顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是3+3.【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF =30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG 交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.2.(2023•德州)如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=3,BC=4,点E在AB上,且AE=1.F,G为边AD上的两个动点,且FG=1.当四边形CGFE的周长最小时,CG的长为.【分析】先确定FG和EC的长为确定的值,得到四边形CGFE的周长最小时,即为CG+EF最小时,平移CG到C'F,作点E关于AD对称点E',连接E'C'交AD于点G',得到CG+EF最小时,点G与G'重合,再利用平行线分线段成比例求出C'G'长即可.【解答】解:∵∠A=90°,AD∥BC,∴∠B=90°,∵AB=3,BC=4,AE=1,∴BE=AB﹣AE=3﹣1=2,在Rt△EBC中,由勾股定理,得EC===,∵FG=1,∴四边形CGFE的周长=CG+FG+EF+EC=CG+EF+1+,∴四边形CGFE的周长最小时,只要CG+EF最小即可.过点F作FC'∥GC交BC于点C',延长BA到E',使AE'=AE=1,连接E'F,E'C',E'C'交AD于点G',可得AD垂直平分E'E,∴E'F=EF,∵AD∥BC,∴C'F=CG,CC'=FG=1,∴CG+EF=C'F+E'F≥E'C',即CG+EF最小时,CG=C'G',∵E'B=AB+AE'=3+1=4,BC'=BC﹣CC'=4﹣1=3,由勾股定理,得E'C'===5,∵AG'∥BC',∴=,即=,解得C'G'=,即四边形CGFE的周长最小时,CG的长为.故答案为:.考向二:动点辅助圆类最值满分技巧动点运动轨迹为辅助圆的三种类型:一.定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)二.定边对直角模型原理:直径所对的圆周角是直角思路构造:若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)三.定边对定角模型原理:在同圆或等圆中,同弧所对的圆周角相等思路构造:若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)1.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为.【分析】由折叠性质可知AC=AC'=3,然后根据三角形的三边不等关系可进行求解.【解答】解:∵∠C=90°,CA=CB=3,∴,由折叠的性质可知AC=AC'=3,∵BC'≥AB﹣AC',∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,故答案为.2.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是4+.【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB=2BC=4,CE=AE=AB=2,AC=AB•cos30°=2,∴∠ECA=∠BAC=30°,过点A作AG⊥CE交CE的延长线于点G,∴AG=AC=,∵点F在以A为圆心,AB长为半径的圆上,∴AF=AB=4,∴点F到CE的距离最大值为4+,∴,故答案为:.3.(2023•大庆模拟)如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.【分析】如图,连接OD,OC,首先证明点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,利用勾股定理求出CK即可解决问题.【解答】解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.考向三:四点共圆类最值满分技巧对角互补的四边形必有四点共圆,即辅助圆产生模型原理:圆内接四边形对角互补1.如图,在△ABC中,∠ACB=90°,AC=2,BC=4,AE=3,连接BE,以BE为斜边在BE的右侧作等腰直角△BDE,P是AE边上的一点,连接PC和CD,当∠PCD=45°,则PE长为2.【分析】由AE=3得动点E在圆上运动,因为△BDE是等腰直角三角形且∠PCD=45°,所以想到瓜豆原理,可两次构造三角形相似去解答.【解答】解:以AB为斜边在AB的右侧作等腰直角△ABF,连接FC,FD.∵∠ABF=∠EBD=45°,∴∠ABE=∠FBD,∵,∴△ABE∽△FBD,∴,∴FD=,在四边形ACBF中,∠ACB=∠AFB=90°,∴A、C、B、F四点共圆,∴∠ACF=∠ABF=45°,∠CAB=∠CFB,∵∠PCD=45°∴∠ACP=∠FCD,又∵△ABE∽△FBD,∴∠BAE=∠BFD,∴∠CAP=∠CFD,∴△CAP∽△CFD,∴,在四边形ACBF中,由对角互补模型得AC+CB=,∴CF=∴,∴AP=1,∴PE=2,故答案为:2考向四:瓜豆原理类最值满分技巧瓜豆原理的特征和结论:1.(2023•金平区三模)如图,长方形ABCD中,AB=6,BC=,E为BC上一点,且BE=,F为AB 边上的一个动点,连接EF,将EF绕着点E顺时针旋转45°到EG的位置,连接FG和CG,则CG的最小值为.【分析】如图,将线段BE绕点E顺时针旋转45°得到线段ET,连接DE交CG于J.首先证明∠ETG =90°,推出点G的在射线TG上运动,推出当CG⊥TG时,CG的值最小.【解答】解:如图,将线段BE绕点E顺时针旋转45°得到线段ET,连接DE交CG于J.∵四边形ABCD是矩形,∴AB=CD=6,∠B=∠BCD=90°,∵∠BET=∠FEG=45°,∴∠BEF=∠TEG,∵EB=ET,EF=EG,∴△EBF≌△ETG(SAS),∴∠B=∠ETG=90°,∴点G在射线TG上运动,∴当CG⊥TG时,CG的值最小,∵BC=,BE=,CD=6,∴CE=CD=6,∴∠CED=∠BET=45°,∴∠TEJ=90°=∠ETG=∠JGT=90°,∴四边形ETGJ是矩形,∴DE∥GT,GJ=TE=BE=,∴CJ⊥DE,∴JE=JD,∴CJ=DE=3,∴CG=CJ+GJ=+3,∴CG的最小值为+3,故答案为:+3.2.(2023•宿城区二模)如图,矩形ABCD中,AD=6,DC=8,点E为对角线AC上一动点,BE⊥BF,,BG⊥EF于点G,连接CG,当CG最小时,CE的长为.【分析】过点B作BP⊥AC于点P,连接PG,则可得△ABE∽△PBG,进而可知∠BPG为定值,因此CG⊥PG时,CG最小,通过设元利用三角函数和相似比可表示出PG、CP,即可求出结果.【解答】解:如图,过点B作BP⊥AC于点P,连接PG,∵,∠ABC=∠EBF,∴△ABC∽△EBF,∴∠CAB=∠FEB,∵∠APB=∠EGB=90°,∴△ABP∽△EBG,∴=,∠ABP=∠EBG,∴∠ABE=∠PBG,∴△ABE∽△PBG,∴∠BPG=∠BAE,即在点E的运动过程中,∠BPG的大小不变且等于∠BAC,∴当CG⊥PG时,CG最小,设此时AE=x,∵,∴PG=,∵CG⊥PG,∴∠PCG=∠BPG=∠BAC,∴,代入PG=,解得CP=x,∵CP=BC•sin∠CBP=BC•sin∠BAC=,∴x=,∴AE=∴CE=,故答案为:.考向五:胡不归类最值满分技巧胡不归模型解决步骤:模型具体化:如图,已知两定点A、B,在定直线BC上找一点P,使从B走道P,再从P走到A的总时间最小解决步骤:由系数k·PB确定分割线为PBPA在分割线一侧,在分割线PB另一侧依定点B构α角,使sinα=k,α角另一边为BD过点P作PQ⊥BD,转化kPB=PQ过定点A作AH⊥BD,转化(PA+k·PB)min=AH,再依“勾股法”求AH的长即可。
几何最值问题常用解法初二
![几何最值问题常用解法初二](https://img.taocdn.com/s3/m/512afb7666ec102de2bd960590c69ec3d5bbdbeb.png)
几何图形中常见最值问题的解法平面几何图形中的最值问题是近几年中考常见的题型,此类问题常让学生无从下手,特别是新市民子女,由于他们数学知识的短缺、题目信息采集不够、综合应用能力弱、数学思维紊乱,课本知识理解不到位等原因造成错误为此我在平时教学中注重对这类问题的归类整理,在教学中对他们进行必要的专题拓展训练,引导他们归纳、总结、获得解决这类问题的基本技能,培养他们的思维习惯.一、轴对称变换—最短路径问题1.书本原型:(1)点A 、点B 在直线l 两侧,在直线l 找一点P ,使PA PB +值最小.分析根据两点之间线段最短.点P 既在直线l 上,又在线段AB 上,PA PB +值最小.解连接AB ,交直线l 于点P ,点P 就是所要求作的点.(2)点A 、点B 在直线l 同侧,在直线l 找一点P ,使PA PB +最小.分析利用轴对称的性质找一个点1B ,使得1PB PB =,因而1PA PB PA PB +=+,要使PA PB +最小,只要1PA PB +最小,只要A 、P 、1B 三点共线.解作点B 关于l 的对称点1B ,连接1AB 交l 于点,点P 就是所要求作的点.(也可以作点A 关于l 的对称点1A ,连接1A B 交l 于点P ,点P 就是所要求作的点).2.应用例1在右图中,以直线l 为x 轴,以O 为坐标原点建立平面直角坐标系,点(1,2)A 、(4,1)B .(1)在x 轴上找一点P ,使PA PB +最小,请在图中画出点P ,并求出点PA PB +的最小值.分析作A 、B 两点中的一点关于x 轴的对称点,连接这个对称点与另一点的线段交x 轴于点P .PA PB +的最小值实际上就是线段1AB 的长3.∴PA PB +的最小值是3.(2)在y 轴上找一点C ,在x 轴上找一点D ,使四边形ACDB 的周长最小,则点C 的坐标为,点D 的坐标为.分析本题两个动点C 、D ,要使四边形ACDB 的周长最小,只要AC CD BD AB +++的值最小,而AB 是一个定值,只要AC CD BD ++最小.作点A 关于y 轴的对称点1A ,作点B 关于x 轴的对称点1B ,则1AC A C =,1BD B D =,AC CD +11BD A C B D CD +=++,只要1A 、C 、D 、1B 共线,则11A C B D CD ++最小,从而AC CD BD ++最小.解作点A 关于y 轴的对称点1A ,作点B 关于x 轴的对称点1B ,连接11A B .交y 轴于点C ,交x 轴于点D .设直线11A B ,的解析式为y kx b =+, 点A (1,2)关于y 的对称点1(1,2)A -, 点B (4,1)关于x 轴的对称点1(4,1)B -,241k b k b -+=⎧∴⎨+=-⎩,解得3/57/5k b =-⎧⎨=⎩,∴直线11A B 的解析式为37.55y x =-+∴点C 的坐标为7(0,5,点D 的坐标为7(,0)3.二、垂线段最短—最短路径问题1.书本原型在灌溉时,要把河中的水引到农田P 处,如何挖渠使渠道最短.分析根据垂线段最短,P 到直线l 最短的距离是点P 到直线l 的垂线段的长.解过点P 作直线河岸l 的垂线段,垂足为点A ,线段PA 就是最短的渠道.2.应用例3如图,在平面直角坐标系xOy 中,直线AB 经过点(4,0)A -、(0,4)B ,⊙O 的半径为1(O 为坐标原点),点P 在直线AB 上,过点P 作⊙O 的一条切线,PQ Q 为切点,则切线长PQ 的最小值为.分析因为PQ 是⊙O 的切线,连接OQ ,则90PQO ∠=︒.由勾股定理得222PQ PO OQ =-.因为⊙O 的半径1OQ =,要使PQ 最小,只要PO 最小,从而转化为求PO 的最小值,当PO AB ⊥时,PO 最小值为2.PQ ∴.四、平面展开图—最短路径问题我们常常遇到蚂蚁从一个几何体的一个侧面上一个点,绕过侧面走到另一个点,怎样走最近的问题.通常将曲面展平,转化为两点之间线段最短、垂线段最短问题,从而将曲面的最短路径问题转化为平面最短路径问题例5如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是.分析这是一个蚂蚁爬行的最短路径问题,将圆柱的侧面展平,得到一个矩形.蚂蚁从容器外壁爬到容器内壁最短,就是蚂蚁沿圆柱侧面爬到容器顶经过某一点P ,再爬到点A 的最短路径,实际上就是在一边DE 上找一点P ,使1PA PB +最小.根据轴对称—最短路径问题的作图步骤得蚂蚁沿线段2BA 最短,根据勾股定理可得2BA 的长.解在21Rt A B B ∆中,2112A B = cm ,15BB =cm由勾股定理得,222221114425169A B A B BB =+=+= ,213A B ∴=cm.所以蚂蚁爬行的最短路线长是13cm.学生觉得难以解决的几何最值问题,我在平时的教学中注重把书本原型跟学生讲透;让学生理解书本上的原理:两点之间线段最短、垂线段最短、三角形两边之和大于第三边,两边之差小于第三边,让学生感受到数学中的化归思想、数形结合思想,让学生有章可循,有法可用.授人以鱼不如授人以渔,对于新市民子女的数学学习,主要是提高他们数学学习兴趣,学会解题技能,让他们感受到学习数学乐趣,让他们想学数学、能学数学、学好数学,从而爱上数学,真正实现《新课程标准》所倡导的理念:“人人学有价值的数学,人人都能获得必需的数学;不同的人在数学上得到不同的发展.”。
最新中考数学专题复习-几何最值问题解析
![最新中考数学专题复习-几何最值问题解析](https://img.taocdn.com/s3/m/ce713daaaef8941ea76e05cf.png)
连接A′C,
∵△ABC为等腰直角三角形,AC=BC=4,
∴∠CAB=∠ABC=45°,∠ACB=90°,
∵∠BCD=15°,
∴∠ACD=75°,
∴∠CAA′=15°,
∵AC=A′C,
一
∴A′C=BC,∠CA′A=∠CAA′=15°,
∴∠ACA′=150°,
∵∠ACB=90°,
∴∠A′CB=60°,
∴△A′BC是等边三角形,
∴EC=8,FC=4=AE,
∵点M与点F关于BC对称
∴CF=CM=4,∠ACB=∠BCM=45°
∴∠ACM=90°
∴EM=
=4
则在线段存在点H到点E和点F的距离之和最小为4 <9
在点H右侧,当点P与点C重合时,则PE+PF=12
∴点P在CH上时,4 <PE+PF≤12
在点H左侧,当点P与点B重合时,BF=
.
几何最值问题解题策略
第二部分
考情分析
专题归纳
秘籍2:
真题回顾
小试牛刀
1 、【翻折变换类】 2 、【平移变换类】 3、【旋转变换类】OA与OB共用顶点O,固定OA将OB绕点旋 转过程中的,会出现的最大值与最小值,如图:
B 最大值位置
A
O
最小值位置
几何最值问题解题策略
第二部分
考情分析
专题归纳
秘籍3:
即AG=3,AH=4,
∵M,N分别是CD,BC边上的动点,
一
∴当点G、N、M、H在同一直线上时,GN+MN+MH=GH最短,
即EN+MN+MF最短,
此时Rt△AGH中,GH=
=
=5,
∴EN+MN+MF=5,
几何中的最值问题(解析版)
![几何中的最值问题(解析版)](https://img.taocdn.com/s3/m/0b410de3e87101f69e3195ec.png)
专题几何中的最值问题全国各地最新二模一、单选题1.(2019·山东淄博市·九年级二模)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,BC=23,△ADC与△ABC关于AC对称,点E、F分别是边DC、BC上的任意一点,且DE=CF,BE、DF相交于点P,则CP的最小值为( )A.1 B.3C.32D.2【答案】D【分析】连接BD,证明△EDB≌△FCD,可得∠BPD=120°,由于BD的长确定,则点P在以A为圆心,AD为半径的弧BD上,当点A,P,C在一条直线上时,CP有最小值.【详解】解:连接AD,因为∠ACB=30°,所以∠BCD=60°,因为CB=CD,所以△CBD是等边三角形,所以BD=DC因为DE=CF,∠EDB=∠FCD=60°,所以△EDB≌△FCD,所以∠EBD=∠FDC,因为∠FDC+∠BDF=60°,所以∠EBD+∠BDF=60°,所以∠BPD=120°,所以点P在以A为圆心,AD为半径的弧BD上,直角△ABC中,∠ACB=30°,BC=23,所以AB=2,AC=4,所以AP=2当点A,P,C在一条直线上时,CP有最小值,CP的最小值是AC-AP=4-2=2故选D.模拟预测【点睛】求一个动点到定点的最小值,一般先要确定动点在一个确定的圆或圆弧上运动,当动点与圆心及定点在一条直线上时,取最小值.2.(2020·无锡市江南中学九年级二模)如图,在平面直角坐标系中,已知A (10,0),点P 为线段OA 上任意一点.在直线y =34x 上取点E ,使PO =PE ,延长PE 到点F ,使PA =PF ,分别取OE 、AF 中点M 、N ,连结MN ,则MN 的最小值是( )A .4.8B .5C .5.4D .6【答案】A 【分析】分别证明PM OE ⊥,PN AF ⊥,∠MPN=90°,易得MNP ∆为直角三角形,设OP p =,则35MP p =,10AP p =-,由勾股定理得2264645MN p p =-+,从而可得出2MN 最小值为57625,进一步得出结论. 【详解】OP PE =,M 为OE 的中点,PM OE ∴⊥,EOP OEP ∠=∠PA PF =,N 为AF 的中点,PN AF ∴⊥,FPN NPA ∠=∠,APF EOP OEP FPN NPA ∠=∠+∠=∠+∠FPN EOP MEP ∴∠=∠=∠90MEP EPM ∠︒∠+=90NPF EPM ∴∠+∠=︒连接MN ,则MNP ∆为直角三角形,3tan 4EOP ∴∠= 设OP p =,则35MP p =,10AP p =-,3tan 4NPA ∠= 4(10)5PN p ∴=- 2222234(10)55MN PN MP p p ⎛⎫⎡⎤∴=+=+- ⎪⎢⎥⎝⎭⎣⎦2225253201600MN p p ∴=-+222643257664p 5525MN p p ⎛⎫∴=-+=-+ ⎪⎝⎭当325p =时,2MN 最小值为57625∴MN 的最小值为24 4.85= 故选:A .【点睛】此题主要考查了线段最小值的求解方法,列出2264645MN p p =-+求出2MN 最小值为57625是解决本题的关键. 二、填空题3.(2020·湖北武汉市·九年级二模)如图,正方形ABCD 的边长为8,P 为AD 边的中点,以CD 为边向形外作等边DCE ,连接BE ,M ,N 分别为BE ,DE 边上的动点,当PM MN +取最小值时,PMN 的面积为______.【答案】6+【分析】过点E 作EF DE ⊥,交DC 的延长线于点F ,过点P 作PH EF ⊥,PT DE ⊥,垂足分为H ,T ,PH 交BE 于点Q ,点N ,H 作关于BE 的对称点分别为1N ,2N ,连接2PN ,2QN ,1MN ,证明PM MN +取最小值PH ,此时N 与点2N 重合,PMN 与2N PQ △重合,求出2N PQ △的面积即可.【详解】解:过点E 作EF DE ⊥,交DC 的延长线于点F ,过点P 作PH EF ⊥,PT DE ⊥,垂足分为H ,T ,PH 交BE 于点Q ,易证150BCE ∠=︒,15CEB CBE ∠=∠=︒,601545BEF BED ∠=∠=︒-︒=︒, 点N ,H 作关于BE 的对称点分别为1N ,2N ,连接2PN ,2QN ,1MN ,则1PM MN PM MN PH +=+≥,当点M ,1N 分别与点Q ,H 重合时,PM MN +取最小值PH ,此时N 与点2N 重合,PMN 与2N PQ △重合,易得sin 302PT PD =︒=,TD =∴8PH ET ==+2PT EH HQ ===,∴6PQ PH QH =-=+∴2N PQ △的面积为(16262+⨯=+,故当PM MN +取最小值时,PMN 的面积为6+【点睛】本题考查了等边三角形的性质,解直角三角形,轴对称最短问题等知识,解题的关键是学会两条轴对称解决最短问题.4.(2020·江苏盐城市·九年级二模)如图,ABC CDE 、是两个直角三角板,其中9045ECD ACB CED ∠=∠=︒∠=︒,,30CAB ∠=︒,若2,AB DE ==将直角三角板CDE 绕点C 旋转一周,则AD BE -的最大值为_______________________.1【分析】如图,在CA 取一点J ,使得CJ=CB ,连接DJ .利用全等三角形的性质证明BE=DJ ,推出|AD-BE|=|AD-DJ|≤AJ ,求出AJ 即可解决问题.【详解】解:如图,在CA 取一点J ,使得CJ=CB ,连接DJ .在Rt △ACB 中,AB=2,∠CAB=30°,∠ACB=90°,∴CB=CJ=12AB=1,AC=3BC=3, ∵∠ECD=∠BCJ=90°,∴∠DCJ=∠ECB ,∵CD=CE ,CJ=CB ,∴△DCJ ≌△ECB (SAS ),∴DJ=BE ,∴|AD-BE|=|AD-DJ|,∵|AD-DJ|≤AJ ,∴|AD-BE|1,∴|AD-BE|1.1.【点睛】本题考查旋转的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.5.(2020·泰兴市河头庄中学九年级二模)如图,在正方形ABCD 中,AB=4,以B 为圆心,BA 长为半径画弧,点M 为弧上一点,MN ⊥CD 于N ,连接CM ,则CM -MN 的最大值为 ______.【答案】2【分析】过M 作ME ⊥BC 于E ,设MN=EC=x ,根据勾股定理表示出CM 218CM MN t t =-+-,根据二次函数的性质即可得到CM -MN 的最大值. 【详解】解:过M 作ME ⊥BC 于E ,由题意可知四边形MECN 为矩形,AB=BM ,∵AB=4,∴BC=BM=4,设MN=EC=x ,则BE=4-x ,在Rt △BEM 中,()()22222244164ME BM BE x x =-=--=-- ,在Rt △CEM 中,CM ===,则CM MN x =- ,t =,则218x t =, ∴218CM MN t t =-+-, 当4t =时,CM MN -取最大值,将4t =代入218CM MN t t =-+-,得2CM MN =-, 故答案为:2.【点睛】本题考查了二次函数的最大值问题,正方形的性质,把几何问题转化为函数问题是解题的关键.6.(2020·广西九年级二模)如图,已知直线334y x =-与x 轴、y 轴分别交于A 、B 两点,P 是以()0,1C 为圆心,1为半径的圆上一动点,连接PA 、PB ,当PAB ∆的面积最大时,点P 的坐标为_______.【答案】(−35,95) 【分析】过C 作CM ⊥AB 于M ,交x 轴于E ,连接AC ,MC 的延长线交⊙C 于D ,作DN ⊥x 轴于N ,则由三角形面积公式得,12×AB ×CM=12×OA ×BC ,可知圆C 上点到直线y=34x-3的最长距离是DM ,当P 点在D 这个位置时,△PAB 的面积最大,先证得△COE ∽△CMB ,求得OE 、CE ,再通过证得△COE∽△DNE,求得DN和NE,由此求得答案.【详解】过C作CM⊥AB于M,交x轴于E,连接AC,MC的延长线交⊙C于D,作DN⊥x轴于N,∵直线334y x=-与x轴、y轴分别交于A,B两点,令x=0,得y=-3,令y=9,得x=4∴A(4,0),B(0,−3),∴OA=4,OB=3,∴5=则由三角形面积公式得,12×AB×CM=12×OA×BC,∴12×5×CM=12×4×(1+3),∴CM=16 5∴125 ==∴圆C上点到直线334y x=-的最大距离是DM=1+165=215当P点在D这个位置时,△PAB的面积最大,∵∠CMB=∠COE=90°,∠OCE=∠MCB,∴△COE∽△CMB,∴OE OC CE BM CM CB==∴11216455OE CE == ∴OE=34,CE=54, ∴ED=1+54=94 ∵DN ⊥x 轴,∴DN ∥OC ,∴△COE ∽△DNE , ∴DN NE DE CO OE CE ==,即9435144DN NE == ∴DN=95,NE=2720∴ON=NE −OE=2720−34=35 ∴D(−35,95) ∴当△PAB 的面积最大时,点P 的坐标为(−35,95) 故答案为:(−35,95) 【点睛】本题考查了相似三角形的判定和性质,根据两个三角形相似可得出对应边成比例,是求线段长度的方法之一,已知一次函数的解析式,可求得函数与x 轴,y 轴的截距.三、解答题7.(2021·河南九年级二模)如图,抛物线y =﹣12x 2+bx +c 与x 轴交于点A (4,0),与y 轴交于点B ,且OA=OB ,在x 轴上有一动点D (m ,0)(0<m <4),过点D 作x 轴的垂线交直线AB 于点C ,交抛物线于点E ,(1)求抛物线的函数表达式.(2)当点C 是DE 的中点时,求出m 的值.(3)在(2)的条件下,将线段OD 绕点O 逆时针旋转得到OD ′,旋转角为α(0°<a <90°),连接D ′A 、D ′B ,直接写出D ′A +12D ′B 的最小值.【答案】(1)2142y x x =-++;(2)m=2;(3)D ′A+12BD【分析】(1)利用待定系数法求出抛物线解析式即可;(2)可得E(m ,2142m m -++) ,C (m ,-m+4).表示出EC 的长,根据EC=CD 可得出关于m 的方程,解方程求出m 的值即可;(3)在y 轴上取一点M ′使得OM ′=1,连接AM ′,在AM ′上取一点D ′使得OD ′=OD .证明△M ′OD ′∽△D ′OB ,即可求解.【详解】解:(1)∵A (4,0),OA=OB ,∴点B 的坐标为(0,4),将点B 、A 的坐标代入抛物线212y x bx c =-++, 2144024b c c ⎧-⨯++=⎪⎨⎪=⎩, 解得:14b c =-⎧⎨=⎩, ∴抛物线的函数表达式为2142y x x =-++; (2)设直线AB 的解析式为4y kx =+,∴440k +=,解得:1k =-,∴直线AB 的解析式为4y x =-+;∵过点D (m ,0)(0<m <4)作x 轴的垂线交直线AB 于点C ,交抛物线于点E ,∴E(m ,2142m m -++) ,C (m ,-m+4). ∴EC=()214m 42m m -++--+=2122m m -+, ∵点C 是DE 的中点, ∴212m 42m m -+=-+, 解得:m=2,m=4(舍去).∴m=2;(3)如图,由(2)可知D (2,0),在y 轴上 取一点M ′使得OM ′=1,连接AM ′,在AM ′上取一点D ′使得OD ′=OD .∵OD ′=OD=2,OM ′•OB=1×4=4,∴OD ′2=OM ′•OB , ∴OD OB OM OD=''', ∵∠BOD ′=∠M ′OD ′,∴△M ′OD ′∽△D ′OB , ∴12M D OD BD OB '''==', ∴M ′D ′=12BD ′. ∴D ′A+12BD ′=D ′A+M ′D ′=AM ′,此时D′A+12BD′最小(两点间线段最短,A、M′、D′共线时),∴D′A+12BD′的最小值=AM′=.【点睛】本题是二次函数综合题,考查了待定系数法求出函数解析式,矩形的判定,相似三角形的判定和性质,最小值问题等知识,解题的关键是构造相似三角形,找到线段的最小值.8.(2020·西安市铁一中学九年级二模)[探索发现](1)如图①,△ABC与△ADE为等腰三角形,且两顶角∠ABC=∠ADE,连接BD与CE,则△ABD与△ACE的关系是;[操作探究](2)在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点,在线段AD上任取一点P,连接PB,将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你探究,当点E在直线AD上时,如图②所示,连接CE,判断直线CE与直线AB的位置关系,并说明理由.[拓展应用](3)在(2)的应用下,请在图③中画出△BPE,使得点E在直线AD的右侧,连接CE,试求出点P在线段AD上运动时,AE的最小值.【答案】(1)相似;(2)AB∥EC,理由见解析;(3)3.【分析】(1)结论:相似.先判断出△BAC∽△DAE,即可得出结论.(2)利用等腰三角形的性质证明∠ABC=40°,∠ECB=40°,推出∠ABC=∠ECB即可.(3)如图3中,以P为圆心,PB为半径作⊙P.利用圆周角定理证明∠BCE=∠BPE=40°,推出AB∥CE,因为点E在射线CE上运动,点P在线段AD上运动,所以当点P运动到与点A重合时,AE的值最小,此时AE的最小值=AB=3.【详解】解:(1)如图①中,∵△ABC与△ACE为等腰三角形,且两顶角∠ABC=∠ADE,∴BA=BC,DA=DE,∴∠BAC=∠DAE,∴△BAC∽△DAE,∴BADA=ACAE,∴ABAC=ADAE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD∽△CAE.故答案为:相似.(2)如图2中,结论:AB∥EC.理由:∵∠BPE=80°,PB=PE,∴∠PEB=∠PBE=50°,∵AB=AC,BD=DC,∴AD⊥BC,∴∠BDE=90°,∴∠EBD=90°﹣50°=40°,∵AE垂直平分线段BC,∴EB=EC,∴∠ECB=∠EBC=40°,∵AB=AC,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ABC=∠ECB,∴AB∥EC.故答案为50,AB∥EC.(2)如图3中,以P为圆心,PB为半径作⊙P.∵AD垂直平分线段BC,∴PB=PC,∴∠BCE=12∠BPE=40°,∵∠ABC=40°,∴AB∥EC.如图4中,作AH⊥CE于H,∵点E在射线CE上运动,点P在线段AD上运动,∴当点P 运动到与点A 重合时,AE 的值最小,此时AE 的最小值=AB =3.【点睛】本题主要考查等腰三角形的性质、相似三角形的性质与判定及圆的基本性质,关键是根据题意得到三角形的相似,然后结合等腰三角形的性质得到问题答案,关键是要利用圆的基本性质求解最值问题.9.(2020·湖南邵阳市·九年级二模)如图,二次函数2y x bx c =++的图象与x 轴交于点()1,0A -和点()3,0B ,与y 轴交于点N ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接CP ,过点P 作CP 的垂线与y 轴交于点E .(1)求该抛物线的函数关系表达式;(2)当点P 在线段OB (点P 不与O B 、重合)上运动至何处时,线段OE 的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M ,连接MN MB 、.请问:MBN ∆的面积是否存在最大值?若存在,求出此时点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =--;(2)32OP =时,线段OE 有最大值.最大值是916;(3)32a =时,MBN ∆的面积有最大值,最大值是278,此时M 点的坐标为315,24⎛⎫- ⎪⎝⎭. 【分析】(1)将点A B 、的坐标代入二次函数表达式,即可求解;(2)设OP x =,则3PB x =-,由POE CBP ∆~∆得出比例线段,可表示OE 的长,利用二次函数的性质可求出线段OE 的最大值;(3)过点M 作MH y ∕∕轴交BN 于点H ,由12MNB BMH MNH S S S MH OB ∆∆∆=+=⋅即可求解. 【详解】解:(1))∵抛物线2y x bx c =++经过()1,0A -,()3,0B ,把A B 、两点坐标代入上式,10930b c b c -+=⎧⎨++=⎩, 解得:23b c =-⎧⎨=-⎩, 故抛物线函数关系表达式为223y x x =--;(2)∵()1,0A -,点()3,0B ,∴134AB OA OB =+=+=,∵正方形ABCD 中,90,ABC PC BE ∠=︒⊥,∴90OPE CPB ∠+∠=︒,90CPB PCB ∠+∠=︒,∴OPE PCB ∠=∠,又∵90EOP PBC ∠=∠=︒,∴POE CBP ∆~∆, ∴BC OP PB OE=, 设OP x =,则3PB x =-, ∴43x x OE=-, ∴()221139344216OE x x x ⎛⎫=-+=--+ ⎪⎝⎭, ∵03x <<, ∴32x =时,线段OE 长有最大值,最大值为916. 即32OP =时,线段OE 有最大值.最大值是916. (3)存在.如图,过点M 作MH y ∕∕轴交BN 于点H ,∵抛物线的解析式为223y x x =--,∴0,3x y ==-,∴N 点坐标为()0,3-,设直线BN 的解析式为y kx b =+,∴303k b b +=⎧⎨=-⎩, ∴13k b =⎧⎨=-⎩, ∴直线BN 的解析式为3y x =-,设()2,23M a a a --,则(),3H a a -,∴()223233MH a a a a a =----=-+, ∴()221113273322228MNB BMH MNHS S S MH OB a a a ∆∆∆⎛⎫=+=⋅=⨯-+⨯=--+ ⎪⎝⎭, ∵102-<, ∴32a =时,MBN ∆的面积有最大值,最大值是278,此时M 点的坐标为315,24⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质,会利用相似比表示线段之间的关系.利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.10.(2020·江西九年级二模)如图,正方形EFGH 的边EF 在正方形ABCD 的边BC 上,AB a ,EF b =()a b >,连接,AG DH .(1)如图1,当4,2a b ==时,①连接HF ,当AD DH =时,求DHF ∠的度数;②当EF 在BC 边上运动时,AG DH +是否存在最小值?如果存在,求此最小值;如果不存在,说明理由;(2)当EF 在BC 边上运动时,请利用图2进行探究:AG DH +是否存在最小值?如果存在,求此最小值;如果不存在,说明理由.图1 图2【答案】(1)①75︒;②存在,最小值为2【分析】(1)①延长HG 交CD 于M ,根据正方形的性质可得HM ⊥CM ,HD=4,从而得出∠DHM=30°,故可得结论;②延长BC 至N ,使2CN HG ==,证明DMH GFN ∆∆≌,可求得AG DH AG GN +=+,当点G 在直线AN 上时,AG GN AN +=最小,即AG DH +最小,䤺根据勾股定理可求解 ;(2)延长HG 交CD 于点P ,分别延长GF ,DC 至M ,N ,使GM PN DP a b ===-.延长MN 至点O ,使ON HG b ==,连接GO .延长AB ,与OM 的延长线交于点T .构造直角三角形,利用两点之间线段最短即可求得结论.【详解】解:(1)①如图1,延长HG 交CD 于点M ,∵//HG BC ,BC CD ⊥,∴HM CD ⊥,90DMH ∠=︒.又4DH AD ==,422DM CD GF =-=-=,∴30DHM ∠=︒.∵在正方形EFGH 中,45GHF ∠=︒,∴304575DHF DHG GHF ∠=∠+∠=︒+︒=︒.②AG DH +存在最小值,最小值为如图2,延长BC 至N ,使2CN HG ==,则FN HM =,又2DM GF ==,90DMH GFN ∠=∠=︒,∴()DMH GFN SAS ∆∆≌.∴DH GN =.∴AG DH AG GN +=+.当点G 在直线AN 上时,AG GN AN +=最小,即AG DH +最小,此时AN ==(2)存在.如图3,延长HG 交CD 于点P ,分别延长GF ,DC 至M ,N ,使GM PN DP a b ===-.则四边形GMNP 为矩形,90GMN ∠=︒,MN GP =,且90DPH ∠=︒.延长MN 至点O ,使ON HG b ==,连接GO .∴OM HP =.∴DHP GOM ∆∆≌,∴DH GO =.∴连接AO ,则AO 即为AG DH +的最小值.延长AB ,与OM 的延长线交于点T .∴2()AT DN a b ==-,OT a b =+.∴OA ===∴AG DH +【点睛】此题主要考查了几何变换,关键是正确作出辅助线,证明DMH GFN ∆∆≌,灵活运用勾股定理.此题是一道综合题,难度较大11.(2020·湖北武汉市·九年级二模)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫格点,仅用无刻度直尺,在给定网格810⨯中画图,完成下列问题.(1)过点B 作直线l ⊥直线AC ;(2)作线段AC 中点R ;(3)作点B 关于直线AC 的对称点B ';(4)根据以上提示,点M 、N 、P 分别为边BA 、AC 、CP 上的动点,当MNP ∆的周长最小时,作出点M 、N 、P ,并直接写出MNP ∆的周长为____________.【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析,;(4)作图见解析,19225【分析】(1)利用两直角边对应成比例的直角三角形相似得对应角相等即可作出垂线;(2)利用格点构造全等的直角三角形即可找到中点;(3)只需作出CB ´=CB 交直线l 于点B ´,则交点B ´为所求作的对称点;(4)由图知,ΔABC 是等腰三角形,故作出CM AB ⊥,作出⊥AP BC ,则ΔPMN 周长最小,进而求出周长.【详解】(1)如图,直线l 即为所求作的垂线;(2)如图,点R 即为所求作的中点;(3)如图,点B ´即为所求作的对称点;(4)由图知,ΔABC 等腰三角形,故作出CM AB ⊥,作出⊥AP BC ,顺次连接P 、M 、N ,此时ΔPMN 周长最小,则点M 、N 、P 即为所求作的点.由图知,AP=4,PC=BP=3,∴AC=AB=5,PN=PC=3, 由1122ABC S AP BC AC BN ==得:6×4=5BN , 解得:BN=245,∴75=, 同理,AM=75,由等腰三角形的对称性知PM=PN=3,MN ⊥AP ,∴MN ∥BC , ∴MN AM BC AC =,即7756525MN ==, 解得:MN=4225, 此时ΔPMN 的周长=PM+PN+MN=3+3+4225=19225, 故答案为:19225【点睛】本题考查了在方格中作图,解答的关键是理解题目意思,熟悉基本几何作图的性质和基本作图方法.12.(2020·山东济南市·九年级二模)在ABC ∆中,90,2ACB BC AC ︒∠===,将ABC ∆绕点A 顺时针方向旋转α角0180()α︒<<︒至''AB C ∆的位置.(1)如图1,当旋转角为60︒时,连接'C C 与AB 交于点M ,则'C C = .(2)如图2,在(1)条件下,连接'BB ,延长'CC 交'BB 于点D ,求CD 的长.(3)如图3,在旋转的过程中,连线'','CC BB CC 、所在直线交'BB 于点D ,那么CD 的长有没有最大值?如果有,求出CD 的最大值:如果没有,请说明理由.【答案】(1)2;(2)1CD =3)CD 的值最大,此时CD =【分析】(1)由旋转60°可知,△ACC ’为等边三角形,进而'C C =AC=2即可求解.(2)过点B 作BH ⊥CD 于H ,求得△CBH 三边之比为2,进而求出CH 和BH 的长,再求得△DBH 为等腰直角三角形,最后得到CD=DH+CH 即可求解.(3)证明''∆∆B AB C AC ,再取AB 的中点H ,以H 为圆心,HB 为半径作H ,连接CH ,得出D 点的运动轨迹为以H 为圆心,HA 为半径的圆,当CD 是该圆的直径时CD 最大,即可求解.【详解】解:(1) ∵旋转前后对应的边相等,∴AC=AC ’又∵旋转60°,∴△ACC ’为等边三角形∴'2==C C AC .故答案为2.(2)如图2中,作BH CD ⊥于H ,如下图所示:','60AB AB BAB ︒=∠='ABB ∴∆是等边三角形,60︒∴∠=∠=DBM ACM ,DMB AMC ,45BDC BAC ︒∴∠=∠=,且△DBH 为等腰直角三角形,'30BCH BCA ACC ︒∠=∠-∠=11,2BH DH BC CH ∴====1CD CH DF ∴=+=+故答案为:1()3CD的长有最大值为3中,’'45B AC BAC ︒∠=∠=''B AB C AC ∴∠=∠','AB AB AC AC ==''AB AB AC AC∴= ''B AB C AC ∴∆∆DBM ACM DMB AMC ∴∠=∠45BDM MAC ︒∴∠=∠=取AB 的中点H ,以H 为圆心,HB 为半径作H ,连接CH .,90CA CB ACB ︒=∠=,CH AB CH BH AH ∴⊥==,90BHC ︒∠= ∴12BDC BHC ∴点D 的运动轨迹是以H 为圆心,HA 为半径的圆,当CD 是该圆的直径时CD 最大,故CD AB =时,CD 的值最大,此时CD =故答案为【点睛】本题综合考察了旋转图形的性质、含30°角的直角三角形三边之比、相似三角形的性质和判定、圆的相关知识等,熟练掌握线段绕其端点旋转60°会得到等边三角形这个特点进而求解本题.13.(2020·常熟市第一中学九年级二模)如图②,在Rt ABC 中,AC =8cm ,BC =6cm ,点P 从点A 出发,沿斜边AB 向点B 匀速运动,速度为/acm s ,过点P 作PQ ⊥AB 交AC 于点Q ,以PQ 为一边作正方形PQMN ,使点N 落在射线PB 上,连接CM ,设CQ=y ,运动时间为x (s )(0<x <85),y 与x 函数关系如图①所示:(1)求y 与x 函数关系式及a 的值;(2)设CMQ △的面积为S ,求S 的最大值;(3)若CMQ △是等腰三角形,求x 的值.【答案】(1)58y x =-+,a 的值为4;(2)7225;(3)x 的值为1或6455或4049. 【分析】(1)利用待定系数法即可求出y 与x 函数关系式;当1x =时,3y =,从而可求出AQ 的长,再根据相似三角形的判定与性质可求出AP 的长,由此即可得出a 的值;(2)如图(见解析),先利用相似三角形的性质可求出PQ 的长,从而可得MQ 的长,再利用正弦三角函数可得DM 的长,然后利用三角形的面积公式可得S 与x 的函数关系式,最后利用二次函数的性质求解即可;(3)先利用线段的和差、勾股定理求出2CM 的值,再根据等腰三角形的定义分三种情况,分别建立方程求解即可得.【详解】(1)设y 与x 函数关系式为y kx b =+由图①可知,y kx b =+的图象经过点(0,8),(1,3)将点(0,8),(1,3)代入得:83b k b =⎧⎨+=⎩,解得58k b =-⎧⎨=⎩ 则y 与x 函数关系式为58y x =-+当1x =时,3y =,即3CQ cm =8,6AC cm BC cm ==,90ACB ∠=︒5AQ AC CQ cm ∴=-=,10AB cm ==四边形PQMN 是正方形90NPQ ∴∠=︒18090APQ NPQ ∴∠=︒-∠=︒在APQ 和ACB △中,90A A APQ ACB ∠=∠⎧⎨∠=∠=︒⎩APQ ACB ∴~AP AQ AC AB ∴=,即5810AP = 解得4()AP cm = 则44(/)1a cm s == 综上,y 与x 函数关系式为58y x =-+,a 的值为4;(2)当运动时间为()x s 时由(1)可知,4AP x =,58CQ x =-+,APQ ACBAP PQ AC BC ∴=,即486x PQ = 解得3PQ x =四边形PQMN 是正方形90PQM ∴∠=︒,3MQ PQ x ==90A AQP DQM AQP ∴∠+∠=∠+∠=︒A DQM ∴∠=∠sin sin A DQM ∴∠=∠在Rt ABC 中,63sin 105BC A AB ===在Rt DMQ 中,sin DM DQM MQ ∠=,即3sin 35DM A x == 解得95DM x =则119(58)225S CQ DM x x =⋅=-+⋅ 整理得:29472()2525S x =--+由二次函数的性质可知,当45x =时,S 取得最大值,最大值为7225;(3)在Rt DMQ 中,125DQ x === 123758855CD CQ DQ x x x ∴=-=-+-=-+ 在Rt CDM 中,22222379(8)()55CM CD DM x x =+=-++ 由等腰三角形的定义,分以下三种情况:①当CQ MQ =时,CMQ △是等腰三角形则583x x -+=解得1x =②当CQ CM =时,CMQ △是等腰三角形则22CQ CM =,即222379(58)(8)()55x x x -+=-++ 解得6455x =或0x =(不符题意,舍去) ③当MQ CM =时,CMQ △是等腰三角形则22MQ CM =,即222379(3)(8)()55x x x =-++ 解得4049x =或85x =(不符题意,舍去) 综上,x 的值为1或6455或4049. 【点睛】本题考查了利用待定系数法求一次函数的解析式、二次函数的性质、相似三角形的判定与性质、正方形的性质等知识点,较难的是题(3),正确分三种情况讨论是解题关键.14.(2020·山东德州市·九年级二模)如图,抛物线y=12x 2+mx+4m 与x 轴交于点A(1x ,0)和点B(2x ,0),与y 轴交于点C ,22121220x x x x +=且、满足,若对称轴在y 轴的右侧. (1)求抛物线的解析式(2)在抛物线的对称轴上取一点M ,使|MC-MB|的值最大;(3)点Q 是抛物线上任意一点,过点Q 作PQ ⊥x 轴交直线BC 于点P ,连接CQ ,当△CPQ 是等腰三角形时,求点P 的坐标.【答案】(1)y=212x -x-4;(2)M(1,-6);(3)P 1 (4--,P 2(2,-2),P 3(4+. 【分析】(1)利用根与系数的关系即可求出m ,结合对称轴在y 轴右侧可得结果;(2)根据点A 和点B 关于对称轴对称,过点AC 作直线交对称轴于点M ,求出A ,B ,C 的坐标,求出AC 的表达式,得到点M 的坐标即可;(3)分PC=PQ ,QC=QP ,CP=CQ 分别讨论,求出相应x 值即可.【详解】解:(1)∵y=12x 2+mx+4m 与x 轴交于1(x ,0)和点B(2x ,0),∴12 x x 、是方程12x 2+mx+4m=0的两个根,122x x m ∴+=-,128x x m ∴=,221220x x +=∴(-2m)2-16m=20,解得m 1=5,m 2=-1,∵对称轴在y 轴的右侧,∴m=-1,∴y=212x -x-4;(2)y=212x -x-4中,当x=0时,y=-4,当y=0时1x =-2,2x =4,∴A(-2,0),B(4,0),C(0,-4),过点AC 作直线交对称轴于点M ,设直线AC 的解析式为y=kx+b ,将(-2,0),(0,-4)代入,则024k bb =-+⎧⎨-=⎩,解得24k b =-⎧⎨=-⎩,得y=-2x-4,当x=1时,y=-6,∴M(1,-6);(3)直线BC 的解析式为y=k 1x+b 1,将(4,0),(0,-4)代入,则111044k b b =+⎧⎨-=⎩, 解得1114k b =⎧⎨=-⎩, 得y=x-4,∴∠OCB=∠OBC=45°,设P 的横坐标为x ,作PH ⊥y 轴于H ,则,∴PQ=|(x-4)-212x (-x-4)|(图一) (图二)如图一图二,当CQ=CP 时,(x-4)+212x (-x-4)=-8, x=0,不合题意,所以不存在;(图三) (图四) (图五)如图三,当PC=PQ =(x-4)-212x (-x-4),解得x=4-∴P(4--如图四,当CQ=PQ 时,x=(x-4)-212x (-x-4), 解得x=2,∴P(2,-2);如图五,当PC=PQ 时 , 212x (-x-4),解得:x=4+∴P(4+;综上:P 1(4--,P 2(2,-2),P 3(4+【点睛】本题是二次函数综合题,考查了待定系数法求二次函数表达式,二次函数的图像和性质,最值问题,等腰三角形的性质,解题的关键是学会分类讨论,利用等腰三角形的性质解题.15.(2020·陕西九年级二模)问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,12AB =,6BC =,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.【答案】问题探究:(1)24;(2)存在,BC 的最小值为144【分析】(1)根据三角形的面积公式即可得到结论;(2)如图2中,连接OA ,OB ,OC ,作OE BC ⊥于E .设2OB OC x ==.求出x 的最小值即可解决问题;(3)如图3中,连接AF ,延长BC 交AE 的延长线于G ,将EFM △顺时针旋转得到FBH ,作FNH △的外接圆O .由(2)可知,当FNH △的外接圆的圆心O 在线段BF 上时,FNH △的面积最小,此时四边形ANFM 的面积最大.【详解】解:(1)当AD BC ⊥时,ABC 面积的最大,则ABC 面积的最大值是11862422BC AD ⋅=⨯⨯=, 故答案为:24;(2)如图中,连接OA ,OB ,OC ,作OE BC ⊥于E .设2OA OC x ==,∵2120COB CAB ∠=∠=︒,OC OB =,OE CB ⊥,∴CE EB =,60COE BOE ∠=∠=︒,∴12OE OB x ==,BE =. ∵OC OE AG +,∴33x ,∴1x ,∴x 的最小值为1,∵BC =,∴BC 的最小值为(3)如图中,连接AF ,EF ,延长BC 交AE 的延长线于G ,∵90D ∠=︒,6AD DE ==,∴45DAE AED ∠=∠=︒,∵12CD AB ==,∴6CE CF ==,∴45CEF CFE ∠=∠=︒,∴90AEF ∠=︒,∴EF BF ==,将EFM △顺时针旋转得到FBH ,作FHB △的外接O 交BC 于N ,连接ON ,∵90AEF ABF ∠=∠=︒,AF AF =,EF BF =,∴Rt Rt ()AEF ABF HL △≌△,∴AEF ABF S S =△△,∵45EFG ∠=︒,∵90FEG ∠=︒,45EFG ∠=︒,∴EF EG ==,∴12FG ==,由(2)可知,当FHN △的外接圆的圆心O 在线段BF 上时,FNH △的面积最小,此时四边形ANFE 的面积最大,设OF ON r ==,则OB BN ==,∴r +=∴r ⋅=,∴12(2NH ==,∴四边形ANFM 的面积的最大值112(1212(222=⨯⨯+⨯⨯-⨯ 144=.【点睛】本题属于圆综合题,考查了三角形的外接圆,解直角三角形,最值问题等知识,解题的关键是学会用转化的思想思考问题.16.(2020·陕西西安市·九年级二模)问题提出(1)如图1,已知三角形ABC ,请在BC 边上确定一点D ,使得AD 的值最小. 问题探究(2)如图2,在等腰ABC 中,AB AC =,点P 是AC 边上一动点,分别过点A ,点C 作线段BP 所在直线的垂线,垂足为点,D E ,若5,6AB BC ==,求线段BP 的取值范围,并求AD CE +的最大值.问题解决(3)如图3,正方形ABCD 是一块蔬菜种植基地,边长为3千米,四个顶点处都建有一个蔬菜采购点,根据运输需要,经过顶点A 处和BC 边的两个三等分点E F 、之间的某点P 建设一条向外运输的快速通道,其余三个采购点都修建垂直于快速通道的蔬菜输送轨道,分别为BB '、CC '、DD '.若你是此次项目设计的负责人,要使三条运输轨道的距离之和()BB CC DD '''++最小,你能不能按照要求进行规划,请通过计算说明.【答案】(1)答案见解析;(2)BP 的取值范围是2465BP ≤≤,当BP 取最小值245时,AD CE +取得最大值,最大值是5;(3)可以按照要求进行规划(点P 选在点E 处),三条输送轨道之【分析】(1)根据垂线段最短即可得;(2)如图2(见解析),先根据等腰三角形的性质、勾股定理求出4AF =,再根据等面积法可求出245BG =,由此即可得线段BP 的取值范围;然后根据ABC ABP BCP S S S =+可得当BP 取最小值时,AD CE +取得最大值,将BP 的最小值代入求解即可得;(3)如图3(见解析),连接,DP AC ,先参照(2)的方法求出AP 的取值范围,再根据ABP ADP ACP ABCD S S S S =++正方形得出1()92AP BB CC DD '''++=,由此即可得出答案. 【详解】(1)如图1,过点A 作AD BC ⊥,垂足为点D由垂线段最短可知,此时AD 的值最小;(2)如图2,过点A 作AF BC ⊥,垂足为点F ,过点B 作BG AC ⊥,垂足为点G AB AC =ABC ∴是等腰三角形116322BF BC ∴==⨯=4AF ∴= 由等面积法得:1122ABC SAF BC AC BG =⋅=⋅,即1146522BG ⨯⨯=⨯⋅ 解得245BG = 点P 在AC 边上,BC AB >BG BP BC ∴≤≤,即2465BP ≤≤ 则BP 的取值范围是2465BP ≤≤ 1111()462222ABC ABP BCP S S S BP AD BP CE BP AD CE =+=⋅+⋅=⋅+=⨯⨯ ∴当BP 取最小值245时,AD CE +取得最大值 将245BP =代入得:1241()46252AD CE ⨯+=⨯⨯ 解得5AD CE +=则AD CE +的最大值是5;(3)如图3,连接,DP AC正方形ABCD 边长为3,E F 、为BC 边的三等分点3,1,2,90AB BF BE ABC ∴===∠=︒参考(2)可知,AF AP AE ≤≤APAP ≤≤AP ≤又ABP ADP DCP ABP ADP ACP ABCD S S S S S S S =++++=正方形11133222BB AP DD AP CC AP '''∴⨯⋅+⋅+⋅=即1()92AP BB CC DD '''++= ∴当AP BB CC DD '''++取得最小值将AP =1)92BB CC DD '''++=解得BB CC DD '''++=则BB CC DD '''++综上,可以按照要求进行规划(点P 选在点E 处),三条输送轨道之和最小为13千米.【点睛】本题考查了垂线段最短、等腰三角形的性质、正方形的性质等知识点,较难的是题(3),学会题(1)和(2)的思路,并运用到题(3)是解题关键.17.(2018·山东济南市·九年级二模)如图,抛物线252y ax bx =++经点()()1,0,5,0A B ,与y 轴相交于点C .(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O 到二次函数图象的垂直距离是线段OC 的长.已知点E 为抛物线对称轴上的一点,且在x 轴上方,点F 为平面内一点,当以,,,A B E F 为顶点的四边形是边长为4的菱形时,请求出点F 到二次函数图象的垂直距离.(3)在(2)中,当点F 到二次函数图象的垂直距离最小时,在,,,A B E F 为顶点的菱形内部是否存在点Q ,使得,,AQ BQ FQ 之和最小,若存在,请求出最小值;若不存在,请说明理由.【答案】(1)215322y x x =-+;(2)6-或2;(3)AQ BQ FQ ++的和最小值为【分析】(1)利用待定系数法列方程组求出a 、b 的值即可;(2)根据抛物线解析式可求出A 、B 两点坐标,即可得出对称轴解析式,分两种情况:当以AB 为边时,EF//AB ,由对称轴可得E 点的横坐标,根据EF=AB=4即可得出F 点的横坐标,根据菱形的性质求出EM 的长,把F 点横坐标代入抛物线解析式,根据点到二次函数图象的垂直距离的定义即可得出答案;当以AB 为菱形对角线时,根据菱形的性质可得AB ⊥EF ,利用勾股定理可求出FM 的长,进而可得F 点坐标,把F 点横坐标代入抛物线解析式,根据点到二次函数图象的垂直距离的定义即可得出答案;(3)由当(3,F 时,点F 到二次函数图象的垂直距离最小,将BQF 绕点B 逆时针旋转60︒到BDN 位置,连接AN ,作PN AB ⊥于P ,根据AB=AF=BF 可证明△ABF 是等边三角形,根据旋转性质可知,BQD BFN 均为等边三角形,进而可得当,,AQ DQ DN 共线时AQ BQ FQ ++的和最短,在Rt △APN 中,利用勾股定理求出AN 的长即可得答案.【详解】(1)∵抛物线252y ax bx =++过点()()1,0,5,0A B , ∴502502552a b a b ⎧=++⎪⎪⎨⎪=++⎪⎩。
初中几何最值问题含解析
![初中几何最值问题含解析](https://img.taocdn.com/s3/m/103abbd5c281e53a5902ff31.png)
分析务必细致·论证务求严谨
-2-
刻意练习: 1.如左图,梯形 ABCD 中,AD∥BC,∠BAD=90°,AD=1,E 为 AB 的中点,AC 是 ED 的垂直平分线。
(1)求证 DB=DC. (2)在右图的线段 AB 上找出一点 P,使 PC+PD 的值最小,标出点 P 的位置,保留画图痕迹,并求出 PB 的值。
B
P R
O
Q
A
【解析】如图所示,分别作 P 关于 OB、OA 的对称点,连接 P′、P″.∠P′OP″=90°,P′P″=10 2,C△PQR≥P′P″=10 2
P' B
R P
O
Q
A
P''
点评:运用轴对称进行转化,求解 P′P″的长时,学生不容易想到通过连接 OP′、OP″、构造等腰直角三角形求解。
分析务必细致·论证务求严谨
-5-
刻意练习:
1.如图,在锐角△ABC 中,AB=4 2,∠BAC=45°,∠BAC 的平分线交 BC 于点 D,M 和 N 分别是 AD,AB 上的
动点,则 BM+MN 的最小值是
.
C
D M
A
N
B
【答案】4
【解析】作 N 关于 AD 的对称点 N′,BM+MN=BM+MN′≥BH=4
y
C
E
B
y
C
E
B
N
D
N
D
O
M
A
x
O
M
A
x
【答案】(1) y=-43x+25;(2)5+5 37。 【解析】(1)OE=OA=15,OC=9,得 CE=12,BE=3,E(12,9)
初中几何中的最值问题解析
![初中几何中的最值问题解析](https://img.taocdn.com/s3/m/b839e49759eef8c75fbfb3e3.png)
初中几何中的最值问题解析在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。
最值问题的解决通常有两种:(1)应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。
⑵运用代数证法:①运用配方法求二次三项式的最值;②运用一元二次方程根的判别式。
例1、A、B两点在直线l的同侧,在直线L上取一点P 初中物理,使PA+PB最小。
语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。
如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。
现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的一干二净。
造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。
常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。
久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗? 分析:在直线L上任取一点P’,连结A P’,BP’,在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。
初中数学重难点解析—几何代数最值问题
![初中数学重难点解析—几何代数最值问题](https://img.taocdn.com/s3/m/debbf46002d276a201292e6c.png)
初中数学重难点解析—几何代数最值问题!
几何最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积等)的最大值或最小值。
在中考中常以填空选择及解答题形式出现,难易程度多为难题、压轴题。
务必掌握求几何最值的基本方法:
(1)特殊位置及极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情况下的推理证明
(2)几何定理(公理)法:应用几何中的不等量性质、定理。
常见几何性质有:两点之间线段最短;点到直线垂线段最短;三角形两边之和大于第三边;斜边大于直角边
(3)数形结合法:分析问题变动元素的代数关系,构造二次函数等。
代数最值问题一般以应用题形式出现,常见题型为求一个花费最低、消耗最少、产值最高、获利最大的方案。
作为各地中考必考题之一,难度以中档为主,是所有学生必拿之分。
解这类题目的关键点在于合理建立函数模型,理解题意的基础上,合理设出未知量,分析题中等量关系,列出函数解析式或方程,求解、讨论结果意义并以“答:……”做结尾。
特别注意如果所列方程为分式方程,需检验增根!
具体例题题型如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题四几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【答案】(I)证明见解析;(Ⅱ)P的坐标为(4,2)或(55,455)或P(﹣55,﹣455)或(165,85);(Ⅲ)325.【解析】分析:(Ⅰ)由折叠得到∠DOB=∠AOB,再由BC∥OA得到∠OBC=∠AOB,即∠OBC=∠DOB,即可;(Ⅱ)设出点P坐标,分三种情况讨论计算即可;(Ⅲ)根据题意判断出过点D作OA的垂线交OB于M,OA于N,求出DN即可.详解:(Ⅰ)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E,∴∠DOB=∠AOB,∵BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠DOB,∴EO=EB;(Ⅱ)∵点B的坐标为(8,4),∴直线OB解析式为y=12 x,∵点P是直线OB上的任意一点,∴设P(a,12 a).∵O(0,0),C(0,4),∴OC=4,PO2=a2+(12a)2=54a2,PC2=a2+(4-12a)2.当△OPC是等腰三角形时,可分三种情况进行讨论:①如果PO=PC,那么PO2=PC2,则54a2=a2+(4-12a)2,解得a=4,即P(4,2);②如果PO=OC,那么PO2=OC2,则54a2=16,解得a=±855,即P(855,455)或P(-855,-455);③如果PC=OC时,那么PC2=OC2,则a2+(4-12a)2=16,解得a=0(舍),或a=165,即P(165,85);故满足条件的点P的坐标为(4,2)或(855,455)或P(-855,-455)或(165,85);(Ⅲ)如图,过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值.由(1)有,EO=EB,∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则DE=8-x,在Rt△BDE中,BD=4,根据勾股定理得,DB2+DE2=BE2,∴16+(8-x)2=x2,∴x=5,∴BE=5,∴CE=3,∴DE=3,BE=5,BD=4,∵S△BDE=12DE×BD=12BE×DG,∴DG=12=5 DE BDBE⨯,由题意有,GN=OC=4,∴DN=DG+GN=125+4=325.即:AM+MN的最小值为325.点睛:此题是四边形综合题,主要考查了矩形的性质,折叠的性质,勾股定理,等腰三角形的性质,极值的确定,进行分类讨论与方程思想是解本题的关键.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△P AD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△P AD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.【答案】(1)y=﹣x2+2x+3;(2)当t=32时,l有最大值,l最大=94;(3)t=32时,△P AD的面积的最大值为278;(4)t 15 +.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)易知直线AD解析式为y=-x+3,设M点横坐标为m,则P(t,-t2+2t+3),M(t,-t+3),可得l=-t2+2t+3-(-t+3)=-t2+3t=-(t-32)2+94,利用二次函数的性质即可解决问题;(3)由S△P AD=12×PM×(x D-x A)=32PM,推出PM的值最大时,△P AD的面积最大;(4)如图设AD的中点为K,设P(t,-t2+2t+3).由△P AD是直角三角形,推出PK=12AD,可得(t-32)2+(-t2+2t+3-32)2=14×18,解方程即可解决问题;试题解析:(1)把点B(﹣1,0),C(2,3)代入y=ax2+bx+3,则有30 4233 a ba b-+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣32)2+94,∴当t=32时,l有最大值,l最大=94;(3)∵S△P AD=12×PM×(x D﹣x A)=32PM,∴PM的值最大时,△P AD的面积中点,最大值=32×94=278.∴t=32时,△P AD的面积的最大值为278.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△P AD 是直角三角形,∴PK =12AD , ∴(t ﹣32)2+(﹣t 2+2t +3﹣32)2=14×18, 整理得t (t ﹣3)(t 2﹣t ﹣1)=0, 解得t =0或3或15±, ∵点P 在第一象限, ∴t =1+5. 类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线ky x=相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【答案】(1)13a b =⎧⎨=⎩,4k =;(2)存在,1 1.5,2P ⎛-- ⎝⎭,2 1.5,2P ⎛⎫- ⎪ ⎪⎝⎭,3 1.5,22P ⎛--- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭,()5 1.5,0.5P --;(3)12【解析】 【分析】(1)由点A 在双曲线上,可得k 的值,进而得出双曲线的解析式.设4,B m m ⎛⎫⎪⎝⎭(0m <),过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M .根据AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形=3解方程即可得出k 的值,从而得出点B 的坐标,把A 、B 的坐标代入抛物线的解析式即可得到结论; (2)抛物线对称轴为 1.5x =-,设()1.5,P y -,则可得出2PO ;2OB ;2PB .然后分三种情况讨论即可; (3)设M (x ,y ).由MO =MA =MB ,可求出M 的坐标.作B 关于y 轴的对称点B '.连接B 'M 交y 轴于Q .此时△BQM 的周长最小.用两点间的距离公式计算即可. 【详解】(1)由()1,4A 知:k =xy =1×4=4, ∴4y x=. 设4,B m m ⎛⎫⎪⎝⎭(0m <). 过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M ,则S △AOP =S △BOQ =2.AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形()()14414102AOP QOB m S S m m ∆∆⎛⎫⎛⎫=---+-⨯- ⎪ ⎪⎝⎭⎝⎭242224m m m ⎛⎫⎛⎫=--+--- ⎪ ⎪⎝⎭⎝⎭22m m=- 令:223m m-=, 整理得:22320m m +-=, 解得:112m =,22m =-. ∵m <0, ∴m =-2, 故()2,2B --.把A 、B 带入2y ax bx =+2424a ba b -=-⎧⎨=+⎩解出:13a b =⎧⎨=⎩,∴23y x x =+.(2)223( 1.5) 2.25y x x x =+=+- ∴抛物线23y x x =+的对称轴为 1.5x =-.设()1.5,P y -,则2294PO y =+,28OB =,()22124PB y =++.∵△POB 为等腰三角形, ∴分三种情况讨论: ①22PO OB =,即2984y +=,解得:2y =±,∴1 1.5,P ⎛- ⎝⎭,2P ⎛- ⎝⎭;②22PB OB =,即()21284y ++=,解得:22y =-±,∴3 1.5,2P ⎛-- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭;③22PB OP =,即()2219244y y ++=+,解得:0.5y =- ∴()5 1.5,0.5P --; (3)设(),M x y .∵()1,4A ,()2,2B --,()0,0O ,∴222MO x y =+,()()22214MA x y =-+-,()()22222MB x y =+++.∵MO MA MB ==,∴()()()()222222221422x y x y x y x y ⎧+=-+-⎪⎨+=+++⎪⎩ 解得:11272x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴117,22M ⎛⎫-⎪⎝⎭. 作B 关于y 轴的对称点B '坐标为:(2,-2). 连接B 'M 交y 轴于Q .此时△BQM 的周长最小.BQM C MQ BQ MB ∆=++MQ QB MB '=++=MB '+MB222211711722222222⎛⎫⎛⎫⎛⎫⎛⎫=--+++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()13461702=+.【名师点睛】本题是二次函数综合题.考查了用待定系数法求二次函数的解析式、二次函数的性质、轴对称-最值问题等.第(1)问的关键是割补法;第(2)问的关键是分类讨论;第(3)问的关键是求出M 的坐标. 【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C . (1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.【答案】(1)y =﹣34x +3;(2)R (1,92);(3)BT =2或BT =165.【解析】 【分析】(1)由已知可求A (﹣2,0),B (4,0),C (0,3),即可求BC 的解析式;(2)由已知可得∠QMH =∠CBO ,则有QH =34QM ,MH =54MQ ,所以△MHQ 周长=3QM ,则求△MHQ周长的最大值,即为求QM 的最大值;设M (m ,233384m m -++),过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+,交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,可求出()23=410MQ m m -+,当m =2时,MQ 有最大值65;函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ',|AR ﹣MR |的最大值为AM ';求出AM '的直线解析式为332y x =+,则可求912R ⎛⎫⎪⎝⎭,; (3)有两种情况:当TC '∥OC 时,GO ⊥TC ';当OT ⊥BC 时,分别求解即可. 【详解】解:(1)令y =0,即2333084x x -++=,解得122,4x x =-=, ∵点A 在点B 的左侧 ∴A (﹣2,0),B (4,0), 令x =0解得y =3, ∴C (0,3),设BC 所在直线的解析式为y =kx +3, 将B 点坐标代入解得k =34- ∴BC 的解析式为y =-34x +3;(2)∵MQ ⊥BC ,M 作x 轴, ∴∠QMH =∠CBO , ∴tan ∠QMH =tan ∠CBO =34, ∴QH =34QM ,MH =54MQ ,∴△MHQ 周长=MQ +QH +MH =34QM +QM +54MQ =3QM ,则求△MHQ 周长的最大值,即为求QM 的最大值; 设M (m ,233384m m -++), 过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+, 直线BC 与其垂线相交的交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,∴()23=410MQ m m -+, ∴当m =2时,MQ 有最大值65, ∴△MHQ 周长的最大值为185,此时M (2,3), 函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ', ∴|AR ﹣MR |的最大值为AM '; ∵AM '的直线解析式为y =32x +3, ∴R (1,92); (3)①当TC '∥OC 时,GO ⊥TC ', ∵△OCT ≌△OTC ', ∴3412=55OG ⨯=, ∴12655T ⎛⎫⎪⎝⎭, ∴BT =2;②当OT⊥BC时,过点T作TH⊥x轴,OT=125,∵∠BOT=∠BCO,∴3=1255cOo BOTHs∠=,∴OH=36 25,∴36482525 T⎛⎫ ⎪⎝⎭,∴BT=165;综上所述:BT=2或BT=165.【点睛】本题是一道综合题,考查了二次函数一次函数和三角形相关的知识,能够充分调动所学知识是解题的关键. 类型三【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.【答案】(1)y=x2﹣4x+3;(2)点P(4,3)或(0,3)或(2,﹣1);(3)最大值为94,E(32,﹣34).【解析】【分析】(1)用交点式函数表达式,即可求解;(2)分当AB为平行四边形一条边、对角线,两种情况,分别求解即可;(3)利用S四边形AEBD=12AB(y D﹣y E),即可求解.【详解】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PE=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:22m+,即:22m+=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=12AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD面积有最大值,当x=32,其最大值为94,此时点E(32,﹣34).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭.【解析】 【分析】(1)将点A (-1,0),B (3,0)代入y =ax 2+bx +2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD =BD ,即可求y 的值;(3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,- 103)或M (-2,-103); 【详解】解:(1)将点()()1,0,3,0A B -代入22y ax bx =++,可得24,33a b =-=, 224233y x x ∴=-++;∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B Q ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+, ∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠QCD BD ∴=,22CD BD ∴=()22214y y ∴-+=+ 14y ∴=,11,4D ⎛⎫∴ ⎪⎝⎭; (3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=, ∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--Q 矩形,()()(),,0,2,1,1E x y C F Q ,111•222CEF S EQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅-V()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯---224233y x x =-++Q ,21736CEF S x x ∆∴=-+∴当74x =时,面积有最大值是4948,此时755,424E ⎛⎫⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形, 设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x+=2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭②四边形CNBM 时平行四边形时,3122x +=2x ∴=, ()2,2M ∴;③四边形CNNB 时平行四边形时,1322x+=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭;综上所述:()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫--⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.【新题训练】1.如图,直线y =5x +5交x 轴于点A ,交y 轴于点C ,过A ,C 两点的二次函数y =ax 2+4x +c 的图象交x 轴于另一点B .(1)求二次函数的表达式;(2)连接BC ,点N 是线段BC 上的动点,作ND ⊥x 轴交二次函数的图象于点D ,求线段ND 长度的最大值; (3)若点H 为二次函数y =ax 2+4x +c 图象的顶点,点M (4,m )是该二次函数图象上一点,在x 轴,y 轴上分别找点F ,E ,使四边形HEFM 的周长最小,求出点F 、E 的坐标.【答案】(1) y=-x2+4x+5;(2);(3) F (,0),E(0,).【解析】【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC 的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为-n+5,D点的坐标为D(n,-n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【详解】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(-1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=-x2+4x+5;(2)如解图①,第2题解图①∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=-x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=-x+5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,-n+5),D点的坐标为(n,-n2+4n+5),则d=|-n2+4n+5-(-n+5)|,由题意可知:-n2+4n+5>-n+5,∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-)2+,∴当n=时,线段ND长度的最大值是;(3)∵点M(4,m)在抛物线y=-x2+4x+5上,∴m=5,∴M(4,5).∵抛物线y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为H(2,9),如解图②,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(-2,9);作点M(4,5)关于x轴的对称点M1,则点M1的坐标为M1(4,-5),连接H1M1分别交x轴于点F,y轴于点E,∴H1M1+HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点.设直线H1M1的函数表达式为y=mx+n,∵直线H1M1过点H1(-2,9),M1(4,-5),∴,解得,∴y=-x+,∴当x=0时,y=,即点E坐标为(0,),当y=0时,x=,即点F坐标为(,0),故所求点F,E的坐标分别为(,0),(0,).2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【答案】(1)4;(2)(3)面积不变,S△ACB’=(4)【解析】【分析】(1)证明△APB′是等边三角形即可解决问题;(2)如图2中,设直线l交BC于点E,连接B B′交PE于O,证明△PEB是等边三角形,求出OB即可解决问题;(3)如图3中,结论:面积不变,证明B B′//AC即可;(4)如图4中,当PB′⊥AC时,△ACB′的面积最大,设直线PB′交AC于点E,求出B′E即可解决问题.【详解】(1)如图1,∵△ABC为等边三角形,∴∠A=60°,AB=BC=CA=8,∵PB=4,∴PB′=PB=P A=4,∵∠A=60°,∴△APB′是等边三角形,∴AB′=AP=4,故答案为4;(2)如图2,设直线l交BC于点E,连接B B′交PE于O,∵PE∥AC,∴∠BPE=∠A=60°,∠BEP=∠C=60°,∴△PEB是等边三角形,∵PB=5,B、B′关于PE对称,∴BB′⊥PE,BB′=2OB,∴OB=PB·sin60°,∴BB,故答案为(3)如图3,结论:面积不变.过点B作BE⊥AC于E,则有BE=AB·sin60°=3843⨯=,∴S△ABC=1184322AC BE=⨯⨯g=163,∵B、B′关于直线l对称,∴BB′⊥直线l,∵直线l⊥AC,∴AC//BB′,∴S△ACB’=S△ABC=163;(4)如图4,当B′P⊥AC时,△ACB′的面积最大,设直线PB′交AC于E,在Rt△APE中,P A=2,∠P AE=60°,∴PE=P A·sin60°=3,∴B′E=B′P+PE=6+3,∴S△ACB最大值=12×(6+3)×8=24+43.【点睛】本题是几何变换综合题,考查了等边三角形的判定与性质,轴对称变换,解直角三角形,平行线的判定与性质等知识,理解题意,熟练掌握和灵活运用相关知识是解题的关键.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【答案】(1)点C的坐标为(2,3;(2)OA=2;(3)OC的最大值为8,cos∠OAD 5.【解析】【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=12CD=2,DE2223CD CE-=OAD=30°知OD=12AD=3,从而得出点C坐标;(2)先求出S△DCM=6,结合S四边形OMCD=212知S△ODM=92,S△OAD=9,设OA=x、OD=y,据此知x2+y2=36,12xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得CD DM CM ON MN OM==,据此求得MN=95,ON=125,AN=AM﹣MN=65,再由OA22ON AN+cos∠OAD=ANOA可得答案.【详解】(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=12CD=2,DE22CD CE=3,在Rt△OAD中,∠OAD=30°,∴OD=12AD=3,∴点C的坐标为(2,3);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=212,∴S△ODM=92,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,12xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=2(负值舍去),∴OA=2;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM22CD DM+5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴CD DM CMON MN OM==,即4353ON MN==,解得MN=95,ON=125,∴AN=AM﹣MN=65,在Rt△OAN中,OA2265 5ON AN+=,∴cos∠OAD=5 ANOA=.【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O 停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【答案】(1)(4,0);(2)①当0<t≤1时,S =334t2;②当1<t≤43时,S =﹣394t2+18t;③当43<t≤2时,S =﹣3t2+12;(3)OT+PT的最小值为32【解析】【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论.【详解】(1)令y=0,∴﹣23x+4=0,∴x=6,∴A(6,0),当t=13秒时,AP=3×13=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q(4,0);(2)当点Q在原点O时,OQ=6,∴AP=12OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB=2=3 OBOA,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB=233 PD PDAP t==,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN=23 DN tCN CN==,∴CN=32t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣12t×32t=334t2;②当1<t≤43时,如图2,同①的方法得,DN=t,CN=32t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣12t×32t=﹣394t2+18t;③当43<t≤2时,如图3,S=S梯形OBDP=12(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6-3t,0),Q(6-6t,0),∴M(6-6t,3t),∵T是正方形PQMN的对角线交点,∴T(6-93,22t t),∴点T是直线y=-13x+2上的一段线段,(-3≤x<6),同理:点N是直线AG:y=-x+6上的一段线段,(0≤x≤6),∴G(0,6),∴OG=6,∵A(6,0),∴AG2,在Rt△ABG中,OA=6=OG,∴∠OAG=45°,∵PN⊥x轴,∴∠APN=90°,∴∠ANP=45°,∴∠TNA=90°,即:TN⊥AG,∵T 正方形PQMN 的对角线的交点, ∴TN =TP , ∴OT +TP =OT +TN ,∴点O ,T ,N 在同一条直线上(点Q 与点O 重合时),且ON ⊥AG 时,OT +TN 最小, 即:OT +TN 最小,∵S △OAG =12OA ×OG =12AG ×ON , ∴ON =OA OGAGn =32. 即:OT +PT 的最小值为32【点睛】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T 的位置是解本题(3)的难点.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积. (3)在P 点运动过程中,求APC ∆面积的最大值. 【答案】(1)3y x =+;(2)3;(3)APC ∆面积的最大值为278. 【解析】 【分析】(1)由题意分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标,再根据点A 、C 的坐标利用待定系数法即可求出直线AC 的解析式;(2)由题意先根据二次函数解析式求出顶点P ,进而利用割补法求APC ∆面积;(3)根据题意过点P 作PE y P 轴交AC 于点E 并设点P 的坐标为()2,23m m m --+(30m -<<),则点E的坐标为(),3+m m 进而进行分析. 【详解】解:(1) 分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标为()0,3C ;()30A -,; 将()0,3C ;()30A -,代入223y x x =--+,得到直线AC 的解析式为3y x =+. (2)由223y x x =--+,将其化为顶点式为2(1)4y x =-++,可知顶点P 为(1,4)-, 如图P 为顶点时连接PC 并延长交x 轴于点G ,则有S APC S APG S ACG =-V V V ,将P 点和C 点代入求出PC 的解析式为3y x =-+,解得G 为(3,0), 所有S APC S APG S ACG =-V V V 11646312922=⨯⨯-⨯⨯=-=3;(3)过点P 作PE y P 轴交AC 于点E .设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m ∴()2233PE m m m =--+-+2239324m m m ⎛⎫=--=-++ ⎪⎝⎭, 当32m =-时,PE 取最大值,最大值为94.∵()1322APC C A S PE x x PE ∆=⋅-=,∴APC ∆面积的最大值为278. 【点睛】本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标; (3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.【答案】(1)265y x x =-+-;(2)1258S =,点P 坐标为515,24⎛⎫ ⎪⎝⎭;(3)点M 的坐标为7837,2323⎛⎫-⎪⎝⎭, 6055,2323⎛⎫- ⎪⎝⎭【解析】 【分析】(1)利用B (5,0)用待定系数法求抛物线解析式; (2)作PQ ∥y 轴交BC 于Q ,根据12PBC S PQ OB ∆=⋅求解即可; (3)作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB , 则∆ NAM 1∽∆ A C M 1,通过相似的性质来求点M 1的坐标;作AD ⊥BC 于D ,作M 1关于AD 的对称点M 2, 则∠A M 2C =3∠ACB ,根据对称点坐标特点可求M 2的坐标. 【详解】(1)把()5,0B 代入265y ax x =+-得253050a +-= 1a =-.∴265y x x =-+-;(2)作PQ ∥y 轴交BC 于Q ,设点()2,65P x x x -+-,则∵()5,0B∴OB =5, ∵Q 在BC 上,∴Q 的坐标为(x ,x -5),∴PQ =2(65)(5)x x x -+---=25x x -+, ∴12PBC S PQ OB ∆=⋅ =21(5)52x x -+⨯ =252522x x -+∴当52x =时,S 有最大值,最大值为1258S =,∴点P 坐标为515,24⎛⎫⎪⎝⎭. (3)如图1,作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB ,∵∠CAN =∠NAM 1, ∴AN =CN ,∵265y x x =-+-=-(x -1)(x -5),∴A 的坐标为(1,0),C 的坐标为(0,-5), 设N 的坐标为(a ,a -5),则∴2222(1)(5)(55)a a a a -+-=+-+,∴a =136, ∴N 的坐标为(136,176-), ∴AN 2=221317(1)()66-+-=16918,AC 2=26,∴22169113182636 ANAC=⨯=,∵∠NAM1=∠ACB,∠N M1A=∠C M1A,∴∆NAM1∽∆A C M1,∴11AMANAC CM=,∴21211336AMCM=,设M1的坐标为(b,b-5),则∴222236[(1)(5)]13[(55)]b b b b-+-=+-+,∴b1=7823,b2=6(不合题意,舍去),∴M1的坐标为7837(,)2323-,如图2,作AD⊥BC于D,作M1关于AD的对称点M2, 则∠A M2C=3∠ACB,易知∆ADB是等腰直角三角形,可得点D的坐标是(3,-2),∴M2横坐标=7860232323⨯-=,M2纵坐标=37552(2)()2323⨯---=-,∴M2的坐标是6055(,)2323-,综上所述,点M的坐标是7837(,)2323-或6055(,)2323-.【点睛】本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大值或最小值.【答案】(1)2(2)(3)h存在最小值,最小值为1【解析】【分析】(1)由点B与点C关于直线x=1对称,可得出抛物线的对称轴为直线x=1,再利用二次函数的性质可求出b值;(2)利用二次函数图象上点的坐标特征可求出点A的坐标,结合OA=OB可得出点B的坐标,由点B的坐标利用待定系数法可求出抛物线的解析式,由抛物线的解析式利用二次函数图象上点的坐标特征可求出点C的坐标,利用配方法可求出点P的坐标,再利用三角形的面积公式即可求出△BCP的面积;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况考虑,利用二次函数图象上点的坐标特征结合二次函数的图象找出h关于b的关系式,再找出h的最值即可得出结论.【详解】解:(1)∵点B与点C关于直线x=1对称,y=x(x﹣b)﹣=x2﹣bx﹣,∴﹣=1,解得:b=2.(2)当x=0时,y=x2﹣bx﹣=﹣,∴点A的坐标为(0,﹣).又∵OB=OA,∴点B的坐标为(﹣,0).将B(﹣,0)代入y=x2﹣bx﹣,得:0=+b﹣,解得:b=,∴抛物线的解析式为y=x2﹣x﹣.∵y=x2﹣x﹣=(x﹣)2﹣,∴点P的坐标为(,﹣).当y=0时,x2﹣x﹣=0,解得:x1=﹣,x2=1,∴点C的坐标为(1,0).∴S△BCP=×[1﹣(﹣)]×|﹣|=.(3)y=x2﹣bx﹣=(x﹣)2﹣﹣.当≥1,即b≥2时,如图1所示,y最大=b+,y最小=﹣b+,∴h=2b;当0≤<1,即0≤b<2时,如图2所示,y最大=b+,y最小=﹣﹣,∴h=1+b+=(1+)2;当﹣1<<0,﹣2<b<0时,如图3所示y最大=﹣b,y最小=﹣﹣,∴h=1﹣b+=(1﹣)2;当≤﹣1,即b≤﹣2时,如图4所示,y最大=﹣b+,y最小=b+,h=﹣2b.综上所述:h=,h存在最小值,最小值为1.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式、三角形的面积、二次函数图象以及二次函数的最值,解题的关键是:(1)利用二次函数的性质,求出b的值;(2)利用二次函数图象上的坐标特征及配方法,求出点B,C,P的坐标;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况,找出h关于b的关系式.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.。