AV系列斜轴式变量柱塞泵
A7V系列变量柱塞泵产品说明

SYA7V系列变量柱塞泵产品说明开式回路规格20•••5002.0/5.1系列额定电压高达35MPa峰值压力为40MPa到特征:- SYA7AO斜轴的轴向开环液压驱动计量泵。
- 作业机械或工业区- 输出流量和驱动器的速度和位移是成正比的恒定速度无级变速。
- 多种规格,以配合实际的驱动器- 有利的功率/重量比- 紧凑型,经济- 优化的容积效率- 球形转子和点之间的油底壳油,自动操作,圆周速度低。
- 更高的效率,传动轴承受径向负荷。
Y-A7V2.1剖视图规格为20-160SY-A7V5.1剖视图规格250至500型号说明技术参数:●工作压力范围:出A口或B口压力:额定压力---------- PN =35MPa最大压力---------- P最大=为40MPa吸端口S绝对压力:pabs分钟----------0.08兆帕pabs最大----------0.2兆帕●油温度范围:-25℃至80℃●粘度范围:tmin-----------10平方毫米/ S的tmax分别为-----------(短期)千mm/s的最佳工作粘度:----16〜25毫米2 /秒油的选择:40号低倒液压油●液压油过滤器:过滤10μm的建议,或25〜40μm的使用寿命长10微米(减少磨损)●流动顺时针:S到B逆时针:S到一个●安装位置:此端口可选,泵必须充满液压油R口塞泵安装在油箱时,应删除,应该是在顶部。
90°弯头,以减少噪音油口螺丝。
垂直安装传动轴:这个模型必须订购的U1和U2(文字:“与出油口U1和U2)。
最低液位不得低于”A“的线路如图1所示。
在油箱的顶部安装在油箱顶部安装一个特定的安装A7V变量泵,只有在一定条件下。
1)与各种泵控制只能泵的最大摆角(Vgmax)开始。
调整最小排量Vgmin的敞开式泵(Vgmin= 0泵),最小流量限位螺钉必须转移到Vmax增加最大尿流率≥5%的最低流量,以防止泵运行在零流,使吸水管排气。
a4vg系 列 柱 塞 泵的变 量 机 构 结 构 及 工 作 原 理

a4vg系列柱塞泵的变量机构结构及工作原理
A4VG系列柱塞泵是一种变量机构的泵,其结构和工作原理如下:
结构:
A4VG系列柱塞泵由电动机、变量机构、柱塞组和控制阀组成。
变量机构由调节杆、斜盘和摆杆组成。
调节杆连接电动机和变量机构,通过调节杆的伸缩来改变变量机构的倾斜角度。
斜盘固定在摆杆上,和柱塞组连接在一起。
柱塞组由多个柱塞和缸体组成,柱塞可以在缸体内做往复运动。
工作原理:
当电动机开始工作时,通过调节杆的伸缩来改变变量机构的倾斜角度。
变量机构的倾斜角度决定了斜盘的倾斜程度,进而决定了柱塞组的运动。
当斜盘倾斜时,柱塞组可以往复运动。
柱塞组的运动会产生油液的压力,通过控制阀来控制油液的流动方向和流量。
当柱塞组向外运动时,油液会被从缸体中排出,形成高压油液。
高压油液通过控制阀进入液压系统,用于驱动液压执行器,如液压缸或液压马达。
当柱塞组向内运动时,控制阀会改变油液的流动方向,使油液重新进入缸体,形成低压油液。
这个往复运动过程就是柱塞泵的工作原理。
通过改变调节杆的伸缩来改变变量机构的倾斜角度,可以实现对泵的排量的调节。
排量的改变会影响泵的供油量,从而实现对液压系统的运动速度和力的控制。
斜轴式轴向柱塞定量液压泵 马达 F11 F12 系列说明书

/马达/pmde2Parker HannifinPump & Motor Division Europe Trollhättan, Sweden液压泵/马达F11/F12 系列样本 MSG30-8249/CN换算系数1 kg ..............................................................................2.20 lb 1 N .............................................................................0.225 lbf 1 Nm .....................................................................0.738 lbf ft 1 bar ..........................................................................14.5 psi 1 l .................................................................0.264 US gallon 1 cm 3 ...................................................................0.061 cu in 1 mm ..........................................................................0.039 in 1°C ..........................................................................5/9(°F-32)1 kW ............................................................................1.34 hp换算系数1 lb ............................................................................0.454 kg 1 lbf .............................................................................4.448 N 1 lbf ft .....................................................................1.356 Nm 1 psi ..................................................................0.068948 bar 1 US gallon .................................................................3.785 l 1 cu in .................................................................16.387 cm 31 in ............................................................................25.4 mm 1°F .........................................................................9/5°C + 321 hp ........................................................................0.7457 kW扭矩 (M)M =[Nm]液压马达基本公式流量 (q)q = [l/min]功率 (P) P = [kW]D x n1000 x ηv D x Δp x ηhm63q x Δp x ηt600D - 排量 [cm 3/rev] n - 轴转速 [rpm] ηv - 容积效率Δp - 进油口和出油口之间的压差 [bar] ηhm - 机械效率 ηt - 总效率(ηt = ηv x ηhm )扭矩 (M)M = [Nm]液压泵基本公式流量 (q)q = [l/min]功率 (P)P = [kW]D x n x ηv1000 D x Δp63 x ηhmq x Δp600 x ηtD - 排量 [cm 3/rev] n - 轴转速 [rpm] ηv - 容积效率Δp - 进油口和出油口之间的压差 [bar] ηhm - 机械效率 ηt - 总效率(ηt = ηv x ηhm )销售条件本样本中的各种产品均由派克汉尼汾公司及其子公司和授权经销商销售。
斜盘式轴向柱塞泵详解

柱塞泵Piston Pumps柱塞泵是通过柱塞在柱塞孔内往复运动时密封工作容积的变化来实现吸油和排油的。
由于柱塞与缸体内孔均为圆柱表面,滑动表面配合精度高,所以这类泵的特点是泄漏小,容积效率高,可以在高压下工作。
2.4.1 斜盘式轴向柱塞泵Swash Plate Axial Piston Pumps轴向柱塞泵可分为斜盘式(Swash Plate Type)和斜轴式(Bent-axial Type),图2.18为斜盘式轴向柱塞泵的工作原理。
泵由斜盘1、柱塞2、缸体3、配油盘4等主要零件组成,斜盘1和配油盘4是不动的,传动轴5带动缸体3,柱塞2一起转动,柱塞2靠机械装置或在低压油作用压紧在斜盘上。
当传动轴按图示方向旋转时,柱塞2在其沿斜盘自下而上回转的半周内逐渐向缸体外伸出,使缸体孔内密封工作腔容积不断增加,产生局部真空,从而将油液经配油盘4上的配油窗口a吸入;柱塞在其自上而下回转的半周内又逐渐向里推入,使密封工作腔容积不断减小,将油液从配油盘窗口b向外排出,缸体每转一转,每个柱塞往复运动一次,完成一次吸油动作。
改变斜盘的倾角γ,就可以改变密封工作容积的有效变化量,实现泵的变量。
图2.18斜盘式轴向柱塞泵的工作原理1—斜盘(Swash Plate);2—柱塞(Piston);3—缸体(Block);4—配流盘(Valve Plate);5—传动轴(Drive Shaft);a—吸油窗口(Inlet Port);b—压油窗口(Outlet Port);2.4.1.1 斜盘式轴向柱塞泵的排量和流量如图2.18,若柱塞数目为z,柱塞直径为d,柱塞孔分布圆直径为D,斜盘倾角为γ,则泵的排量为γπtan 42zD d V = (2.25)则泵的输出流量为γηπtan 42v zDn d q = (2.26)实际上,柱塞泵的排量是转角的函数,其输出流量是脉动的,就柱塞数而言,柱塞数为奇数时的脉动率比偶数柱塞小,且柱塞数越多,脉动越小,故柱塞泵的柱塞数一般都为奇数。
柱塞泵

机构。
12
配油盘
13
恒功率变量机构
14
SCY14-1型轴向柱塞泵
变量机 构
斜盘
压盘 滑靴
缸体 配油盘
传动轴
15
10SCY14-1B型轴向柱塞泵
16
XB1型斜盘式轴向柱塞泵(通轴泵)
17
二、斜轴式轴向柱塞泵
1、斜轴式轴向柱塞泵的工作 原理 密封工作腔由缸体孔、柱塞底 部、配流盘组成,由于缸体轴 线与传动轴有倾斜角度,使得 柱塞随缸体转动时沿轴线作往 复运动,底部密封容积变化, 实现吸油、压油。 吸油过程:柱塞伸出 →ΔV↑→p↓→吸油; 压油过程:柱塞缩回 →ΔV↓→p↑→压油。
2、缺点: (1)结构复杂,制造工艺高,价格贵; (2)自吸能力差,维修困难。
3、应用:用于高压、高转速的场合。
24
四、柱塞泵与马达故障与排除
(一)轴向柱塞泵的安装、使用与维护 1、安装 ⑴ 泵的安装支架有足够刚度,管道过长要安装支架固定, 以防振动 ⑵ 泵与驱动机构联接采用弹性联轴节 ⑶ 泵体上的两个漏油口,有两种连接方法 ⑷ 作液压泵使用时,应用辅助泵低压供油 ⑸ 管道、元件必须保持清洁 ⑹ 压力油路设置滤油器 2、使用 ⑴ 检查轴的回转方向与排油管的连接是否正确可靠 ⑵ 从滤油口往泵体内满工作油
25
⑶ 溢流阀调整压力不应调至最低值
⑷ 调整变量机构,作泵排量最低,作马达则最大
⑸ 先启动辅助泵,再启动主泵
⑹ 初用或长时放置后,应低压跑合
⑺ 调工作压力(溢流阀压力)
⑻ 工作压力与转速必须按铭牌上的规定
⑼ 检查漏油
⑽ 油温范围与推荐用油
3、检查与维护
⑴ 定期检查液压油
A4VG系列变量柱塞泵主要技术参数

A4VG系列变量柱塞泵主要技术参数1. 排量范围:A4VG系列变量柱塞泵的排量范围广泛,从18至180cc/rev不等,可以满足不同工程机械的需求。
2. 工作压力:A4VG系列变量柱塞泵的最高工作压力为350 bar,这意味着它可以承受较大的负荷压力,同时提供稳定的流量输出。
3.高效能:A4VG系列变量柱塞泵采用光滑的柱塞设计,在高压力下能够提供高效能的流量输出和较低的能耗。
4.正负变量:A4VG系列变量柱塞泵具有正负变量控制功能,可以根据工作需求实现正负反转和油流量的调节,提高系统的灵活性和多功能性。
5.节流阀控制:A4VG系列变量柱塞泵配备了集成的节流阀,通过调节节流阀的开度可以精确地控制流量输出。
同时,该节流阀还提供了压力补偿功能,确保系统在不同负载条件下仍然能够提供稳定的流量。
6.低噪音:A4VG系列变量柱塞泵采用了专利的降噪技术,使其在工作时产生的噪音极低,提供更加安静舒适的工作环境。
7.主轴承:A4VG系列变量柱塞泵采用高质量的主轴承系统,提供良好的耐磨性和长寿命,减少维护频率和成本。
8.液压平衡:A4VG系列变量柱塞泵通过液压平衡系统来保持稳定的工作压力和流量输出,同时减少泵体磨损,延长使用寿命。
9.多种控制方式:A4VG系列变量柱塞泵支持多种控制方式,包括电控和手动控制,用户可以根据实际需求选择最适合的控制方式。
10.多种安装方式:A4VG系列变量柱塞泵支持多种安装方式,包括垂直和水平安装,以适应不同的安装环境和需求。
总之,A4VG系列变量柱塞泵具有广泛的排量范围、高工作压力、高效能、正负变量控制、节流阀控制、低噪音、优质主轴承、液压平衡、多种控制和多种安装方式等特点,适用于各种高性能液压系统。
浅析斜轴式轴向柱塞泵的使用及维修

工 程机 械 和船 舶 中。现 以萨姆 H1 V1 6 0 斜 轴式 柱 塞泵 为 主 ,介 绍其 使 用及 维修 方法 。 关 键词 :变 量 机构 ;摩 擦副 ;轴承
柱塞泵是通过柱塞在柱塞孔 内往复运动时密封工作容 积的变化来 实现吸油和排油的。按照柱塞的运动形式可分为轴向柱塞泵和径 向柱 塞泵 。轴 向柱塞泵又可以根据传动轴 中心线与缸体中心线 的夹角分为 斜盘式和斜轴式两大类。经长期高效率 的使用 ,这些油泵的性能将会 出现不 同程度 的下降 ,甚至有的油泵性能 的严重下降 ,已经无法再次 投 入使用 。因此 ,液压 油泵 的 日常维护和修 理成为 了不 可忽视 的问 题。
23 9— .
n3 5
0 . 0 2
0 _ 3 5
4 . 2 技术 保证
( 1 ) 施工技术员全程监控 ,在开工前对全体施工人员进行技术交 底。施工技术员按照 “ 交底”督导施工 , 施工质量责任到人。 ( 2 ) 对于施工中出现地层变化 、 参数改变等情况 由技术员及时向 技术负责人反映,遇到问题马上处理 。 ( 3 ) 机组人员严格按操作规程进行施工 ,每道工序得有质检人员 验收后方可进行下一步工作 ,避免返工。 ( 4 ) 待施工桩位由测量员复测 ,如施工标识不清 ,及时上报 ,避 免返工 。针对施工 中遇到的各种问题按技术处理措施及时处理 。
用。 参 考 文献
要做好场地的排水工作 ,以免雨水浸泡施工场地 ,下雨时 ,要尽 快安排工人用水泵排除场地积水。
【 1 ] 宿绍 平 . 浅 谈C F G 桩 复合 地基 一林业 科技 情 报 一2 0 0 6 , 3 8 ( 3 )
[ 2 ] 习先萍. 浅谈C F G 桩复合地基的设计与施工 一山西建筑 一 2 0 1 0 , 3 6 ( 2 )
a7v78lv1rpf00斜轴变量泵工作原理

a7v78lv1rpf00斜轴变量泵工作原理
斜轴变量泵是一种自吸离心泵,它采用具有一定倾角的刀片,将进口的液体加速并通过离心力将液体排出。
该泵的工作原理可以分为以下几个步骤:
1. 进口:当泵启动后,液体通过进口管道进入泵的进口处,并被刀片加速。
2. 离心力:液体进入泵体后,刀片旋转产生离心力,使液体被推到泵的出口。
3. 出口:通过离心力的作用,液体被推出泵的出口,并进入出口管道。
4. 自吸:由于斜轴变量泵的特殊结构设计,它具有自吸功能,可以将液体从低位吸入并送至高位。
需要注意的是,斜轴变量泵的工作原理还涉及到刀片倾斜角度的调节和泵的自动调速功能。
倾斜角度的调节可以改变泵的性能,从而适应不同的工况需求。
泵的自动调速功能是通过检测流量或压力来调整泵的转速,以保持稳定的工作状态。
斜盘式轴向柱塞泵的设计

摘要斜盘式轴向柱塞泵是液压系统中的主要部件,斜盘式轴向柱塞泵是靠柱塞在柱塞腔内的往复运动,改变柱塞腔内容积实现吸油和排油的,是容积式液压泵,对于斜盘式轴向柱塞泵来说柱塞、滑靴、配油盘缸体是其重要部分,柱塞是其主要受力零件之一,滑靴是高压柱塞泵常采用的形式之一,能适应高压力高转速的需要,配油盘与缸体直接影响泵的效率和寿命,由于配油盘与缸体、滑靴与柱塞这两对高速运动副均采用了一静压支承,省去了大容量止推轴承,具有结构紧凑,零件少,工艺性好,成本低,体积小,重量轻,比径向泵结构简单等优点,由于斜盘式轴向柱塞泵容易实现无级变量,维修方便等优点,因而斜盘式轴向柱塞泵在技术经济指标上占很大优势.关键词:斜盘柱塞泵滑靴缸体AbstractThe inclined dish type and axial pump with a pillar is a main part in liquid press system,The inclined dish type and axial pump with a pillar is a back and forth movement by pillar to fill the inside of the pillar cavity,in order to change the pillar fills the contents of cavity to realize the oil of inhaling with line up oily,Is a capacity type liquid to press the pump .Fill to pillar to pump for the inclined dish type stalk the pillar fill, slip the boots and go together with the oil dish an is its importance part. The pillar fills is it suffer the one of the dint spare parts primarily. The slippery boots is one of the form that high pressure pillar fill the pump to often adopt. It can adapt to the high demand turning soon in high pressure dint, go together with the oil dish and the efficiency of the direct influence in a pump with life span. Because of going together with the oil dish fills ,pillar and a slippery boots these two rightness of high speeds the sport the vice- all adopting a the static pressure accepts. The province went to the big capacity push the bearings, have the construction tightly packed, the spare parts is little, the craft is good, the cost is low, the physical volume is small, the weight is light, paring the path face to pump the construction simple etc. Because the inclined dish type stalk fills to pillar the pump to realizes to have no easily the class changes the deal, maintain convenience and so on.Key words:the inclined dish pillar pump slippery boot crock body目录摘要IAbstract I第一章绪论1第二章斜盘式轴向柱塞泵工作原理与性能参数12.1 斜盘式轴向柱塞泵工作原理22.2 斜盘式轴向柱塞泵主要性能参数2排量、流量与容积效率2第三章斜盘式轴向柱塞泵运动学与流量品质分析33.1 柱塞运动学分析3柱塞行程s3柱塞运动速度v43.1.3 柱塞运动加速度a43.2 滑靴运动分析43.3 瞬时流量与脉动品质分析53.3.1 脉动频率63.3.2 脉动率6第四章柱塞受力分析与设计64.1 柱塞受力分析6P64.1.1 柱塞底部的液压力b4.1.2 柱塞惯性力P g64.1.3 离心反力P l74.1.4 斜盘反力N74.1.5 柱塞与柱塞腔壁之间的接触力P1和P274.1.6 摩擦力P1f 和 P2f74.2 柱塞设计8柱塞结构型式84.2.2 柱塞结构尺寸设计8柱塞摩擦副比压p 、比功 pv 验算10第五章滑靴受力分析与设计105.1 滑靴受力分析105.1.1 分离力P f 105.1.2 压紧力y P 115.1.3 力平衡方程式115.2 滑靴设计125.2.1 泄漏功率损失V N ∆125.2.2 摩擦功率损失m N ∆125.2.3 滑靴总功率损失N ∆125.3 滑靴结构型式与结构尺寸设计135.3.1 滑靴结构型式135.3.2 结构尺寸设计13第六章配油盘受力分析与设计146.1 配油盘受力分析146.1.1 压紧力y P 156.1.2 分离力P f 156.1.3 力平衡方程式166.2 配油盘设计176.2.2 配油盘主要尺寸确定186.2.3 验算比压p 、比功pv 19第七章缸体受力分析与设计197.1 缸体的稳定性197.1.1 压紧力矩M y 207.1.2 分离力矩M f 207.1.3 力矩平衡方程207.2 缸体径向力矩和径向支承217.2.1 径向力与径向力矩217.2.2 缸体径向力支承型式227.3 缸体主要结构尺寸的确定22R和面积Fα227.3.1 通油孔分布圆半径'f7.3.2 缸体内、外直径D1、D2的确定227.3.3 缸体高度H23结论23参考文献24第一章绪论随着工业技术的不断发展,液压传动也越来越广,而作为液压传动系统心脏的液压泵就显得更加重要了.在容积式液压泵中,惟有柱塞泵是实现高压﹑高速化﹑大流量的一种最理想的结构,在相同功率情况下,径向往塞泵的径向尺寸大、径向力也大,常用于大扭炬、低转速工况,做为按压马达使用.而轴向柱塞泵结构紧凑,径向尺寸小,转动惯量小,故转速较高;另外,轴向柱塞泵易于变量,能用多种方式自动调节流量,流量大.由于上述特点,轴向柱塞泵被广泛使用于工程机械、起重运输、冶金、船舶等多种领域.航空上,普遍用于飞机液压系统、操纵系统与航空发动机燃油系统中.是飞机上所用的液压泵中最主要的一种型式.泵的内在特性是指包括产品性能、零部件质量、整机装配质量、外观质量等在内的产品固有特性,或者简称之为品质.在这一点上,是目前许多泵生产厂商所关注的也是努力在提高、改进的方面.而实际上,我们可以发现,有许多的产品在工厂检测符合发至使用单位运行后,往往达不到工厂出厂检测的效果,发生诸如过载、噪声增大,使用达不到要求或寿命降低等等方面的问题;而泵在实际当中所处的运行点或运行特征,我们称之为泵的外在特性或系统特性.从销售角度看,推销产品即是在推销泵的内在特性;而关注泵的外特性则是生产厂商不仅是推销产品,而是在推销泵站〔成套项目〕.从使用角度看,好的产品必定是适合运行环境的产品而非出厂检测判别的产品.斜盘式与斜轴式轴向柱塞泵相比较,各有所长,斜轴式轴向柱塞泵采用了驱动盘结构,使柱塞缸体不承受侧向力,所以,缸体对配油盘的倾复可能性小,有利于柱塞副与配油部位工作,另外,允许的倾角大,可是,结构复杂,工艺性差,需要使用大容量止推轴承,因而高压连续工作时间往往受到限制,成本高.斜盘式轴向柱塞泵,由于配油盘与缸体、滑靴与柱塞这两对高速运动副均采用了一静压支承,省去了大容量止推轴承,具有结构紧凑,零件少,工艺性好,成本低,体积小,重量轻,径向尺寸小,转动惯量小,故转速较高;另外,轴向柱塞泵易于变量,能用多种方式自动调节流量,流量大.由于上述特点,轴向柱塞泵被广泛使用于工程机械、起重运输、冶金、船舶等多种领域.航空上,普遍用于飞机液压系统、操纵系统与航空发动机燃油系统中,是飞机上所用的液压泵中最主要的一种型式.所以,斜盘式轴向柱塞泵在不断地改进和发展,其发展方向是:扩大使用范围、提高参数、改善性能、延长寿命、降低噪声,以适应液压技术不断发展的要求.第二章斜盘式轴向柱塞泵工作原理与性能参数2.1 斜盘式轴向柱塞泵工作原理各种柱塞泵的运动原理都是曲柄连杆机构的演变,因而,它们的运动和动力分析就可以用统一的方程式来描述.斜盘式轴向柱塞泵主要结构如图〔2-1〕.柱塞的头部安装有滑靴,滑靴低面始终贴着斜盘平面运动.当缸体带动柱塞旋转时,由于斜盘平面相对缸体〔xoy 面〕存在一倾斜角γ,迫使柱塞在柱塞腔内作直线往复运动.如果缸体按图示n 方向旋转,在180º~360º范围内,柱塞由下死点〔对应180º位置〕开始不断伸出,柱塞腔容积不断增大,直至死点〔对应0º位置〕止.在这个过程中,柱塞腔刚好与配油盘吸油窗相通,油液被吸入柱塞腔内,这是吸油过程.随着缸体继续旋转,在0º~180º范围内,柱塞在斜盘约束下由上死点开始不断进入腔内,柱塞腔容积不断减小,直至下孔点止.在这个过程中柱塞腔刚好与配油盘排油窗相通,油液通过1-柱塞 2-缸体 3-配油盘 4-传动轴 5-斜盘6-滑靴 7-回程盘 8-中心弹簧图2-1 斜盘式轴向柱塞泵工作原理排油窗排出.这就是排油过程.由此可见,缸体每转一周,各个柱塞有半周吸油,半周排油.如果缸体不断旋转,泵便连续地吸油和排油.2.2 斜盘式轴向柱塞泵主要性能参数2.2.1排量、流量与容积效率轴向柱塞泵排量b q 是指缸体旋转一周,全部柱塞腔所排出油液的容积,即z s d Z s F q z Z b max 2max 4π== 〔2.1〕不计容积损失时,泵理论流量lb Q 为b Z b b lb Zn s d n q Q max 24π== 〔2.2〕式中 Z d ―柱塞外径 mm d z 24=;Z F ―柱塞横截面积 224.452024.044mm d F z z =⨯=⨯=ππ;m ax s ―柱塞最大行程 ;Z ―柱塞数 取Z=7;b n ―传动轴转速 min /1500r n b =;从图可知,柱塞最大行程为式中 f D ―柱塞分布圆直径 mm D f 74=;γ―斜盘倾斜角 取 18=γ;所以,泵的理论流量是泵的实际输出流量泵容积效率Vb η为泵的机械效率为%90=mb η所以,泵的总效率为容积效率与机械效率之积,第三章 斜盘式轴向柱塞泵运动学与流量品质分析泵在一定斜盘倾角下工作时,柱塞一方面与缸体一起旋转,沿缸体平面做圆周运动,另一方面又相对缸体做往复直线运动.这两个运动的合成,使柱塞轴线上一点的运动轨迹是一个椭圆.此外,柱塞还可能有由于摩擦而产生的相对缸体绕其自身轴线的自转运动,此运动使柱塞的磨损和润滑趋于均匀,是有利的.3.1 柱塞运动学分析柱塞运动学分析,主要是研究柱塞相对缸体的往复直线运动.即分析柱塞与缸体做相对运动是的行程、速度和加速度,这种分析是研究泵流量品质和主要零件受力状况的基础.柱塞行程s图<3-1>为一般带滑靴的轴向柱塞泵运动分析图.若斜盘倾角为γ,柱塞分布圆半径为f R ,缸体或柱塞旋转角为α,并以柱塞腔容积最大时的上死点位置为00 ,则对应于任一旋转角α时,图3-1 柱塞运动分析所以柱塞行程s 为γαγtg R htg s f )cos 1(-== 〔3.1〕当α=1800时,可得最大行程m ax s 为柱塞运动速度v将式〔3-1〕对时间微分可得柱塞运动速度v 为αγωsin tg R dtda da ds dt ds v f === 〔3.2〕 当090=α与0270时,1sin ±=α,可得最大运动加速度m ax v 为式中 α 为缸体旋转角速度,t αω=.3.1.3 柱塞运动加速度a将式〔3-2〕对时间微分可得柱塞运动加速度a 为da dv dt dv a ==αγωcos 2tg R dtda f = 〔3.3〕 当00=α与0180时,1cos ±=α,可得最大运动加速度m ax a 为3.2 滑靴运动分析研究滑靴的运动,主要是分析它相对斜盘平面的运动规律,也即滑靴中心在斜盘平面'''y o x 内的运动规律如图〔3-1〕,其运动轨迹是一个椭圆.椭圆的长、短轴分别为长轴 mm R b f38.7718cos 372cos 220=⨯==γ 短轴 mm R a f 7437222=⨯==设柱塞在缸体平面上 A 点坐标那么A 点在斜盘平面 '''y o x 的坐标为如果用极坐标表示则为矢径 αγ2222cos 1tg R y x R f h +=+=极角 )cos (cos αγθarctg =滑靴在斜盘平面'''y o x 内的运动角速度k ω为由上式可见,滑靴在斜盘内是不等角速度运动,当α=2π、π23时,k ω最大〔在短轴位置〕为 当0=α、π时,k ω最小〔在长轴位置〕为 由结构可知,滑靴中心绕 O 点旋转一周〔π2〕的时间等于缸体旋转一周的时间.因此其平均旋转角速度等于缸体角速度,即3.3 瞬时流量与脉动品质分析柱塞运动速度确定之后,单个柱塞的瞬时流量可写成式中z F 为柱塞截面积,2224.452024.044mm d F Z Z =⨯==)(ππ.柱塞数为Z=7,柱塞角距为722ππθ==Z ,位于排油区地柱塞数为Z 0,那么参与排油的各个柱塞瞬时流量为泵的瞬时流量为ZZ Z Z Z tg R F f Z ππαπγωsin )1sin(sin00-+=〔3.4〕由上式可以看出,泵的瞬时流量与缸体转角α有关,也与柱塞数有关.对于奇数〔Z=7〕排油区的柱塞数为Z 0 当70ππα=≤≤Z 时,取4210=+=Z Z ,由 式〔3-4〕可知瞬时流量为 当7227ππαππ=≤≤=Z Z 时,取3210=-=Z Z ,由式〔3-4〕可得瞬时流量 当0=α、Zπ、Z π2、……时,可得瞬时流量的最小值为 当Z 2πα=、Z 23π、……时,可得瞬时流量的最大值为 奇数柱塞泵瞬时流量规律见图<3-3>图3-3 奇数柱塞泵定义脉动率 0025.0min max =-=tpt t Q Q Q δ 式中tp Q 为平均流量,可由瞬时流量公式在2π周期内积分求平均值而得无论奇数泵还是偶数泵均为3.3.1 脉动频率因为奇数柱塞泵,所以21000min /1500722=⨯⨯==r Zn f3.3.2 脉动率因为奇数柱塞泵,所以根据计算值,将脉动率ð与柱塞Z 画成如图〔3-4〕的曲线图3.4 脉动率ð与柱塞数Z 关系曲线由以上分析可知:〔1〕随着柱塞数的增加,无论偶数柱塞泵还是奇数柱塞泵,流量脉动率都下降. 〔2〕相邻柱塞数相比,奇数柱塞泵的脉动流量远小于偶数柱塞泵的脉动率.第四章 柱塞受力分析与设计柱塞是柱塞泵主要受力零件之一.单个柱塞随缸体旋转一周时,半周吸油、半周排油.柱塞在吸油过程与在排油过程中的受力情况是不一样的.4.1 柱塞受力分析图〔4-1〕是带有滑靴的柱塞受力分析简图.图4-1 柱塞受力分析作用在柱塞上的力有:4.1.1 柱塞底部的液压力b P柱塞位于排油区时,作用于柱塞底部的轴向液压力b P 为KN p d P b Z b 25.14105.31024.044622=⨯⨯⨯==)(ππ<4.1>式中b p 为泵的排油压力.4.1.2 柱塞惯性力P g柱塞相对缸体往复直线运动时,有直线加速度a,则柱塞轴向惯性力P g 为αγωcos 2tg R gG a m P f ZZ g -=-= <4.2> 式中m Z 、G Z 为柱塞和滑靴的总质量和总重量.惯性力P g 方向与加速度a 方向相反,随缸体旋转角α按余弦规律变化.当α=00和1800时,惯性力最大值为γωtg R gG P f zg 2max =<4.3> 4.1.3 离心反力P l柱塞随缸体绕主轴作等速度圆周运动,有向心加速度a l ,产生的离心反力P l 通过柱塞质量重心并垂直于柱塞轴线,是径向力.其值为ωf Zl Z l R gG a m P == 2<4.4>4.1.4 斜盘反力N斜盘反力通过柱塞球头γcos N P = <4.5>γsin N T = <4.6>轴向力P 与作用于柱塞底部的液压力b P 与其他轴向力相平衡.而径向力T 则对主轴形成负载扭矩,使柱塞受到弯矩作用,产生接触应力,并使缸体产生倾倒力矩.4.1.5 柱塞与柱塞腔壁之间的接触力P 1和P 2柱塞在柱塞腔内的该力是接触应力p 1 和p 2产生的合力.考虑到柱塞与柱塞腔的径向间隙远小于柱塞直径与接触长度.因此,由垂直于柱塞轴线的径向力T 和离心力l P 引起的接触应力p 1和p 2可以看成是连续直线分布的应力.4.1.6 摩擦力P 1f 和 P 2f柱塞与柱塞腔之间的摩擦力P f 为f P P P f )(21+= <4.7>式中f 为摩擦系数,常取f=0.05~0.12.取f=0.12分析柱塞受力,应取柱塞在柱塞腔中具有最小接触长度,即柱塞处于死点时的位置.此时N 、P 1、和P 2可以通过如下方程求得: 式中 0l — 柱塞最小接触长度 mm l 540=;l — 柱塞名义长度 mm l 74=; 解放程组得:式中 82.314.23)4.2354(14.23)4.2354(1)(1)(22222222022220=--+-=--+-=l l l l l l φ 为结构参数 4.2 柱塞设计4.2.1柱塞结构型式轴向柱塞泵均采用圆柱形柱塞.根据柱塞头部结构,有三种型式,<1>点接触式柱塞,<2>线接触式柱塞,<3>带滑靴的柱塞.选用带滑靴的柱塞,柱塞头部同样装有一个摆动头, 称滑靴,可绕柱塞球头中心摆动.滑靴与斜盘间为面接触,接触应力小,能承受较高的工作压力.高压油液还可以通过柱塞中心孔,沿滑靴平面泄露,保持与斜盘之间有一层油膜润滑,从而减少了摩擦和磨损,使寿命大大提高.目前大多采用这种形式轴向柱塞泵. 并且这种型式的柱塞大多做成空心结构,以减轻柱塞重量,减小柱塞运动的惯性力.采用空心结构还可以利用柱塞底部的高压油液使柱塞局部扩张变形补偿柱塞与柱塞腔之间的间隙,取得良好的密封效果.空心柱塞内可以安放回程弹簧,使柱塞在吸油区复位.4.2.2 柱塞结构尺寸设计1.柱塞直径 Zd 与柱塞分布圆直径 D f<本人有该设计的装配图和零件图,若有需要加 970108624,将助你通过设计>柱塞直径Z d 、柱塞分布圆直径D f 、和柱塞数Z 是互相关联的.根据统计资料,在缸体上各柱塞孔直径Z d 所占的弧长约为分布圆周长f D π的75% ,即 由此可得 π75.0Zd D m Zf ≈=式中m 为结构参数.m 随柱塞数Z 而定.当泵的理论流量lb Q 和转速b n 根据使用工况条件选定之后,根据流量公式可得柱塞直径Z d 为柱塞直径 Z d 确定后,应从满足流量的要求而确定柱塞分布圆直径 D f ,即 2. 柱塞名义长度L由于柱塞圆球中心作用有很大的 径向力T,为使柱塞不致被以与保持有足够的密封长度,应保持有最小留孔长度 ,一般取因为 a MP p 5.31= 所以 mm d l Z 5425.20==因此,柱塞名义长度 l 应满足: 式中 m ax s — 柱塞最大行程;m in l — 柱塞最小外伸长度,一般取 Z d l 2.0min =.根据经验数据,柱塞名义长度常取: 同理 mm l 96244)2.4~2.3(=⨯== 3.柱塞球头直径d 1按经验常取 mm d d Z 18)8.0~7.0(1== 如图〔4-2〕图4-2 柱塞尺寸图为使柱塞在排油结束时圆柱而能完全进入柱塞腔,应使柱塞球头中心至圆柱面保持一定的距离 l d ,一般取 4.柱塞均压槽高压柱塞泵中往往在柱塞表面开有环形压力槽,起均衡侧向力,改善润滑条件和存贮赃物的作用.如上图均压槽的尺寸常取:mm mm h 8.08.0~3.0取=;宽mm mm b 6.07.0~3.0取= ; 间距mm mm t 1010~2取=.实际上,由于柱塞受到的径向力很大,均压槽的作用并不明显,还容易划伤缸体上柱塞孔壁面.因此目前许多高压柱塞泵中并不开设均压槽.4.2.3柱塞摩擦副比压p 、比功 pv 验算取柱塞伸出最长时的最大接触应力作为计算比压值,则柱塞相对缸体的最大运动速度 v max 应在摩擦副材料允许范围内, 由此可得柱塞缸体摩擦副最大比功 p max v max 为 选用 18CrMnTiA 材料.第五章 滑靴受力分析与设计目前高压柱塞泵已普遍采用带滑靴的柱塞结构.滑靴不仅增大了与斜盘的接触应力,而且柱塞底部的高压油液,经柱塞中心孔 '0d 和滑靴中心孔0d ,再经滑靴封油带泄露到泵壳体腔中.由于油液在封油带环缝中的流动.使滑靴与斜盘之间形成一层薄油膜,大大减少了相对运动件间的摩擦损失,提高了机械效率.这种结构能适应高压力和高转速的需要.5.1 滑靴受力分析液压泵工作时,作用于滑靴上有一组方向相反的力.一是柱塞底部液压力力图把滑靴压向斜盘,称为压紧力y p ;另一是由滑靴面直径为 D 1的油池产生的静压力P f1与滑靴封油带上油液泄露时油膜反力P f2 ,二者力图使滑靴与斜盘分离开,称为分离力P f .当紧压力与分离力相平衡时,封油带上将保持一层稳定的油膜,形成静压油垫.5.1.1 分离力P f图〔4-3〕为柱塞结构与分离力分布图.图4-3 滑靴结构与分布力分布根据流体力学平面圆盘放射流可知,油液经滑靴封油带环缝流动的泄露量q 的表达式为12213ln 6)(R R p p q μπδ-=〔5.1〕若02=p ,则1213ln 6R R p q μπδ=〔5.2〕式中 δ 为封油带油膜厚度.封油带上半径为r 的任一点压力分布式为1(p p r =2222ln ln)p rR r R p +- 〔5.3〕 若02=p ,则 从上式可以看出由上式可以看出,封油带上压力 随半径增大而呈对数规律下降.21121221212)(ln2R p R R R R p P f ππ--=〔5.4〕油池静压分离力P f1为1211p R P f π= 〔5.5〕 总分离力P f 为KNp R R R R P P P f f f 2.70105.3105.225.31ln210)05.225.31(ln 2)(6622112212221=⨯⨯⨯-=-=+=ππ 〔5.6〕5.1.2 压紧力y P滑靴所受压紧力主要由柱塞底部液压力b p 引起的,即5.1.3 力平衡方程式当滑靴受力平衡时,应满足下列力平衡方程式得泄流量为5.2 滑靴设计滑靴设计常用剩余压紧力法和最小功率法 选用最小功率损失法最小功率损失法的特点是:选取适当油膜厚度,使滑靴泄漏功率损失法与摩擦功率损失之和最小,保持最高功率.5.2.1 泄漏功率损失V N ∆已知滑靴在斜盘上的泄漏流量q ,.若不计吸油区的损失,则滑靴在排油区域的泄漏功率损失为mlR R p d q p N b z b V 17118cos 05.225.3105.024105.3101.0cos )(24212263212232=⨯⨯⨯⨯⨯⨯=-==∆)(πγμδπ 〔5.7〕5.2.2 摩擦功率损失m N ∆滑靴在斜盘上的运动轨迹是椭圆,为简化计算,近似认为是柱塞分布圆.因此滑靴摩擦功率损失为ωδμπτf m R uR R u F N )(2122-==∆ 〔5.8〕式中 τF —液体粘性摩擦力, δμπτuR R F )(2122-=;u —切线速度,ωf R u =)(2122R R -π—滑靴摩擦〔支承〕面积;δμu—液体粘性摩擦应力,μ为液体粘性系数,δ为油膜厚度.将ωf R u =代入上式中可得5.2.3 滑靴总功率损失N ∆令,0)(=∂∆∂δN 可得最佳油膜厚度0δ为 由上式计算出的油膜厚度,可使滑靴功率损失最小,效率最高.最佳油膜厚度在mm 03.0~01.00=δ范围.5.3 滑靴结构型式与结构尺寸设计5.3.1 滑靴结构型式滑靴的结构型式如图〔5-1〕图5-1 滑靴结构型式关于滑靴的结构,应该防止由于倾斜而引起密封带出现偏磨,所以往往在密封带外面加上一道断开的外辅助支承面环带.这样,即使滑靴出现某些偏磨,也不会破坏滑靴的平衡设计,从而延长了滑靴的寿命.为了减小对滑靴底面的比压,并防止由于压力冲击而引起滑靴底面沉凹的变形〔这种变形引起松靴〕,常常在滑靴的密封带内侧加上一个或几个内辅助支承环带,为了不影响滑靴的支承力,并使密封环带内侧压力迅速伸展,内辅助支承面在圆周上是断开的.为了提高滑靴的拉脱强度,可以将滑靴的收口部位加厚.滑靴的球面圆柱度和椭圆度不大于0.003mm,与柱塞球头铆合时的径向间隙应不大于0.01mm,与柱塞球头的接触面积不小于70%.滑靴的材料可采用青铜或高强度的黄铜制造.要特别注意材料中心不允许有疏松和偏析,否则容易引起疲劳强度损坏.5.3.2 结构尺寸设计1. 滑靴外径D 2滑靴在斜盘上的布局,应使倾斜角0=γ时,互相之间仍有一定间隙s,如图〔5-2〕图5-2 滑靴外径D 2的选定滑靴外径D 2为一般取mm s mm s 6.01~2.0==取 2. 油池直径D 1初步计算时,设定 mm D D 05.225.317.0)7.0~6.0(21=⨯==3. 中心孔0d 、'0d 与长度0l节流器采用节流管时,常以柱塞中心孔'0d 作为节流装置,如滑靴结构与分离力分布图所示.根据流体力学细长孔流量q 为K l p p d q b 014'0128)(μπ-=〔5.9〕 式中 0d 、0l ——细长管直径、长度; K ——修正系数;'0641l d R K e ζ+= 〔5.10〕 把上式带入滑靴泄漏量公式 1213ln 6R R p q μπδ=可得整理后可得节流管尺寸为经多次试算得 mm d 2.10=mm l 5.220= 式中α 为压降系数,bp p 1=α.当667.032==α时,油膜具有最大刚度,承载能力最强.为不使封油带过宽与阻尼管过长,推荐压降系数 9.0~8.0=α.从b p R R K l d ααμδ-=1ln 612812304'0 公式中可以看出,采用节流管的柱塞-滑靴组合,公式中无粘度系数μ ,说明油温对节流效果影响较小,但细长孔的加工工艺性较差,实现起来有困难.第六章 配油盘受力分析与设计配油盘是轴向柱塞泵主要零件之一,用以隔离和分配吸、排油液以与承受由高速旋转的缸体传来的轴向载荷.它的设计好坏直接影响泵的效率和寿命.6.1 配油盘受力分析常用配油盘简图如图〔6-1〕图6-1 配油盘基本结构液压泵工作时,高速旋转的缸体与配油盘之间作用有一对方向相反的力;即缸体因柱塞腔中高压油液作用而产生的压紧力P y ;配油窗口和封油带油膜对缸体的分离力P f .6.1.1 压紧力y P压紧力是由于处在排油区的柱塞腔中高压油液作用在 柱塞腔底部台阶面上,使缸体受到轴向作用力,并通过缸体作用到配油盘上.对于奇数柱塞泵)7(=Z ,当有4)1(21=+Z 个柱塞处于排油区时,压紧力P y1为KNp p d Z P y b Z y 57105.31024.0421742162max21=⨯⨯⨯⨯+==+=ππ 〔6.1〕当有3)1(21=-Z 个柱塞处于排油区时,压紧力P y2为KNp p d Z P y b Z y 7.42105.311020421742163min22=⨯⨯⨯⨯⨯+==-=)(ππ 〔6.2〕平均压紧力P y 为6.1.2 分离力P f分离力有三部分组成.即外封油带分离力P f1、内封油带分离力P f2、排油窗高压油对缸体的分离力P f3对奇数柱塞泵,在缸体旋转过程中,每一瞬时参加排油的柱塞数量和位置不同,封油带的包角是变化的.实际包角比配油盘排油窗包角0φ有所扩大.当有4)1(21=+Z 个柱塞排油时,封油带实际包角1ϕ为当有3)1(21=-Z 个柱塞排油时,封油带实际包角2ϕ为平均有2Z个柱塞排油时,平均包角p ϕ为式中 α― 柱塞间距角 512==Zπα;0α― 柱塞腔通油孔包角 450=α1. 外封油带分离力P f1外封油带上泄流量是源流流动,可得2221222112ln4)(R p R R R R P p b p f ϕϕ--=b p 〔6.3〕 外封油带泄流量q 1为2131ln 12R Rp q bp μδϕ=〔6.4〕2. 内封油带分离力P f2内封油带上泄流量是汇流流动,可得b pb p f p R p R R R R P 2321242322ln4)(ϕϕ++-=〔6.5〕内封油带泄流量q 2为4332ln 12R R p q bp μδϕ=〔6.6〕3. 排油窗分离力P f3b pf p R R P )(223223-=ϕ 〔6.7〕4. 配油盘分离力P fb p f f f f p R R R R R R R R P P P P )ln ln (4432423212221321---=++=ϕ 〔6.8〕总泄流量l q考虑到封油带很窄,分离力也可以近似看成线性分布规律,简化计算:6.1.3 力平衡方程式为使缸体能与配油盘紧密贴合,保证可靠密封性,应取压紧力稍大于分离力.设压紧力与分离力之差为剩余压紧力y P ∆;剩余压紧力y P ∆与压紧力y P 之比为压紧系数ϕ,它表示压紧程度.即y y y fy P P P P P ∆=-=ϕ 〔6.9〕由此可得力平衡方程式y f P P )1(ϕ-= 一般取1.0~05.0=ϕ 取1.0=ϕ则 KN P y 4.74=为保证泵启动时,缸体配油盘仍有一定的预压紧力,常设置一轴向中心弹簧,把缸体紧压在配油盘上.一般取弹簧力为300~500N.弹簧力P t 也可按下式选取6.2 配油盘设计配油盘设计主要是确定内外封油带尺寸、吸排油口尺寸以与辅助支承面各部分尺寸.6.2.1.过度区设计为使配油盘吸排油窗之间有可靠的隔离和密封,大多数配油盘采用过度角1α大于柱塞腔通油孔包角0α的结构,称正重迭配油盘.具有这种结构的配油盘,当柱塞从低压腔接通高压腔时,柱塞腔内封闭的油液会受到瞬间压缩产生冲压力b p ∆;当柱塞从高压腔接通低压腔时,封闭的油液会瞬间膨胀产生冲击压力0p ∆.这种高低压交替的冲击压力严重降低流量脉动品质,产生噪音和功率消耗以与周期性的冲击载荷.对泵的寿命影响很大.为防止压力冲击,我们希望柱塞腔在接通高低压时,腔内压力能平缓过渡,从而避免压力冲击.图6-2 柱塞腔内压力变化选带卸荷的非对称配油盘根据式 y b f Z E p p tg R d V 0201)21(21cos -+-=∆γπα 〔6.10〕 yb f Z E p p tg R d V 020241cos --=∆γπα 〔6.11〕。
斜盘式轴向柱塞变量泵结构原理

PV**HW 斜盘式轴向柱塞变量泵结构原理* PV**HW 斜盘式轴向柱塞政泵是一种高压、高速、耐冲击且集成化比较高的变量泵,动力由主轴通过渐开线花键带动转子旋转,均匀分布在转子上的九个柱塞通过球铰、压板将培训班塞组件的滑履压在斜盘的磨擦板平面上,由于斜盘平面对于旋转轴线有一个倾角,因此柱塞体不公与转子一起入放置运动,同时也沿转子的柱塞孔作往复运动,实现柱塞泵的吸油与供油。
* 手动伺服变量泵供油量的无级变化,是由补油泵输出人低压油,经手动伺服阀而进入到操纵油缸,推动变量活塞,从而改变斜盘倾角的大小来实现。
手动伺服阀的操纵手柄从中立位置向正反方向摇动时,便改变斜盘倾角方向,使油泵进出口油液流向互换。
* 补油泵的输出压力由低压溢流阀来调定。
* 压力限制阀的功能是当工作负载增大,使系统压力上升到设定值之后,切断手动伺服有能源,使油泵有排量自动减小,从而限制系统压力的继续上升。
在系统压力低于设定压力时,它是处于开启状态,是低压控制油手动伺服的一个通道,不影响变量泵的操纵。
压力限制阀的设定压力,可以通过改变弹簧弹力进行调整,即能改变系统过载压力。
* 原动机停止工作时,变量泵的斜盘在油缸回位弹簧力作用下能自动回到中位(倾角为零)。
MF**斜盘式轴向柱塞柱塞马达结构原理* MF**为定量排量轴向柱塞马达,芯部结构与PV**相同。
来自液压泵的高压油从马达的后盖通道进入配油盘,衬板的配油窗口,并进入转子的柱塞体,使它端头上的滑履紧压在斜盘平面上,由于斜盘平面相对于主轴线有一个倾角,滑履作用在斜面盘平面上所产生的切向分力促使滑履沿斜面滑动,并带动转子旋转,使主轴有转速及扭矩输出。
* 定排量液压马达MF**的输出转速与扭矩大小取决于液压泵供油力与流量。
液压泵改变方向后,马达的输出转向也将改变,即改变油泵斜盘的倾角方向与倾角大小,便改变马达转向与转速大小。
* 手动伺服变量也可应用到变量马达上,此时马达的型号为MV**HW,手动伺服马达与手动伺服泵不同之处是变量马达不带辅助泵,操纵手动伺服阀的能源来自手动伺服变量泵的操纵能源。
斜盘式轴向柱塞泵工作原理

斜盘式轴向柱塞泵工作原理
斜盘式轴向柱塞泵是一种常用于工业领域的离心泵,其工作原理如下:
1. 泵体和电机构成一个密封的容器,内部充满液体。
2. 电机通过轴传动连接到泵体内的轴。
3. 轴上安装有斜向排列的柱塞,在泵体内形成一个或多个泵腔,每个泵腔都有一个入口和一个出口。
4. 当电机启动后,轴开始旋转,带动柱塞和泵腔共同运动。
5. 在旋转的过程中,柱塞与泵腔之间形成一个封闭的腔体。
6. 当柱塞旋转到离泵体入口最近的位置时,腔体内的压力降低,液体通过入口进入腔体。
7. 随着柱塞旋转,腔体逐渐接近泵体的出口,此时腔体内的压力增加,推动液体流出泵体。
8. 柱塞旋转一周后,重新回到起始位置,循环上述步骤。
通过上述工作原理,斜盘式轴向柱塞泵可以将液体从低压区域通过泵腔推向高压区域,从而实现液体的输送和加压。
它具有结构简单、体积小、效率高等优点,在化工、供水、排污等领域有广泛应用。
柱塞泵工作原理

柱塞泵工作原理斜盘式轴向柱塞泵的工作原理柱塞装在柱塞泵缸体中,沿轴向圆周均匀分布。
柱塞端部带有滑靴,由弹簧通过回程盘将其压紧在斜盘上,同时在弹簧力和工作油压力作用下,缸体被压向固定的配流盘。
配流盘上有两个腰形配流窗和,一个与泵壳体的吸油口相连,称进油窗口;另一个壳体的排油口相连,称排油窗口。
配流窗口之间的宽度应大于缸体底部通油口宽度,以防高低压腔串通。
轴向液压柱塞泵在工作中,主传动轴带动缸体转动。
由于斜盘具有倾角,当柱塞泵缸体转动时柱塞就在缸体的柱塞孔内作往复运动,完成液压泵的吸油压油过程。
轴向柱塞泵工作原理轴向柱塞泵工作原理轴向柱塞泵中的柱塞是轴向排列的。
当缸体轴线和传动轴轴线重合时,称为斜盘式轴向柱塞泵;当缸体轴线和传动轴轴线不在一条直线上,而成一个夹角丫时,称为斜轴式轴向柱塞泵。
轴向柱塞泵具有结构紧凑,工作压力高,容易实现变量等优点。
图3.28a(动画)和图3.28b(动画)分别为斜盘式和斜轴式轴向柱塞泵的工作原理图。
工作原理斜盘式轴向柱塞泵由传动轴1带动缸体4旋转,斜盘2和配油盘5是固定不动的。
柱塞3均布于缸体4内,柱塞的头部靠机械装置或在低压油作用下紧压在斜盘上。
斜盘法线和缸体轴线的夹角为Y。
当传动轴按图示方向旋转时,柱塞一方面随缸体转动,另一方面,在缸体内作往复运动。
显然,柱塞相对缸体左移时工作容腔是压油状态,油液经配油盘的吸油口a吸入;柱塞相对缸体右移时工作容腔是压油状态,油液从配油盘的压油口b压出。
缸体每转一周,每个柱塞完成吸、压油一次。
如果可以改变斜角Y的大小和方向,就能改变泵的排量和吸、压油的方向,此时即为双向变量轴向柱塞泵。
在图3.28b(动画)中,当传动轴1在电动机的带动下转动时,连杆2推动柱塞4在缸体3中作往复运动,同时连杆的侧面带动活塞连同缸体一同旋转。
配油盘5是固定不动的。
如果斜角度Y的大小和方向可以调节,就意味着可以改变泵的排量和吸、压油方向,此时的泵为双向变量轴向柱塞泵。
液压知识之柱塞泵

3查吸油阻力:
4查拆修后重新装配是否正确:拆修后重新装配时, 如果配油盘之孔未对正泵盖上安装的定位销,因 而相互顶住,不能使配油盘和缸体贴合,造成高 低压油短接互通,打不上油。
5查油泵中心弹簧是否折断或疲劳
6.对于变量轴向柱塞泵,
7紧固螺钉未压紧,缸体径向力引起缸体扭斜,在 缸体与配油盘之间产生楔形间隙,内泄漏增大, 而产生输出流量不够,因而紧固螺钉应按对角方 式逐步拧紧。
2.变量柱塞泵
利用变量机构能随意调节改变斜盘倾斜角度α,能改变柱塞的行程长度h,也就 改变了泵的排量,则为变量柱塞泵。如果不但能改变斜角α的大小,还能改变斜盘 斜角的方向,这就变成了双向变量柱塞泵。双向变量泵的吸、压油方向可以对换。
变量原理-改变斜盘斜角大小
斜轴式轴向柱塞泵
3.限压变量柱塞泵(压力补偿变量柱塞泵)的工作原理
在维修中更换零件应尽量使用原厂生产的零件,这些零件 有时比其它仿造的零件价格要贵,但质量及稳定性要好, 如果购买售价便宜的仿造零件,短期内似乎是节省了费用, 但由此出带来了隐患,也可能对柱塞泵的使用造成更大的 危害。
五.修理 1.如何修理缸体孔与柱塞相配合面
目前轴向柱塞泵的缸体有三种形式:a).整体铜缸体;b).全钢 缸体;c).镶铜套钢制缸体;缸体上柱塞孔数有七孔、九孔等; 缸体孔与柱塞外圆配合间隙如下表所示.
③.对于缸体孔无镶入铜套者,缸体材料多为球墨铸铁, 在缸体孔内壁上有一层非晶态薄膜或涂层等减磨润滑材料, 修复时不可研去。修理这些柱塞泵,就要求助专业修理厂 和泵的生产厂家。
2.:如何修理柱塞
柱塞一般是球头面和外圆柱表面的磨损与拉伤,且 磨损后,外圆柱表面多呈腰鼓形。
柱塞球头表面一般在修理时,只能采取与滑靴内球 面进行对研的方法,因为磨削球面需要专门的设备, 而这是泵用户单位不可能具备的。
变量柱塞泵知识讲解

变量柱塞泵变量柱塞泵1、变量柱塞泵概述及工作原理变量柱塞泵的压力油经泵体、泵壳变量壳体中的通油孔通过单向阀进入变量壳体的下腔,当拉杆向下运动时,推动伺服活塞向下移动,伺服阀的上阀口打开,变量壳体下腔的压力油经变量活塞中的通油孔进入变量壳体上腔,由于上腔面积大于下腔,液压力推动活塞向下运动,带动销轴使变量头绕钢球中心旋转,改变变量头的倾斜角(增大),柱塞泵的流量随之增大。
反之拉杆向上运动,变量头的倾斜角向相反方向变化,泵的流量也随之变化。
当倾斜角度变至零以后,则变量头向负偏角方向变化,液流产生换向,泵的进出油口变换。
编2、变量柱塞泵常见故障1.液压泵输出流量不足或不输出油液(1)吸入量不足。
原因是吸油管路上的阻力过大或补油量不足。
如泵的转速过大,油箱中液面过低,进油管漏气,滤油器堵塞等。
(2)泄漏量过大。
原因是泵的间隙过大,密封不良造成。
如配油盘被金属碎片、铁屑等划伤,端面漏油;变量机构中的单向阀密封面配合不好,泵体和配油盘的支承面有砂眼或研痕等。
可以通过检查泵体内液压油中混杂的异物判别泵被损坏的部位。
(3)倾斜盘倾角太小,泵的排量少,这需要调节变量活塞,增加斜盘倾角。
2.中位时排油量不为零变量式轴向柱塞泵的斜盘倾角为零时称为中位,此时泵的输出流量应为零。
但有时会出现中位偏离调整机构中点的现象,在中点时仍有流量输出。
其原因是控制器的位置偏离、松动或损伤,需要重新调零、紧固或更换。
泵的角度维持力不够、倾斜角耳轴磨损也会产生这种现象。
3.输出流量波动输出流量波动与很多因素有关。
对变量泵可以认为是变量机构的控制不佳造成,如异物进入变量机构,在控制活塞上划出阶痕、磨痕、伤痕等,造成控制活塞运动不稳定。
由于放大器能量不足或零件损坏、含有弹簧的控制活塞的阻尼器效能差,都会造成控制活塞运动不稳定。
流量不稳定又往往伴随着压力波动。
这类故障一般要拆开液压泵,更换受损零部件,加大阻尼,提高弹簧刚度和控制压力等。
4.输出压力异常泵的输出压力是由负载决定的,与输入转矩近似成正比。
斜柱塞斜盘式轴向柱塞泵的流量特性

m “
(
l
一 o c
2 tn R a
s ( + tn)a 9 1 a 'n/ l f t )
tV, h / s
一
q
一
Z O C S CS O
) ,
卢
×
一
则可知斜柱塞泵的理论排量( 几何排量) 为
q一
扣 一
㈤
s [1 i i +2 一1a n 翌 ± (二 )3 2』
应用. 然而在某些场合 , 为了使柱塞泵结构 紧凑 、 减 轻重量 、 增大排量 , 通常采用柱塞中心线与缸体的轴
线成某一夹角 B 称为柱塞倾角) ( 的斜盘式轴向柱塞 泵( 以下简称此种结构泵为斜柱塞泵) 如德国力士 , 乐 公 司研 制 的 A1VO10型柱 塞 泵 即为 斜柱 塞 泵 , 1 9
t eb c to e e u t n o h im e e f: ev le pa e n e u ig t e cr u fr n ilv lct f h a k sr k ,r d ci ft eda t ro t av lt ,a d r d cn h ic m ee t eo iy o o h a
由于泵有多个柱塞 , 同一 瞬间有几个柱塞处 在 于排油区. 它们离开上死点 的转 角 9 各不相 同, i 故 泵的瞬时理论流量为同一瞬间所有在排油区柱塞的
理论 瞬 时流量 之 和 , 即
_ 、
q h 厶 . 3
f 1 =
式中 : m为排油区的柱塞数. 由式 () 式 () 4和 5整理 可得
杨逢瑜等 : 斜柱塞斜盘式轴 向柱塞泵 的流量特性
考虑到研究斜柱塞泵的流量特性的必要性和重 要性 , 本文在 直柱塞 泵流 量特 性理 论研 究 的基础 上 3, 出并建立反映斜柱塞泵流量特性 的理论体 2 提 - ]
a10v型的斜盘式轴向柱塞泵参数

A10V型斜盘式轴向柱塞泵是一种常见的液压泵,广泛应用于工程机械、农业机械、工业机械等领域。
由于其参数种类繁多,本文将对A10V型斜盘式轴向柱塞泵的参数进行详细介绍,以便读者更好地了解该型号泵的特性和适用范围。
A10V型斜盘式轴向柱塞泵的参数主要包括流量、压力、转速、效率、重量等,下面将逐一对这些参数进行说明:1. 流量:A10V型斜盘式轴向柱塞泵的流量范围较广,一般来说从5ml/r到1000ml/r不等,用户可以根据具体需求选择合适的流量参数。
2. 压力:A10V型斜盘式轴向柱塞泵的工作压力一般在280bar到350bar之间,当然也有些特殊型号可以达到更高的工作压力。
3. 转速:A10V型斜盘式轴向柱塞泵的转速范围一般在1000rpm到3000rpm之间,不同的转速会对泵的工作效率和噪音产生影响。
4. 效率:A10V型斜盘式轴向柱塞泵的效率取决于其设计的先进程度和制造工艺,一般来说,其效率可以达到90以上。
5. 重量:A10V型斜盘式轴向柱塞泵的重量也是一个重要的参数,不同的规格和型号对应的重量会有所不同,用户在选型时需要考虑设备的载重能力。
A10V型斜盘式轴向柱塞泵作为液压系统中的关键元件,其参数的选择对系统的性能和使用效果具有重要影响。
用户在选型时除了要考虑以上参数外,还应该结合具体的工作环境和工作要求,选择合适的A10V 型斜盘式轴向柱塞泵,以确保系统的稳定性和可靠性。
由于A10V型斜盘式轴向柱塞泵的应用场景和工况各不相同,用户在选型和使用时,还需要在参数的基础上进行进一步的调整和优化,以满足特定的工程需求。
比如在流量和压力的选择上要考虑系统的功率和扭矩要求,在效率和转速的选择上要考虑系统的能效和噪音要求,在重量的选择上要考虑设备的运输和安装要求等。
A10V型斜盘式轴向柱塞泵的参数包括流量、压力、转速、效率、重量等,这些参数的选择和优化对液压系统的性能和稳定性具有重要影响。
用户在选型和使用时应该根据具体的工作要求和工程环境,灵活调整和优化这些参数,以确保系统的性能和可靠性。
斜轴式轴向柱塞泵与轴向柱塞马达课件

斜轴式轴向柱塞泵的配流盘与滑靴采用静压平衡设计,减 小了泄漏和磨损;而轴向柱塞马达的配流盘与滑靴结构相 对简单,泄漏和磨损较大。
变量机构与调节方式
斜轴式轴向柱塞泵采用斜盘式变量机构,可实现无级调节 ;而轴向柱塞马达通常采用定量泵或简单变量机构,调节 范围有限。
选用建议及注意事项
01
04
轴向柱塞马达性能分析
转矩转速特性曲线解读
转矩转速特性曲线
01
表示轴向柱塞马达在不同转速下的输出转矩和功率的
随着转速增加,输出转矩
逐渐减小,功率达到最大值后逐渐降低。
解读方法
03
通过分析曲线的变化趋势,可以评估马达在不同工作
条件下的性能表现。
效率及损耗评估方法
效率评估
通过测量马达的输入功率和输出功率,计算马达的效率。效率越 高,表示能量转换效率越好。
损耗评估
分析马达运行过程中的各种损耗,如机械损耗、容积损耗和电磁损 耗等。损耗越小,马达性能越优。
评估方法
可以采用实验测试或仿真分析等方法进行效率和损耗评估。
影响因素及优化策略
影响因素
包括工作压力、油液温度、油液粘度、柱塞数、斜盘倾角等。
03
轴向柱塞马达概述
定义与工作原理
定义
斜轴式轴向柱塞泵与轴向柱塞马达是一种容积式液压传动装 置,通过柱塞在缸体中的往复运动实现吸油和压油过程。
工作原理
当传动轴旋转时,通过连杆和滑块机构使柱塞在缸体中做往 复运动。当柱塞向外伸出时,缸体中的油液被吸入;当柱塞 向内缩进时,缸体中的油液被压缩并排出。通过改变传动轴 的旋转方向,可实现马达的正反转。
影响因素及优化策略
影响因素
包括泵的结构参数、工作条件、油液性质等。结构参数如柱塞直径、柱塞数、斜盘倾角等会影响泵的性能;工作 条件如转速、负载、油温等会影响泵的工作状态;油液性质如粘度、清洁度等会影响泵的泄漏和摩擦情况。
柱塞泵

Esc
S
轴向柱塞泵结构及工作原理
结束 暂停 / 重新启动
Esc
S
轴向柱塞泵结构及工作原理
结束 暂停 / 重新启动
Esc
S
轴向柱塞泵结构及工作原理
结束 暂停 / 重新启动
Esc
S
轴向柱塞泵结构及工作原理
结束 暂停 / 重新启动
Esc
S
轴向柱塞泵结构及工作原理
结束 暂停 / 重新启动
Esc
S
轴向柱塞泵结构及工作原理
1-法兰传动轴;2-连杆;3-柱塞; 4-缸体;5-配流盘 90
排量计算
• 柱塞的行程L=2rsinγ • 斜轴泵排量
2 V=(πd 2 LZ)/4 = (πd rZsinγ)/2
因此,斜轴泵的平均流量q为
2 q=(πd rZnsinγη)/2
1-法兰传动轴;2- 连杆;3-柱塞;4- 缸体;5-配流盘
• 如果在+α到-α范围内变化,则为双向变量泵,既能改
变液体流量大小,又能改变液体流动的方向。
84
手动变量机构
调节螺杆 手轮 压盘 斜盘 变量活塞 滑靴 缸体 配油盘
传动轴
SCY14-1型轴向柱塞泵
85
手动伺服变量机构
D
d
86
特点
压力高 结构紧凑 效率高 流量调节方便
应用
龙门刨床、拉床、液压机、工程机械、矿山机械、冶金机械、船舶等
返回,因此,采用回程盘解
决柱塞的回程问题。
82
轴向柱塞泵的流量计算
排量
V
2
d 2 RZ tan
改变斜盘倾角γ可以改变泵的排 量
实际流量
q
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A7V系列斜轴式变量柱塞泵
A7V型变量柱塞泵具有压力高、体积小、重量轻、转速高、耐冲击等优点,传动轴能承受一定的径向负荷。
吸油压力(开式)为0.09~0.15MPa。
适用于工程机械以及轧钢、锻压、矿山、起重、船舶等各种机械的开式液压系统。
它有恒功率变量(LV)、恒压(DR)、电控比例变量(EP)、液控变量(HD)、手动变量(MA)五种变量型式。
产品特点:
①斜轴式轴向柱塞变量泵,用于开式回路静压传动。
流量、转速与排量成正比,在恒定转速下可实现无级变量。
②转子与分油盘之间为球面配油,在运转中能自动对中,周速较低,效率较高,驱动轴能承受径向负荷。
订货示例:
GY-A7V160LV2.0LZFOO
A7V变量泵,规格160,带恒功率LV控制,2.0结构系列,逆时针旋转L。
德标花键Z,侧面法兰连接,无辅助元件。
A7V2.0 5.1斜轴式轴向柱塞变量泵——结构剖视
型号说明
A7V2.0 5.1斜轴式轴向柱塞变量泵==《技术数据》
2)以容积效率为97%计算所得;
3)在各种工作状态下泵转速均不得超过吸油口S在0.15MPa下的最高转速,但对Vgmin>0的规
80-58、107-78、160-117,可通过减小
排量(Vg<Vgmax)与维持最大流量的方法,使最高转速提高到对应Vgmin=0的那些规格的转速Vgmax=28lml/r,将排量减小到20.5ml/r,
保持最大流量为94(l/min)前提下,对应最高转速可由原3600r/min提高到 4750r/min。
●工作压力范围
吸油口S处的绝对压力
Pabs min___________________0.08MPa Pabs max___________________0.2MPa
出油口A或B处的压力
额定值___________________PN=35MPa
最高值___________________Pmax=40MPa ●油温范围
tmin______________________-25℃
tmax______________________+80℃●粘度范围:10 - 1000 mm2/s
(10、1000mm2/S为短期使用)
最佳工作粘度推荐:16 - 25mm2/s
●工作液:矿物油(40号低凝液压油)●液压油过滤
推荐过滤精度10μm,25 - 40μm的较但用10μm过滤可延长油泵使用寿命。
●流动方向
顺时针:S到B 逆时针:S到A
恒功率控制LV
LV控制是输入转速不变时,根据负载压力来控制流量,使油泵输出的液压功率恒定即:
P=△PoQ/60=常数据
式中:P功率(kW)、△P压差(MPa)、Q流量(L/min)
工作压力作用在先导活塞上,通过活塞顶杆压向控制起点调节弹簧,使先导油进入流量活塞,油泵的摆角从Vgmax向Vgmin摆动,使供油量减小(参见前面结构剖视图)。
控制起点为5MPa的恒功率控制LV
通过油口G及节流口C可以叠加HP控制。
带机械行程限位的恒功率控制LV
借助于机械行程限位器,可以无级改变或限制最大排量。
根据需要调节范围可从Vgmax到Vgmin。
带压力截流的恒功率控制LV
适用于Vgmin=0的所有规格
压力截流是在恒功率控制基础上叠加一个恒压控制,它借助于顺序阀来实现。
当压力达到设定压力的最高值时(调节范围到31.5MPa),顺序阀打开,流量便自动减小到Q=0。
顺序阀与泵分开安装规格20-117
在零件连续工作请见恒压DR控制
注意:顺序阀油口T与先导阀油口T1必须直接通油箱(冷却器)带液压行程限位器的恒功率控制LV
带液压行程限位器的恒功率控制LV
液压行程限位器需要至少工作压力10%的先导压力(X1口),对所有规格X1口的最大允许压力为20MPa。
如要限制工作压力小于5MPa的流量,则需在油口X2处加入不少于5MPa的供油压力,这时在油口X1需要的压力为5*10%=0.5(MPa)。
A7V2.0 5.1斜轴式轴向柱塞变量泵——安装说明
●安装位置:
任选。
泵内必须充满液压油。
当油泵装在油箱里时油口R的堵塞应取下,此油口应在顶部。
为减小噪音油口应旋入90o弯头。
●驱动轴向上的垂直安装
对此情况须特殊订货,要求带U1和U2的型号(用文字说明:"带油口U1和U2")。
最低液面不得低于"A"线,如下图a所示。
●安装在油箱顶部
A7V变量泵(2.0系列)在油箱上的安装为特殊安装,只能在特定条件下实现。
1)带各种控制的油泵,只能在泵外处于最大摆角(Vgmax)时启动。
对调节从最小排量Vgmin开始的泵(Vgmin=0的油泵),最小流量的限位螺钉必须调到最小流量≥最大排量Vgmax×5%处,防止油泵在零流量运转,使吸油管放空。
2)安装在油箱顶部时,订货时需用文字说明"用于油箱上面安装"。
为防止空气被吸入泵仙,这种泵驱动轴须装有两道油封。
3)油泵吸油口须在上方,且吸油管应尽可能短,管端至液压面应低于200mm,吸油管内应保证流速在0.8-1.0m/s之间。
安装示意图见图B。
A7V变量泵2.0系列,安装在油箱顶部,各规格转速、管长及对应内径表:
注:所示值为吸油口处的绝对压力为0.09MPa,且在泵Vgmax及用矿物油前提下成立。