浙江省宁波市余姚市19-20九上期末数学试卷
浙江省宁波市余姚市2023-2024学年九年级上学期期末数学试题(含答案)
余姚市2023学年第一学期初中期末考试九年级数学试题卷温馨提示:1.本试卷分试题卷和答题卷两部分,试题卷6页,满分120分,考试时间120分钟.2.所有答案都必须做在答题卷规定的位置上,务必注意试题序号和答题序号相对应.3.考试期间不能使用计算器.一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.抛物线的顶点坐标是( )A .B .C .D .2.若线段,,则a 和b 的比例中项线段等于( )A .1B .2C .4D .83.任意抛掷一枚均匀的骰子,骰子停止转动后,发生可能性最大的事件是( )A .朝上一面的点数大于3B .朝上一面的点数小于3C .朝上一面的点数是3的倍数D .朝上一面的点数是3的因数4.已知点A 是外一点,且的半径为5,则的长可能为()A .3B .4C .5D .65.在中,,,,则边的长为( )A .3B .4CD6.如果一个正多边形的内角是,那么这个正多边形的边数为( )A .5B .6C .7D .87.下列命题中,错误的是()A .直径是圆中最长的弦B .直径所对的圆周角是直角C .平分弦的直径垂直于弦D .垂直平分弦的直线必定经过圆心8.若二次函数的图象经过和两点,则m 的值为( )A .1B .C .D .9.如图,矩形的内部有5个全等的小正方形,小正方形的顶点E ,F ,G ,H 分别落在边,,,上,若,,则小正方形的边长为( )()212y x =-+()1,2()2,1()1,2-()2,1-1a =4b =O O OA Rt ABC △90C ∠=︒5AB =3sin 5A =AC 135︒()2215y x =-+(),m n ()3,n 1-5252-ABCD AB BC CD DA 20AB =16BC =A .B .5C .D .10.如图,在中,点D 是上一点(不与点A ,B 重合),过点D 作交于点E ,过点D 作交于点F ,点G 是线段上一点,,点H 是线段上一点,,若已知的面积,则一定能求出()A .的面积B .的面积C .的面积D .的面积二、填空题(每小题4分,共24分)11.若两个相似多边形的相似之比是,则它们的周长之比是______.12.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品5000件,欣喜发现产品合格的频率已达到,若在相同条件下,我们可以用频率估计该产品合格的概率约为______.(结果保留两位小数)13.把函数的图象向上平移1个单位后所得图象的函数表达式是______.14.如图所示的图形叫弧三角形,又叫莱洛三角形,是机械学家莱洛首先进行研究的.弧三角形是这样画的:先画正三角形,然后分别以点A ,B ,C 为圆心,长为半径画弧.若正三角形的边长为2cm ,则弧三角形的周长为______cm .15.如图,一段抛物线:,记为,它与x 轴交于点O ,,将绕点顺时针旋转得到……,如此进行下去,得到一条连续的曲线,若点在这条曲线上,则m 的值为______.16.如图,在四边形中,,点E 是上一点,连结,,,ABC △AB DE BC ∥AC DF AC ∥BC AE AG GE =DF DH HF =BGH △ADE △BDF △ABG △CEF △2:50.991523y x =ABC AB ABC ()()505y x x x =--≤≤1C 1A 1C 1A 180︒2C ()2023,P m ABCD AD BC ∥AB AC CE ED,,,将沿翻折得到,若点恰好落在的延长线上,则______,______.三、解答题(第17、18、19题各6分,第20、21、22各8分,第23题10分,第24题12分,共66分)17.计算:(1)(2)已知,求18.在一个不透明的袋子中装有4个只有颜色不同的球,其中1个白球,3个红球.(1)从袋中随机摸出一个球,求摸出的球是白球的概率.(2)从袋中随机摸出一个球,放回,摇匀,再随机摸出一个球,请用树状图或列表法求两次摸出的球颜色相同的概率.19.如图,在6×6的正方形网格中,点A ,B ,C 均在格点上,请按要求作图.(1)在图1中,将绕点A 顺时针方向旋转,作出经旋转后的.(其中点D ,E 分别是点B ,C 的对应点).(2)在图2中,请用无刻度直尺找出过A ,B ,C 三点的圆的圆心,标出圆心O 的位置.20.如图,在中,是角平分线,点E 是边上一点,且.(1)求证:.(2)若,,求的长.BEC ADC ∠=∠10AB AC ==12BC =ACD △CD A CD '△A 'EDCE =BE =2sin 302cos30 tan 60︒-︒+︒12a b =2a b b+ABC △90︒ADE △ABC △AD AC ADE B ∠=∠ADB AED ∽△△3AE =5AD =AB21.如图,二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C ,连结,.(1)求点A 和点C 的坐标.(2)若在第一象限的二次函数图象上存在点D ,使,求点D 的坐标.22.如图,四边形内接于,延长,交于点E ,.(1)求证:是等腰三角形.(2)若点C 是中点,,,求的长.23.平面直角坐标系中,点,在函数(b ,c 是常数)的图象上.(1)若,,求该函数的表达式,(2)若,求证:该函数的图象经过点.(3)已知点,,在该函数图象上,若,,试比较,的大小,并说明理由.24.如图,内接于,是的直径,,过点A 作,交于点E ,点F 是上一点,连结交于点G ,连结交于点H.211322y x x =--AC CD ACO DCO ∠=∠ABCD O AB DC DE DA =BCE △ BD11AB =4BC =AD ()1,m ()2,n 2y x bx c =++2m =1n =2m n =()3,2()3,0()12,y -()25,y 0m >0n <1y 2y ABC △O BC O tan 2ACB ∠=AD BC ⊥OAB EF BC CF AD(1)求证:.(2)若,,求的长.(3)设,,求y 关于x 的函数表达式.2023学年第一学期初中期末考试九年级数学参考答案及评分参考一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)题号12345678910答案ABADBDCBBB二、填空题(每小题4分,共24分)题号111213141516答案0.99610,4.4三、解答题(第17、18、19题各6分,第20、21题各8分,第22、23题10分,第24题12分,共66分)注:1.阅卷时应按步计分,每步只设整分.2.如有其它解法,只要正确,可参照评分标准,各步相应给分.17.解:(1)原式.(2)设,,原式.18.解:(1),(2)记三个红球为,,,摸两次球的所有可能结果如下:.19.解:(1)如图1,就是所求作的三角形.(2)如图2,点O 就是所求作的圆心.AFC HFE ∽△△10BC =8CF =EF OG x OC =AHy AD=2:5231y x =+2π1222=⨯-+1=1=a k =()20b k k =≠2255222k k k k k +⨯===1()4P =白球1红2红3红()105168P ∴==两次摸出的球颜色相同ADE △20.解:(1)在中,是角平分线,,,.(2),,,21.解:(1)二次函数的图象与x 轴交于点A 和B 两点,当时,,,,点,二次函数的图象与y 轴交于点C ,当时,,点.(2)如图,设与x 轴交于点E ,,,,,,点,设直线的函数表达式为.点,点直线的函数表达式为. ABC △AD BAD DAE ∴∠=∠B ADE ∠=∠ ADB AED ∴∽△△ADB AED ∽ △△AB ADAD AE ∴=3AE = 5AD =253AB ∴=211322y x x =-- 0y =2113022x x --=12x =-23x =∴()2,0A - 211322y x x =-- 0x =3y =-∴()0,3C -CD ACO DCO ∠=∠ 90AOC EOC ∠=∠=︒ CO CO =COA COE ∴≌△△2OE OA ∴==∴()2,0E CD )0(y kx b k =+≠ ()0,3C -()2,0E ∴CD 332y x =-令,得,当时,,点.22.解:(1),,四边形内接于,,,,,,是等腰三角形.(2)点C 是中点,,,,,,,,,,,,.23.解:(1)点,在函数(b ,c 为常数)的图象上,,,,该函数的表达式为.(2),,,,时,,该函数的图象经过点.(3),当时,,,当时,,抛物线经过点,抛物线的对称轴在直线的右侧,在直线的左侧,点到对称轴的距离大于点到对称轴的距离,而抛物线开口向上,.211333222x x x --=-10x =24x = 4x =3y =∴()4,3D DE DA = A E ∴∠=∠ ABCD O 180A DCB ∴∠+∠=︒180BCE DCB ∠+∠=︒ BCE A ∴∠=∠BCE E ∴∠=∠BE BC ∴=BCE ∴△ BD4CD BC ∴==4BE BC ∴==11415AE AB BE ∴=+=+=BCE A ∠=∠ E E ∠=∠BCE DAE ∴∽△△BE CEDE AE∴=4DE DC CE CE =+=+ 4415CECE ∴=+6CE ∴=10DE CD CE ∴=+=10AD ∴= ()1,m ()2,n 2y x bx c =++1,42,b c m b c n ++=⎧∴⎨++=⎩2m = 1n =12,421,b c b c ++=⎧∴⎨++=⎩4,5.b c =-⎧∴⎨=⎩∴245y x x =-+2m n = ()1242b c b c ∴++=++37c b ∴=--()237y x bx b ∴=++--3x = ()233372y b b =++--=∴()3,20m > ∴1x =0y >0n < ∴2x =0y < ()3,0∴2x =3x =∴()12,y -()25,y 12y y ∴>24.解:(1)是的直径,,,,和是所对圆周角,,.(2)如图,连结,是的直径,,,,,,,,,,,,,,,是的直径,,,,,,,,,,,,,BC O AD BC ⊥ CACE ∴=AFC CFE ∴∠=∠ACF ∠ AEF ∠ AF ACF AEF ∴∠=∠AFC HFE ∴∽△△BF BC O 90BAC ∴∠=︒tan 2ACB ∠= 2AB AC ∴=222AB AC BC += 10BC =AC ∴=AD BC ⊥ 90ADC ∴∠=︒tan 2ACB ∠= 2AD CD ∴=222AD CD AC += 2CD ∴=4AD ∴=4ED AD ∴==BC O 90BFC ∴∠=︒10BC = 8CF =6BF ∴=90BFC HDC ∠=∠=︒ FCB DCH ∠=∠BFC HDC ∴∽△△BF CFHD CD∴=1.5HD ∴= 5.5HE ED HD ∴=+=AFC HFE ∽ △△AC CFHE EF∴=EF ∴=(3)设,则,,,,,,①如图,当点G 在线段上时,,,,,过点G 作于点M ,,,,,,,,.,,即,又,,,,,.②如图,当点G 在线段上时,同理可求得.OC r =2BC r =tan 2ACB ∠= 2AD CD ∴=2BD AD =25CD r ∴=45AD r =OD OG x OC= OG xr ∴=()1CG x r =-()1BG x r =+GM CF ⊥90GMF ∴∠=︒ 90ADC ∠=︒CAE CFE ∠=∠FGM ACB ∴∠=∠tan tan 2FGM ACB ∴∠=∠=2FM GM ∴=90GMC BFC ∠=∠=︒ GM BF ∴∥CG CM GB MF ∴=2CG CMGB GM∴=2CG CM GB GM =CM CD GM HD =2CD CGHD GB∴=(1)5(1)x r HD x +∴=-4(1)3555(1)55r x r x AH AD HD r x x +-∴=-=-=--3544AH xAD x-∴=-3544x y x -∴=-OB 3544x y x+=+。
2019-2020学年度第一学期九年级数学期末试卷试题(含答案)
2019~2020学年度第一学期期末检测九年级数学评分标准(其他解法参照给分)一、选择题(本大题共8小题,每小题3分,共24分.)二、填空题(本大题共10小题,每小题3分,共30分)9.12; 10.1:4; 11.2; 12.>; 13.110;14.不具有; 15. 16.4; 17.16; 18.2+三、解答题(本大题共10小题,共86分.)19.(本题共2小题,每题5分,共10分)(1)(1)计算:1032sin302020-+︒-解:原式11=2132+⨯-…………………………………………………3分 1113=+-……………………………………………………4分 13=…………………………………………………………5分 (2)解方程:2340x x +-=(解法不唯一)解:()()410x x +-=,……………………………………………………7分40x +=,10x -=…………………………………………………9分 1241x x =-=,………………………………………………………10分20.(本小题7分)解:………………………………………………………………………………………5分 P (两次取球得分的总分不小于5分)=13…………………………………………7分21.(本小题7分)(1)816%=50÷,5010148612m =----=;…………………………2分(2)本次抽查的学生文章阅读篇数的中位数为5,众数为4;………………4分(3)14120033650⨯=,………………………………………………………6分 答:估计该校学生在这一周内文章阅读的篇数为4篇的人数为336人.………7分22.(本小题8分)(1)△ABC 的面积是 12 ;…2分(2)如图所示………6分(3)若P (a ,b )为线段BC 上的任一 点,则变换后点P 的对应点'P 的坐标为 (,)22a b .………8分23.(本小题8分)解:设市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x .…1分 根据题意得,28(1)11.52x +=.…………………………………………………4分解这个方程,得 1220% 2.2x x ==-,(不合题意,舍去)……………………7分答:市政府从2017年到2019年对校舍建设投入资金的年平均增长率为20%…8分24.(本小题8分)解:(1)分别过点E 作EF ⊥AC ,EG ⊥AO,垂足为F 、G.∵至DE 处,测得顶点A 的仰角为75°, ∴∠AEG=75°……………1分∵在BC 处测得直立于地面的AO 顶点A 的仰角为30°,∴∠ACE=30°, ……2分 ∴∠CAE=∠AEG -∠ACE=45°……………………………………………3分(2)在Rt △CFE 中,CE=40,∴1sin 3040202EF CE =︒=⨯=………4分 在Rt △AFE 中,∠CAE =45°,AF=FE=20………5分∴sin 452EF AE ===︒…………………………………………6分(第24题)(3)20AC AF CF =+=在Rt △AFE 中,1sin 3020272AG AC =︒=⨯≈()……7分 ∴27 1.529AO AG OG =+=+≈……………………………8分25.(本小题9分)26.(本小题9分)m.…1分解:(1)设矩形生物园的长为xm,则宽为(8-x)m,小兔的活动范围的面积为y227.(本小题10分)(1)证明:如图1中,AE AD ⊥ ,90DAE ∴∠=︒,90E ADE ∠=︒-∠,…………1分AD 平分BAC ∠,12BAD BAC ∴∠=∠,同理12ABD ABC ∠=∠,…………………2分 ADE BAD DBA ∠=∠+∠ ,180BAC ABC C ∠+∠=︒-∠,11()9022ADE ABC BAC C ∴∠=∠+∠=︒-∠,(2)延长AD 交BC 于点F .AB AE = ,ABE E ∴∠=∠,BE 平分ABC ∠,ABE EBC ∴∠=∠,………………………4分E CBE ∴∠=∠,//AE BC ∴,……………………………………5分90AFB EAD ∴∠=∠=︒,BF BD AF DE=, :2:3BD DE = ,(3)ABC 与ADE 相似,90DAE ∠=︒,ABC ∴∠中必有一个内角为90︒ABC ∠ 是锐角,90ABC ∴∠≠︒.………………………………………………………7分 ①当90BAC DAE ∠=∠=︒时,12E C ∠=∠ , 12ABC E C ∴∠=∠=∠, 90ABC C ∠+∠=︒ ,30ABC ∴∠=︒,此时2ABC ADES S =V V .………………………………………8分 ②当90C DAE ∠=∠=︒时,1452E C ∠=∠=︒, 45EDA ∴∠=︒,ABC 与ADE 相似,45ABC ∴∠=︒,此时ABC ADE S S =V V .………………………………………9分28.(本小题10分) 解:(1)由抛物线2y ax bx c =++交x 轴于A 、B 两点,OA =1,OB =3,得点A 坐标为(1,0)-,点B 的坐标为(3,0);…………………………………2分 Q。
★试卷3套精选★宁波市2020届九年级上学期数学期末达标测试试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.对于二次函数y =-(x +1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x =1;③其图象的顶点坐标为(-1,3);④当x>1时,y 随x 的增大而减小.其中正确结论的个数为( ) A .1B .2C .3D .4 【答案】C【解析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【详解】∵2(1)3y x =-++,∴抛物线开口向上,对称轴为直线x=−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x=−1,∴当x>−1时,y 随x 的增大而增大,∴当x>1时,y 随x 的增大而增大,故④正确,∴正确的结论有3个,故选:C.【点睛】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.2.一元二次方程2310x x -+=的两个根为12,x x ,则2121232x x x x ++-的值是( ) A .10B .9C .8D .7【答案】D 【分析】利用方程根的定义可求得21131x x ∴=-,再利用根与系数的关系即可求解.【详解】1x 为一元二次方程2310x x -+=的根,21131x x ∴=-,2121232x x x x ∴++-=()12121212313233x x x x x x x x -++-=++-.根据题意得123x x +=,121=x x ,212123233137x x x x ∴++-=⨯+-=.故选:D .【点睛】本题主要考查了一元二次方程的解,根与系数的关系以及求代数式的值,熟练掌握根与系数的关系12b x x a +=-,12c x x a=是解题的关键. 3.若()2723my m x -=-+是二次函数,且开口向下,则m 的值是( ) A .3±B .3C .3-D .2- 【答案】C【分析】根据二次函数的定义和开口方向得到关于m 的关系式,求m 即可.【详解】解:∵()2723my m x -=-+是二次函数,且开口向下,∴272,20m m -=-<,∴3,2m m =±<,∴3m =-.故选:C【点睛】本题考查了二次函数的定义和二次函数的性质,熟练掌握二次函数的定义和性质是解题关键. 4.下列图形中,是中心对称图形但不是轴对称图形的是 ( ) A . B . C . D .【答案】D【分析】根据中心对称图形和轴对称图形的定义即可得解.【详解】A 、不是中心对称图形,也不是轴对称图形,此项错误B 、是中心对称图形,也是轴对称图形,此项错误C 、不是中心对称图形,是轴对称图形,此项错误D 、是中心对称图形,但不是轴对称图形,此项正确故选:D .【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A.25°B.40°C.45°D.50°【答案】B【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P =90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.6.反比例函数y=1mx在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣1【答案】D【解析】∵在每个象限内的函数值y随x的增大而增大,∴m+1<0,∴m<-1.7.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为()A.1:3 B.1:8 C.1:9 D.1:4【答案】C【分析】根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.【详解】∵S△EFC=3S△DEF,∴DF:FC=1:3 (两个三角形等高,面积之比就是底边之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故选:C.【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.8.方程2x x=的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-1【答案】C【分析】根据因式分解法,可得答案.=,【详解】解:2x x方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.9.如图,已知点E(﹣4,2),点F(﹣1,﹣1),以O为位似中心,把△EFO放大为原来的2倍,则E点的对应点坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)【答案】B【分析】E(﹣4,1)以O为位似中心,按比例尺1:1,把△EFO放大,则点E的对应点E′的坐标是E (﹣4,1)的坐标同时乘以1或﹣1.【详解】解:根据题意可知,点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.所以点E′的坐标为(8,﹣4)或(﹣8,4).故选:B.【点睛】本题主要考查根据位似比求对应点的坐标,分情况讨论是解题的关键.10.若n <n+1,则整数n 为( )A .2B .3C .4D .5 【答案】B的大小,从而得出整数n 的值.【详解】∵23,∴3<4,∴整数n 为3;故选:B .【点睛】本题主要考查算术平方根的估算,理解算术平方根的定义,是解题的关键.11.抛物线的顶点为(1,4)-,与y 轴交于点(0,3)-,则该抛物线的解析式为( )A .223y x x =--B .223y x x =+-C .223y x x =-+D .2233y x x =--【答案】A【分析】设出抛物线顶点式,然后将点(0,3)-代入求解即可.【详解】解:设抛物线解析式为2(1)4y a x =--, 将点(0,3)-代入得:23(01)4a -=--,解得:a=1,故该抛物线的解析式为:223y x x =--,故选:A.【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.12.一人乘雪橇沿如图所示的斜坡(倾斜角为30°)笔直滑下,滑下的距离为24米,则此人下滑的高度为( )A .24B .123C .12D .6【答案】C 【分析】由题意运用解直角三角形的方法根据特殊三角函数进行分析求解即可.【详解】解:因为斜坡(倾斜角为30°),滑下的距离即斜坡长度为24米, 所以下滑的高度为0124sin 3024122⨯=⨯=米. 故选:C.【点睛】本题考查解直角三角形相关,结合特殊三角函数进行求解是解题的关键,也可利用含30°的直角三角形,其斜边是30°角所对直角边的2倍进行分析求解.二、填空题(本题包括8个小题)13.观察下列各式: 2(1)(1)1x x x -+=-; 23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-; 4325(1)(1)1x x x x x x -++++=-则2019201820172222...221++++++=_______________________.【答案】202021-【分析】由所给式子可知,(1x -)(122...1n n n x x x x x --++++++)=11n x +-,根据此规律解答即可.【详解】由题意知(21-)(2019201820172222...221++++++)=202021-,∴20192018201722020222...22121++++++=-.故答案为202021-.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.14.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.【答案】25 4【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF22AD DF+221554⎛⎫+ ⎪⎝⎭254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF 的最小值.15.抛物线y=x 2-2x+3,当-2≤x≤3时,y 的取值范围是__________【答案】211y ≤≤【分析】先把一般式化为顶点式,根据二次函数的最值,以及对称性,即可求出y 的最大值和最小值,即可得到取值范围.【详解】解:∵2223(1)2y x x x =-+=-+,又∵10a =>,∴当1x =时,抛物线有最小值y=2;∵抛物线的对称轴为:1x =,∴当2x =-时,抛物线取到最大值,最大值为:2(21)211y =--+=;∴y 的取值范围是:211y ≤≤;故答案为:211y ≤≤.【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.16.如图,有一张直径(BC )为1.2米的圆桌,其高度为0.8米,同时有一盏灯A 距地面2米,圆桌的影子是DE ,AD 和AE 是光线,建立图示的平面直角坐标系,其中点D 的坐标是(2,0).那么点E 的坐标是____.【答案】(4,0)【分析】如图延长CB 交y 轴于F ,由桌面与x 轴平行△AFB ∽△AOD ,求FB=1.2,由△AFC ∽△AOE ,可求OE 即可.【详解】如图,延长CB 交y 轴于F ,∵桌面与x 轴平行即BF ∥OD ,∴△AFB ∽△AOD ,∵OF=0.8,∴AF=AO-OF=2-0.8=1.2,∵OA=OD=2,则AF=FB=1.2,BC =1.2,FC=FB+BC=1.2+1.2=2.4,∵FC ∥x 轴,∴△AFC ∽△AOE , ∴AF FC =AO OE, ∴AO FC 2 2.4OE==AF 1.2⨯=4, E (4,0).故答案为:(4,0)..【点睛】本题考查平行线截三角形与原三角形相似,利用相似比来解,关键是延长CB 与y 轴相交,找到了已知与未知的比例关系从而解决问题.17.计算211a a a ---的结果是_______. 【答案】11a - 【分析】根据分式的加减运算法则,先通分,再加减.【详解】解:原式=()211a a a -+- =()()21111a a a a a -+--- =2211a a a -+- =11a -.故答案为:11a -. 【点睛】 本题考查了分式的加减运算,解题的关键是掌握运算法则和运算顺序. 18.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则 99a =________.【答案】1009999. 【解析】试题解析:等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3; 等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=1.所以a 99=991100991019999+=⨯. 考点:规律型:数字的变化类.三、解答题(本题包括8个小题)19.如图,二次函数y =﹣34x 2+94x+3的图象与x 轴交于点A 、B (B 在A 右侧),与y 轴交于点C .(1)求点A 、B 、C 的坐标;(2)求△ABC 的面积.【答案】(1)点A 的坐标为(﹣1,0),点B 的坐标为(4,0),点C 的坐标为(0,3);(2)152 【分析】(1)根据题目中的函数解析式可以求得点A 、B 、C 的坐标;(2)根据(1)中点A 、点B 、点C 的坐标可以求得△ABC 的面积.【详解】解:(1)∵二次函数y =34-x 2+94x+3=34-(x ﹣4)(x+1), ∴当x =0时,y =3,当y =0时,x 1=4,x 2=﹣1,即点A 的坐标为(﹣1,0),点B 的坐标为(4,0),点C 的坐标为(0,3);(2)∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),点C 的坐标为(0,3),∴AB=5,OC=3,∴△ABC的面积是:·5322AB OC⨯==152,即△ABC的面积是152.【点睛】本题考查的是二次函数与x轴的交点,分别令x、y为0,即可求出函数与坐标轴的交点,进而求解三角形的面积.20.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1) 请画出△ABC向左平移5个单位长度后得到的△A B C;(2) 请画出△ABC关于原点对称的△A B C;(3) 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.【答案】(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0)【分析】(1)按题目的要求平移就可以了关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可(3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.【详解】(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,点P的坐标为:(2,0)【点睛】1、图形的平移;2、中心对称;3、轴对称的应用21.《九章算术》是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右.在其“勾股”章中有这样一个问题:“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD.EG=15里,HG经过点A,则FH等于多少里?请你根据上述题意,求出FH的长度.【答案】1.1里【分析】通过证明△HFA∽△AEG,然后利用相似比求出FH即可.【详解】∵四边形ABCD是矩形,EG⊥AB,FH⊥AD,∴∠HFA=∠DAB=∠AEG=90°,∴FA∥EG.∴∠HAF=∠G.∴△HFA∽△AEG,∴FHAF =AFEG,即4.5FH=3.515,解得FH=1.1.答:FH等于1.1里.【点睛】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求线段的长度.22.如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为(3,2)、(1,3).△AOB绕点O逆时针旋转90º后得到△A1OB1.(1)在网格中画出△A1OB1,并标上字母;(2)点A关于O点中心对称的点的坐标为;(3)点A1的坐标为;(4)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为.【答案】(1)见解析;(2)(-3,-2);(3)(-2,3);(4)5【分析】(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)根据关于O点中心对称的点的坐标的特点直接写出答案即可;(3)根据平面直角坐标系写出点A1的坐标即可;(4)利用勾股定理列式求出OB,再根据弧长公式列式计算即可得解.【详解】(1)△A1OB1如图所示;(2)点A关于O点中心对称的点的坐标为(-3,-2);(3)点A1的坐标为(﹣2,3);(4)由勾股定理得,OB=223110+=,弧BB1的长为:9010101802ππ⋅=.考点:1.作图-旋转变换;2.弧长的计算.23.已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.(1)求证:△ABE∽△DEA;(2)若AB=4,求AE•DE的值.【答案】(1)见解析;(2)2【解析】试题分析:(1)根据菱形的对边平行,可得出∠1=∠2,结合∠AED=∠B即可证明两三角形都得相似.(2)根据(1)的结论可得出AE ABDA DE=,进而代入可得出AE•DE的值.试题解析:(1)如图,∵四边形ABCD是菱形,∴AD∥BC.∴∠1=∠2. 又∵∠B=∠AED,∴△ABE∽△DEA.(2)∵△ABE∽△DEA,∴AE ABDA DE=.∴AE•DE=AB•DA.∵四边形ABCD是菱形,AB=1,∴AB=DA=1.∴AE•DE=AB2=2.考点:1.菱形的性质;2.相似三角形的判定和性质.24.小红想利用阳光下的影长测量学校旗杆AB的高度.如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果BF=1.6,求旗杆AB的高.【答案】 (1)见解析 (2) 8m【详解】试题分析:(1)利用太阳光线为平行光线作图:连结CE,过A点作AF∥CE交BD于F,则BF为所求;(2)证明△ABF∽△CDE,然后利用相似比计算AB的长.试题解析:(1)连结CE,过A点作AF∥CE交BD于F,则BF为所求,如图;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴AB BF CDDE=,即1.620.4AB=,∴AB=8(m),答:旗杆AB的高为8m.25.如图,在ABC∆中,点D,E分别在AB,AC上,DE BC∥,:2:5AD AB=,4ADES∆=.求四边形BCED的面积.【答案】21.【分析】利用平行判定ADE ABC∆∆∽,然后利用相似三角形的性质求得425ADEABCSS∆∆=,从而求得25ABCS∆=,使问题得解.【详解】解:∵DE BC∥,∴ADE B∠=∠,AED C∠=∠.∴ADE ABC∆∆∽.∵25ADAB=,∴425ADEABCSS∆∆=.∵4ADES∆=,∴25ABC S ∆=.∴=21BCED S 四边形.【点睛】本题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是本题的解题关键. 26.如图,点A 在y 轴正半轴上,点()4,2B 是反比例函数图象上的一点,且tan 1OAB ∠=.过点A 作AC y ⊥轴交反比例函数图象于点C .(1)求反比例函数的表达式;(2)求点C 的坐标.【答案】(1)8y x =;(2)4,63⎛⎫ ⎪⎝⎭【分析】(1)设反比例函数的表达式为k y x=,将点B 的坐标代入即可; (2)过点B 作BD AO ⊥于点D ,根据点B 的坐标即可得出4BD =,2DO =,然后根据tan 1OAB ∠=,即可求出AD ,从而求出AO 的长即点C 的纵坐标,代入解析式,即可求出点C 的坐标.【详解】解:(1)设反比例函数的表达式为k y x =, ∵点()4,2B 在反比例函数图象上, ∴24k =. 解得8k . ∴反比例函数的表达式为8y x =. (2)过点B 作BD AO ⊥于点D .∵点B 的坐标为()4,2,∴4BD =,2DO =.在Rt ABD △中,tan 1BD OAB AD ∠==, ∴4AD BD ==.∴6AO AD DO =+=.∵AC y ⊥轴,∴点C 的纵坐标为6.将6y =代入8y x =,得43x =. ∴点C 的纵坐标为4,63⎛⎫ ⎪⎝⎭.【点睛】此题考查的是反比例函数与图形的综合题,掌握用待定系数法求反比例函数的解析式和利用锐角三角函数解直角三角形是解决此题的关键.27.已知布袋中有红、黄、蓝色小球各一个,用画树状图或列表的方法求下列事件的概率.(1)如果摸出第一个球后,不放回,再摸出第二球,求摸出的球颜色是“一黄一蓝”的概率.(2)随机从中摸出一个小球,记录下球的颜色后,把球放回,然后再摸出一个球,记录下球的颜色,求得到的球颜色是“一黄一蓝”的概率.【答案】(1)13;(2)29 【分析】运用画树状图或列表的方法列举出符合题意的各种情况的个数,再根据概率公式:概率=所求情况数与总情况数之比解答即可.【详解】解:(1)画树状图如图所示.共有6种等可能的情况,其中摸到的球是“一黄一蓝”的情况有2种,因此球颜色是“一黄一蓝”的概率为13. (2)画树状图如图所示.共有9种等可能的情况,其中摸到的球是“一黄一蓝”的情况有2种,因此球颜色是“一黄一蓝”的概率为2 9 .【点睛】本题主要考查的是用画树状图法或列表法求概率.着重考查了用画树状图法或列表法列举随机事件出现的所有情况,并求出某事件的概率,应注意认真审题,注意不放回再摸和放回再摸的区别.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC 相切于点D,连接BD.若BD平分∠ABC,AD=23,则线段CD的长是()A.2 B.3C.32D.332【答案】B【分析】连接OD,得Rt△OAD,由∠A=30°,AD=23,可求出OD、AO的长;由BD平分∠ABC,OB=OD 可得OD 与BC间的位置关系,根据平行线分线段成比例定理,得结论.【详解】连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC在Rt△AOD中,∵∠A=30°,3,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥CB,∴AD AOCD OB=2342,∴3故选B.【点睛】本题考查了圆的切线的性质、含30°角的直角三角形的性质及平行线分线段成比例定理,解决本题亦可说明∠C=90°,利用∠A=30°,AB=6,先得AC的长,再求CD.遇切点连圆心得直角,是通常添加的辅助线.2.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长15尺.同时立一根1.5尺的小标杆,它的影长是0.5尺。
2019-2020学年宁波市九年级上期末数学测试卷(含答案)
浙江省宁波市江北区九年级(上)期末测试数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)若,则的值为()A.B.C.D.42.(4分)下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔3.(4分)下图是由3个相同的小正方体组成的几何体,则右边4个平面图形中是其左视图的是()A.B.C.D.4.(4分)已知在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.5.(4分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC,若AD=2,DB=1,△ADE、△ABC的面积分别为S1、S2,则的值为()A.B.C.D.26.(4分)二次函数y=﹣(x﹣1)2+3图象的对称轴是()A..直线x=1 B.直线x=﹣1C.直线x=3 D.直线x=﹣37.(4分)圆锥的底面半径为10cm,母线长为15cm,则这个圆锥的侧面积是()A.100πcm2B.150πcm2C.200πcm2 D.250πcm28.(4分)如图,BC为半圆O的直径,A、D为半圆上的两点,若A为半圆弧的中点,则∠ADC=()A.105°B.120°C.135°D.150°9.(4分)已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y110.(4分)已知∠ADB,作图.步骤1:以点D为圆心,适当长为半径画弧,分别交DA、DB于点M、N;再分别以点M、N为圆心,大于MN长为半径画弧交于点E,画射线DE.步骤2:在DB上任取一点O,以点O为圆心,OD长为半径画半圆,分别交DA、DB、DE于点P、Q、C;步骤3:连结PQ、OC.则下列判断:①=;②OC∥DA;③DP=PQ;④OC垂直平分PQ,其中正确的结论有()A.①③④B.①②④C.②③④D.①②③④11.(4分)已知:如图,点D是等腰直角△ABC的重心,其中∠ACB=90°,将线段CD绕点C逆时针旋转90°得到线段CE,连结DE,若△ABC的周长为6,则△DCE的周长为()A.2B.2C.4 D.312.(4分)已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值小于0,则下列结论正确的是()A.x取m﹣1时的函数值小于0B.x取m﹣1时的函数值大于0C.x取m﹣1时的函数值等于0D.x取m﹣1时函数值与0的大小关系不确定二、填空题(每小题4分,共24分)13.(4分)二次函数y=x(x﹣6)的图象与x轴交点的横坐标是.14.(4分)已知⊙O的半径为r,点O到直线1的距离为d,且|d﹣3|+(6﹣2r)2=0,则直线1与⊙O的位置关系是.(填“相切、相交、相离”中的一种)15.(4分)在2×2的正方形网格中,每个小正方形的边长为1.以点O为圆心,2为半径画弧,交图中网格线于点A,B,则扇形AOB的面积是.16.(4分)如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(如∠O)为60°,A,B,C,D都在格点上,且线段AB、CD相交于点P,则tan∠APC的值是.17.(4分)将抛物线y=ax2+bx+c向左平移2个单位,再向下平移5个单位,得到抛物线y=x2+4x﹣1,则a+b+c= .18.(4分)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有两个,则x的值是.三、解答题(共8小题,满分78分)19.(6分)计算:3tan30°+(﹣1)2018﹣(π﹣3)020.(8分)如图,广场上空有一个气球A,地面上点B、C在一条直线上,BC=22m.在点B、C分别测得气球A的仰角为30°、63°,求气球A离地面的高度.(精确到个位)(参考值:sin63°≈0.9,cos63°≈0.5,tan63°≈2.0)21.(8分)在一个不透明的袋子里有1个红球,1个黄球和n个白球,它们除颜色外其余都相同.(1)从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该实验,经过大量实验后,发现摸到白球的频率稳定于0.5左右,求n的值;(2)在(1)的条件下,先从这个袋中摸出一个球,记录其颜色,放回,摇均匀后,再从袋中摸出一个球,记录其颜色.请用画树状图或者列表的方法,求出先后两次摸出不同颜色的两个球的概率.22.(10分)如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,OC平分∠ACD,过点C作CE⊥DB,垂足为E,直线AB与直线CE相交于F点.(1)求证:CF为⊙O的切线;(2)当BF=2,∠F=30°时,求BD的长.23.(10分)根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx+c的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?24.(10分)如图是一个3×8的网格图,每个小正方形的边长均为1,三个顶点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相似但不全等的格点三角形,并求与△ABC相似的格点三角形的最大面积.25.(12分)如图,矩形ABCD中,AB=3,AD=9,设AE=x.将△ABE沿BE翻折得到△ABE,点A落在矩形ABCD的内部,且∠AA′G=90°,若以点A'、G、C为顶点的三角形是直角三角形,求x的值.26.(14分)【给出定义】若四边形的一条对角线能将四边形分割成两个相似的直角三角形,那么我们将这种四边形叫做“跳跃四边形”,这条对角线叫做“跳跃线”.【理解概念】(1)命题“凡是矩形都是跳跃四边形”是命题(填“真”或“假”).(2)四边形ABCD为“跳跃四边形”,且对角线AC为“跳跃线”,其中AC⊥CB,∠B=30°,AB=4,求四边形ABCD的周长.【实际应用】已知抛物线y=ax2+m(a≠0)与x轴交于B(﹣2,0),C两点,与直线y=2x+b交于A,B两点.(3)直接写出C点坐标,并求出抛物线的解析式.(4)在线段AB上有一个点P,在射线BC上有一个点Q,P,Q两点分别以个单位/秒,5个单位/秒的速度同时从B出发,沿BA,BC方向运动,设运动时间为t,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M,使得四边形BQMP是以PQ为“跳跃线”的“跳跃四边形”,若存在,请直接写出t的值;若不存在,请说明理由.参考答案一、选择题1.A.2.D.3.A.4.A.5.C.6.A.7.B.- 8.C.9.C.10.B.11.A.12.B.二、填空13.0或6.14.相切.15..16..17.1.18.4或x=4或x=2.三、解答题19.【解答】解:原式=3×+1﹣1=.-20.【解答】解:如图,过点A 作AD ⊥l ,设AD=x ,则BD===x ,∴tan63°==2,∴AD=x=8+4, ∴气球A 离地面的高度约为18m . 21.【解答】解:(1)根据题意,得: =,解得n=2;(2)画树状图如下:由树状图知,共有16种等可能结果,其中先后两次摸出不同颜色的两个球的结果数为10,∴先后两次摸出不同颜色的两个球的概率为=.22.∴∠ACO=∠OCD,∵∠A=∠D=∠ACO,∴∠D=∠OCD,∴OC∥DE,∵DE⊥CF,∴OC⊥CF,∴CF为⊙O的切线;(2)连接AD,∵BE∥OC,∴△FEB∽△FCO,∴,解得:r=2,∴AB=4,∵∠ABD=60°,∴BD=2.23.【解答】解:(1)∵函数y2=ax2+bx+c的图象经过(0,0),(1,2),(4,5),∴,解得,∴y2=﹣x2+x.(2)w=(8﹣t)﹣t2+=﹣(t﹣4)2+6,∴t=4时,w的值最大,最大值为6,∴两种水果各进4吨时获得的销售利润之和最大,最大利润是6千元.24.【解答】解:如图所示:如图所示,格点三角形的面积最大,S=2×8﹣×2×3﹣×1×5﹣×1×8=6.525.【解答】解:①如图①,∠GA'C=90°,∵∠AA'G=90°,∴点A、A'、C在同一直线上,∠BAE=∠ADC=90°,∠ABE=∠DAC,∴△ABE∽△ADC,∴,即解得:x=1;②如图②,∠A'GC=90°,∴∠DGC=∠GAA'=∠ABE,∴△ABE∽△DGC,∵AE=EA'=EG=x,∴,解得:(舍去),综上所述,x=1或1.5.26.【解答】解:【理解概念】:(1)∵矩形的对角线所分的两个三角形全等∴凡是矩形都是跳跃四边形是真命题故答案为真(2)∵AC⊥BC,∠B=30°,AB=4∴AC=2,BC=6当∠CAD=90°时,如图1:∵四边形ABCD为“跳跃四边形”∴△ABC∽△CAD∴=或∴AD=2,CD=4或AD=6,CD=4∴四边形ABCD的周长=AB+BC+CD+AD=2+4+4+6=12+4或四边形ABCD的周长=AB+BC+CD+AD=6+4+6+4=12+8若∠ADC=90°如图2:∵四边形ABCD为“跳跃四边形”∴△ABC∽△CAD∴或∴AD=,CD=3或A D=3,CD=∴四边形ABCD的周长=AB+BC+CD+AD=6+4+3+=9+5或四边形ABCD的周长=AB+BC+CD+AD=6+4+3+=9+5综上所述:四边形ABCD的周长为12+4或12+8或9+5【实际应用】(3)∵抛物线y=ax2+m(a≠0)与x轴交于B(﹣2,0),C两点∴顶点坐标为(0,m),对称轴为y轴,点B,点C关于对称轴对称∴点C(2,0)∵抛物线y=ax2+m与直线y=2x+b交于点A,点B∴∴m=b=4,a=﹣1∴抛物线解析式y=﹣x2+4∵P,Q两点分别以个单位/秒,5个单位/秒的速度∴设运动时间为t∴BP=t,BQ=5t∵点A(0,4),点B(﹣2,0)∴OA=4,OB=2∴AB=2∵且∠ABO=∠PBQ∴△ABO∽△PBQ∴∠AOB=∠BPQ=90°∵四边形BQMP是以PQ为“跳跃线”的“跳跃四边形∴△BPQ∽△PQM∴△PQM是直角三角形①若∠PQM=90°时,且BP与QM是对应边,作PD⊥BC,作ME⊥BC.如图3∵△BPQ∽△PQM∴=1∴BP=QM,PM=BQ∴四边形BPMQ是平行四边形∴BP∥QM∴∠PBD=∠MQE∵BP=MQ,∠PBD=∠MQE,∠PDB=∠MEQ ∴△BPD≌△MQE∴PD=ME,BD=QE∵PD∥AO∴∴=∴BD=t,PD=2t∴QE=t,ME=2t∴OE=BQ+QE﹣BO=6t﹣2∴M(6t﹣2,2t),且点M在抛物线上∴2t=﹣(6t﹣2)2+4∴t=②若∠PQM=90°时,且BP与PQ是对应边,作PD⊥BC,作ME⊥BC.如图4∵△BPD∽△MQE∴即∴QM=4t∵∠BQP+∠PBQ=90°,∠BQP+∠MQE=90°∴∠PBQ=∠MQE且∠BPQ=∠MEQ=90°∴△BPQ∽△MEQ∴∴ME=8t,QE=4t∴OE=BQ+QE﹣BO=9t﹣2∴M(9t﹣2,8t),且点M在抛物线上∴8t=﹣(9t﹣2)2+4∴t=③若∠PMQ=90°,BP与MQ是对应边,过点P作PD⊥BC∵△BPQ∽△MQP∴∠PQB=∠MPQ∴PM∥BC∵MQ⊥PM∴MQ⊥BC,且PD⊥BC∴MQ∥PD∴四边形PDQM是平行四边形且PD⊥BC∴四边形PDQM是矩形∴PD=MQ∵BD=t,PD=2t,BQ=5t∴QM=2t∵OQ=BQ﹣BO=5t﹣2∴M(5t﹣2,2t)且点M在抛物线上∴2t=﹣(5t﹣2)2+4∴t=若若∠PMQ=90°,BP与MP是对应边,过点M作EF∥BC,过点P作PD⊥BC,延长DP交EF于F,过点Q作EQ⊥EF于F.∵△BPQ∽△PMQ∴∠MQP=∠BQP又∵PD⊥BC,PM⊥MQ∴PD=PM=2t∵PD=PM,PQ=PQ∴△PDQ≌△PQM∴MQ=DQ=BQ﹣BD=5t﹣t=4t∵FE∥BC,EQ⊥EF,DFBC∴DF⊥EF,EQ⊥BC∴四边形EFDQ是矩形∴EF=DQ=4t∵∠FMP+∠FPM=90°,∠EMQ+∠FMP=90°∴∠FPM=∠EMQ且∠E=∠MFD=90°∴△FMP∽△MEQ∴∴EQ=2FM在Rt△MEQ中,MQ2=EQ2+ME2∴(4t)2=(2FM)2+(4t﹣FM)2∴FM=t∴EQ=t∴M(t﹣2, t),且点M在抛物线上∴t=﹣(t﹣2)2+4∴t=综上所述:使得四边形BQMP是以PQ为“跳跃线”的“跳跃四边形”的时间t的值为:t=,t=,t=,t=。
2019-2020学年浙江省宁波市鄞州区九年级(上)期末数学试卷
2019-2020学年浙江省宁波市鄞州区九年级(上)期末数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)抛物线y=2x2的开口方向是()A.向下B.向上C.向左D.向右2.(4分)已知2x=5y(y≠0),则下列比例式成立的是()A .B .C .D .3.(4分)将抛物线y=x2向上平移3个单位后所得的解析式为()A.y=x2+3B.y=x2﹣3C.y=(x+3)2D.y=(x﹣3)2 4.(4分)下列事件中,是必然事件的是()A.抛掷一枚硬币正面向上B.从一副完整扑克牌中任抽一张,恰好抽到红桃AC.今天太阳从西边升起D.从4件红衣服和2件黑衣服中任抽3件有红衣服5.(4分)两个相似多边形的面积之比是1:4,则这两个相似多边形的周长之比是()A.1:2B.1:4C.1:8D.1:166.(4分)圆内接正六边形的边长为3,则该圆的直径长为()A.3B.3C.3D.67.(4分)对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()501001502005008001000抽取件数(件)合格频数4898144193489784981 A.12B.24C.1188D.11768.(4分)如图,点A、B、C是⊙O上的点,OB∥AC,连结BC交OA于点D,若∠ADB =60°,则∠AOB的度数为()A.30°B.40°C.45°D.50°9.(4分)如图,在△ABC中,∠C=90°,过重心G作AC、BC的垂线,垂足分别为D、E,则四边形GDCE的面积与△ABC的面积之比为()A.B.C.D.10.(4分)如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AC=12,AE=3,则⊙O的直径长为()A.10B.13C.15D.1611.(4分)若A(a,b),B(a﹣2,c)两点均在函数y=(x﹣1)2﹣2019的图象上,且1≤a<2,则b与c的大小关系为()A.b<c B.b≤c C.b>c D.b≥c12.(4分)如图,矩形ABCD∽矩形F AHG,连结BD,延长GH分别交BD、BC于点Ⅰ、J,延长CD、FG交于点E,一定能求出△BIJ面积的条件是()A.矩形ABJH和矩形HJCD的面积之差B.矩形ABJH和矩形HDEG的面积之差C.矩形ABCD和矩形AHGF的面积之差D.矩形FBJG和矩形GJCE的面积之差二、填空题(每小题4分,共24分)13.(4分)一枚质地均匀的骰子,六个面分别标有数字1,2,3,4,5,6,抛掷一次,恰好出现“正面朝上的数字是5”的概率是.14.(4分)在Rt△ABC中,∠C=90°,∠A=45°,AC=4,则AB的长是.15.(4分)在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE 的面积为4,四边形BCED的面积为5,那么AB的长为.16.(4分)如图,把△ABC绕着点A顺时针方向旋转角度α(0°<α<90°),得到△AB'C',若B',C,C'三点在同一条直线上,∠B'CB=46°,则α的度数是.17.(4分)如图,点B(﹣1,a)、C(b,﹣4)在⊙A上,点A在x轴的正半轴上,点D 是⊙A上第一象限内的一点,若∠D=45°,则圆心A的坐标为.18.(4分)如图,在平面直角坐标系中,点A,B的坐标分别是A(2,2),B(5,5),若二次函数y=ax2+bx+c的图象过A,B两点,且该函数图象的顶点为M(x,y),其中x,y是整数,且0<x<7,0<y<7,则a的值为.三、解答题(第19题6分,第20、21题8分,第22~24题各10分,第25题12分,第26题14分,共78分)19.(6分)计算:3tan30°+cos245°﹣2sin60°.20.(8分)如图是由24个小正方形组成的网格图,每一个正方形的顶点都称为格点,△ABC 的三个顶点都是格点.请按要求完成下列作图,每个小题只需作出一个符合条件的图形.(1)在图1网格中找格点D,作直线AD,使直线AD平分△ABC的面积;(2)在图2网格中找格点E,作直线AE,使直线AE把△ABC的面积分成1:2两部分.21.(8分)在一个不透明的小布袋中装有4个质地、大小完全相同的小球,它们分别标有数字0,1,2,3,小明从布袋里随机摸出一个小球,记下数字为x,小红在剩下的3个小球中随机摸出一个小球,记下数字为y,这样确定了点M的坐标(x,y).(1)画树状图或列表,写出点M所有可能的坐标;(2)小明和小红约定做一个游戏,其规则为:若M在第一象限,则小明胜;否则,小红胜;这个游戏公平吗?请你作出判断并说明理由.22.(10分)如图,在电线杆上的点C处引同样长度的拉线CE,CF固定电线杆CD,在离电线杆6米处安置测角仪AB(其中点B、E、D、F在同一条直线上),在A处测得电线杆上点C处的仰角为30°,测角仪AB的高为米.(1)求电线杆上点C离地面的距离CD;(2)若拉线CE,CF的长度之和为18米,求固定点E和F之间的距离.23.(10分)如图1,小明用一张边长为6cm的正方形硬纸板设计一个无盖的长方体纸盒,从四个角各剪去一个边长为xcm的正方形,再折成如图2所示的无盖纸盒,记它的容积为ycm.(1)y关于x的函数表达式是,自变量x的取值范围是;(2)为探究y随x的变化规律,小明类比二次函数进行了如下探究:①列表:请你补充表格中的数据:x00.51 1.52 2.53y012.513.5 2.50②描点:把上表中各组对应值作为点的坐标,在平面直角坐标系中(如图3)描出相应的点;③连线:用光滑的曲线顺次连结各点.(3)利用函数图象解决:若该纸盒的容积超过12cm3,估计正方形边长x的取值范围.(保留一位小数)24.(10分)已知:如图,在半圆O中,直径AB的长为6,点C是半圆上一点,过圆心O 作AB的垂线交线段AC的延长线于点D,交弦BC于点E.(1)求证:∠D=∠ABC;(2)记OE=x,OD=y,求y关于x的函数表达式;(3)若OE=CE,求图中阴影部分的面积.25.(12分)定义:若函数y=x2+bx+c(c≠0)与x轴的交点A,B的横坐标为x A,x B,与y轴交点的纵坐标为y C,若x A,x B中至少存在一个值,满足x A=y C(或x B=y C),则称该函数为友好函数.如图,函数y=x2+2x﹣3与x轴的一个交点A的横坐标为3,与y轴交点C的纵坐标为﹣3,满足x A=y C,称y=x2+2x﹣3为友好函数.(1)判断y=x2﹣4x+3是否为友好函数,并说明理由;(2)请探究友好函数y=x2+bx+c表达式中的b与c之间的关系;(3)若y=x2+bx+c是友好函数,且∠ACB为锐角,求c的取值范围.26.(14分)如图,在直角△ABC中,∠C=90°,AB=5,作∠ABC的平分线交AC于点D,在AB上取点O,以点O为圆心经过B、D两点画圆分别与AB、BC相交于点E、F(异于点B).(1)求证:AC是⊙O的切线;(2)若点E恰好是AO的中点,求的长;(3)若CF的长为①求⊙O的半径长;②点F关于BD轴对称后得到点F′,求△BFF′与△DEF′的面积之比.。
〖汇总3套试卷〗宁波市2020年九年级上学期数学期末达标测试试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,嘉淇一家驾车从A地出发,沿着北偏东60︒的方向行驶,到达B地后沿着南偏东50︒的方向行驶来到C地,且C地恰好位于A地正东方向上,则下列说法正确的是()A.B地在C地的北偏西40︒方向上B.A地在B地的南偏西30方向上C.3cos2BAC∠=D.50∠=°ACB【答案】C【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.【详解】解:如图所示,由题意可知,∠4=50°,∴∠5=∠4=50°,即B地在C地的北偏西50°方向上,故A错误;∵∠1=∠2=60°,∴A地在B地的南偏西60°方向上,故B错误;∵∠1=∠2=60°,∴∠BAC=30°,∴3cos BAC∠=C正确;∵∠6=90°−∠5=40°,即∠ACB=40°,故D错误.故选C.【点睛】本题考查的是方向角,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.2.若二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,则c应满足的条件是()A.c=0 B.c=1 C.c=0或c=1 D.c=0或c=﹣1【答案】C【分析】根据二次函数y =x 2﹣2x+c 的图象与坐标轴只有两个公共点,可知二次函数y =x 2﹣2x+c 的图象与x 轴只有一个公共点或者与x 轴有两个公共点,其中一个为原点两种情况,然后分别计算出c 的值即可解答本题.【详解】解:∵二次函数y =x 2﹣2x+c 的图象与坐标轴只有两个公共点,∴二次函数y =x 2﹣2x+c 的图象与x 轴只有一个公共点或者与x 轴有两个公共点,其中一个为原点, 当二次函数y =x 2﹣2x+c 的图象与x 轴只有一个公共点时, (﹣2)2﹣4×1×c =0,得c =1;当二次函数y =x 2﹣2x+c 的图象与轴有两个公共点,其中一个为原点时, 则c =0,y =x 2﹣2x =x(x ﹣2),与x 轴两个交点,坐标分别为(0,0),(2,0); 由上可得,c 的值是1或0, 故选:C . 【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键. 3.下列方程中不是一元二次方程的是( ) A .2449x = B .2523x x -=C .()()21819123y y y +=-+ D .20.012t t =【答案】C【分析】根据一元二次方程的定义进行排除选择即可,一元二次方程的关键是 方程中只包含一个未知数,且未知数的指数为2.【详解】根据一元二次方程的定义可知含有一个未知数且未知数的指数是2的方程为一元二次方程,所以A ,B ,D 均符合一元二次方程的定义,C 选项展开移项整理后不含有未知数,不符合一元二次方程的定义,所以错误,故选C. 【点睛】本题考查的是一元二次方程的定义,熟知此定义是解题的关键. 4.如图,在O 中,点C 为弧AB 的中点,若ADC α∠=(α为锐角),则APB ∠=( )A .180α︒-B .1802α︒-C .75α︒+D .3α【答案】B【分析】连接BD ,如图,由于点C 为弧AB 的中点,根据圆周角定理得到∠BDC=∠ADC=α,然后根据圆内接四边形的对角互补可用α表示出∠APB . 【详解】解:连接BD ,如图,∵点C为弧AB的中点,∴弧AC=弧BC,∴∠BDC=∠ADC=α,∴∠ADB=2α,∵∠APB+∠ADB=180°,∴∠APB=180°-2α.故选:B.【点睛】本题考查了弧、弦、圆心角的关系,以及圆内接四边形的性质,熟练掌握圆的性质定理是解答本题的关键.5.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.35【答案】A【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红﹣﹣﹣(红,红)(红,红)(绿,红)(绿,绿)红(红,红)﹣﹣﹣(红,红)(绿,红)(绿,红)红(红,红)(红,红)﹣﹣﹣(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)﹣﹣﹣(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)﹣﹣﹣∵所有等可能的情况数为20种,其中两次都为红球的情况有6种, ∴63P 2010==两次红, 故选A.6.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确 【答案】A【分析】过两把直尺的交点C 作CF ⊥BO 与点F ,由题意得CE ⊥AO ,因为是两把完全相同的长方形直尺,可得CE=CF ,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP 平分∠AOB 【详解】如图所示:过两把直尺的交点C 作CF ⊥BO 与点F ,由题意得CE ⊥AO ,∵两把完全相同的长方形直尺, ∴CE=CF ,∴OP 平分∠AOB (角的内部到角的两边的距离相等的点在这个角的平分线上), 故选A . 【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定7.如图,从半径为5的⊙O 外一点P 引圆的两条切线PA ,PB (A ,B 为切点),若∠APB =60°,则四边形OAPB 的周长等于( )A .30B .40C .10(31)-D .10(31)+【答案】D【分析】连接OP ,根据切线长定理得到PA =PB ,再得出∠OPA =∠OPB =30°,根据含30°直角三角形的性质以及勾股定理求出PB ,计算即可. 【详解】解:连接OP , ∵PA ,PB 是圆的两条切线, ∴PA =PB ,OA ⊥PA ,OB ⊥PB ,又OA=OB ,OP=OP ,∴△OAP ≌△OBP (SSS ), ∴∠OPA =∠OPB =30°, ∴OP=2OB=10,∴PB =22OP OB -=53=PA ,∴四边形OAPB 的周长=5+5+53+53=10(3+1), 故选:D .【点睛】本题考查的是切线的性质、切线长定理、勾股定理以及全等三角形的性质等知识,作出辅助线构造直角三角形是解题的关键.8.已知⊙O 的半径为13,弦AB//CD ,AB =24,CD =10,则AB 、CD 之间的距离为 A .17 B .7C .12D .7或17【答案】D【解析】①当弦AB 和CD 在圆心同侧时,如图1,∵AB=24cm,CD=10cm ,∴AE=12cm,CF=5cm ,∵OA=OC=13cm,∴EO=5cm,OF=12cm ,∴EF=12﹣5=7cm ;②当弦AB 和CD 在圆心异侧时,如图2,∵AB=24cm,CD=10cm ,∴AE=12cm,CF=5cm ,∵OA=OC=13cm,∴EO=5cm,OF=12cm ,∴EF=OF+OE=17cm,∴AB 与CD 之间的距离为7cm 或17cm .点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.9.如果2a b =(a ,b 均为非零向量),那么下列结论错误的是( ) A .a //b B .a -2b =0C .b =12a D .2ab =【答案】B【解析】试题解析:向量最后的差应该还是向量.20.a b -= 故错误. 故选B.10.下列实数中,介于23与32之间的是( ) A .2 B .3C .157D .π【答案】A【解析】估算无理数的大小问题可解.【详解】解:由已知23≈0.67,3=2 1.5,∵因为2 1.414≈,3 1.732≈,152.1437≈,π>3 ∴2介于23与32之间故选:A . 【点睛】本题考查了无理数大小的估算,解题关键是对无理数大小进行估算.11.如图,⊙O 的弦CD 与直径AB 交于点P ,PB =1cm ,AP =5cm ,∠APC =30°,则弦CD 的长为( )A .4cmB .5cmC .22D .42【答案】D【分析】作OH ⊥CD 于H ,连接OC ,如图,先计算出OB =3,OP =2,再在Rt △OPH 中利用含30度的直角三角形三边的关系得到OH=1,则可根据勾股定理计算出CH,然后根据垂径定理得到CH=DH,从而得到CD的长.【详解】解:作OH⊥CD于H,连接OC,如图,∵PB=1,AP=5,∴OB=3,OP=2,在Rt△OPH中,∵∠OPH=30°,∴OH=12OP=1,在Rt△OCH中,CH=223122-=,∵OH⊥CD,∴CH=DH=22,∴CD=2CH=42.故选:D.【点睛】本题考查了含30度角的直角三角形的性质、勾股定理以及垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.12.两个相似三角形对应高之比为1:2,那么它们的对应中线之比为()A.1:2B.1:3C.1:4D.1:8【答案】A【分析】根据相似三角形对应高的比等于相似比,对应中线的比等于相似比解答.【详解】∵两个相似三角形对应高之比为1:2,∴它们的相似比是1:2,∴它们对应中线之比为1:2.故选A.【点睛】此题考查相似三角形的性质,解题关键在于掌握其性质.二、填空题(本题包括8个小题)13.如图,BA是⊙C的切线,A为切点,AC=1,AB=2,点D是⊙C上的一个动点,连结BD并延长,交AC的延长线于E,则EC的最大值为_______.【答案】53【分析】连接BC ,过C 作CF BD ⊥于点F ,由图易知,当CF r =,即BD 与圆相切时,CE 最大,设EC最大值为x ,根据相似三角形的性质得到CE BECF AB=,代入求值即可; 【详解】连接BC ,过C 作CF BD ⊥于点F ,由图易知,当CF r =,即BD 与圆相切时,CE 最大,设EC 最大值为x , ∵△△CDE BAE ,∴CE BECF AB =, ∴12CEBE=,∴2BE CE =,即()22122x x ++=,解得53x =; 故答案是53.【点睛】本题主要考查了相似三角形对应线段成比例和圆的切线性质,准确计算是解题的关键. 14.如图,在Rt ABC 中,390,2,,4ACB AC tanB CD ∠=︒==平分ACB ∠交AB 于点,D DE BC ⊥,垂足为点E ,则DE =__________.【答案】87【分析】首先解直角三角形得出BC ,然后根据DE BC ⊥判定DE ∥AC ,再根据平行线分线段成比例即可得出BE DEBC AC=,再利用角平分线的性质,得出CE=DE ,然后构建方程,即可得出DE. 【详解】∵390,2,,4ACB AC tanB ∠=︒==∴382,43AC BC tanB ==÷= 又∵DE BC ⊥ ∴DE ∥AC ∴BE DE BC AC= 又∵CD 平分ACB ∠ ∴∠ACD=∠BCD=∠CDE=45° ∴CE=DE∴BC DE DEBC AC -=∴87DE =故答案为87.【点睛】此题主要考查利用平行线分线段成比例的性质构建方程,即可解题.15.在矩形ABCD 中,24AB AD ==,以点A 为圆心,AB 为半径的圆弧交CD 于点E ,交AD 的延长线于点F ,连接AE ,则图中阴影部分的面积为:__________.【答案】8233π-【分析】首先利用三角函数求的∠DAE 的度数,然后根据S 阴影=S 扇形AEF −S △ADE 即可求解. 【详解】解:∵24AB AD ==,AE=AB , ∴22AE AD -3∴Rt △ADE 中,cos ∠DAE=DA AE =12, ∴∠DAE=60°,则S△ADE=12AD⋅DE=12×2×23=23,S扇形AEF=2604360⨯π=83π,则S阴影=S扇形AEF−S△ADE=83π-23.故答案为823 3π-.【点睛】本题考查了扇形的面积公式和三角函数,求的∠DAE的度数是关键.16.小北同学掷两面质地均匀硬币,抛5次,4次正面朝上,则掷硬币出现正面概率为_____.【答案】1 2【分析】根据抛掷一枚硬币,要么正面朝上,要么反面朝上,可以求得相应的概率.【详解】无论哪一次掷硬币,都有两种可能,即正面朝上与反面朝上,则掷硬币出现正面概率为:12;故答案为:12.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.17.如图,建筑物BC上有一旗杆AB,从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为__________m.(结果取整数.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【答案】1【分析】根据正切的定义分别求出AC、BC,结合图形计算即可.【详解】解:由题意,CD=10,∠BDC=45°,∠ADC=51°,在Rt△BCD中,tan∠BDC=BC CD,则BC=CD•tan45°=10,在Rt△ACD中,tan∠ADC=AC CD,则AC=CD•tan∠ADC≈10×1.11=11.1,∴AB=AC-BC=1.1≈1(m),故答案为:1.【点睛】本题考查的是解直角三角形的应用——仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.18.已知234x y z x z y+===,则_______ 【答案】2 【分析】设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.三、解答题(本题包括8个小题)19.一段路的“拥堵延时指数”计算公式为:拥堵延时指数=高峰时段通过该路段的时间平峰时段通过该路段的时间,指数越大,道路越堵。
浙江省宁波市余姚市九年级(上)期末数学试卷-教师用卷
浙江省宁波市余姚市九年级(上)期末数学试卷1.下列各图中,能通过一个三角形绕一点旋转一次得到另一三角形的图形是()A. B. C. D.【答案】D【解析】解:根据旋转的定义,A,B,C中的三角形绕一点旋转一次不能得到另一三角形,不符合题意,选项D符合题意.故选:D.直接利用旋转的定义得出答案即可.本题考查了旋转,旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.2.气象台预明天下雨的概率为70%,则下列理解正确的是()A. 明天30%的地区不会下雨B. 明天下雨的可能性较大C. 明天70%的时间会下雨D. 明天下雨是必然事件【答案】B【解析】解:天气台预报明天下雨的概率为70%,说明明天下雨的可能性很大,故B正确.故选:B.根据概率的意义找到正确选项即可.此题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.3.把二次函数y=(x−1)2−3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为()A. y=(x+2)2+1B. y=(x−2) 2+1C. y=(x+4) 2+1D. y=(x−4) 2+1【答案】A【解析】解:把二次函数y=(x−1)2−3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为y=(x−1+3)2−3+4,即y=(x+2)2+ 1.故选:A.根据平移规律“左加右减,上加下减”解答.主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.4.一个圆的内接正六边形与内接正方形的边长之比为()A. 3:2B. 1:√3C. 1:√2D. √2:√3【答案】C【解析】解:设此圆的半径为R,它的内接正六边形的边长为R,则它的内接正方形的边长为√2R,内接正六边形和内接四边形的边长比为R:√2R=1:√2.故选:C.设圆的半径是R,则可表示出两个多边形的边长,进而求解.考查了正多边形和圆,解决圆的相关问题一定要结合图形,掌握基本的图形变换.找出内接正方形与内接正六边形的边长关系,是解决问题的关键.5.如图,直线l1//l2//l3,直线AB,DE分别交l1,l2,l3于点A,B,C和D,E,F,若AB:AC=2:5,EF=15,则DF的长等于()A. 18B. 20C. 25D. 30【答案】C【解析】解:∵l1//l2//l3,∴ABAC =DEDF,即25=DF−15DF,∴DF=25.故选:C.利用平行线分线段成比例定理得到ABAC =DEDF,然后把已知条件代入计算即可.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.6. 在4×5网格中,A ,B ,C 为如图所示的格点(正方形的顶点),则下列等式正确的是( )A. sinA =√32B. cosA =12C. tanA =√33D. cosA =√22【答案】D【解析】解:由网格构造直角三角形可得,AB 2=12+32=10,AC 2=12+22=5,BC 2=12+22=5, ∵AB 2=AC 2+BC 2, ∴△ABC 是等腰直角三角形, ∴∠A =∠B =45°, ∴sinA =sin45°=√22,cosA =cos45°=√22,tanA =tan45°=1,∴选项D 是正确的, 故选:D .根据网格构造直角三角形利用勾股定理可求出三角形ABC 的三边的长,进而得出此三角形是等腰直角三角形,在利用特殊锐角三角函数值得出答案.本题考查勾股定理及逆定理,特殊锐角三角函数值,掌握勾股定理及逆定理和特殊锐角三角函数值是正确判断的前提.7. 如图,已知⊙O 的半径为3,弦AB ⊥直径CD ,∠A =30°,则BD⏜的长为( )A. πB. 2πC. 3πD. 6π【答案】B【解析】解:如图,连接OB.∵CD⊥AB,CD是直径,∴AC⏜=BC⏜,∴∠AOC=∠BOC,∵OA=OB,∴∠A=∠B=30°,∴∠AOB=180°−30°−30°=120°,∴∠COB=1∠AOB=60°,2∴∠DOB=180°−60°=120°,=2π,∴BD⏜的长=120⋅π⋅3180∘故选:B.连接OB,求出∠BOD的度数,利用弧长公式求解即可.本题考查弧长公式,垂径定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.如图,某商场为了便于残疾人的轮椅行走,准备拆除台阶换成斜坡,又考虑安全,斜坡的坡角不得超过10°,此商场门前的台阶高出地1.53米,则斜坡的水平宽度AB 至少需()(精确到0.1米.参考值:sin10°=0.7,cos10°≈0.98,tan10°≈0.18)A. 8.5米B. 8.8米C. 8.3米D. 9米【答案】A【解析】解:由于台阶共高出地面1.53米,斜坡的坡角不得超过10°,≈8.5(米).斜坡的水平宽度AB至少为AB= 1.53 tan10∘故选:A.根据坡度坡角定义即可求出结果.本题考查了解直角三角形的应用−坡度坡角问题,解决本题的关键是掌握坡度坡角定义.9.如图,矩形相框的外框矩形的长为12dm,宽为8dm,上下边框的宽度都为x dm,左右边框的宽度都为y dm.则符合下列条件的x,y的值能使内边框矩形和外边框矩形相似的为()A. x=yB. 3x=2yC. x=1,y=2D. x=3,y=2【答案】B【解析】解:如图,当矩形ABCD∽矩形EFGH时,则有ABEF =ADEH,∴88−2x =1212−2y,可得3x=2y,选项B符合题意,当矩形ABCD∽矩形EHFG时,则有ABEH =ADEF,∴812−2y =128−2x,推不出:x=y或3x=2y或x=1,y=2或x=3,y=2.故选项A,B,C,D都不满足条件,此种情形不存在.∴矩形ABCD∽矩形EFGH,可得3x=2y,故选:B.分两种情形,利用相似多边形的性质求解即可.本题考查相似多边形的性质,矩形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.10.如图,二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=12x2+ex+f(e,f为常数)的图象的顶点分别为A、B,且相交于C(m,n)和D(m+8,n),若∠ACB=90°,则a的值为()A. −12B. −14C. −18D. −116【答案】C【解析】解:∵C(m,n)和D(m+8,n),∴CD//x轴,且二次函数的对称轴x=m+4,∴AB⊥CD,x2+ex+∵点C,D在二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=12f(e,f为常数)的图象上,(x−m)(x−m−8)+n,∴y=ax2+bx+c=a(x−m)(x−m−8)+n,y=12∴A(m+4,n−16a),B(m+4,n−8),设AB与CD的交点为E,则E(m+4,n),则CE=4,AE=−16a,BE=8;在△ABC中,∠ACB=90°,且AB⊥CD,则CE2=AE⋅BE,∴42=−16a×8,解得,a=−1.8故选:C.根据二次函数图象的性质,再结合二次函数图象,可以表达对称轴,并结合几何图形,利用相似三角形得出等量关系,建立等式,求解.本题主要考查二次函数图象的性质,熟练掌握并运用二次函数的性质是解决本题的关键.11.如图,已知角α的终边经过点P(4,3),则cosα=______ .【答案】45【解析】解:过点P作PA⊥x轴于点A,∵点P的坐标为(4,3),∴PA=3,OA=4,由勾股定理得,OP=√PA2+OA2=5,∴cosα=OAOP =45,故答案为:45.过点P作PA⊥x轴于点A,根据勾股定理求出OP,根据余弦的定义计算,得到答案.本题考查的是解直角三角形,掌握余弦的定义是解题的关键.12.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球.某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记第下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数n10015020050080010006000到白球的次数m58961162954846013601摸到白球的频率mn0.580.640.580.590.6050.6010.600小杰根据表格中的数据提出了下列两个判断:①若摸10000次,则频率一定为0.6;②可以估计摸一次得白球的概率约为0.6.则这两个判断正确的是______ (若有正确的,则填编号;若没有正确的,则填“无”).【答案】②【解析】解:由题意可得,若摸10000次,则频率不一定为0.6,可能为0.6,故①错误;由表格中的数据可以估计摸一次得白球的概率约为0.6,故②正确;故答案为:②.根据题意和表格中的数据、概率的含义,可以判断①和②的结论是否成立,本题得以解决.本题考查利用频率估计概率,解答本题的关键是明确题意,利用概率的知识解答.13. 已知,点A(−1,y 1),B(−0.5,y 2),C(4,y 3)都在二次函数y =ax 2−2ax −1(a >0)的图象上,则y 1,y 2,y 3的大小关系是______ . 【答案】y 2<y 1<y 3【解析】解:当x =−1时,y 1=a ×(−1)2−2a ×(−1)−1=3a −1; 当x =−0.5时,y 2=a ×(−0.5)2−2a ×(−0.5)−1=1.25a −1; 当x =4时,y 3=a ×42−2a ×4−1=8a −1. ∵a >0,∴1.25a −1<3a −1<8a −1, ∴y 2<y 1<y 3.故答案为:y 2<y 1<y 3.利用二次函数图象上点的坐标特征,可求出y 1,y 2,y 3的值,比较后即可得出结论. 本题考查了二次函数图象上点的坐标特征,代入各点的横坐标,求出y 1,y 2,y 3的值是解题的关键.14. 如图,AB 为⊙O 的直径,AC⏜=2BC ⏜,M 为BC ⏜的中点,过M 作MN//OC 交AB 于N ,连接BM ,则∠BMN 的度数为______ . 【答案】45°【解析】解:连接OM .∵AB 是直径,AC⏜=2BC ⏜, ∴∠BOC =13×180°=60°,∵CM ⏜=BM⏜, ∴∠MOB =∠COM =30°, ∵OM =OB ,∴∠B =∠OMB =12(180°−30°)=75°, ∵OC//MN ,∴∠MNB =∠COB =60°,∴∠BMN=180°−∠BNM−∠NBM=180°−60°−75°=45°,故答案为:45°.连接OM.想办法求出∠MNB,∠NBM,即可解决问题.本题考查圆周角定理,平行线的性质,三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.如图,将一张面积为10的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片,根据图中标示的长度,则平行四边形纸片的面积为______ .【答案】245【解析】解:如图,作AM⊥BC于M,AM交DE于N.∵S△ABC=12BC⋅AM=10,BC=5,∴AM=4.∵DE//BC,AM⊥BC,∴△ADE∽△ABC,AM⊥DE,∴ANAM =DEBC,即AN4=25,∴AN=85,∴平行四边形DEGF的高MN=AM−AN=4−85=125,∴平行四边形纸片的面积=2×125=245.故答案为:245.如图,由DE//BC,可得△ADE∽△ABC,利用相似三角形的性质,可求得△ADE的高,进而求得平行四边形的高,则问题可解.本题考查了平行四边形的性质,相似三角形的性质,三角形的面积等知识,需要熟练掌握相关性质及其应用.16.如图1,是2002年发行的中国纪念邮票,其图案是三国时期吴国数学家赵爽在注释《周髀算经》中所给勾股定理的证明.同学们在探索勾股定理时还出现了许多利用正方形证明勾股定理的方法,如图2,正方形ABCD是由四个全等的直角三角形和一个正方形EFGH拼成;正方形EFGH是由与上述四个直角三角形全等的三角形和正方形IJKL拼成;正方形ABCD,EFGH,IJKL的面积分别为S1,S2,S3,分别连接AK,BL,CI,DJ并延长构成四边形MNOP,它的面积为m.①请用等式表示S1,S2,S3之间的数量关系为:______ ;②m=______ (用含S1,S3的代数式表示m).【答案】S2=12(S1+S3)2S1S3S1+S3.【解析】解:①观察图像(2)可知,S1=8S△AEH+S3,4S△AEH=S2−S3,∴S1=2(S2−S3)+S3,∴2S2=S1+S3,∴S2=12(S1+S3),故答案为:S2=12(S1+S3).②∵HE⊥EF,AK⊥HE,∴AK//EF,同理:BL//GF,DJ//HE,CI//GH,∴四边形MNOP是平行四边形,且△MKL≌△NLI≌△OIJ≌△PJK,∴MN//GF//EH,∴∠LMK=∠EKH=90°,∠MLK=∠HEL,∴△MLK∽△KEH,∴ML KE =MK KH =LK EH , 设AE =x ,PE =y ,则:ML x =MK y =22, ∴ML =22,MK =22=LN , ∴MN =√x 2+y 2√x 2+y 2=22√x 2+y 2, ∴m =MN 2=(2222)2=(x+y)2(x−y)2x 2+y 2, ∵S 1=(x +y)2,S 2=x 2+y 2,S 3=(x −y)2,∴m =S 1S 3S 2=S 1S 312(S 1+S 3)=2S 1S 3S 1+S 3. 故答案为:2S 1S 3S 1+S 3.①由题意可得:S 1=8S △AEH +S 3,4S △AEH =S 2−S 3,代入化简即可得到答案; ②先证明△MLK∽△KEH ,设AE =x ,PE =y ,结合四边形MNOP 的面积为m ,可得答案.本题考查了正方形的判定和性质,勾股定理,全等三角形判定和性质,相似三角形判定和性质等重要知识,属于基础题,解答本题的关键在于熟练运用相似三角形的判定和性质及勾股定理.17. 计算求值:(1)已知a b =34,求a−ba 的值;(2)2sin30°−tan60°⋅cos30°. 【答案】解:(1)∵a b =34,∴设a =3x ,则b =4x ,∴a−b a =3x−4x 3x =−13;(2)原式=2×12−√3×√32=1−32=−12.【解析】(1)直接利用一个未知数表示出a ,b ,进而代入化简得出答案;(2)直接利用特殊角的三角函数值代入得出答案.此题主要考查了比例的性质以及特殊角的三角函数值,正确掌握相关运算法则是解题关键.18.如图,在4×8的网格中,已知格点△ABC(正方形的顶点称为格点,顶点在格点处的三角形称为格点三角形),在图1、图2中分别画一个格点三角形(所画的两个三角形不全等),使其同时符合下列两个条件.(1)与△ABC有一公共角;(2)与△ABC相似但不全等.【答案】解:如图所示,△ADE和△ADB即为所求.【解析】根据网格即可画出满足两个条件的三角形.本题考查了作图−应用与设计作图,全等三角形的判定,相似三角形的判定,解决本题的关键是掌握全等三角形的判定和相似三角形的判定.19.某校在防疫期间开设A,B,C三个测体温通道.一天早晨,小丽与小聪任意选择一个通道进入校园.(1)求小丽通过A通道进入校园的概率;(2)利用画树状图或列表的方法,求小丽和小聪从两个不同通道进入校园的概率(要求画出树状图或表格).【答案】解:(1)小丽通过A通道进入校园的概率为1;3(2)列表如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C由表可知,共有9种等可能的结果,其中小丽和小聪从两个不同通道进入校园的有6种可能,∴小丽和小聪从两个不同通道进入校园的概率为69=23.【解析】(1)直接利用概率公式求解可得答案;(2)先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式计算可得.本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.20.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角α的度数来调整晾杆的高度,图2是晾衣架的侧面的平面示意图,AB和CD分别是两根长度不等的支撑杆,夹角∠BOD=α,AO=70cm,BO=DO=80cm,CO=40cm.(1)若α=56°,求点A离地面的高度AE;(参考值:sin62°=cos28°≈0.88,sin28°=cos62°≈0.47,tan62°≈1.88,tan28°≈0.53.)(2)调节α的大小,使A离地面高度AE=125cm时,求此时C点离地面的高度CF.【答案】解:(1)如图,过O作OG⊥BD于点G,∵AE⊥BD,∴OG//AE,∵BO=DO,∴OG平分∠BOD,∴∠BOG=12∠BOD=12×56°=28°,∴∠EAB=∠BOG=28°,在Rt△ABE中,AB=AO+BO=70+80=150(cm),∴AE=AB⋅cos∠EAB=150×cos28°≈150×0.88=132(cm),答:点A离地面的高度AE约为132cm;(2)∵OG//AE,∴∠EAB=∠BOG,∵CF⊥BD,∴CF//OG,∴∠DCF=∠DOG,∵∠BOG=∠DOG,∴∠BAE=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△CFD,∴CFAE =CDAB,∴CF=CD⋅AEAB =120×125150=100(cm),答:C点离地面的高度CF为100cm.【解析】(1)过O作OG⊥BD于点G,根据等腰三角形的性质和平行线的性质可得∠EAB=∠BOG=28°,再利用锐角三角函数即可解决问题;(2)根据已知条件证明△AEB∽△CFD,对应边成比例即可求出CF的高度.本题考查了解直角三角形的应用,解决本题的关键是综合运用锐角三角函数,等腰三角形的性质,相似三角形的判定与性质等知识.21.如图,用长为24米的篱笆靠一道长为a米的墙围一个矩形养鸡场(靠墙一面不用篱笆).(1)求下列情形下养鸡场的面积的最大值;①a=15;②a=10.(2)若可围成的矩形养鸡场的面积的最大值为67.5平方米,求a的值.【答案】解:(1)设矩形的长为x米,则宽为24−x2米,由题意可知x≤a,∴设矩形的面积为S,则S=x×24−x2=−12x2+12x=−12(x−12)2+72,∵−12<0,抛物线开口向下,对称轴为直线x=12,∴当0<x≤12时,S随x的增大而增大,当x≥12时,S随x的增大而减小;①a=15时,x≤a即x≤15;∴当x=12时,S有最大值为72平方米;②a=10时,x≤a即x≤10,∴当x=10时,面积的最大值为−12×(10−12)2+72=70(平方米).(2)令S=67.5得:−12(x−12)2+72=67.5,解得x=9或x=15,由x≤a可知,当x=15时,a≥15,由(1)知,此时矩形最大值在x=12时取得,面积最大值为72平方米,故x=15舍去.∴a=9.【解析】(1)设矩形的长为x米,则宽为24−x米,由题意可知x≤a,设矩形的面积为S,2根据题意用含x的式子表示出S,将其写成二次函数的顶点式,则可知其对称轴,然后分别对①a=15;②a=10计算求得相应的最大值即可.(2)令S=67.5得关于x的一元二次方程,求得方程的解并结合由(1)的结论可得答案.本题考查了二次函数与一元二次方程在几何图形问题中的应用,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.22.如图,已知,A,B是⊙O上的点,P为⊙O外一点,连接PA,PB,分别交⊙O于点C,D,AC⏜=BD⏜.(1)求证:PA=PB;(2)若∠P=60°,CD⏜=3AC⏜.△AOC的面积等于9,求图中阴影部分的面积.【答案】(1)证明:连接OA,OC,OD,OB,设OM⊥AC于M,ON⊥BD于N,设OP 交⊙O于E.∵AC⏜=BD⏜,∴AC=BD,∵OA=OC=OB=OD,OM⊥AC,ON⊥BD,∴CM=AM,BN=DN,∠OMC=∠OND=90°,∴CM=DN,在Rt△OMC和Rt△OND中,{CM=DNOC=OD,∴Rt△OMC≌Rt△OND(HL),∴OM=ON,在Rt△POM和Rt△PON中,{OP=OPOM=ON,∴Rt△POM≌Rt△PON(HL),∴PM=PN,∵AM=BN,∴PA=PB.(2)解:∵∠APB=60°,∠PMO=∠PNO=90°,∴∠MON=120°,∵△POM≌△PON,∴∠POM=∠PON=60°,∵CD⏜=3AC⏜,∴∠COE=3∠COM,∴∠COM=15°,∴∠AOC=2∠COM=30°,过点A作AJ⊥OC于J.设OA=OB=R,则AJ=12R ∴S△AOC=9,∴12⋅R⋅12⋅R=9,∴R=6,∴S阴=S阴=S阴−S△AOC=30×π×62360−9=3π−9.【解析】(1)连接OA,OC,OD,OB,设OM⊥AC于M,ON⊥BD于N,设OP交⊙O于E.证明Rt△OMC≌Rt△OND(HL),推出OM=ON,再证明Rt△POM≌Rt△PON(HL),可得结论.(2)过点A作AJ⊥OC于J.设OA=OB=R,则AJ=12R,首先证明∠AOC=30°,利用三角形的面积公式求出R,即可解决问题.本题考查扇形的面积公式,垂径定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.如图,已知二次函数y=ax2+bx+c的图象经过点A(−1,0),B(4,0),E(1,3),与y轴交于点C.(1)求该二次函数表达式;(2)判断△ABC 的形状,并说明理由;(3)P 为第一象限内该二次函数图象上一动点,过P 作PQ//AC ,交直线BC 于点Q ,作PM//y 轴交BC 于M .①求证:△PQM∽△COA ;②求线段PQ 的长度的最大值.【答案】解:(1)∵二次函数y =ax 2+bx +c 的图象经过点A(−1,0),B(4,0),E(1,3), ∴{0=a −b +c 0=16a +4b +c 3=a +b +c,解得:{a =−12b =32c =2,∴二次函数表达式为y =−12x 2+32x +2;(2)△ABC 是直角三角形,理由如下:∵抛物线y =−12x 2+32x +2与y 轴交于点C ,∴点C(0,2),又∵点A(−1,0),B(4,0),∴AB =5,AC =√OA 2+OC 2=√1+4=√5,BC =√OC 2+OB 2=√4+16=2√5, ∵AB 2=25,AC 2+BC 2=25,∴AB 2=AC 2+BC 2,∴∠ACB =90°,∴△ABC 是直角三角形;(3)①∵∠ACB =∠AOC =90°,∴∠ACO +∠BCO =90°=∠ACO +∠CAO ,∴∠BCO =∠CAO ,∵PQ//AC ,PM//y 轴,∴∠ACB =∠CQP =∠PQM =90°,∠PMQ =∠BCO =∠CAO ,∴△PMQ∽△COA;②如图,延长PM交AB于H,∵∠PMQ=∠BMH,∠PQM=∠PHB=90°,∴∠QPM=∠CBA,∵B(4,0),点C(0,2),∴直线BC解析式为y=−12x+2,设P(m,−12m2+32m+2),则点M(m,−12m+2),∴PM=−12m2+32m+2−(−12m+2)=−12(m−2)2+2,∵cos∠CBA=cos∠QPM,∴BCAB =PQPM,∴2√55=PQ−12(m−2)2+2,∴PQ=−√55(m−2)2+4√55,∴当m=2时,PQ有最大值为4√55.【解析】(1)利用待定系数可求解析式;(2)先求出AB,AC,BC,由勾股定理的逆定理可求解;(3)①由平行线的性质可得∠ACB=∠CQP=∠PQM=90°,∠PMQ=∠BCO=∠CAO,由相似三角形的判定定理可得△PQM∽△COA;②先求出BC解析式,设P(m,−12m2+32m+2),则点M(m,−12m+2),由锐角三角函数可求PQ的长,由二次函数的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,相似三角形的判定和性质,勾股定理,二次函数的性质等知识,灵活运用这些性质解决问题是本题的关键.24.如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.⏜的中点;(1)如图1.①求证:点P为BAC②求sin∠BAC的值;(2)如图2,若点A为PC⏜的中点,求CE的长;(3)若△ABC为非锐角三角形,求PA⋅AE的最大值.【答案】(1)①证明:如图1,连接PC,∵A、P、B、C四点内接于⊙O,∴∠PAF=∠PBC,∵AP平分∠BAF,∴∠PAF=∠BAP,∵∠BAP=∠PCB,∴∠PCB=∠PBC,∴PB=PC,∴PC⏜=PB⏜,⏜的中点;∴点P为BAC②解:如图2,过P作PG⊥BC于G,交BC于G,交⊙O于H,连接OB,∴PB⏜=PC⏜,∴PH是直径,∵∠BPC=∠BAC,∠BOG=12∠BPG=∠BPC,∵OG⊥BC,∴BG=12BC=3,Rt△BOG中,∵OB=5,∴sin∠BAC=sin∠BOG=BGOB =35;(2)解:如图3,过P作PG⊥BC于G,连接OC,由(1)知:PG过圆心O,且CG=3,OC=OP=5,∴OG=4,∴PG=4+5=9,∴PC=√CG2+PG2=√32+92=3√10,设∠APC=x,∵A是PC⏜的中点,∴AP⏜=AC⏜,∴∠ABC=∠ABP=x,∵PB=PC,∴∠PCB=∠PBC=2x,△PCE中,∠PCB=∠CPE+∠E,∴∠E=2x−x=x=∠CPE,∴CE=PC=3√10;(3)解:如图4,过点C作CQ⊥AB于Q,∵∠ACE=∠P,∠CAE=∠PAF=∠PAB,∴△ACE∽△APB,∴PAAC =ABAE,∴PA⋅AE=AC⋅AB,∵sin∠BAC=CQAC,∴CQ=AC⋅sin∠BAC=35AC,∴S△ABC=12AB⋅CQ=310AB⋅AC,∴PA⋅AE=103S△ABC,∵△ABC为非锐角三角形,∴点A运动到使△ABC为直角三角形时,如图5,△ABC的面积最大,Rt△ABC中,AB=10,BC=6,∴AC=8,此时PA⋅AE=103×12×6×8=80.【解析】(1)①证明:如图1,连接PC,根据圆内接四边形的性质和圆周角定理得:∠PCB=∠PBC,所以弦相等,弧相等,可得结论;②如图2,作辅助线,构建直径PG,根据垂径定理得:BG=3,∠BOG=∠BAC,最后由三角函数定义可得结论;(2)如图3,过P作PG⊥BC于G,连接OC,根据勾股定理计算OG和PC的长,根据各角的关系证明∠APC=∠E,则CE和PC的长相等,可得结论;(3)如图4,过点C作CQ⊥AB于Q,证明△ACE∽△APB,列比例式得:PA⋅AE=AC⋅AB,根据三角形面积公式得PA⋅AE=103S△ABC,由图形可知:点A运动到使△ABC为直角三角形时,如图5,△ABC的面积最大,从而得结论.本题属于圆的综合题,考查了相似三角形的判定和性质,四点共圆的性质,圆周角定理,垂径定理,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.。
2019-2020学年浙江省宁波市余姚市九年级(上)期末数学试卷 (解析版)
2019-2020学年浙江省宁波市余姚市九年级(上)期末数学试卷一、选择题(共12小题). 1.(4分)若13a b =,则a bb+的值为( ) A .53B .43 C .35D .342.(4分)下列事件属于必然事件的是( ) A .足球比赛中梅西罚进点球B .小强在校运会上100米比赛的成绩为5秒C .今年宁波的冬天不下雪D .实心的铁球会在水中下沉3.(4分)抛物线224y x =+的顶点坐标是( ) A .(0,4)B .(2,4)C .(2,2)D .(0,2)4.(4分)若一个三角形的三边长分别为3,4,5,则这个三角形的外接圆的半径是( ) A .1B .2.4C .2.5D .55.(4分)如果一个扇形的半径是2,弧长是2π,则此扇形的圆心角的度数为( ) A .30︒B .45︒C .60︒D .90︒6.(4分)已知点1(2,)A y -,2(1,)B y 在二次函数22y x x m =+-的图象上,则下列有关1y 和2y 的大小关系的结论中正确的是( )A .12y y =B .12y y <C .12y y >D .与m 的值有关7.(4分)如图,等边ABC ∆内接于O ,点D 在AC 上,15CAD ∠=︒,则ACD ∠的度数为( )A .30︒B .35︒C .40︒D .45︒8.(4分)抛物线2y ax bx c =++经过4个点(,)A m n ,(6,)B m n +,(4,2)C -,(0,2)D ,则m的值为()A.5-B.1-C.3D.不能确定9.(4分)在锐角等腰ABC∆中,AB AC=,4sin5A=,则cosC的值是() A.12B.2C.255D.5510.(4分)如图,ABC∆的中线AD,BE相交于点F,过点E作//EG AD交BC于点G,则:EG AF的值是()A.12B.23C.34D.4511.(4分)如图,已知O的半径为1,按如下步骤作图:①以O上的点A为圆心,1为半径画弧交O于点B;②依次在O上取点C和D,使得BC CD AB==;③分别以点A和D为圆心,AC长为半径画弧交于点E;④以点A为圆心,OE长为半径画弧交O于点F.则以下说法不正确的是()A.3AC=B.2AF=C.45ACF∠=︒D.30BEO∠=︒12.(4分)如图,矩形ABCD被分成5个正方形和2个小矩形后形成一个中心对称图形,如果矩形BEFG∽矩形ABCD,那么BEFGABCDSS矩形矩形的值为()A .12B .13C .14 D .15二、填空题(每小题4分,共24分)13.(4分)正六边形的每个内角的度数是 度.14.(4分)比较sin80︒与tan 46︒的大小,其中值较大的是 .15.(4分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为 .16.(4分)将二次函数25(1)3y x =-+的图象向左平移2个单位长度,再向下平移1个单位长度后得到的二次函数表达式为 .17.(4分)如图,在ABC ∆中,AB AC =,30ABC ∠=︒,点P 在ABC ∆内,连结PA ,PB ,PC ,若123∠=∠=∠,且1PA =,则PB 的长是 .18.(4分)如图,O 的直径AB 长为12,点E 是半径OA 的中点,过点E 作CD AB ⊥交O 于点C ,D ,点P 在CBD 上运动,点Q 在线段CP 上,且2PQ CQ =,则EQ 的最大值是 .三、解答题(第19题6分,第20、21题各8分,第22、23、24题各10分,第25题12分,第26题14分,共78分)19.(6分)计算:23tan 30cos 302sin 60︒+︒-︒20.(8分)一个不透明的袋子中装有2个红球和2个白球,这些球除颜色外其余都相同,先从袋中摸出1个球后不放回,再摸出一个球.(1)请用树状图或列表法列举出两次摸球可能出现的各种结果. (2)求两次摸到不同颜色的球的概率.21.(8分)如图,学校旗杆的下方有一块圆形草坪,草坪的外面围着“圆环”水池,草坪和水池的外边缘是两个同心圆,旗杆在圆心O 的位置且与地面垂直.(1)若草坪的面积与圆环水池的面积之比为1:4,求两个同心圆的半径之比.(2)如图,若水池外面通往草坪有一座10米长的小桥BC ,小桥所在的直线经过圆心O ,上午8:00时太阳光线与地面成30︒角,旗杆顶端的影子恰好落在水池的外缘;上午9:00时太阳光线与地面成45︒角,旗杆顶端的影子恰好落在草坪的外缘,求旗杆的高OA 长.22.(10分)如图,在平面直角坐标系中,抛物线223(0)y ax ax a =+-≠交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C ,顶点为D . (1)求抛物线的对称轴和点C 的坐标.(2)若4AB =,求抛物线图象位于直线BD 上方部分的自变量x 的取值范围.23.(10分)如图1,ABC ∆内接于O ,点D 是AB 的中点,且与点C 位于AB 的异侧,CD 交AB 于点E .(1)求证:ADE CDA∆∆∽.(2)如图2,若O的直径46AB=,2CE=,求AD和CD的长.24.(10分)小颖家经营着一家水果店,在杨梅旺销季节,她的父母经常去果园采购杨梅用于销售.果园的杨梅价格如下:购买数量不超过20筐,每筐进价20元;购买数量超过20筐,每筐进价18元.小颖在观察水果店一段时间的销售情况后发现,当杨梅的售价为每筐30元时,每天可销售30筐;每筐售价提高1元,每天销量减少1筐;每筐售价降低1元,每天销量增加1筐.若每天购进的杨梅能全部售出,且售价不低于进价,从果园进货的运费为每天100元.(1)设售价为每筐x元,则每天可售出筐.(2)当每筐杨梅的售价定为多少元时,杨梅的日销售利润最大?最大日利润是多少元?25.(12分)定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,ABC∆中,点D 是BC边上一点,连结AD,若2AD BD CD=,则称点D是ABC∆中BC边上的“好点”.(1)如图2,ABC∆的顶点是43⨯网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)ABC∆中,9BC=,4tan3B=,2tan3C=,点D是BC边上的“好点”,求线段BD的长.(3)如图3,ABC∆是O的内接三角形,OH AB⊥于点H,连结CH并延长交O于点D.①求证:点H是BCD∆中CD边上的“好点”.②若O的半径为9,90ABD∠=︒,6OH=,请直接写出CHDH的值.26.(14分)如图1,在平面直角坐标系中,点A,B的坐标分别为(8,0)A和(0,6)B,点P 为x轴负半轴上的一个动点,画ABP∆的外接圆,圆心为M,连结BM并延长交圆于点C,连结CP.(1)求证:OBP ABC∠=∠.(2)当M的直径为14时,求点P的坐标.(3)如图2,连结OC,求OC的最小值和OC达到最小值时ABP∆的外接圆圆心M的坐标.参考答案一、选择题(每小题4分,共48分) 1.(4分)若13a b =,则a bb+的值为( ) A .53B .43 C .35D .34解:13a b =, 3b a ∴=, ∴3433a b a a b a ++==; 故选:B .2.(4分)下列事件属于必然事件的是( ) A .足球比赛中梅西罚进点球B .小强在校运会上100米比赛的成绩为5秒C .今年宁波的冬天不下雪D .实心的铁球会在水中下沉解:A 、足球比赛中梅西罚进点球,是随机事件,选项不合题意;B 、小强在校运会上100米比赛的成绩为5秒,属于不可能事件,选项不合题意;C 、今年宁波的冬天不下雪,是随机事件,选项不合题意;D 、实心的铁球会在水中下沉,属于必然事件,选项符合题意;故选:D .3.(4分)抛物线224y x =+的顶点坐标是( ) A .(0,4)B .(2,4)C .(2,2)D .(0,2)解:抛物线224y x =+, ∴该抛物线的顶点坐标为(0,4),故选:A .4.(4分)若一个三角形的三边长分别为3,4,5,则这个三角形的外接圆的半径是( ) A .1B .2.4C .2.5D .5解:三角形的三边长分别为3,4,5,又222345+=,∴这个三角形是直角三角形,∴这个三角形的外接圆的直径的长就是斜边的长为5, ∴此三角形的外接圆半径是2.5.故选:C .5.(4分)如果一个扇形的半径是2,弧长是2π,则此扇形的圆心角的度数为( ) A .30︒ B .45︒C .60︒D .90︒解:扇形的弧长为2π,半径为2,∴22180n ππ⨯=, 解得:45n =︒. 故选:B .6.(4分)已知点1(2,)A y -,2(1,)B y 在二次函数22y x x m =+-的图象上,则下列有关1y 和2y 的大小关系的结论中正确的是( )A .12y y =B .12y y <C .12y y >D .与m 的值有关解:222(1)1y x x m x m =+-=+--,点1(2,)A y -是二次函数2(1)1y x m =+--图象上的点,21(21)111y m m m ∴=-+--=--=-;点2(1,)B y 是二次函数2(1)1y x m =+--图象上的点,22(11)1413y m m m ∴=+--=--=-.12y y ∴<.故选:B .7.(4分)如图,等边ABC ∆内接于O ,点D 在AC 上,15CAD ∠=︒,则ACD ∠的度数为( )A .30︒B .35︒C .40︒D .45︒解:连接CD , ABC ∆是等边三角形, 60B ∴∠=︒, 120D ∴∠=︒, 15CAD ∠=︒,1801512045ACD ∴∠=︒-︒-︒=︒,故选:D .8.(4分)抛物线2y ax bx c =++经过4个点(,)A m n ,(6,)B m n +,(4,2)C -,(0,2)D ,则m 的值为( ) A .5-B .1-C .3D .不能确定解:抛物线2y ax bx c =++经过4个点(,)A m n ,(6,)B m n +,(4,2)C -,(0,2)D , ∴64022m m ++-+=, 解得,5m =-, 故选:A .9.(4分)在锐角等腰ABC ∆中,AB AC =,4sin 5A =,则cos C 的值是( ) A .12B .2C 25D 5 解:如图,过B 作BD AC ⊥于D ,4sin 5BD A AB ==, ∴设4BD k =,5AB k =,223AD AB BD k ∴=-=,5AB AC k ==, 2CD k ∴=,2225BC BD CD k ∴=+=,25cos 525CD k C BC k ∴===, 故选:D .10.(4分)如图,ABC ∆的中线AD ,BE 相交于点F ,过点E 作//EG AD 交BC 于点G ,则:EG AF 的值是( )A .12B .23C .34D .45解:ABC ∆的中线AD ,BE 相交于点F , AE EC ∴=,BD CD =,2BE AFEF DF==, 即23AF AD =, //DE AD ,AE CE =, DG CG ∴=,12EG AD ∴=,∴132243ADEGAF AD==,故选:C .11.(4分)如图,已知O的半径为1,按如下步骤作图:①以O上的点A为圆心,1为半径画弧交O于点B;②依次在O上取点C和D,使得BC CD AB==;③分别以点A和D为圆心,AC长为半径画弧交于点E;④以点A为圆心,OE长为半径画弧交O于点F.则以下说法不正确的是()A.3AC=B.2AF=C.45ACF∠=︒D.30BEO∠=︒解:如图所示,①以O上的点A为圆心,1为半径画弧交O于点B;②依次在O上取点C和D,使得BC CD AB==;∴点A、B、C、D为圆的六等分点,③分别以点A和D为圆心,AC长为半径画弧交于点E;3AC AE∴==④以点A 为圆心,OE 长为半径画弧交O 于点F . 2AF OE ∴==,1OA OF ==90AOF ∴∠=︒,45ACF ∴∠=︒.说法不正确的是D .故选:D .12.(4分)如图,矩形ABCD 被分成5个正方形和2个小矩形后形成一个中心对称图形,如果矩形BEFG ∽矩形ABCD ,那么BEFGABCD S S 矩形矩形的值为( )A .12B .13C .14D .15解:设小正方形的边长为a ,大正方形的边长为b ,则AG b =,BG b a =+,2BE b a =-,2CE b =,2AB b a ∴=+,224BC b b a b a =+-=-,矩形BEFG ∽矩形ABCD ,∴BG BE AD AB =,即242b a b a b a b a+-=-+, 32b a ∴=, 52BG b a a ∴=+=,45AD b a a =-=, 矩形BEFG ∽矩形ABCD ,∴22512()()54BEFGABCD a S BG S AD a ===矩形矩形. 故选:C .二、填空题(每小题4分,共24分)13.(4分)正六边形的每个内角的度数是 120 度. 解:根据多边形的内角和定理可得:正六边形的每个内角的度数(62)1806120=-⨯︒÷=︒.14.(4分)比较sin80︒与tan 46︒的大小,其中值较大的是 tan 46︒ .解:sin α随α的增大而增大,且sin80sin 90︒<︒,sin801∴︒<,tan α随α的增大而增大,且tan 46tan 45︒>︒,tan 461∴︒>,则tan 46sin80︒>︒,故答案为:tan 46︒.15.(4分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为 25. 解:从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为25, 故答案为:25. 16.(4分)将二次函数25(1)3y x =-+的图象向左平移2个单位长度,再向下平移1个单位长度后得到的二次函数表达式为 25(1)2y x =++ .解:将二次函数25(1)3y x =-+的图象向左平移2个单位长度,再向下平移1个单位长度后得到的二次函数表达式为:25(12)31y x =-++-,即25(1)2y x =++.故答案为:25(1)2y x =++.17.(4分)如图,在ABC ∆中,AB AC =,30ABC ∠=︒,点P 在ABC ∆内,连结PA ,PB ,PC ,若123∠=∠=∠,且1PA =,则PB 的长是 3 .解:AB AC =,30ABC ACB∴∠=∠=︒,123∠=∠=∠,PBC ACP∴∠=∠,APC CPB∴∆∆∽,∴AP AC PC CP BC PB==,在等腰ABC∆中,33 ACBC=,1AP=,3PC∴=,3PB∴=,故答案为3.18.(4分)如图,O的直径AB长为12,点E是半径OA的中点,过点E作CD AB⊥交O 于点C,D,点P在CBD上运动,点Q在线段CP上,且2PQ CQ=,则EQ的最大值是132+.解:延长CD到F,使得DE CE=,连接OF,PF,OP,OD.AB CD⊥,CE DE∴=,DE DF =,2EF CE ∴=,2PQ CQ =, ∴12CE CQ EF QP ==, ECQ FCP ∠=∠,ECQ FCP ∴∆∆∽, ∴13EQ CE PF CF ==, 13EQ PF ∴=, 3AE OE ==,6OD =,90OED ∠=︒,DE ∴===,在Rt OED ∆中,2EF DE ==,3OE =,OF ∴===,PF OP OF +,6313PF ∴+PF ∴的最大值为6,EQ ∴2+.2+.三、解答题(第19题6分,第20、21题各8分,第22、23、24题各10分,第25题12分,第26题14分,共78分)19.(6分)计算:23tan 30cos 302sin 60︒+︒-︒解:原式232=+- 34= 34=. 20.(8分)一个不透明的袋子中装有2个红球和2个白球,这些球除颜色外其余都相同,先从袋中摸出1个球后不放回,再摸出一个球.(1)请用树状图或列表法列举出两次摸球可能出现的各种结果.(2)求两次摸到不同颜色的球的概率.解:(1)画树状图如下:画树状图得:由图可知,共有12种等可能的结果;(2)共有12种等可能的结果,其中两次摸到不同颜色的球有8种,∴两次摸到不同颜色的球的概率是82123=. 21.(8分)如图,学校旗杆的下方有一块圆形草坪,草坪的外面围着“圆环”水池,草坪和水池的外边缘是两个同心圆,旗杆在圆心O 的位置且与地面垂直.(1)若草坪的面积与圆环水池的面积之比为1:4,求两个同心圆的半径之比.(2)如图,若水池外面通往草坪有一座10米长的小桥BC ,小桥所在的直线经过圆心O ,上午8:00时太阳光线与地面成30︒角,旗杆顶端的影子恰好落在水池的外缘;上午9:00时太阳光线与地面成45︒角,旗杆顶端的影子恰好落在草坪的外缘,求旗杆的高OA 长.解:(1)由题意得2215OB OC ππ=, ∴155OB OC ==, 5; (2)设OA x =,由45ABO ∠=︒,30ACO ∠=︒知,tan tan 45OA OA OB x ABO ===∠︒,3tan tan 30OA OA OC ACO ===∠︒, 10OC OB BC -==,∴310x x -=, 解得5(31)535x =+=+.∴旗杆的高OA 长为535+米.22.(10分)如图,在平面直角坐标系中,抛物线223(0)y ax ax a =+-≠交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C ,顶点为D .(1)求抛物线的对称轴和点C 的坐标.(2)若4AB =,求抛物线图象位于直线BD 上方部分的自变量x 的取值范围.解:(1)抛物线2223(1)3y ax ax a x a =+-=+--,∴该抛物线的对称轴是直线1x =-,当0x =时,3y =-,即抛物线的对称轴是直线1x =-,点C 的坐标是(0,3)-;(2)由(1)得抛物线的对称轴为直线1x =-,4AB =,(3,0)A ∴-,(1,0)B ,∴抛物线图象位于直线BD 上方部分的自变量x 的取值范围是1x <-或1x >.23.(10分)如图1,ABC ∆内接于O ,点D 是AB 的中点,且与点C 位于AB 的异侧,CD 交AB 于点E .(1)求证:ADE CDA ∆∆∽.(2)如图2,若O 的直径6AB =,2CE =,求AD 和CD 的长.解:(1)点D 是ADB 的中点,∴AD BD =ACD BAD ∴∠=∠,ADE CDA ∠=∠ADE CDA ∴∆∆∽(2)连结BD ,点D 时ADB 的中点,AD BD ∴= AB 是O 的直径,90ADB ∴∠=︒,ADB ∴∆为等腰直角三角形, ∴464322AD ===,由(1)得ADE CDA ∆∆∽, ∴AD ED CD AD=,即2AD CD ED =, ∴2(43)(2)CD CD =-,22480CD CD ∴--=,解得8CD =或6-.8CD ∴=.24.(10分)小颖家经营着一家水果店,在杨梅旺销季节,她的父母经常去果园采购杨梅用于销售.果园的杨梅价格如下:购买数量不超过20筐,每筐进价20元;购买数量超过20筐,每筐进价18元.小颖在观察水果店一段时间的销售情况后发现,当杨梅的售价为每筐30元时,每天可销售30筐;每筐售价提高1元,每天销量减少1筐;每筐售价降低1元,每天销量增加1筐.若每天购进的杨梅能全部售出,且售价不低于进价,从果园进货的运费为每天100元.(1)设售价为每筐x 元,则每天可售出 (60)x - 筐.(2)当每筐杨梅的售价定为多少元时,杨梅的日销售利润最大?最大日利润是多少元? 解:(1)根据题意得:每天可售出30(30)60[x x --=-或30(30)60]x x +-=-, 故答案为:(60)x -.(2)设每筐杨梅的售价为x 元,每天的杨梅销售利润为y ,①当6020x -,即40x 时,22(20)(60)100801300(40)300y x x x x x =---=-+-=--+ 此时售价为40元,最大利润为300元;②当6020x ->,即40x <时22(18)(60)100781060(39)341y x x x x x =---=-+-=--+ 此时售价为39元,最大利润为341元;341300>∴当每筐杨梅的售价定为39元时,每天的杨梅销售利润最大,最大利润为341元.25.(12分)定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,ABC ∆中,点D 是BC 边上一点,连结AD ,若2AD BD CD =,则称点D 是ABC ∆中BC 边上的“好点”.(1)如图2,ABC ∆的顶点是43⨯网格图的格点,请仅用直尺画出AB 边上的一个“好点”.(2)ABC ∆中,9BC =,4tan 3B =,2tan 3C =,点D 是BC 边上的“好点”,求线段BD 的长.(3)如图3,ABC ∆是O 的内接三角形,OH AB ⊥于点H ,连结CH 并延长交O 于点D . ①求证:点H 是BCD ∆中CD 边上的“好点”.②若O 的半径为9,90ABD ∠=︒,6OH =,请直接写出CH DH 的值. 解:(1)如答图1,当CD AB ⊥或点D 是AB 的中点是,2CD AD BD =;(2)作AE BC ⊥于点E ,由4tan 3B =,2tan 3C =可设4AE x =, 则3BE x =,6CE x =,99BC x ∴==,1x ∴=,3BE ∴=,6CE =,4AE =, 设DE a =,①如答图2,若点D 在点E 左侧,由点D 是BC 边上的“好点”知,2AD BD CD =, 224(3)(6)a a a ∴+=-+,即22320a a +-=, 解得112a =,22a =-(舍去), ∴153322BD a =-=-=.②如答图3,若点D 在点E 右侧,由点D 是BC 边上的“好点”知,2AD BD CD =, 224(3)(6)a a a ∴+=+-,即22320a a --=,解得12a =,212a =-(舍去) 3325BD a ∴=+=+=.∴52BD =或5.(5)①CHA BHD ∠=∠,ACH DBH ∠=∠ AHC DHB ∴∆∆∽,∴AH CH DH BH=,即AH BH CH DH =, OH AB ⊥,AH BH ∴=,2BH CH DH ∴=∴点H 是BCD ∆中CD 边上的“好点”. ②521CH DH =. 理由如下:如答图4,连接AD ,BD ,90ABD ∠=︒,AD ∴是直径,18AD ∴=.又OH AB ⊥,//OH BD ∴.点O 是线段AD 的中点,OH ∴是ABD ∆的中位线,212BD OH ∴==.在直角ABD ∆中,由勾股定理知:222218125AB AD BD =-=-= ∴由垂径定理得到:1352BH AB ==. 在直角BDH ∆中,由勾股定理知:2245144321DH BH BD =+=+= 又由①知,2BH CH DH =,即45321CH =,则521CH = ∴5215721321CH DH ==,即521CH DH =. 26.(14分)如图1,在平面直角坐标系中,点A ,B 的坐标分别为(8,0)A 和(0,6)B ,点P 为x 轴负半轴上的一个动点,画ABP ∆的外接圆,圆心为M ,连结BM 并延长交圆于点C ,连结CP .(1)求证:OBP ABC ∠=∠.(2)当M 的直径为14时,求点P 的坐标.(3)如图2,连结OC ,求OC 的最小值和OC 达到最小值时ABP ∆的外接圆圆心M 的坐标.解:(1)如图1,连结AC , BC 为M 的直径, 90BAC BOP ∴∠=∠=︒,ACB APB ∠=∠,90OBP APB ABC ACB ∴∠+∠=∠+∠=︒, OBP ABC ∴∠=∠.(2)90BAC ∠=︒,(8,0)A ,(6,0)B 6OB ∴=,8OA =,10AB ∴= ∴222214106AC BC AB -=-= BOP BAC ∠=∠,OBP ABC ∠=∠, OBP ABC ∴∆∆∽, ∴OP OB AC AB=, ∴612466105OB OP AC AB ===, ∴点P 的坐标为12(6,0)5;(3)如图2,记直线AC 与y 轴的交点为E , AC AB ⊥,则90OAE OBA BAO ∠=∠=︒-∠, 当OC 最小时,OC AE ⊥,此时,432sin sin 855OC OA OAE OA OBA =∠=∠=⨯=.求得点C的坐标为12896 (,) 2525-.又点M为BC的中点∴64225B CMx xx+==,27225B CMy yy+==,∴点M的坐标为6427 (,) 2525.。
2021-2022学年浙江省宁波市余姚市九年级(上)期末数学试题及答案解析
2021-2022学年浙江省宁波市余姚市九年级(上)期末数学试卷一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.若2x=3y,则x y的值为( )A. 25B. 23C. 32D. 532.抛物线y=(x−2)2−4的对称轴是( )A. 直线x=−2B. 直线x=2C. 直线x=−4D. 直线x=43.已知AB是半径为2的圆的一条弦,则AB的长不可能是( )A. 2B. 3C. 4D. 54.一个袋子中装有20个黑球和1个白球,它们除颜色外其它都相同,随机从袋子中摸出一个球,则下列结论正确的是( )A. 摸到黑球是必然事件B. 摸到白球是不可能事件C. 摸到黑球的可能性大D. 摸到白球的概率比摸到黑球的概率大5.已知⊙O的半径为5,点P到圆心O的距离为d,如果点P在圆内,则d( )A. d<5B. d=5C. d>5D. 0≤d<56.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,则此Rt△ABC的重心P与外心Q之间的距离为( )A. 132B. 133C. 134D. 1367.如图,点P是⊙O外一点,PA交⊙O于点C,A,PB交⊙O于点D,B,若AB⏜=80°,∠P=28°,则∠CAD的度数为( )A. 10°B. 12°C. 14°D. 20°8. 如图,直线l 1//l 2//l 3,直线AC ,DF 分别交l 1,l 2,l 3于点A ,B ,C 和点D ,E ,F ,连结AF ,作BG//AF ,若DE EF=23,BG =6,则AF 的长为( )A. 8B. 9C. 10D. 119. 点P(x,y)是二次函数y =−x(x −8)的图象上的点,当1≤x <a(a 为整数)时,点P 到x 轴的距离小于15,则a 的值可以的是( )A. 3B. 4C. 5D. 610. 如图,矩形A 1B 1C 1D 1在矩形ABCD 的内部,且B 1C 1⊥BC ,点B 1,D 1在对角线BD 的异侧.连结BB 1,DB 1,BD 1,DD 1,若矩形ABCD ∼矩形A 1B 1C 1D 1,且两个矩形的周长已知.只需要知道下列哪个值就一定可以求得四边形B 1BD 1D 的面积( )A. 矩形ABCD 的面积B. ∠B 1BD 1的度数C. 四边形B 1BD 1D 的周长D. BB 1的长度二、填空题(本大题共6小题,共30.0分)11. 四边形ABCD 内接于⊙O ,若∠A =60°,则∠C 的度数为______. 12. 已知线段a =8,b =2,线段c 是线段a ,b 的比例中项,则c =______. 13. 下表是某种幼苗在一定条件下移植后成活率的试验结果. 移植总数n 5 50 200 500 1000 3000 成活数m4 45 188 476 951 2850成活的频率mn 0.8 0.9 0.94 0.952 0.951 0.95则在相同条件下这种幼苗可成活的概率可估计为______.14. 如图1,水车又称孔明车,是我国最古老的农业灌溉工具,是珍贵的历史文化遗产.如图2,圆心O 在水面上方,且⊙O 被水面截得的弦AB 长为8米,半径为5米,则圆心O 到水面AB 的距离为______米.15.平移二次函数的图象,如果有一个点既在平移前的函数图象上,又在平移后的函数图象上,我们把这个点叫做“关联点”.现将二次函数y=x2+2x+c(c为常数)的图象向右平移得到新的抛物线,若“关联点”为(1,2),则新抛物线的函数表达式为______.16.如图,在Rt△ABC中,∠B=90°,AB=8,BC=6,D,E,F分别是边AB,BC,AC上的点,∠BED+∠C=90°,△BED与△FED关于DE对称,则DE的长为______.三、解答题(本大题共8小题,共80.0分。
浙江省2019-2020学年九年级上册数学《圆的基本性质》试题分类——解答题(含答案)
2019--2020学年浙江省九年级上册数学(浙教版)《圆的基本性质》试题分类——解答题1.(2019秋•拱墅区校级期末)如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.(1)若∠ABD=α,求∠BDC(用α表示);(2)过点C作CE⊥AB于H,交AD于E,∠CAD=β,求∠ACE(用β表示);(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长.2.(2019秋•柯桥区期末)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E 是BA延长线上一点,∠DAE=105°.(1)求∠CAD的度数;(2)若⊙O的半径为4,求弧BC的长.3.(2019秋•江干区期末)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2√3.(1)求OD的长;(2)计算阴影部分的面积.4.(2019秋•丽水期末)如图,半圆O的直径AB=10,将半圆O绕点B顺时针旋转45°得到半圆O′,与AB交于点P,求AP的长.5.(2019秋•奉化区期末)如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.6.(2019秋•义乌市期末)如图,已知AB为半圆O的直径,AC,AD为弦,且AD平分∠BAC.(1)若∠ABC=28°,求∠CBD的度数;(2)若AB=6,AC=2,求AD的长.7.(2019秋•义乌市期末)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形)(1)画出△ABC关于原点对称的△A′B′C′;(2)将△A′B′C′绕A′顺时针旅转90°画出旅转后得到的△A″B″C″并直接写出此过程中线段A′C′扫过图形的面积(结果保留π).8.(2019秋•鄞州区期末)已知:如图,在半圆O中,直径AB的长为6,点C是半圆上一点,过圆心O作AB的垂线交线段AC的延长线于点D,交弦BC于点E.(1)求证:∠D=∠ABC;(2)记OE=x,OD=y,求y关于x的函数表达式;(3)若OE=CE,求图中阴影部分的面积.9.(2019秋•西湖区期末)如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=8cm,求图中劣弧BC的长.10.(2019秋•下城区期末)如图,MB ,MD 是⊙O 的两条弦,点A ,C 分别在MM ̂,MM ̂上,且AB =CD ,M 是MM̂的中点. (1)求证:MB =MD ;(2)过O 作OE ⊥MB 于点E ,当OE =1,MD =4时,求⊙O 的半径.11.(2019秋•温州期末)如图,点A 、B 、C 、D 、E 都在⊙O 上,AC 平分∠BAD ,且AB ∥CE ,求证:MM̂=MM ̂.12.(2019秋•温州期末)如图,已知△ABO 中A (﹣1,3),B (﹣4,0).(1)画出△ABO 绕着原点O 按顺时针方向旋转90°后的图形,记为△A 1B 1O ;(2)求第(1)问中线段AO 旋转时扫过的面积.13.(2019秋•吴兴区期末)如图,已知在矩形ABCD 中,AB =2,BC =2√3.点P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD .(1)若DQ =√3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与园重叠部分的面积.14.(2019秋•瑞安市期末)如图,Rt △ABC 中,∠C =90°,在BC 上取一点D 使AD =BD ,连结AD ,作△ACD 的外接圆⊙O ,交AB 于点E .(1)求证:AE =BE ;(2)若CD =3,AB =4√5,求AC 的长.15.(2019秋•温州期末)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E两点,过点D 作DH ⊥AC 于点H .(1)求证:BD =CD ;(2)连结OD 若四边形AODE 为菱形,BC =8,求DH 的长.16.(2019春•余姚市期末)如图,4×6的正方形网格中,每个小正方形的顶点称为格点,A ,B ,C 均为格点.在下列各图中画出四边形ABCD ,使点D 也为格点,且四边形ABCD 分别符合下列条件:(1)是中心对称图形(画在图1中).(2)是轴对称图形(画在图2中).(3)既是轴对称图形,又是中心对称图形(画在图3中).17.(2019秋•萧山区期末)如图,在⊙O 中,AB =AC .(1)求证:OA 平分∠BAC .(2)若MM ̂:MM ̂=3:2,试求∠BAC 的度数.18.(2020春•西湖区期末)将一副三角板中的两块直角三角尺的直角顶点C 按照如图①的方式叠放在一起(∠A =30°,∠ABC =60°,∠E =∠EDC =45°),且三角板ACB 的位置保持不动.(1)将三角板DCE 绕点C 按顺时针方向旋转至图②,若∠ACE =60°,求∠DCB 的度数.(2)将三角板DCE 绕点C 按顺时针方向旋转,当旋转到ED ∥AB 时,求∠BCE 的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE <180°且点E 在直线BC 的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE 所有可能的值;若不存在,请说明理由.19.(2019秋•吴兴区期末)如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =8,∠CBD =30°,求图中阴影部分的面积.20.(2019秋•瑞安市期末)如图,Rt △OAB 中,∠OAB =90°,以OA 为半径的⊙O 交BO 于点C ,交BO 延长线于点D .在⊙O 上取一点E ,且MM̂=MM ̂,延长DE 与BA 交于点F . (1)求证:△BDF 是直角三角形;(2)连接AC ,AC =2√10,OC =2BC ,求AF 的长.2019--2020学年浙江省九年级上册数学(浙教版)《圆的基本性质》试题分类——解答题参考答案与试题解析一.解答题(共20小题)1.【答案】见试题解答内容【解答】解:(1)连接AD ,如图1所示:设∠BDC =γ,∠CAD =β,则∠CAB =∠BDC =γ,∵点C 为弧ABD 中点,∴MM̂=MM ̂, ∴∠ADC =∠CAD =β,∴∠DAB =β﹣γ,∵AB 为⊙O 直径,∴∠ADB =90°,∴γ+β=90°,∴β=90°﹣γ,∴∠ABD =90°﹣∠DAB =90°﹣(β﹣γ)=90°﹣90°+γ+γ=2γ,∴∠ABD =2∠BDC ,∴∠BDC =12∠ABD =12α; (2)连接BC ,如图2所示:∵AB 为⊙O 直径,∴∠ACB =90°,即∠BAC +∠ABC =90°,∵CE ⊥AB ,∴∠ACE +∠BAC =90°,∴∠ACE =∠ABC ,∵点C 为弧ABD 中点,∴MM̂=MM ̂, ∴∠ADC =∠CAD =∠ABC =β,∴∠ACE =β;(3)连接OC ,如图3所示:∴∠COB =2∠CAB ,∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD ,∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴MM MM =MM MM =12, ∴BD =2OH =10,∴AB =√MM 2+MM 2=√242+102=26,∴AO =13,∴AH =AO +OH =13+5=18,∵∠EAH =∠BAD ,∠AHE =∠ADB =90°,∴△AHE ∽△ADB ,∴MM MM =MM MM ,即1824=MM 26, ∴AE =392, ∴DE =AD ﹣AE =24−392=92.2.【答案】见试题解答内容【解答】解:(1)∵AB =AC ,∴MM̂=MM ̂, ∴∠ABC =∠ACB ,∵D 为MM̂的中点, ∴MM̂=MM ̂, ∴∠CAD =∠ACD ,∴MM̂=2MM ̂, ∴∠ACB =2∠ACD ,又∵∠DAE =105°,∴∠BCD =105°,∴∠ACD =13×105°=35°,∴∠CAD =35°;(2)∵∠DAE =105°,∠CAD =35°,∴∠BAC =40°,连接OB ,OC ,∴∠BOC =80°,∴弧BC 的长=80M ×4180=16M 5.3.【答案】见试题解答内容【解答】解:(1)∵AB⊥OD,∴∠OCB=90°,AC=BC=12AB=√3,∵点C为OD的中点,∴OC=12OB,∵cos∠COB=MMMM=12,∴∠COB=60°,∴OC=√33BC=√33×√3=1,∴OB=2OC=2,∴OD=OB=2;(2)阴影部分的面积=S扇形BOD﹣S△COB=60×M×22360−12×√3×1=2 3π−√32.4.【答案】见试题解答内容【解答】解:∵∠OBA′=45°,O′P=O′B,∴△O′PB是等腰直角三角形,∴PB=√2BO′=5√2,∴AP=AB﹣BP=10﹣5√2.5.【答案】见试题解答内容【解答】解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N=√MM′2−MM2=√342−302=16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.6.【答案】见试题解答内容【解答】解:(1)∵AB 是⊙O 的直径, ∴∠C =∠ADB =90°,∴∠CAB =90°﹣28°=62°,∵AD 平分∠BAC ,∴∠CAD =12∠CAB =31°, ∴∠CBD =∠CAD =31°;(2)连接OD 交BC 于E ,如图,在Rt △ACB 中,BC =√62−22=4√2, ∵AD 平分∠BAC ,∴∠CAD =∠BAD ,∴MM̂=MM ̂, ∴OD ⊥BC ,∴BE =CE =12BC =2√2,∴OE =12AC =12×2=1, ∴DE =OD ﹣OE =3﹣1=2,在Rt △BDE 中,BD =√22+(2√2)2=2√3, 在Rt △ABD 中,AD =√62−(2√3)2=2√6.7.【答案】见试题解答内容【解答】解:(1)如图,△A ′B ′C ′为所作;(2)如图,△A ″B ″C ″为所作,线段A ′C ′扫过图形的面积=90⋅M ⋅42360=4π,.8.【答案】见试题解答内容【解答】解:(1)∵AB 是直径, ∴∠ACB =90°∴∠A +∠ABC =90°∵DO ⊥AB ,∴∠A +∠D =90°∴∠D =∠ABC .(2)∵OB =OC ,∴∠B =∠OCE ,∴∠OCE =∠D .而∠COE =∠COD ,∴△OCE ∽△ODC ,∴MM MM =MM MM ,即M 3=3M∴y =9M (0<x <3).(3)设∠B =a ,则∠BCO =a ,∵OE =CE ,∴∠EOC =∠BCO =a在△BCO 中,a +a +90°+a =180°, ∴a =30°∴S =3×3√32−30M ⋅32360−√34×32=9√34−34π. 9.【答案】见试题解答内容【解答】解:(1)连接OB ,∵OA ⊥BC ,∴MM̂=MM ̂, ∴∠AOC =∠AOB ,由圆周角定理得,∠AOB =2∠ADB =60°, ∴∠AOC =∠AOB =60°;(2)∵OA ⊥BC ,∴BE =12BC =4,在Rt △BOE 中,∠AOB =60°,∴OB =MM MMM60°=8√33, ∴劣弧BC 的长=120M ×8√33180=16√39π(cm ). 10.【答案】见试题解答内容【解答】(1)证明:∵AB =CD , ∴MM̂=MM ̂, ∵M 是MM̂的中点, ∴MM̂=MM ̂, ∴MM̂=MM ̂, ∴BM =DM .(2)解:如图,连接OM .∵DM =BM =4,OE ⊥BM ,∴EM =BE =2,∵OE =1,∠OEM =90°,∴OM =√MM 2+MM 2=√12+22=√5,∴⊙O 的半径为√5.11.【答案】见试题解答内容【解答】证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∵AB ∥CE ,∴∠BAC =∠ACE ,∴∠DAC =∠ACE ,∴MM̂=MM ̂. 12.【答案】见试题解答内容【解答】解:(1)如图所示,△A 1B 1O 即为所求;(2)线段AO 旋转时扫过的面积为:90×M ×(√10)2360=52M . 13.【答案】(1)6√77; (2)83√3.【解答】解:如图:过点P 作PT ⊥BQ 于点T ,∵AB =2,AD =BC =2√3,DQ =√3,∴AQ =√3,在Rt △ABQ 中,根据勾股定理可得:BQ =√7.又∵四边形BPDQ 是平行四边形,∴BP =DQ =√3∵∠AQB =∠TBP ,∠A =∠BTP ,∴△AQB ∽△TPB ,∴MM MM =MM MM , 即√3=√3√7, ∴BT =3√77,∴BE =2BT =6√77. (2)设菱形BPDQ 的边长为x , 则AQ =2√3−x ,在Rt △ABQ 中,根据勾股定理,得AB 2+AQ 2=BQ 2, 即4+(2√3−x )2=x 2,解得x =43√3 由(1)可知: MM M =2√3−MM, ∴BT =2√3−x =2√3−4√33=2√33, ∴BE =43√3,∴点E 、Q 重合, ∴圆P 经过点B 、Q 、D , ∴S 菱形=83√3. 14.【答案】见试题解答内容【解答】解:(1)证明:连结DE ,∵∠C =90°,∴AD 为直径,∴DE ⊥AB ,∵AD =BD ,∴AE =BE ;(2)设BD =x ,∵∠B =∠B ,∠C =∠DEB =90°∴△ABC ~△DBE ,∴MM MM =MM MM , ∴4√5=2√5M +3, ∴x =5.∴AD =BD =5,∴AC =√52−32=4.15.【答案】见试题解答内容【解答】(1)证明:如图,连接AD.∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD.(2)解:如图,连接OE.∵四边形AODE是菱形,∴OA=OE=AE,∴△AOE是等边三角形,∴∠A=60°,∵AB=AC,∴△ABC是等边三角形,∵OA=OB=BD=CD∴AE=EC,∴CD=CE,∵∠C=60°,∴△EDC是等边三角形,∵DH⊥EC,CD=4,∴DH=CD•sin60°=2√3.16.【答案】见试题解答内容【解答】解:(1)如图1,四边形ABCD为所作;(2)如图2,四边形ABCD为所作;(2)如图3,四边形ABCD为所作.17.【答案】见试题解答内容【解答】(1)证明:延长半径AO 交⊙O 于D ,∴MMM̂=MMM ̂ ∵AB =AC ,∴MM̂=MM ̂, ∴MM̂=MM ̂, ∴∠BAD =∠CAD ,∴OA 平分∠BAC ;(2)解:∵MM̂:MM ̂=3:2,MM ̂=MM ̂ ∴MM̂=28×360°=90° ∴∠BAC =45°;18.【答案】见试题解答内容【解答】解:(1)如图2中,∵∠ACB =∠ECD =90°,∴∠ECB =∠ACD ,∵∠ACE =60°,∴∠BCE =∠ACD =30°,∴∠BCD =∠BCE +∠ECD =30°+90°=120°;(2)如图2中,当DE ∥AB 时,延长BC 交DE 于M ,∴∠B =∠DMC =60°,∵∠DMC =∠E +∠MCE ,∴∠ECM =15°,∴∠BCE=165°,当D′E′∥AB时,∠E′CB=∠ECM=15°,∴当ED∥AB时,∠BCE的度数为165°或15°;(3)存在.如图,①CD∥AB时,∠BCE=30°,②DE∥BC时,∠BCE=45°,③CE∥AB时,∠BCE=120°,④DE∥AB时,∠BCE=165°,⑤当AC∥DE时,∠BCE=135°综上所述,当∠BCE<180°且点E在直线BC的上方时,这两块三角尺存在一组边互相平行,∠BCE的值为30°或45°或120°或165°或135°.19.【答案】见试题解答内容【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)连接CD,OD,∵OC∥BD,∴∠OCB=∠CBD=30°,∵OC=OB,∴∠OCB=∠OBC=30°,∴∠AOC=∠OCB+∠OBC=60°,∵∠COD=2∠CBD=60°,∴∠AOD=120°,∴S阴=S扇形OAD﹣S△ADO=120⋅M⋅42360−12•4√3×2=16M3−4√320.【答案】见试题解答内容【解答】(1)证明:如图连接EC交OA于H.∵MM̂=MM ̂, ∴OA ⊥EC ,∵CD 是⊙O 的直径,∴∠DEC =90°,∴DF ⊥EC ,∴OA ∥DF ,∵BF 是⊙O 的切线,∴OA ⊥BF ,∴DF ⊥BF ,∴∠F =90°,∴△DFB 是直角三角形.(2)解:∵∠DEC =∠F =90°,∴EC ∥FB ,∴MM MM =MM MM =2,∴OH =2AH ,设AH =m ,则OH =2m ,OC =3m , ∵CH 2=OC 2﹣OH 2=AC 2﹣AH 2,∴9m 2﹣4m 2=40﹣m 2,∴m =2√153(负根已经舍弃), ∴CH =10√33, ∵OA ⊥EC ,∴EH =HC =10√33, ∵∠F =∠F AH =∠AHE =90°,∴四边形AFEH 是矩形,∴AF =EH =10√33.。
浙江省宁波市 九年级(上)期末数学试卷
Байду номын сангаас
21. 2018 年 6 月,宁波全面推进生活垃圾分类工作,如图是某小区放置的垃圾桶,从 左到右依次是红色:有害垃圾;蓝色:可回收垃圾;绿色:厨余垃圾;黑色:其他 垃圾. (1)居民 A 将一袋厨余垃圾随手放入一个垃圾桶,问他能正确投放垃圾的概率是 ______. (2)居民 B 手拎两袋垃圾,一袋是可回收垃圾,另一袋是有害垃圾,她先将可回 收垃圾随手放入一个垃圾桶,然后把另一袋垃圾又随手放入其他垃圾桶.问:两袋 垃圾都投放错误的概率?请画出树状图或列表说明理由.
A. 10cm B. 12cm C. 14cm D. 根据 MN 位置不同而变化
D. 50 ∘
10. 下列说法:①三点确定一个圆,②平分弦(不是直径)的直径垂直于弦,③相等的
圆心角所对的弦相等,④三角形的内心到三边的距离相等,其中正确的有( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
11. 如图,已知⊙O 的半径为 5,弦 AB=8,CD=6,则图中 阴影部分面积为( )
������������ 3
第 1 页,共 23 页
A.
������������ ������������
������������ = ������������
B.
������������ 2
������������ = 3
C.
������������ 2
������������ = 3
D. = ������ △ ������������������
22. 如图,已知⊙O 的半径 OC 垂直于弦 AB,点 P 在 OC 的延长线上,AC 平分∠PAB. (1)求证:PA 是⊙O 的切线; (2)若 PA=20,sinP=3,求 PC.
浙江省宁波市余姚市2023-2024学年九年级上学期期末数学模拟试题(含答案)
浙江省宁波市余姚市2023-2024学年九年级上学期期末数学模拟试题一、选择题(共10小题,每题3分)1.如图,四边形ABCD 内接于⊙O ,若∠C =130°,则∠BOD 的度数为()A .50°B .100°C .130°D .150°2.已知x ,y ,z 满足,则的值为( )235x y z z x ==-+52x y y z-+A .1B .C .D .1313-123.如图A 、B 、C 在⊙O 上,连接OA 、OB 、OC ,若∠BOC =3∠AOB ,劣弧AC 的度数是120°,)OC =A .B .C .D .π2π3π-4π-4.设,则代数式的值为( )x =()()()123x x x x +++A .﹣1B .1C .0D .25.点O 是△ABC 的外心,也是△BCD 的内心,若∠A =70°,则∠BDC 的度数是()A .80°B .90°C .100°D .110°6.如图1,正方形ABCD 绕中心O 逆时针旋转45°得到正方形A 'B 'C 'D ',现将整个图形的外围以O 为位似中心得到位似图形如图2所示,位似比为,若整个图形的外围周长为16,则图12中的阴影部分面积为()A .B .C .D .6+4+28+7.已知AC ⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为的是( aba b+).A .B .C .D .8.二次函数的大致图象如图所示,顶点坐标为(1,﹣4a ),点A (4,y )()20y ax bx c a =++≠是该抛物线上一点,若点是抛物线上任意一点,有下列结论:()22,D x y①4a ﹣2b +c >0;②若,则;21y y >24x >③若,则;204x ≤≤205y a ≤≤④若方程a (x +1)(x ﹣3)=﹣1有两个实数根和,且,则.1x 2x 12x x <1213x x -<<<其中正确结论的个数是( )A .1个B .2个C .3个D .4个9.锐角三角形ABC 的三边是a ,b ,c ,它的外心到三边的距离分别为m ,n ,p ,那么m :n :p 等于( )A .B .a :b :c111::a b cC .D .cos :cos :cos A B Csin :sin :sin A B C10.如图,点O 为正方形ABCD 的中心,以BC 的中点H 为圆心,HA 为半径画弧交CB 的延长线于点E .以BE 为边向上作正方形BEFG ,过点A 作AK ⊥AE 交CD 于点K ,取EK 的中点M ,连结MO .已知,则OM 的长为( )2AD =+A B C .3D .1二、填空题(共6小题,每题4分,共24分)11.如图,是某商店售卖的花架,其中,AD BECF ∥∥DE =24cm ,EF =40cm ,BC =50cm ,则AB 长为______cm .12.把一根长度为6的铁丝截成3段,若三段的长度均为正整数,则能构成三角形的概率为______.13.因为,,所以;由此1cos 602︒=1cos 2402︒=-()cos 240cos 18060cos 60︒=︒+︒=-︒猜想、推理知:当α为锐角时有,则:______.()cos 180cos αα︒+=-cos 210︒=14.如图,在Rt △ABC 中,∠C =90°,E 为AB 边上一点,以AE 为直径的半圆O 与BC 相切于点D ,连接AD ,BE =3,P 是AB 边上的动点,当△ADP 为等腰三角形时,BD =AP 的长为______.15.图1是一款由若干条吊链等间距悬挂而成的挂帘,吊链顶端悬挂在水平横梁上,自然下垂时底部呈圆弧形,其中最长吊链为95cm ,最短吊链为45cm ,挂满后呈轴对称分布.图2是其示意图,其中最长两条吊链AC 与BD 之间的距离AB 为114cm .若吊链数量为偶数,记对称轴右侧最短挂链的底端为点F ,当C ,F ,B 三点在同一条直线上时,吊链的数量为______.16.如图,已知正方形ABCD 的边长为4,点E 是正方形内部一点,连接EA ,EB 满足,点P 是BC 边上一动点,连结PD ,PE .则长度的最小值为EAB EBC ∠=∠PD PE +______三、(共8小题,计66分)17.(6分)()112sin 4523π-⎛⎫-+-- ⎪⎝⎭︒18.(6分)2023年5月30日上午,神舟十六号载人飞船成功发射,举国振奋.为了使同学们进一步了解中国航天科技的快速发展,余姚某中学九(1)班团支部组织了一场手抄报比赛.要求该班每位同学从A :“北斗”,B :“5G 时代”,C :“东风快递”,D :“智轨快运”四个主题中任选一个自己喜爱的主题.比赛结束后,该班团支部统计了同学们所选主题的频数,绘制成如图两种不完整的统计图,请根据统计图中的信息解答下列问题.(1)九(1)班共有______名学生;并补全图①折线统计图;(2)请阅读图②,求出D 所对应的扇形圆心角的度数;(3)若小余和小姚分别从A ,B ,C ,D 四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.19.(8分)如图,在5×5的正三角形的网格中,△ABC 的三个顶点都在格点上.请按要求画图和计算:①仅用无刻度直尺;②保留作图痕迹.(1)在图1中,画出△ABC 的BC 边上的中线AD .(2)在图2中,直接写出的值.cos AEC ∠20.(8分)现有成135°角且足够长的墙角和可建总长为15m 围墙的建筑用料来修建储料场.(1)如图1,修建成四边形ABCD 的一个储料场,使,∠C =90°.新建围墙为BCD .怎BC AD ∥样修建围墙才能使储料场的面积最大?最大面积是多少?(2)爱动脑筋的小聪建议:把新建的围墙建成如图2所示的以A 为圆心的圆弧BD ,这样修建的储料场面积会更大.聪明的你认为小聪的建议合理吗?请说明理由.21.(8分)如图,内接于⊙O ,AB 为⊙O 的直径,AB =5,AC =3.连接OC ,弦AD 分ABC △别交OC ,BC 于点E ,F ,其中点E 是AD 的中点.(1)求证:∠CAD =∠CBA .(2)求EF :FD 的值.22.(8分)已知二次函数(a >0)的图象经过点.和.2y ax bx c =++()1,1A -()2,4B (1)求a ,b 满足的关系式;(2)若函数图象与x 轴无交点,求的取值范围.22a b +23.(10分)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1)如图①,在△ABC 中,∠C =90°,AB =5,AC =3,则BC 边上的伴随圆的半径为______.(2)如图②,△ABC 中∠ACB =90°,点E 在边AB 上,AE =2BE ,D 为AC 的中点,且∠CED =90°.①求证:△CED 的外接圆是△ABC 的AC 边上的伴随圆;②的值为______DECE24.(12分)如图,抛物线与x 轴交于点A ,B ,与y 轴交于点()2302y ax x c a =-+≠,.直线x =1交BC 于点D ,点P 是直线BC 下方抛物线上一动点,2(0,)C -1tan 2ABC ∠=连接PD .(1)求此抛物线的解析式;(2)如图1,连接PC ,求△PCD 面积的最大值及此时点P 的坐标;(3)如图2,连接AC ,过点P 作PE ⊥BC 于点E ,是否存在点P 使以P ,D ,E 三点为顶点的三角形与△ABC 相似,若存在,直接写出点P 的坐标;若不存在,请说明理由.数学答案一、选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)12345678910BBCACACBCD二、填空题(每小题4分,共24分)11.3012. 1314.6或15.2016.132-三、解答题(本大题有7题,共66分)17.(6分)解:原式.2132=-+-=18.(6分)(1)50;补全折线统计图如解图①(2)D 所对应扇形圆心角的大小为,1536010850⨯=︒︒∴D 所对应的扇形圆心角的大小为108°;(3)画树状图如解图②,共有16种等可能的结果,小林和小峰选择相同主题的结果有4种,∴小林和小峰选择相同主题的概率为,41164=19.(8分)(每小题4分)(1)如图,线段AD 就是所求作的中线;(2)如图:在5×5的正三角形的网格中,∵,∴∠AEC =∠FDC ,MN AB FD ∥∥∵四边形CMGN 为菱形,且边长为5,∴CG ⊥MN ,∴CG ⊥FD ,sin 605OG MG =︒==∴2CG OG ==∵△GFD 为等边三角形,且边长为2,同理:HG =∴在Rt △CDH 中,∠CHD =90°,DH =1,,CH CG HG =-=∴,即,∴CD =7,222DH CH CD +=(2221CD+=∴.1cos cos 7DH AEC FDC CH ∠=∠==20(每小题4分,共8分).解:(1)过点A 作AH ⊥BC 于点H .∵∠BAD =135°,,∠C =90°,∴∠ABC =45°,CD ⊥AD .BC AD ∥设CD =x ,则AH =BH =CD =x ,∴AD =HC =15﹣2x ,设储料场的面积为S ,则,()211522S x x x =-+∴.()2375522S x =--+∴当x =5时,储料场的面积最大,最大面积为.此时AD =15﹣2×5=5.237.5m 故当AD =DC =5米,BC =10米时,所建储料场的面积最大,最大面积为.237.5m(2)小聪建议合理.理由如下:由题意得,∴.13515180AD π⋅⋅=20AD π=∴.120150152S ππ=⨯⨯=∵,∴小聪的建议是合理的.15047.737.5π≈>21.(每小题4分,共8分)(1)证明:∵OC 为半径,E 为AD 中点.∴OC ⊥AD ,AC =CD ,∴∠ABC =∠CAD ;(2)解:在中,AB =5,AC =3,则BC =4,Rt ABC △∴,3sin 5AC CBA AB ∠==∴,则,3sin 5CE CAD AC ∠==95CE =则,125AE ED ===∴,则,4cos 5BC CBA AB ∠==4cos 5AC CAD AF ∠==则,∴,351544AF ⨯==1512274520EF AF AE =-=-=则,2415215420FD AD AF =-=-=∴EF :FD =9:7.22.(每小题4分,共8分)解:(1)∵二次函数的图象经过点和,2()0y ax bx c a =++>()1,1A -()2,4B ∴,②﹣①得,3a +3b =3,即a +b =1,∴b =1﹣a ;1424a b c a b c -+=⎧⎨++=⎩①②(2)∵函数图象与x 轴无交点,∴,即,∴,240b ac -<()()214220a a a ---<()()1190a a --<解得,∴,119a <<1b a =-∴,()2222222211121221222a b a a a a a a a a ⎛⎫+=+-=+-+=-+=-+ ⎪⎝⎭∴当时,的最小值为,当a =1时,的最大值为1,12a =22a b +1222a b +∴.22112a b ≤+<23.(10分)(第1小题3分,第2小题①4分,②3分,)(1)解:∵∠C =90°,AB =5,BC =3,∴,4AC ==∵BC 是圆的切线,∠BCA =90°,∴AC 为圆的直径.∴AC 边上的伴随圆的半径为2.故2.(2)证明:①证明:如图连接OE 、OB ,∵△CED 为直角三角形,∴△CED 的外接圆圆心O 在CD 中点上,设⊙O 的半径为r ,则DC =2r ,OA =3r ,∴,23AD AO =∵EA =2BE ,∴,∴,23EA AB =AD EA AO AB=∴,∴∠1=∠2,∠3=∠4,PD OB ∥∵OE =OD ,∴∠3=∠2,∴∠1=∠4,在△BCO 和△BEO 中,14OC OP OB OB =⎧⎪∠=∠⎨⎪=⎩∴△BCO ≌△BEO ,∴∠BEO =∠BCO =90°,∴AB 是⊙O 的切线.∴△CED的外接圆是△ABC 某一条边上的伴随圆;②如图设圆O 的半径为r ,∵在中,OA =3r ,OE =r,∴,Rt OAE△EA ==∴,∵在中,AC=4r ,,AB =Rt ABC △AB =∴BC ==∵在中,OC =r ,,∴,Rt OBC△BC=OB ==∴cos 1OC OB ∠===∵∠EDC =∠1,∴,∴,cosEDC ∠=cos DE CD CDE =⨯∠=∴,CE ===∴.DE CE ==24.(每小题4分,共12分)解:∵,∴OC =2,()0,2C -∵在中,,∴OB =4,即,Rt BOC △21tan 2OC ABC OB OB ∠===()4,0B 将点,代入抛物线的解析式得:,解得,()4,0B ()0,2C -16602a c c -+==-⎧⎨⎩122a c ⎧=⎪⎨⎪=-⎩则此抛物线的解析式为;213222y x x =--(2)解:设直线BC 的函数解析式为y =kx +b ,将点,代入得:解得()4,0B ()0,2C -40,2k b b +=⎧⎨=-⎩1,22k b ⎧=⎪⎨⎪=-⎩则直线BC 的函数解析式为,122y x =-当x =1时,,即,131222y =⨯-=-31,2D ⎛⎫- ⎪⎝⎭则,CD ==要使△PCD 的面积最大,则需要点P 到CD 的距离最大,设与直线BC 平行的直线l '的函数解析式为,则,CF =﹣2﹣d ,12y x d =+()0,F d 如图,过点C 作于点E ,则CE 为直线BC 与直线间的距离,CE l '⊥l '在中,OB =4,,则,Rt BOC△BC ==sin OB OCB BC ∠==∵,∴∠CFE =∠OCB ,∴,BC l '∥sin sin CFE OCB ∠=∠=在中,Rt CEF △sin 2cE CE CFE cF d ∠===--解得,)2CE d =--∴d 越小,CE 越大,当直线要与抛物线有交点,l '213222y x x =--即当直线与有且只有一个交点时,d 最小,此时的交点即为点P ,l '213222y x x =--联立整理得:,213222,12y x x y x d ⎧=--⎪⎪⎨⎪=+⎪⎩212202x x d ---=则其根的判别式,解得d =﹣4,()144202d ∆=-⨯--=则此时()24CE =-+=△PCD 面积的最大值为,112=将d =﹣4代入得:,212202x x d ---=122x x ==当x =2时,,213222322y =⨯-⨯-=-∴△PCD 面积取得最大值时,点P 的坐标为(2,﹣3);(3)解:对于,213222y x x =--当y =0时,,解得x =﹣1,x =4,∴,2132022x x --=()1,0A -∵,,∴,,,()4,0B 2(0,)C -415AB =+=AC ==BC ==∴,222AC BC AB +=∴△ABC 是直角三角形,且∠ACB =90°,设点P 的坐标为,213,222m m m ⎛⎫-- ⎪⎝⎭∵PE ⊥BC ,直线BC 的函数解析式为,122y x =-∴设直线PE 的函数解析式为y =﹣2x +n ,将代入得:,213,222m m m ⎛⎫-- ⎪⎝⎭2132222m n m m -+=--解得,211222n m m =+-则直线PE 的函数解析式为,2112222y x m m =-++-联立解得,2112222,122y x m m y x ⎧=-++-⎪⎪⎨⎪=-⎪⎩2211551121010y m m y m m ⎧=+⎪⎪⎨⎪=+-⎪⎩即,221111,2551010E m m m m ⎛⎫++- ⎪⎝⎭∴,2222214285555PE m m m m ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,222221111115510102DE m m m m ⎛⎫⎛⎫=+-++- ⎪ ⎪⎝⎭⎝⎭由题意,分以下两种情况:①当时,则,即,Rt Rt PDE ABC△∽△12PE AC DE BC ===224DE PE =解得或,m =m=则此时或;PP ②当时,Rt Rt DPE ABC △∽△则,即,解得,则此时;2PE BC DE AC ===224PEDE =52m=521,28P ⎛⎫- ⎪⎝⎭综上,存在这样的点P ,此时点P 的坐标为或P 或.P 521,28P ⎛⎫- ⎪⎝⎭。
浙江省宁波市国际学校2019-2020九年级第一学期期末考试数学试卷解析版
浙江省宁波市国际学校2019-2020九年级第一学期期末考试数学试卷一、选择题(每小题3分,共30分)1.如图的几何体由六个相同的小正方体搭成,它的主视图是()A. B. C. D.2.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. B. C. D.3.如图,,直线、与这三条平行线分别交于点、、和点、、.已知,,,则的长为()A. 3.6B. 4.8C. 5D. 5,24.如图,在四边形ABCD中,∠°,,,AC与BD交于点E,,则∠的值是()A. B. C. D.5.如图,在⊙中,半径垂直弦于,点在⊙上,∠=°,=,则半径等于()A. B. C. D.6.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A. 有最大值﹣1,有最小值﹣2B. 有最大值0,有最小值﹣1C. 有最大值7,有最小值﹣1D. 有最大值7,有最小值﹣27.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A. 2B. 2C. 3D. 48.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A. π﹣6B. πC. π﹣3D. +π9.如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O 是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH⊥BE;②△EHM∽△GHF;③ ﹣1;④ △=2﹣,其中正确的结论是()△A. ①②③B. ①②④C. ①③④D. ②③④10.如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是()A. B. C. D.二、填空题(每小题4分,共24分)11.在△ABC中∠C=90°,tanA=,则cosB=________.12.一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是________.13.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点,点在上,∠∠°,与交于点,连接,若,,则________.14.如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则的长为________.15.如图,与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠的大小为________度.16.已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①abc<0;②a﹣b+c<0;③3a+c=0;④当﹣1<x<3时,y>0,正确的是________(填写序号).三、解答题(共8题;共66分)17.(1)已知a,b,c,d是成比例线段,其中a=2cm,b=3cm,d=6cm,求线段c的长;(2)已知,且a+b﹣5c=15,求c的值.18.如图,某市郊外景区内一条笔直的公路经过、两个景点,景区管委会又开发了风景优美的景点.经测量,位于的北偏东°的方向上,的北偏东°的方向上,且.(1)求景点与的距离.(2)求景点与的距离.(结果保留根号)19.如图,在▱ABCD中,AD是⊙O的弦,BC是⊙O的切线,切点为B。
浙江省宁波市江北区19-20学年九年级上学期期末数学试卷 及答案解析
浙江省宁波市江北区19-20学年九年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.下列成语描述的事件为随机事件的是()A. 水涨船高B. 守株待兔C. 水中捞月D. 缘木求鱼2.如果ab =32,那么aa+b等于()A. 23B. 25C. 35D. 533.如图是由五个相同的小正方体搭成的几何体,则它的主视图是()A. B. C. D.4.⊙O的直径为10,圆心O到直线l的距离为3,下列位置关系正确的是()A. B.C. D.5.在五张完全相同的卡片上,分别写有数字0,−1,−2,1,3,现从中随机抽取一张,抽到写有负数的卡片的概率是()A. 15B. 45C. 35D. 256.如图,在3×3的网格中,A,B均为格点,以点A为圆心,以AB的长为半径作弧,图中的点C是该弧与格线的交点,则sin∠BAC的值是()A. 12B. 23C. √53D.2√5 57.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,且BC∶AC=2∶3,则BD∶AD=()A. 2∶3B. 4∶9C. 2∶5D. √2∶√38.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列关系式中正确的是()A. ac>0B. b+2a<0C. b2−4ac>0D. a−b+c<09.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C. D.10.如图,在平面直角坐标系中,过格点A、B、C、作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A. 点(0,3)B. 点(2,3)C. 点(5,1)D. 点(6,1)11.如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,线段OQ所扫过过的面积为()A. π4B. π6C. π8D. π1212.已知二次函数y=x2−2mx+m2+3(m为常数),下列结论正确的是()A. 当m=0时,二次函数图象的顶点坐标为(0,0)B. 当m<0时,二次函数图象的对称轴在y轴右侧C. 设二次函数的图象与y轴交点为A,过A作x轴的平行线,交图象于另一点B,抛物线的顶点为C,则△ABC的面积为m3D. 该函数图象沿y轴向下平移6个单位后,图象与x轴两交点之间的距离为2√3二、填空题(本大题共6小题,共24.0分)13.比较大小:(用“>”或“<”或“=”填空)(1)sin38°______ cos41°;(2)sin22°______ cos68°;(3)sin54°______ cos45°.14.一个圆锥的底面半径等于2,母线长为6,则该圆锥的侧面积等于______.15.抛物线y=(1−x)2+3的对称轴是直线x=______.16.如图,在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则AD⏜的度数是________°.17.如图,在△ABC中,BCEC =83,DE//AC,则DE:AC=______.18.如图,AB是⊙O的直径,AC是⊙O的弦,点D是AC⏜上的中点,AC=8,OA=5,连接AD、BD,则△ABD的面积是.三、计算题(本大题共1小题,共8.0分)19.如图,已知AB切⊙O于A,连接OB,交⊙O于D。
【精选3份合集】2019-2020年宁波市九年级上学期数学期末调研试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示的是几个完全相同的小正方体搭建成的几何体的俯视图,其中小正方形内的数字为对应位置上的小正方体的个数,则该几何体的左视图为()A.B.C.D.【答案】A【分析】根据题意,左视图有两列,左视图所看到的每列小正方形数目分别为3,1.【详解】因为左视图有两列,左视图所看到的每列小正方形数目分别为3,1故选:A.【点睛】本题考查由三视图判断几何体,简单组合体的三视图,解题关键是根据俯视图确定左视图的列数和各列最高处的正方形个数.2.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴反比例函数y=a b x- 的图象过一、三象限, 所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a b x-的图象过二、四象限, 所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小3.已知关于x 的一元二次方程2230x x k --=有一个根为1,则另一个根为( )A .52-B .12C .12-D .1-【答案】B【分析】根据一元二次方程的根与系数的关系,x ₁+x ₂=32,把x ₁=1代入即可求出. 【详解】解:方程2230x x k --=有一个根是11x =,另-一个根为2x ,∴由根与系数关系122312x x x +=+=,即212x = 即方程另一根2x 是12故选:B .【点睛】 本题考查了一元二次方程根与系数的关系的应用,还可根据一元二次方程根的定义先求出k 的值,再解方4.函数ayx=与20()y ax a a=--≠在同一直角坐标系中的大致图象可能是()A.B.C.D.【答案】B【分析】分a>0与a<0两种情况分类讨论即可确定正确的选项.【详解】解:当a>o时,函数ayx=的图象位于一、三象限,20()y ax a a=--≠的开口向下,交y轴的负半轴,选项B符合;当a<o时,函数ayx=的图象位于二、四象限,20()y ax a a=--≠的开口向上,交y轴的正半轴,没有符合的选项.故答案为:B.【点睛】本题考查的知识点是反比例函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键. 5.下列方程中,是一元二次方程的是()A.2x+y=1 B.x2+3xy=6 C.x+1x=4 D.x2=3x﹣2【答案】D【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.6.如图,锐角△ABC的高CD和BE相交于点O,图中与△ODB相似的三角形有()A.1个B.2个C.3个D.4个【答案】C【解析】试题解析:∵∠BDO=∠BEA=90°,∠DBO=∠EBA,∴△BDO∽△BEA,∵∠BOD=∠COE,∠BDO=∠CEO=90°,∴△BDO∽△CEO,∵∠CEO=∠CDA=90°,∠ECO=∠DCA,∴△CEO∽△CDA,∴△BDO∽△BEA∽△CEO∽△CDA.故选C.7.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么()A.a>0,y1>y2B.a>0,y1<y2C.a<0,y1>y2D.a<0,y1<y2【答案】C【解析】由当x=2时,函数y有最大值,根据抛物线的性质得a<0,抛物线的对称轴为直线x=2,当x>2时,y随x的增大而减小,所以由2<x2<x2得到y2>y2.【详解】∵当x=2时,函数y有最大值,∴a<0,抛物线的对称轴为直线x=2.∵2<x2<x2,∴y2>y2.故选C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上的点满足其解析式.也考查了二次函数的性质.8.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是( )A .◎代表B .@代表同位角C .▲代表D .※代表 【答案】C【解析】根据图形可知※代表CD ,即可判断D ;根据三角形外角的性质可得◎代表∠EFC ,即可判断A ;利用等量代换得出▲代表∠EFC ,即可判断C ;根据图形已经内错角定义可知@代表内错角.【详解】延长BE 交CD 于点F ,则∠BEC=∠EFC+∠C (三角形的外角等于与它不相邻两个内角之和). 又∠BEC=∠B+∠C ,得∠B=∠EFC .故AB ∥CD (内错角相等,两直线平行).故选C .【点睛】本题考查了平行线的判定,三角形外角的性质,比较简单.9.设32a b =,下列变形正确的是( ) A .32b a = B .23a b = C .32a b = D .23a b =【答案】D【分析】根据比例的性质逐个判断即可. 【详解】解:由32a b =得,2a=3b, A 、∵32b a =,∴2b=3a ,故本选项不符合题意; B 、∵23a b =,∴3a=2b ,故本选项不符合题意; C 、32a b =,故本选项不符合题意;D 、23a b =,故本选项符合题意;故选:D .【点睛】本题考查了比例的性质,能熟记比例的性质是解此题的关键,如果a cb d,那么ad=bc.10.若|m|=5,|n|=7,m+n<0,则m﹣n的值是( )A.﹣12或﹣2 B.﹣2或12 C.12或2 D.2或﹣12【答案】C【分析】根据题意,利用绝对值的意义求出m与n的值,再代入所求式子计算即可.【详解】解:∵|m|=5,|n|=7,且m+n<0,∴m=5,n=﹣7;m=﹣5,n=﹣7,可得m﹣n=12或2,则m﹣n的值是12或2.故选:C.【点睛】本题考查了绝对值的意义,掌握绝对值的意义求值是关键.11.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=1x﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根【答案】C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意. 12.已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE 绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,则以下结论:①DE+BF=EF,②BF=47,③AF=307,④S △MEF =32175中正确的是( )A .①②③B .②③④C .①③④D .①②④【答案】D 【分析】利用全等三角形的性质条件勾股定理求出BF 的长,再利用相似三角形的性质求出△BMF 的面积即可【详解】解: ∵AG=AE, ∠FAE=∠FAG=45°,AF=AF,∴△AFE ≅ △AFG,∴EF=FG∵DE=BG∴EF=FG=BG+FB=DE+BF 故①正确∵BC=CD=AD=4,EC=1∴DE=3,设BF=x ,则EF=x+3,CF=4-x, 在Rt △ECF 中,(x+3)2=(4-x )2+12 解得x=47∴BF=47 2242024()7+=故②正确,③错误, ∵BM ∥AG ∴△FBM ~△FGA∴2()FBMFGA S FB S FG= ∴S △MEF =32175,故④正确, 故选D .【点睛】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题二、填空题(本题包括8个小题)13.如图,过圆O 外一点P 作圆的一条割线PB 交O 于点A ,若4sin 5OAB ∠=,30OPA ∠=︒,且3PC =,则AB =_______.【答案】1【分析】作OD ⊥AB 于D ,由垂径定理得出AD =BD ,由三角函数定义得出sin ∠OAB =45OD AO=,设OD =4x ,则OC =OA =5x ,OP =3+5x ,由勾股定理的AD =3x ,由含30︒角的直角三角形的性质得出OP =2OD ,得出方程3+5x =2×4x ,解得x =1,得出BD =AD =3即可.【详解】作OD ⊥AB 于D ,如图所示:则AD =BD ,∵sin ∠OAB =45OD AO=, ∴设OD =4x ,则OC =OA =5x ,OP =3+5x ,AD ()()222254OA OD x x =--=3x ,∵∠OPA =30︒,∴OP =2OD ,∴3+5x =2×4x ,解得:x =1,∴BD =AD =3,∴AB =1;故答案为:1.【点睛】本题看了垂径定理、勾股定理、三角函数定义等知识;熟练掌握垂径定理和勾股定理是解题的关键. 14.如图,一条公路的转弯处是一段圆弧AB ,点O 是这段弧所在圆的圆心,AB =40 m ,点C 是AB 的中点,且CD =10 m ,则这段弯路所在圆的半径为__________m .【答案】25m【分析】根据垂径定理可得△BOD 为直角三角形,且BD=12AB ,之后利用勾股定理进一步求解即可. 【详解】∵点C 是AB 的中点, ∴OC 平分AB ,∴∠BOD=90°,BD=12AB=20m , 设OB=x ,则:OD=(x-10)m ,∴()2221020x x =-+,解得:25x =,∴OB=25m ,故答案为:25m.【点睛】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.15.如图,已知矩形ABCD 的两条边AB =1,AD =3,以B 为旋转中心,将对角线BD 顺时针旋转60°得到线段BE ,再以C 为圆心将线段CD 顺时针旋转90°得到线段CF ,连接EF ,则图中阴影部分面积为_____.【答案】153212π+ 【分析】矩形ABCD 的两条边AB =1,AD 3DBC =30°,由旋转的性质得到BD =BE ,∠BDE =60°,求得∠CBE =∠DBC =30°,连接CE ,根据全等三角形的性质得到∠BCE =∠BCD =90°,推出D ,C ,E 三点共线,得到CE =CD =1,根据三角形和扇形的面积公式即可得到结论.【详解】∵矩形ABCD 的两条边AB =1,AD 3∴3tan CD DBC BC ∠==∴∠DBC =30°,∵将对角线BD 顺时针旋转60°得到线段BE ,∴BD =BE ,∠BDE =60°,∴∠CBE =∠DBC =30°,连接CE ,∴△DBC ≌△EBC (SAS ),∴∠BCE =∠BCD =90°,∴D ,C ,E 三点共线,∴CE =CD =1,∴图中阴影部分面积=S △BEF +S △BCD +S 扇形DCF ﹣S 扇形DBE =11(13)11322⨯+⨯+⨯⨯+901360π⋅⨯﹣604360π⨯ =153212π+-, 故答案为:153212π+-.【点睛】本题考查了旋转的性质,解直角三角形,矩形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.16.已知关于x 的方程230x x m +-=的一个解为3-,则m=_______.【答案】0【分析】把3x =-代入原方程得到关于m 的一元一次方程,解方程即可得到答案.【详解】解:把3x =-代入原方程得:()()23330,m ∴-+⨯--= 0.m ∴=故答案为:0.【点睛】本题考查的是一元二次方程的解的含义,掌握方程的解的含义是解题的关键.17.分解因式:4x 3﹣9x =_____.【答案】x (2x+3)(2x ﹣3)【分析】先提取公因式x,再利用平方差公式分解因式即可.【详解】原式=x(4x2﹣9)=x(2x+3)(2x﹣3),故答案为:x(2x+3)(2x﹣3)【点睛】本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.抛物线y=﹣3(x﹣1)2+2的开口向_____,对称轴为_____,顶点坐标为_____.【答案】下直线x=1 (1,2)【分析】根据y=a(x-h)2+k的性质即可得答案【详解】∵-3<0,∴抛物线的开口向下,∵y=﹣3(x﹣1)2+2是二次函数的顶点式,∴该抛物线的对称轴是直线x=1,顶点坐标为(1,2),故答案为:下,直线x=1,(1,2)【点睛】本题主要考查了二次函数的性质,熟练掌握二次函数的三种形式及性质是解题关键.三、解答题(本题包括8个小题)19.箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中任意抽取牛奶饮用,抽取任意一瓶都是等可能的.(1)若小芳任意抽取1瓶,抽到过期的一瓶的概率是;(2)若小芳任意抽取2瓶,请用画树状图或列表法求,抽出的2瓶牛奶中恰好抽到过期牛奶的概率.【答案】(1)14;(2)抽出的2瓶牛奶中恰好抽到过期牛奶的概率为12.【分析】(1)直接根据概率公式计算可得;(2)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图可得所有等可能结果,从所有等可能结果中找到抽出的2瓶牛奶中恰好抽到过期牛奶的结果数,再根据概率公式计算可得.【详解】(1):(1)小芳任意抽取1瓶,抽到过期的一瓶的概率是14,故答案为:14.(2)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A 画树状图如图所示,由图可知,共有12种等可能结果;由树状图知,所抽取的12种等可能结果中,抽出的2瓶牛奶中恰好抽到过期牛奶的有6种结果,所以抽出的2瓶牛奶中恰好抽到过期牛奶的概率为61 122=.【点睛】本题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.20.如图,AB是O的弦,D为半径OA上的一点,过D作CD OA⊥交弦AB于点E,交O于点F,且.CE CB=求证:BC是O的切线.【答案】见解析【解析】试题分析:连接OB,要证明BC是⊙O的切线,即要证明OB⊥BC,即要证明∠OBA+∠EBC=90°,由OA=OB,CE=CB可得:∠OBA=∠OAB,∠CBE=∠CEB,所以即要证明∠OAB+∠CEB=90°,又因为∠CEB=∠AED,所以即要证明∠OAB+∠AED=90°,由CD⊥OA不难证明.试题解析:证明:连接OB,∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC,又∵CD⊥OA,∴∠A+∠AED=∠A+∠CEB=90°,∴∠OBA+∠ABC=90°,∴OB⊥BC,∴BC是⊙O的切线.点睛:本题主要掌握圆的切线的证明方法,一般我们将圆心与切点连接起来,证明半径与切线的夹角为90°.21.如图,在△ABC中,∠CAB=90°,D是边BC上一点,2AB BD BC=,E为线段AD的中点,连结CE 并延长交AB于点F.(1)求证:AD ⊥BC.(2)若AF:BF =1:3,求证:CD:DB =1:2.【答案】 (1)见解析;(2)见解析.【分析】(1)由等积式转化为比例式,再由相似三角形的判定定理,证明△ABD ∽CBA,从而得出∠ADB=∠CAB=90°;(2)过点D 作DG ∥AB 交CF 于点G,由E 为AD 的中点,可得△DGE ≌△AFE ,得出AF=DG ,再由平行线分线段成比例可得出结果.【详解】证明:(1)∵AB 2=BD ·BC , ∴,AB BC BD AB又∠B=∠B,∴△ABD ∽CBA ,∴∠ADB=∠CAB=90°,∴AD ⊥BC.(2)过点D 作DG ∥AB 交CF 于点G,∵E 为AD 的中点,∴易得△DGE ≌△AFE ,∴AF=DG ,又AF:BF =1:3,∴DG:BF =1:3.∵DG ∥BF ,∴DG :BF=CD:BC=1:3,∴CD:DB =1:2.【点睛】本题考查相似三角形的判定与性质,遇到比例式或等积式就要考虑转化为三角形相似来解决问题.22.如图,在圆O 中,弦8AB =,点C 在圆O 上(C 与A ,B 不重合),联结CA 、CB ,过点O 分别作OD AC ⊥,OE BC ⊥,垂足分别是点D 、E .(1)求线段DE 的长;(2)点O 到AB 的距离为3,求圆O 的半径.【答案】(1)4DE =;(2)圆O 的半径为1.【分析】(1)利用中位线定理得出12DE AB =,从而得出DE 的长. (2)过点O 作OH AB ⊥,垂足为点H ,3OH =,联结OA ,求解出AH 的值,再利用勾股定理,求出圆O 的半径.【详解】解(1)∵OD 经过圆心O ,OD AC ⊥∴AD DC =同理:CE EB =∴DE 是ABC ∆的中位线 ∴12DE AB = ∵8AB =∴4DE =(2)过点O 作OH AB ⊥,垂足为点H ,3OH =,联结OA∵OH 经过圆心O ∴12AH BH AB ==∵8AB =∴4AH =在Rt AHO ∆中,222AH OH AO +=∴5AO =即圆O 的半径为1.【点睛】本题考查了三角形的中位线定理以及勾股定理的运用,是较为典型的圆和三角形的例题.23.如图,在□ABCD中,AB=5,BC=8.(1)作∠ABC的角平分线交线段AD于点E(用尺规作图,保留作图痕迹,不要求写作法):(2)在(1)的条件下,求ED的长.【答案】(1)作图见解析;(2)3.【分析】(1)以点B为圆心,任意长为半径画弧,交AB,BC于两点,分别以这两点为圆心,大于这两点距离的一半为半径画弧,在□ABCD内交于一点,过点B以及这个交点作射线,交AD于点E即可;(2)利用角平分线的性质以及平行线的性质求出∠ABE=∠AEB,从而得AE=AB,再根据AB、BC的长即可得出答案.【详解】解:(1)如图所示,BE为所求;(2)∵四边形ABCD是平行四边形,∴AB//CD,AD=BC=8,∴∠AED=∠EBC ,∵BE平分∠ABC,∴∠ABE=∠EBC ,∴∠ABE=∠AEB ,。
2020-2021学年浙江省宁波市余姚市九年级(上)期末数学试卷 (解析版)
2020-2021学年浙江省宁波市余姚市九年级第一学期期末数学试卷一、选择题(共10小题).1.下列各图中,能通过一个三角形绕一点旋转一次得到另一三角形的图形是()A.B.C.D.2.气象台预明天下雨的概率为70%,则下列理解正确的是()A.明天30%的地区不会下雨B.明天下雨的可能性较大C.明天70%的时间会下雨D.明天下雨是必然事件3.把二次函数y=(x﹣1)2﹣3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为()A.y=(x+2)2+1B.y=(x﹣2)2+1C.y=(x+4)2+1D.y=(x﹣4)2+14.一个圆的内接正六边形与内接正方形的边长之比为()A.3:2B.1:C.1:D.:5.如图,直线l1∥l2∥l3,直线AB,DE分别交l1,l2,l3于点A,B,C和D,E,F,若AB:AC=2:5,EF=15,则DF的长等于()A.18B.20C.25D.306.在4×5网格中,A,B,C为如图所示的格点(正方形的顶点),则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=7.如图,已知⊙O的半径为3,弦AB⊥直径CD,∠A=30°,则的长为()A.πB.2πC.3πD.6π8.如图,某商场为了便于残疾人的轮椅行走,准备拆除台阶换成斜坡,又考虑安全,斜坡的坡角不得超过10°,此商场门前的台阶高出地1.53米,则斜坡的水平宽度AB至少需()(精确到0.1米.参考值:sin10°=0.7,cos10°≈0.98,tan10°≈0.18)A.8.5米B.8.8米C.8.3米D.9米9.如图,矩形相框的外框矩形的长为12dm,宽为8dm,上下边框的宽度都为xdm,左右边框的宽度都为ydm.则符合下列条件的x,y的值能使内边框矩形和外边框矩形相似的为()A.x=y B.3x=2y C.x=1,y=2D.x=3,y=2 10.如图,二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=x2+ex+f(e,f 为常数)的图象的顶点分别为A、B,且相交于C(m,n)和D(m+8,n),若∠ACB =90°,则a的值为()A .﹣B .﹣C .﹣D .﹣二、填空题(共6小题).11.如图,已知角α的终边经过点P(4,3),则cosα=.摸球的次数n1001502005008001000600058961162954846013601到白球的次数m0.580.640.580.590.6050.6010.600摸到白球的频率小杰根据表格中的数据提出了下列两个判断:①若摸10000次,则频率一定为0.6;②可以估计摸一次得白球的概率约为0.6.则这两个判断正确的是(若有正确的,则填编号;若没有正确的,则填“无”).13.已知,点A(﹣1,y1),B(﹣0.5,y2),C(4,y3)都在二次函数y=ax2﹣2ax﹣1(a >0)的图象上,则y1,y2,y3的大小关系是.14.如图,AB为⊙O的直径,=2,M为的中点,过M作MN∥OC交AB于N,连接BM,则∠BMN的度数为.15.如图,将一张面积为10的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片,根据图中标示的长度,则平行四边形纸片的面积为.16.如图1,是2002年发行的中国纪念邮票,其图案是三国时期吴国数学家赵爽在注释《周髀算经》中所给勾股定理的证明.同学们在探索勾股定理时还出现了许多利用正方形证明勾股定理的方法,如图2,正方形ABCD是由四个全等的直角三角形和一个正方形EFGH拼成;正方形EFGH是由与上述四个直角三角形全等的三角形和正方形IJKL拼成;正方形ABCD,EFGH,IJKL的面积分别为S1,S2,S3,分别连接AK,BL,CI,DJ并延长构成四边形MNOP,它的面积为m.①请用等式表示S1,S2,S3之间的数量关系为:;②m=(用含S1,S3的代数式表示m).三、解答题(第17、18、19题各8分,第20、21、22题各10分,第23题12分,第24题14分,共80分)17.计算求值:(1)已知,求的值;(2)2sin30°﹣tan60°•cos30°.18.如图,在4×8的网格中,已知格点△ABC(正方形的顶点称为格点,顶点在格点处的三角形称为格点三角形),在图1、图2中分别画一个格点三角形(所画的两个三角形不全等),使其同时符合下列两个条件.(1)与△ABC有一公共角;(2)与△ABC相似但不全等.19.某校在防疫期间开设A,B,C三个测体温通道.一天早晨,小丽与小聪任意选择一个通道进入校园.(1)求小丽通过A通道进入校园的概率;(2)利用画树状图或列表的方法,求小丽和小聪从两个不同通道进入校园的概率(要求画出树状图或表格).20.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角α的度数来调整晾杆的高度,图2是晾衣架的侧面的平面示意图,AB和CD分别是两根长度不等的支撑杆,夹角∠BOD=α,AO=70cm,BO=DO=80cm,CO=40cm.(1)若α=56°,求点A离地面的高度AE;(参考值:sin62°=cos28°≈0.88,sin28°=cos62°≈0.47,tan62°≈1.88,tan28°≈0.53.)(2)调节α的大小,使A离地面高度AE=125cm时,求此时C点离地面的高度CF.21.如图,用长为24米的篱笆靠一道长为a米的墙围一个矩形养鸡场(靠墙一面不用篱笆).(1)求下列情形下养鸡场的面积的最大值;①a=15;②a=10.(2)若可围成的矩形养鸡场的面积的最大值为67.5平方米,求a的值.22.如图,已知,A,B是⊙O上的点,P为⊙O外一点,连接PA,PB,分别交⊙O于点C,D,=.(1)求证:PA=PB;(2)若∠P=60°,=3.△AOC的面积等于9,求图中阴影部分的面积.23.如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),E(1,3),与y轴交于点C.(1)求该二次函数表达式;(2)判断△ABC的形状,并说明理由;(3)P为第一象限内该二次函数图象上一动点,过P作PQ∥AC,交直线BC于点Q,作PM∥y轴交BC于M.①求证:△PQM∽△COA;②求线段PQ的长度的最大值.24.如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)如图1.①求证:点P为的中点;②求sin∠BAC的值;(2)如图2,若点A为的中点,求CE的长;(3)若△ABC为非锐角三角形,求PA•AE的最大值.参考答案一、选择题(共10小题).1.下列各图中,能通过一个三角形绕一点旋转一次得到另一三角形的图形是()A.B.C.D.解:根据旋转的定义,A,B,C中的三角形绕一点旋转一次不能得到另一三角形,不符合题意,选项D符合题意.故选:D.2.气象台预明天下雨的概率为70%,则下列理解正确的是()A.明天30%的地区不会下雨B.明天下雨的可能性较大C.明天70%的时间会下雨D.明天下雨是必然事件解:天气台预报明天下雨的概率为70%,说明明天下雨的可能性很大,故B正确.故选:B.3.把二次函数y=(x﹣1)2﹣3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为()A.y=(x+2)2+1B.y=(x﹣2)2+1C.y=(x+4)2+1D.y=(x﹣4)2+1解:把二次函数y=(x﹣1)2﹣3的图象向左平移3个单位,向上平移4个单位后,得到的图象所对应的二次函数表达式为y=(x﹣1+3)2﹣3+4,即y=(x+2)2+1.故选:A.4.一个圆的内接正六边形与内接正方形的边长之比为()A.3:2B.1:C.1:D.:解:设此圆的半径为R,它的内接正六边形的边长为R,则它的内接正方形的边长为R,内接正六边形和内接四边形的边长比为R:R=1:.故选:C.5.如图,直线l1∥l2∥l3,直线AB,DE分别交l1,l2,l3于点A,B,C和D,E,F,若AB:AC=2:5,EF=15,则DF的长等于()A.18B.20C.25D.30解:∵l1∥l2∥l3,∴=,即=,∴DF=25.故选:C.6.在4×5网格中,A,B,C为如图所示的格点(正方形的顶点),则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=解:由网格构造直角三角形可得,AB2=12+32=10,AC2=12+22=5,BC2=12+22=5,∵AB2=AC2+BC2,∴△ABC是等腰直角三角形,∴∠A=∠B=45°,∴sin A=sin45°=,cos A=cos45°=,tan A=tan45°=1,∴选项D是正确的,故选:D.7.如图,已知⊙O的半径为3,弦AB⊥直径CD,∠A=30°,则的长为()A.πB.2πC.3πD.6π解:如图,连接OB.∵CD⊥AB,CD是直径,∴=,∴∠AOC=∠BOC,∵OA=OB,∴∠A=∠B=30°,∴∠AOB=180°﹣30°﹣30°=120°,∴∠COB=∠AOB=60°,∴∠DOB=180°﹣60°=120°,∴的长==2π,故选:B.8.如图,某商场为了便于残疾人的轮椅行走,准备拆除台阶换成斜坡,又考虑安全,斜坡的坡角不得超过10°,此商场门前的台阶高出地1.53米,则斜坡的水平宽度AB至少需()(精确到0.1米.参考值:sin10°=0.7,cos10°≈0.98,tan10°≈0.18)A.8.5米B.8.8米C.8.3米D.9米解:由于台阶共高出地面1.53米,斜坡的坡角不得超过10°,斜坡的水平宽度AB至少为AB=≈8.5(米).故选:A.9.如图,矩形相框的外框矩形的长为12dm,宽为8dm,上下边框的宽度都为xdm,左右边框的宽度都为ydm.则符合下列条件的x,y的值能使内边框矩形和外边框矩形相似的为()A.x=y B.3x=2y C.x=1,y=2D.x=3,y=2解:如图,当矩形ABCD∽矩形EFGH时,则有=,∴=,可得3x=2y,选项B符合题意,当矩形ABCD∽矩形EHFG时,则有=,∴=,推不出:x=y或3x=2y或x=1,y=2或x=3,y=2.故选项A,B,C,D都不满足条件,此种情形不存在.∴矩形ABCD∽矩形EFGH,可得3x=2y,故选:B.10.如图,二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=x2+ex+f(e,f 为常数)的图象的顶点分别为A、B,且相交于C(m,n)和D(m+8,n),若∠ACB =90°,则a的值为()A.﹣B.﹣C.﹣D.﹣解:∵C(m,n)和D(m+8,n),∴CD∥x轴,且二次函数的对称轴x=m+4,∴AB⊥CD,∵点C,D在二次函数y=ax2+bx+c(a≠0,a,b,c为常数)与二次函数y=x2+ex+f (e,f为常数)的图象上,∴y=ax2+bx+c=a(x﹣m)(x﹣m﹣8)+n,y=(x﹣m)(x﹣m﹣8)+n,∴A(m+4,n﹣16a),B(m+4,n﹣8),设AB与CD的交点为E,则E(m+4,n),则CE=4,AE=﹣16a,BE=8;在△ABC中,∠ACB=90°,且AB⊥CD,则CE2=AE•BE,∴42=﹣16a×8,解得,.故选:C.二、填空题(每题5分,共30分)11.如图,已知角α的终边经过点P(4,3),则cosα=.解:过点P作PA⊥x轴于点A,∵点P的坐标为(4,3),∴PA=3,OA=4,由勾股定理得,OP ==5,∴cosα==,故答案为:.12.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球.某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记第下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000600058961162954846013601到白球的次数m0.580.640.580.590.6050.6010.600摸到白球的频率小杰根据表格中的数据提出了下列两个判断:①若摸10000次,则频率一定为0.6;②可以估计摸一次得白球的概率约为0.6.则这两个判断正确的是②(若有正确的,则填编号;若没有正确的,则填“无”).解:由题意可得,若摸10000次,则频率不一定为0.6,可能为0.6,故①错误;由表格中的数据可以估计摸一次得白球的概率约为0.6,故②正确;故答案为:②.13.已知,点A(﹣1,y1),B(﹣0.5,y2),C(4,y3)都在二次函数y=ax2﹣2ax﹣1(a >0)的图象上,则y1,y2,y3的大小关系是y2<y1<y3.解:当x=﹣1时,y1=a×(﹣1)2﹣2a×(﹣1)﹣1=3a﹣1;当x=﹣0.5时,y2=a×(﹣0.5)2﹣2a×(﹣0.5)﹣1=1.25a﹣1;当x=4时,y3=a×42﹣2a×4﹣1=8a﹣1.∵a>0,∴1.25a﹣1<3a﹣1<8a﹣1,∴y2<y1<y3.故答案为:y2<y1<y3.14.如图,AB为⊙O的直径,=2,M为的中点,过M作MN∥OC交AB于N,连接BM,则∠BMN的度数为45°.解:连接OM.∵AB是直径,=2,∴∠BOC=×180°=60°,∵=,∴∠MOB=∠COM=30°,∵OM=OB,∴∠B=∠OMB=(180°﹣30°)=75°,∵OC∥MN,∴∠MNB=∠COB=60°,∴∠BMN=180°﹣∠BNM﹣∠NBM=180°﹣60°﹣75°=45°,故答案为:45°.15.如图,将一张面积为10的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片,根据图中标示的长度,则平行四边形纸片的面积为.解:如图,作AM⊥BC于M,AM交DE于N.∵S△ABC=BC•AM=10,BC=5,∴AM=4.∵DE∥BC,AM⊥BC,∴△ADE∽△ABC,AM⊥DE,∴=,即=,∴AN=,∴平行四边形DEGF的高MN=AM﹣AN=4﹣=,∴平行四边形纸片的面积=2×=.故答案为:.16.如图1,是2002年发行的中国纪念邮票,其图案是三国时期吴国数学家赵爽在注释《周髀算经》中所给勾股定理的证明.同学们在探索勾股定理时还出现了许多利用正方形证明勾股定理的方法,如图2,正方形ABCD是由四个全等的直角三角形和一个正方形EFGH拼成;正方形EFGH是由与上述四个直角三角形全等的三角形和正方形IJKL拼成;正方形ABCD,EFGH,IJKL的面积分别为S1,S2,S3,分别连接AK,BL,CI,DJ并延长构成四边形MNOP,它的面积为m.①请用等式表示S1,S2,S3之间的数量关系为:S2=(S1+S3);②m=.(用含S1,S3的代数式表示m).解:①观察图像(2)可知,S1=8S△AEH+S3,4S△AEH=S2﹣S3,∴S1=2(S2﹣S3)+S3,∴2S2=S1+S3,∴S2=(S1+S3),故答案为:S2=(S1+S3).②∵HE⊥EF,AK⊥HE,∴AK∥EF,同理:BL∥GF,DJ∥HE,CI∥GH,∴四边形MNOP是平行四边形,且△MKL≌△NLI≌△OIJ≌△PJK,∴MN∥GF∥EH,∴∠LMK=∠EKH=90°,∠MLK=∠HEL,∴△MLK∽△KEH,∴==,设AE=x,PE=y,则:==,∴ML=,MK==LN,∴MN=+=,∴m=MN2=2=,∵S1=(x+y)2,S2=x2+y2,S3=(x﹣y)2,∴m===.故答案为:.三、解答题(第17、18、19题各8分,第20、21、22题各10分,第23题12分,第24题14分,共80分)17.计算求值:(1)已知,求的值;(2)2sin30°﹣tan60°•cos30°.解:(1)∵,∴设a=3x,则b=4x,∴==﹣;(2)原式=2×﹣×=1﹣=﹣.18.如图,在4×8的网格中,已知格点△ABC(正方形的顶点称为格点,顶点在格点处的三角形称为格点三角形),在图1、图2中分别画一个格点三角形(所画的两个三角形不全等),使其同时符合下列两个条件.(1)与△ABC有一公共角;(2)与△ABC相似但不全等.解:如图所示,△ADE和△ADB即为所求.19.某校在防疫期间开设A,B,C三个测体温通道.一天早晨,小丽与小聪任意选择一个通道进入校园.(1)求小丽通过A通道进入校园的概率;(2)利用画树状图或列表的方法,求小丽和小聪从两个不同通道进入校园的概率(要求画出树状图或表格).解:(1)小丽通过A通道进入校园的概率为;(2)列表如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C由表可知,共有9种等可能的结果,其中小丽和小聪从两个不同通道进入校园的有6种可能,∴小丽和小聪从两个不同通道进入校园的概率为=.20.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角α的度数来调整晾杆的高度,图2是晾衣架的侧面的平面示意图,AB和CD分别是两根长度不等的支撑杆,夹角∠BOD=α,AO=70cm,BO=DO=80cm,CO=40cm.(1)若α=56°,求点A离地面的高度AE;(参考值:sin62°=cos28°≈0.88,sin28°=cos62°≈0.47,tan62°≈1.88,tan28°≈0.53.)(2)调节α的大小,使A离地面高度AE=125cm时,求此时C点离地面的高度CF.解:(1)如图,过O作OG⊥BD于点G,∵AE⊥BD,∴OG∥AE,∵BO=DO,∴OG平分∠BOD,∴∠BOG=∠BOD=×56°=28°,∴∠EAB=∠BOG=28°,在Rt△ABE中,AB=AO+BO=70+80=150(cm),∴AE=AB•cos∠EAB=150×cos28°≈150×0.88=132(cm),答:点A离地面的高度AE约为132cm;(2)∵OG∥AE,∴∠EAB=∠BOG,∵CF⊥BD,∴CF∥OG,∴∠DCF=∠DOG,∵∠BOG=∠DOG,∴∠BAE=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△CFD,∴=,∴CF===100(cm),答:C点离地面的高度CF为100cm.21.如图,用长为24米的篱笆靠一道长为a米的墙围一个矩形养鸡场(靠墙一面不用篱笆).(1)求下列情形下养鸡场的面积的最大值;①a=15;②a=10.(2)若可围成的矩形养鸡场的面积的最大值为67.5平方米,求a的值.解:(1)设矩形的长为x米,则宽为米,由题意可知x≤a,∴设矩形的面积为S,则S=x×=﹣x2+12x=﹣(x﹣12)2+72,∵﹣<0,抛物线开口向下,对称轴为直线x=12,∴当0<x≤12时,S随x的增大而增大,当x≥12时,S随x的增大而减小;①a=15时,x≤a即x≤15;∴当x=12时,S有最大值为72平方米;②a=10时,x≤a即x≤10,∴当x=10时,面积的最大值为﹣×(10﹣12)2+72=70(平方米).(2)令S=67.5得:﹣(x﹣12)2+72=67.5,解得x=9或x=15,由x≤a可知,当x=15时,a≥15,由(1)知,此时矩形最大值在x=12时取得,面积最大值为72平方米,故x=15舍去.∴a=9.22.如图,已知,A,B是⊙O上的点,P为⊙O外一点,连接PA,PB,分别交⊙O于点C,D,=.(1)求证:PA=PB;(2)若∠P=60°,=3.△AOC的面积等于9,求图中阴影部分的面积.【解答】(1)证明:连接OA,OC,OD,OB,设OM⊥AC于M,ON⊥BD于N,设OP交⊙O于E.∵=,∴AC=BD,∵OA=OC=OB=OD,OM⊥AC,ON⊥BD,∴CM=AM,BN=DN,∠OMC=∠OND=90°,∴CM=DN,在Rt△OMC和Rt△OND中,,∴Rt△OMC≌Rt△OND(HL),∴OM=ON,在Rt△POM和Rt△PON中,,∴Rt△POM≌Rt△PON(HL),∴PM=PN,∵AM=BN,∴PA=PB.(2)解:∵∠APB=60°,∠PMO=∠PNO=90°,∴∠MON=120°,∵△POM≌△PON,∴∠POM=∠PON=60°,∵=3,∴∠COE=3∠COM,∴∠COM=15°,∴∠AOC=2∠COM=30°,过点A作AJ⊥OC于J.设OA=OB=R,则AJ=R∴S△AOC=9,∴•R••R=9,∴R=6,∴S阴=S阴=S阴﹣S△AOC=﹣9=3π﹣9.23.如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),E(1,3),与y轴交于点C.(1)求该二次函数表达式;(2)判断△ABC的形状,并说明理由;(3)P为第一象限内该二次函数图象上一动点,过P作PQ∥AC,交直线BC于点Q,作PM∥y轴交BC于M.①求证:△PQM∽△COA;②求线段PQ的长度的最大值.解:(1)∵二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),E(1,3),∴,解得:,∴二次函数表达式为y=﹣x2+x+2;(2)△ABC是直角三角形,理由如下:∵抛物线y=﹣x2+x+2与y轴交于点C,∴点C(0,2),又∵点A(﹣1,0),B(4,0),∴AB=5,AC===,BC===2,∵AB2=25,AC2+BC2=25,∴AB2=AC2+BC2,∴∠ACB=90°,∴△ABC是直角三角形;(3)①∵∠ACB=∠AOC=90°,∴∠ACO+∠BCO=90°=∠ACO+∠CAO,∴∠BCO=∠CAO,∵PQ∥AC,PM∥y轴,∴∠ACB=∠CQP=∠PQM=90°,∠PMQ=∠BCO=∠CAO,∴△PMQ∽△COA;②如图,延长PM交AB于H,∵∠PMQ=∠BMH,∠PQM=∠PHB=90°,∴∠QPM=∠CBA,∵B(4,0),点C(0,2),∴直线BC解析式为y=﹣x+2,设P(m,﹣m2+m+2),则点M(m,﹣m+2),∴PM=﹣m2+m+2﹣(﹣m+2)=﹣(m﹣2)2+2,∵cos∠CBA=cos∠QPM,∴,∴=,∴PQ=﹣(m﹣2)2+,∴当m=2时,PQ有最大值为.24.如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)如图1.①求证:点P为的中点;②求sin∠BAC的值;(2)如图2,若点A为的中点,求CE的长;(3)若△ABC为非锐角三角形,求PA•AE的最大值.【解答】(1)①证明:如图1,连接PC,∵A、P、B、C四点内接于⊙O,∴∠PAF=∠PBC,∵AP平分∠BAF,∴∠PAF=∠BAP,∵∠BAP=∠PCB,∴∠PCB=∠PBC,∴PB=PC,∴=,∴点P为的中点;②解:如图2,过P作PG⊥BC于G,交BC于G,交⊙O于H,连接OB,∴,∴PH是直径,∵∠BPC=∠BAC,∠BOG=∠BPG=∠BPC,∵OG⊥BC,∴BG=BC=3,Rt△BOG中,∵OB=5,∴sin∠BAC=sin∠BOG==;(2)解:如图3,过P作PG⊥BC于G,连接OC,由(1)知:PG过圆心O,且CG=3,OC=OP=5,∴OG=4,∴PG=4+5=9,∴PC===3,设∠APC=x,∵A是的中点,∴=,∴∠ABC=∠ABP=x,∵PB=PC,∴∠PCB=∠PBC=2x,△PCE中,∠PCB=∠CPE+∠E,∴∠E=2x﹣x=x=∠CPE,∴CE=PC=3;(3)解:如图4,过点C作CQ⊥AB于Q,∵∠ACE=∠P,∠CAE=∠PAF=∠PAB,∴△ACE∽△APB,∴,∴PA•AE=AC•AB,∵sin∠BAC=,∴CQ=AC•sin∠BAC=AC,∴S△ABC=AB•CQ=,∴PA•AE=S△ABC,∵△ABC为非锐角三角形,∴点A运动到使△ABC为直角三角形时,如图5,△ABC的面积最大,Rt△ABC中,AB=10,BC=6,∴AC=8,此时PA•AE=×=80.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省宁波市余姚市19-20九上期末数学试卷一、选择题(本大题共12小题,共48.0分)1.如果ab =2,则a+ba−b的值是()A. 3B. −3C. 12D. 322.下列事件为必然事件的是()A. 买一张电影票,座位号是偶数B. 抛掷一枚普通的正方体骰子1点朝上C. 明天一定会下雨D. 百米短跑比赛,一定产生第一名3.抛物线y=x2+1的顶点坐标是()A. (1,0)B. (−1,0)C. (0,1)D. (1,1)4.△ABC的三边长分别为6、8、10,则其内切圆和外接圆的半径分别是()A. 2,5B. 1,5C. 4,5D. 4,105.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. 32π B. 2π C. 3π D. 6π6.点P1(−1,y1),P2(3,y2),P3(5,y3)均在二次函数y=−x2+2x+c的图象上,则y1,y2,y3的大小关系是()A. y1=y2>y3B. y1>y2>y3C. y3>y2>y1D. y3>y1=y27.如图,已知⊙O是△ABC的外接圆,⊙O的半径为5,AB=5,则∠C为()A. 60°B. 90°C. 45°D. 30°8.若抛物线y=ax2+c经过点P(1,−2),则它也经过()A. P1(−1,−2)B. P2(−1,2)C. P3(1,2)D. P4(2,1)9.如图,在等腰△ABC中,AB=AC,BC=3√10,sinA=35,则AB的长为()A. 15B. 5√10C. 20D. 10√510.如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE:S△COB等于()A. 1:2B. 1:3C. 1:4D. 2:311.已知OA=4cm,以O为圆心,r为半径作⊙O.若使点A在⊙O内,则r的值可以是()A. 2cmB. 3cmC. 4cmD. 5cm12.如图,在矩形ABCD内放入六个小正方形后形成一个中心对称图形,其中顶点E、F分别在边BC、AD上,则长AD与宽AB的比为()A. 6:5B. 13:10C. 8:7D. 4:3二、填空题(本大题共6小题,共24.0分)13.一个正八边形每个内角的度数为______度.14.比较下列三角函数值的大小:sin40°____sin50°.15.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是奇数的概率为.16.把二次函数y=2x2向左平移3个单位长度,再向下平移4个单位长度得到的解析式为______.17.在△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,BD=1,则BC的长为______.18.如图,已知A,B,C,D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.若BE=3,ED=6,则AB=______ .三、计算题(本大题共1小题,共6.0分)19.计算:4sin45°+cos230°−.tan60°−√2四、解答题(本大题共7小题,共72.0分)20.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.21.如图所示,小明准备测量学校旗杆AB的高度,他发现阳光下,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC=20m,斜坡坡面上的影长CD=8m,太阳光线AD与水平地面成锐角为26°,斜坡CD与水平地面所成的锐角为30°,求旗杆AB的高度(精确到1m).(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)22.已知抛物线y=−x2+(m−1)x+m与y轴交于(0,3),(1)求m的值;(2)求抛物线与x轴的交点坐标及顶点坐标;(3)请直接写出抛物线在x轴上方时x的取值范围________.(4)请直接写出y随x的增大而增大时x的取值范围________.23.如图,AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连接OD,过点B作OD的平行线交⊙O于点E,交CD的延长线于点F.(1)若∠F=30°,请证明E是BD⏜的中点;(2)若AC=1,求BE⋅EF的值.224.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元,每上涨1元,则每个月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?25.已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧AD⏜上到一点E使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H.(1)求证:AC⊥BH;(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求①CG的值;CD②EH的长.26.如图,在平面直角坐标系中,A(3,4),B(5,0),连结AO,AB.点C是线段AO上的动点(不与A,O重合),连结BC,以BC为直径作⊙H,交x轴于点D,交AB于点E,连结CD,CE,过E 作EF⊥x轴于F,交BC于G.(1)AO的长为______,AB的长为______(直接写出答案)(2)求证:△ACE∽△BEF;(3)若圆心H落在EF上,求BC的长;(4)若△CEG是以CG为腰的等腰三角形,求点C的坐标.-------- 答案与解析 --------1.答案:A解析:本题考查了比例的性质,主要利用了两内项之积等于两外项之积,熟记性质是解题的关键.根据两内项之积等于两外项之积可得a=2b,然后代入比例式进行计算即可得解.解:∵ab=2,∴a=2b,∴a+ba−b =2b+b2b−b=3.故选:A.2.答案:D解析:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.必然事件就是一定发生的事件,根据定义即可判断.解:A.是随机事件,选项错误;B.是随机事件,选项错误;C.是随机事件,选项错误;D.是必然事件,选项正确.故选D.3.答案:C解析:解:∵抛物线的解析式为:y=x2+1,∴其顶点坐标为(0,1).故选:C.直接根据二次函数的顶点式可得出结论.本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.4.答案:A解析:本题考查三角形的内心、外心、三角形的面积及勾股定理的逆定理.解题的关键是正确应用三角形的内心和外心的性质.根据三角形的内心到三角形的三边等距离,可以运用三角形的面积求出内切圆的半径;根据直角三角形的外心是斜边的中点可得外接圆的半径.解:如图,△ABC中,设AC=6,BC=8,AB=10,根据勾股定理的逆定理由62+82=102可得△ABC是直角三角形,且AB是斜边,所以AB是外接圆的直径,所以外接圆的半径是5;设O是内心,作OD⊥BC,OE⊥AC,OF⊥AB,D、E、F是垂足,则OD=OE=OF=r,S△ABC=S△OAB+S△OBC+S△OAC=12r×10+12r×8+12r×6=12r,又因为S△ABC=12×8×6=24,所以12r=24,解得r=2,所以△ABC内切圆和外接圆的半径分别是2和5.故选A.5.答案:C解析:解:该扇形的弧长=90⋅π⋅6180=3π.故选:C.根据弧长公式计算.本题考查了弧长的计算:弧长公式:l=n⋅π⋅R180(弧长为l,圆心角度数为n,圆的半径为R).6.答案:A解析:解:二次函数y=−x2+2x+c的图象的对称轴为直线x=−22×(−1)=1,而P1(−1,y1)和P2(3,y2)到直线x=1的距离都为2,P3(5,y3)到直线x=1的距离为4,所以y1=y2>y3.故选:A.先求出抛物线的对称轴方程,然后根据二次函数的性质,通过比较三个点到对称轴的距离大小可得到y1,y2,y3的大小关系.本题考查了二次函数图象上点的坐标特征:熟练掌握二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.7.答案:D解析:本题主要考查了三角形的外接圆与外心的知识,解题的关键是熟练掌握圆周角定理.根据等边三角形的性质求出∠AOB的度数,再根据圆周角定理求出∠C的度数.解:∵⊙O是△ABC的外接圆,⊙O的半径为5,AB=5,∴△AOB是等边三角形,∴∠AOB=60°,∴∠C=12∠AOB=12×60°=30°,故选:D.8.答案:A解析:本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性.根据二次函数的对称性解答即可.解:∵抛物线y=ax2+c的对称轴为y轴,P(1,−2)关于y轴的对称点为(−1,−2),∴抛物线也经过点(−1,−2).故选A.9.答案:A解析:[分析]过点C作CD⊥AB,垂足为D,设CD=3k,则AB=AC=5k,继而可求出BD=k,解直角三角形即可得到结论.本题考查了等腰三角形的性质,解直角三角形的知识,过点C作CD⊥AB,构造直角三角形是关键.[详解]解:过点C作CD⊥AB,垂足为D,,在Rt△ACD中,sinA=35设CD=3k,则AB=AC=5k,∴AD=√AC2−CD2=4k,在Rt△BCD中,∵BD=AB−AD=5k−4k=k,在Rt△BCD中,BC=√BD2+CD2=√k2+9k2=√10k,∵BC=3√10,∴√10k=3√10,∴k=3,∴AB=5k=15,故选A.10.答案:C解析:解:∵BE和CD是△ABC的中线,∴DE=12BC,DE//BC,∴DEBC =12,△DOE∽△COB,∴S△DOES△COB =(DEBC)2=(12)2=14,故选:C.根据三角形的中位线得出DE//BC,DE=12BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.本题考查了相似三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方,三角形的中位线平行于第三边,并且等于第三边的一半.11.答案:D解析:∵已知OA=4cm,以O为圆心,r为半径作⊙O.若使点A在⊙O内,∴点A到圆心的大小应该小于圆的半径,∴圆的半径应该大于4.故选:D.根据点A与⊙O的位置关系确定点到圆心的距离与圆的半径大小即可.本题考查了点与圆的位置关系,解题的关键是了解圆的位置关系与点与圆心的距离及半径的大小关系,难度不大.12.答案:A解析:解:连结EF,作IJ⊥LJ于J,∵在矩形ABCD内放入六个小正方形后形成一个中心对称图形,∴△HGF∽△FHE,△HGF≌△FML≌△LJI,∴HG:GF=FH:HE=1:2,∴长AD与宽AB的比为(1+2+1+2):(2+2+1)=6:5.故选:A.连结EF,作IJ⊥LJ于J,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是2:1,进一步得到长AD与宽AB的比.此题考查了中心对称图形,相似三角形的性质,关键是理解直角三角形两直角边的比是2:1.13.答案:135解析:解:一个正八边形每个内角的度数=18×(8−2)×180°=135°.故答案为:135.根据多边形的内角和公式列式计算即可得解.本题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.14.答案:<解析:解:∵40°<50°,∴sin40°<sin50°.故答案为<.根据当0<α<90°,sinα随α的增大而增大即可得到sin40°<sin50°.本题考查了锐角三角函数的增减性:对于正弦函数,当0<α<90°,sinα随α的增大而增大.15.答案:353 5解析:此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.让正面的数字是奇数的情况数除以总情况数即为所求的概率.解:∵从写有数字1,2,3,4,5这5张卡片中抽取一张,其中正面数字是奇数的有1、3、5这3种结果,∴正面的数字是奇数的概率为3535;故答案为3.516.答案:y=2(x+3)2−4解析:解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移3个单位,再向下平移4个单位得到的图象表达式为y=2(x+3)2−4,故答案为:y=2(x+3)2−4.根据“上加下减,左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.17.答案:3解析:解:∵AB=AC,∠BAC=120°,×(180°−120°)=30°,∴∠B=∠C=12∵AD⊥AC,∴∠DAC=90°,∴∠DAB=30°,∴∠DAB=∠B,∴AD=BD=1,在Rt△DAC中,∠C=30°,∴CD=2AD=2,∴BC=BD+CD=3,故答案为:3.根据等腰三角形的性质,三角形内角和定理得到∠B=∠C=30°,进而得到∠DAB=∠B,即可得到AD=BD=1,根据直角三角形的性质计算出CD,即可.本题考查的是含30度角的直角三角形的性质,等腰三角形的判定与性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.18.答案:3√3解析:此题考查相似三角形的判定与性质,圆周角定理,利用圆周角定理得出角相等,证得三角形相似是解决问题的关键.等弦对等角可证DB平分∠ABC,证得△ABE∽△DBA,根据相似三角形的性质可求AB的长.解:∵AB=BC,∴AB⏜=BC⏜,∴∠BDC=∠ADB,∴又∵∠ABE=∠ABD,∴△ABE∽△DBA,∴ABBE =BDAB,∵BE=3,ED=6,∴BD=9,∴AB2=BE⋅BD=3×9=27,∴AB=3√3.故答案为3√3.19.答案:解:原式=4×√22+(√32)2−√3−√2=2√2+34−2(√3+√2)=34−2√3.解析:直接利用特殊角的三角函数值分别代入求出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.答案:解:(1)如图:;(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为46=23.解析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可知两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.答案:解:延长AD交BC于E点,则∠AEB=30°,作DQ⊥BC于Q,在Rt△DCQ中,∠DCQ=30°,DC=8,∴DQ=4,QC=8cos30°=4√3,≈8.16(米)在Rt△DQE中,QE=QDtan26∘∴BE=BC+CQ+QE=(20+4√3+8.16)米,在Rt△ABE中,AB=BEtan26°≈17(米).答:旗杆的高度约为17米.解析:延长AD交BC于E点,则BE即为AB的影长.然后根据物长和影长的比值计算即可.本题查了解直角三角形的应用,解决本题的关键是作出辅助线得到AB的影长.22.答案:解:(1)∵抛物线y=−x2+(m−1)x+m与y轴交于(0,3),∴3=0+(m−1)×0+m,解得:m=3;(2)∵m=3,∴抛物线解析式为:y=−x2+2x+3=−(x−1)2+4,当y=−x2+2x+3=0,解得:x1=3,x2=−1,∴抛物线与x轴的交点坐标为:(3,0),(−1,0),顶点坐标为:(1,4);(3)−1<x<3;(如图所示:当−1<x<3时,抛物线在x轴上方)(4)x<1.(如图所示:当x<1时,y随x的增大而增大)解析:此题主要考查了二次函数的性质以及二次函数图象上点的坐标特征,数形结合得出x的取值范围是解题关键.(1)根据图象过点(0,3),则可求出m的值;(2)利用(1)中所求得出二次函数解析式,进而求出其顶点坐标和与x轴的交点坐标;(3)画出函数图象进而得出抛物线在x轴上方时,x的取值范围;(4)利用函数开口方向以及对称轴位置,进而得出y 随x 的增大而增大时x 的取值范围.23.答案:(1)证明:连接OE ,如图1所示.∵CF ⊥AB ,∴∠FCB =90°.∵∠F =30°,∴∠OBE =60°.∵OB =OE ,∴△OBE 为等边三角形,∴∠OEB =∠BOE =60°.∵OD//BF ,∴∠DOE =∠BEO =∠BOE =60°,∴BE ⏜=DE ⏜.(2)解:过点Q 作OM ⊥BE 于M ,如图2所示.∵OB =OE ,∴BE =2BM .∵OD//BF ,∴∠COD =∠B .在△OBM 和△DOC 中,{∠OMB =∠DCO =90°∠OBM =∠DOC OB =DO,∴△OBM≌△DOC(AAS),∴BM =OC =2−12=32, ∴BE =2OC =3.∵OD//BF ,∴△COD∽△CBF ,∴OC BC =OD BF ,即322+32=2BF ,∴BF =143,∴EF =BF −BE =143−3=53,∴BE⋅EF=3×5=5.3解析:本题考查了相似三角形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质以及圆周角定理,解题的关键是:(1)根据等边三角形的性质结合平行线的性质找出∠DOE=∠BOE;(2)利用全等三角形及相似三角形的性质,求出BM、BF的长度.(1)连接OE,由CF⊥AB、∠F=30°,可得出∠OBE=60°,结合OB=OE可得出△OBE为等边三角形,根据等边三角形的性质可得出∠OEB=∠BOE=60°,由OD//BF利用“两直线平行,内错角相等”可得出∠DOE=∠BEO=∠BOE=60°,由此即可证出BE⏜=DE⏜;(2)过点Q作OM⊥BE于M,易证△OBM≌△DOC,根据全等三角形的性质可得出BM=OC=3,进2而可得出BE=3,由OD//BF可得出△COD∽△CBF,根据相似三角形的性质可求出BF的长度,结合EF=BF−BE可求出EF的长度,再将BE、EF的长度代入BE⋅EF中即可求结论.24.答案:(1)y=360−3x,自变量x的取值范围:50≤x≤120;(2)每件商品的售价定为80元时,每个月可获得最大利润,最大的月利润是6400元解析:[分析](1)当售价超过50元,每件商品的售价每上涨1元,则每个月少卖3件,直接根据销量=原销量−上涨的钱数×3即可求解,然后确定取值范围即可;(2)由利润=(售价−成本)×销售量列出函数关系式,(3)求出定义域内函数的最大值,然后作比较.[详解](1)y=210−3(x−50),即y=360−3x,自变量x的取值范围:50≤x≤120,(2)w=−3x2+480x−14400,(3)当50≤x≤120时,w=−3x2+480x−14400,当x=80时,w有最大值为6400,答:每件商品的售价定为80元时,每个月可获得最大利润,最大的月利润是6400元.[点睛]本题主要考查二次函数的应用,应用二次函数解决实际问题比较简单.25.答案:解:(1)如图,连接AD,∵∠DAC=∠DEC,∠EBC=∠DEC,∴∠DAC=∠EBC,∵AC是⊙O的直径,∴∠ADC=90°,∴∠DAC+∠DCA=90°,∴∠EBC+∠DCA=90°,∴∠BGC=180°−(∠EBC+∠DCA)=180°−90°=90°,∴AC⊥BH.(2)①∵∠ABC=45°、∠ADC=90°,∴AD=BD=8,则CD=√AC2−AD2=√102−82=6,∴BC=BD+CD=8+6=14,∵∠CBG=∠CAD、∠CGB=∠CDA=90°,∴△BCG∽△ACD,则CGCD =BCAC=1410=75;②∵∠BCE=∠ECD、∠EBC=∠DEC,∴△BEC∽△EDC ,则BC EC =EC DC ,即14EC =EC 6,即EC 2=84, 连接OE ,在Rt △CGE 中,EG 2=EC 2−CG 2,即EG 2=84−(5+OG)2,在Rt △EOG 中,EG 2=EO 2−OG 2,即EG 2=25−OG 2,则84−(5+OG)2=25−OG 2,解得:OG =175,则EG 2=25−(175)2=33625, ∴EG =4√215(负值舍去), ∵AC ⊥BH ,∴EH =2EG =8√215.解析:(1)由∠DAC =∠DEC 、∠EBC =∠DEC 知∠DAC =∠EBC ,根据∠DAC +∠DCA =90°知∠EBC +∠DCA =90°,即可得证;(2)①由∠ABC =45°、∠ADC =90°知AD =BD =8、CD =6、BC =BD +CD =14,证△BCG∽△ACD 得CG CD =BC AC ;②先证△BEC∽△EDC 得BC EC =EC DC ,即EC 2=84,连接OE ,由EG 2=84−(5+OG)2且EG 2=25−OG 2可得OG =175,代入EG 2=25−OG 2得EG 的长度,再利用垂径定理可得答案.本题主要考查圆的综合问题,解题的关键是熟练掌握圆周角定理、相似三角形的判定与性质、勾股定理等知识点.26.答案:解:(1)5;2√5;(2)如图1中,∵OA=OB=5,∴∠A=∠EBF,∵BC是直径,∴∠BEC=∠AEC=90°,∵EF⊥OB,∴∠EFB=90°,∴∠AEC=∠EFB=90°,∴△ACE∽△BEF;(3)如图2中,当GC=GE时,点G与点H重合,∴GE=GB=GC,∴∠GEB=∠EBG,∵∠GEB+∠ABO=90°,∴∠EBG+∠ABO=90°,∵OA=OB,∴∠A=∠OBA,∴∠A+∠EBG=90°,∴∠ACB=90°,∴BC⊥AO,∴OC=OB⋅cos∠AOB=3,∴BC=√OB2−OC2=√52−32=4;(4)①如图2中,当GC=GE时,点G与点H重合,∴GE=GB=GC,∴∠GEB=∠EBG,∵∠GEB+∠ABO=90°,∴∠EBG+∠ABO=90°,∵OA=OB,∴∠A=∠OBA,∴∠A+∠EBG=90°,∴∠ACB=90°,∴BC⊥AO,∴OC=OB⋅cos∠AOB=3,∴C(95,125);②如图3中,当CE=CG时,作AK⊥OB于K.设CD=4k,OD=3k.∵CE=CG,∴∠CEG=∠CGE=∠BGF,∵∠CEG+∠BEF=90°,∠BGF+∠CBD=90°,∴∠CBD=∠BEF,∵EF⊥OB,AK⊥PB,∴EF//AK,∴∠BEF=∠BAK,∴∠CBD=∠BAK,∵∠CDB=∠AKB=90°,∴△CBD∽△BAK,∴CDBK =BDAK,∴4k2=5−3k4,∴k=511,∴C(1511,2011)解析:本题属于圆综合题,考查了相似三角形的判定和性质,解直角三角形,等腰三角形的判定和性质、勾股定理、平行线的性质、角平分线的性质定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题,属于中考压轴题.(1)利用两点间距离公式计算即可;(2)根据两角对应相等的两个三角形相似即可判断;(3)当GC=GE时,点G与点H重合,根据三角函数和勾股定理解答即可;(4)分两种情形画出图形分别求解即可解决问题.(1)∵A(3,4),B(5,0).∴OA=√32+42=5,OB=5,AB=√(3−5)2+42=2√5.故答案为5;2√5;(2)见答案;(3)见答案;(4)见答案.。