人教版八年级数学上册 全等三角形专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上册全等三角形专题练习(解析版)

一、八年级数学轴对称三角形填空题(难)

1.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.

【答案】4

【解析】

【分析】

由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.

【详解】

(1)当点P在x轴正半轴上,

①如图,以OA为腰时,

∵A的坐标是(2,2),

∴∠AOP=45°,OA=22,

当∠AOP为顶角时,OA=OP=22,

当∠OAP为顶角时,AO=AP,

∴OPA=∠AOP=45°,

∴∠OAP=90°,

∴OP=2OA=4,

∴P的坐标是(4,0)或(22,0).

②以OA为底边时,

∵点A的坐标是(2,2),

∴∠AOP=45°,

∵AP=OP,

∴∠OAP=∠AOP=45°,

∴∠OPA=90°,

∴P点坐标为(2,0).

(2)当点P在x轴负半轴上,

③以OA为腰时,

∵A的坐标是(2,2),

∴OA=22,

∴OA=OP=22,

∴P的坐标是(﹣22,0).

综上所述:P的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).

故答案为:4.

【点睛】

此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.

2.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为

___________.

【答案】4

【解析】

延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,

∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.【详解】

延长AC至E,使CE=BM,连接DE.

∵BD=CD,且∠BDC=140°,

∴∠DBC=∠DCB=20°,

∵∠A=40°,AB=AC=2,

∴∠ABC=∠ACB=70°,

∴∠MBD=∠ABC+∠DBC=90°,

同理可得∠NCD=90°,

∴∠ECD=∠NCD=∠MBD=90°,

在△BDM和△CDE中,

BM CE

MBD ECD

BD CD

∠∠

=,

∴△BDM≌△CDE(SAS),

∴MD=ED,∠MDB=∠EDC,

∴∠MDE=∠BDC=140°,

∵∠MDN=70°,

∴∠EDN=70°=∠MDN,

在△MDN和△EDN中,

MD ED

MDN EDN

DN DN

∠∠

=,

∴△MDN≌△EDN(SAS),

∴MN=EN=CN+CE,

∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;

故答案为:4.

【点睛】

本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.

3.如图,已知等边ABC

∆的边长为8,E是中线AD上一点,以CE为一边在CE下方作等边CEF

∆,连接BF并延长至点,N M为BN上一点,且5

CM CN

==,则MN的长为_________.

【答案】6

【解析】

【分析】

作CG⊥MN于G,证△ACE≌△BCF,求出∠CBF=∠CAE=30°,则可以得出

1

2

4

CG BC

==,在Rt△CMG中,由勾股定理求出MG,即可得到MN的长.

【详解】

解:如图示:作CG⊥MN于G,

∵△ABC和△CEF是等边三角形,

∴AC=BC,CE=CF,∠ACB=∠ECF=60°,

∴∠ACB-∠BCE=∠ECF-∠BCE,

即∠ACE=∠BCF,

在△ACE与△BCF中

AC BC

ACE BCF

CE CF

=

∠=∠

⎪=

∴△ACE≌△BCF(SAS),

又∵AD是三角形△ABC的中线

∴∠CBF=∠CAE=30°,

1

2

4

CG BC

==,

在Rt△CMG中,2222

543

MG CM CG

=-=-,

∴MN=2MG=6,

故答案为:6.

【点睛】

本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF≌△BCF.

4.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.

【答案】4

【解析】

【分析】

以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.

【详解】

解:如图,使△AOP是等腰三角形的点P有4个.

故答案为4.

【点睛】

本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.

∠内任意一点,OP=5 cm,点M和点N分别是射线OA和射线5.如图,点P是AOB

++的最小值是5 cm,则AOB

OB上的动点,PN PM MN

∠的度数是__________.

相关文档
最新文档