工程热力学-热力学发展简史
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科学思维的发展
自然科学溯源于古希腊,十五世纪时勃兴于欧洲,当时欧洲刚经历千年「黑暗时代」,文艺复兴开始,而地中海沿岸贸易兴旺,为开拓市场需要,遂推动天文、地理、数学和力学的发展。而波兰人哥白尼(Nicolas Copernicus),在一五四三年提出「日心说」,其理论经伽利略(Galileo Galilei)、开普勒(Johann Kepler)的论证与发展,使西方的自然观,由笼统、模糊的认识,进入到深入、细致的研究。十六、十七世纪,英国人培根(Roger Bacon)大力提倡「科学方法」,即通过实验、列表、比较、排除、归纳而逐步上升到公理,奠定了西方科学严谨的研究方法和传统。
与培根同时代的法国人笛卡儿(Rene Descartes),把整个自然界看作一架大机器,试图以机械运动说明自然界的一切,并且主张要从错综复杂的事物中区别出最简单事物,然后予以有秩序的研究。他的《方法谈》标示了西方知识传统的「分析还原原理」,认为总体可以分解为部分;复杂、非线性系统,也可以分解为简单线性系统来理解。故奠定了追求简单性和线性解的西方科学及人文思维基础。
英国人牛顿(Sir Issac Newton)在一六八六年提出《自然哲学的数学原理》巨著,创立了以「万有引力」及「运动三定律」为基础的古典力学。他把整个自然界描述成一个秩序井然的大机械钟,只要这个钟上紧发条,便能自动运转,但这机械论仍要请上帝做「第一推动」,为这大钟上紧发条。到十八世纪下半叶,由国家支持的科学机构已在欧美各国普遍建立,故自然科学分门别类而迅速发展,十九世纪自然科学由分门别类的材料收集,进到对经验材料的综合整理和理论概括。
在牛顿的古典力学基础上,热力学大师克劳修斯(Rudolf Julius Emmanuel Clausius)在一八六七年提出热力学第二定律,说明一个孤立系统,总由有序而朝向均匀、简单、消灭差别的无序方向发展,即「熵」(entropy)增加,从而得出「宇宙总体走向退化、死亡」的结论。
热力学的基本定律
热力学是专门探讨能量内涵、能量转换以及能量与物质间交互作用的科学,尤其专注在系统与外在环境间能量的交互作用,是结合工程、物理与化学的一门学问。早期物理中,把研究热现象的部分称为热物理,后来称为热学,近代则称之为热力学,被许多理工相关科系列为必修的基础课程。许多工程科学都是由热力学所衍生的或与其有密切关联,例如热传学、流体力学、材料科学等。
顾名思义,热力学和「热」有关,和「力」也有关。广义而言,热力学主要是研究有关能量的科学,因此物质的特性也是其必须探讨的范围。热力学的应用范围很广,主要包括:引擎、涡轮机、压缩机、帮浦、发电机、推进器、燃烧系统、冷冻空调系统、能源替代系统、生命支持系统及人工器官等。
热是一种传送中的能量。物体的原子或分子透过随机运动,把能量由较热的物体传往较冷的物体。
●热力学第零定律──把两物体放在一绝热系统中,亦即在没有热量的进入及流出下,经过一段时间后,两物体必达到温度相同的状态,也就是热平衡的状态。
热力学第一定律(能量守恒定律)──能量既不会凭空消失,也不会凭空产生,只能从一种形式转化成另一种形式,或者从一个物体转移到另一个物体,而总量保持不变。
●热力学第二定律(方向定律)──单向不可逆过程,亦即无法靠着环境的微小变化就能反向的过程,就是在系统历经刺激,朝着熵增加的方向变化的过程。熵是系统的状态函数,亦即与系统的状态有关,而与如何到达此状态的过程无关,虽然在封闭系统内的某个部分的熵也许会减少,但在系统另一部分的熵永远会增加相同的量或更多,因此整个系统的总熵绝不减少,只会往最大的乱度方向进行。
●热力学第三定律──完美晶体在绝对零度时,其熵为零。
热力学的萌芽
人类很早就对热有所认识,并加以应用,例如在相当早的年代,就知道加热岩石,再泼冷水让它爆裂,从而制造出石头工具。但是将热力学当成一门科学且定量地研究,则是由十七世纪末开始,也就是在温度计制造技术成熟,并知道如何精密地测量温度以后,才真正开启了热力学的研究。
十七世纪时伽利略曾利用气体膨胀的性质制造气体温度计,博伊尔(Robert Boyle)在一六六二年发现在定温下,定量气体的压力与体积成反比;十八世纪,经由准确的实验建立了摄氏及华氏温标,其标准目前我们仍在使用;一七八一年查理发现了在定压下气体体积会随着温度改变的现象,但对于热本质的了解则要等到十九世纪以后。
焦耳自一八四三年起经过一连串的实验,证实了热是能量的另一种形式,并定出了热能与功两种单位换算的比值,此一能量守恒定律被称为热力学第一定律,自此人类对于热的本质才算了解。一八五○年凯尔文(William Thompson Baron Kelvin)及克劳修斯(Rudolf Julius Emmanuel Clausius)说明热机输出的功一定少于输入的热能,称为热力学第二定律。这两条定律再加上能士特(Hermann Walter Nernst)在一九○六年所提出的热力学第三定律:即在有限次数的操纵下无法达到绝对零度,构成了热力学的基本架构。热学在十九世纪的另外一个发展方向是一八五○年前后,由焦耳及克劳修斯所推广的气体动力论,这个理论把热学的微观基础建立了起来。
综观而言,所谓热力学发展史,其实就是热力学与统计力学的发展史,基本上约可划分成四个阶段,分别叙述如下:
第一个阶段:十七世纪末到十九世纪中叶
实质上是热学的早期史,开始于十七世纪末到十九世纪中叶,这个时期累积了大量的实验和观察,并制造出蒸汽机,关于「热」的本质展开了研究和争论,为热力学理论的建立做了准备。在十九世纪前半叶首先出现的卡诺理论、热机理论(第二定律的前身)和热功相当互换的原理(第一定律的基础)已经包含了热力学的基本思想,这一阶段的热力学还留在热力学
的现象描述,并未引进任何数学算式。
温度计的发展
一五九三年:意大利伽利略制造了第一支温度计,以空气为测温物质,由玻璃泡内空气的热胀冷缩来指示冷暖。
一六三二年:法国珍.雷(Jean Rey),将伽利略的温度计倒转过来,并注入水,以水为测温物质,利用水的热胀冷缩来表示温度高低,但管子是开口的,因而水会不断蒸发。
一六五七年:意大利佛罗伦萨的西门图科学院的院士,改用酒精为测温物质,并将玻璃管的开口封闭,制造出除了避免酒精蒸发,也不受大气压力影响的温度计,同时选择了最高和最低的温度固定点。
一六五九年:巴黎天文学家布利奥(Boulliau)把西门图院士传到法国的温度计充以水银,而制造出第一支水银温度计。
一六六○年到一七○○年期间:博伊尔和其助理虎克(Robert Hooke),甚至牛顿本人均体认到制定温标的重要性,虽然他们没有对温度计制定温标,但对温度计发展的贡献却是非常重要的。
一七○二年:阿蒙顿(Guillaumel Amontons)仿伽利略的方法制出一个装有水银的U型且与大气压力无关的气体温度计,与现今标准气体温度计相近。
一七一四年:荷兰气象学家华伦海特(Gabriel Danniel Fahrenheit)制作出第一批刻度可靠的温度计(有水银的,也有酒精的)。他选定三个温度固定点:(1)零度是冰水和氯化铵混合物的温度,(2)32 度是冰水混合的温度,(3)96 度是人体的温度。这就是华氏温标℉。一七二四年他测量水的沸点为212 度,同时他还证明了沸点会随大气压力变化,现代人把标准气压下水的冰点和沸点之间标以180 刻度,就是华氏温标。
一七四二年:瑞典天文学家摄耳修斯(Anders Celsius)引进百分刻度法,他把水的沸点定为零度,水的冰点定为100 度,此即所谓摄氏温标,其同事斯特莫(Stromer)把这两温度值倒过来即成为近代所用的摄氏温标,到此为止,温度计算是定型了。
热量概念的演进
人们长久以来对温度和热量的概念混淆不清,多数人以为物体冷热的程度代表着物体所含热的多寡。
首先德国斯塔尔(Georg Ernst Stahl)教授提出热是一种燃素,后来荷兰波哈维(Hermann Boerhaave)教授甚至说热是一种物质。虽然热是一种物质的说法不正确,但波哈维教授把华氏40 度的冷水与同质量华氏80 度的热水相混而得华氏60 度的水,却隐约地得到热量守恒的一个简单定则;不过对于不同质量,甚至不同物质的冷热物体的混合,他就难以解释了。