四年级奥数知识讲解周期问题

合集下载

四年级奥数综合复习之[周期问题]

四年级奥数综合复习之[周期问题]

四年级奥数复习之:周期问题周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期。

周期性问题的基本解题思路:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

1、观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,18÷2=9,所以第18个数是2。

2、如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16÷3=5……1,所以第16个数是1。

3、如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算。

例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(16-1) ÷2=7……1,所以第16个数是2.4、遇到日期问题,求星期几,如果求的日期> 已知日期,则使用顺推,如果求的日期< 已知日期,则倒推。

第一讲:图形中的周期问题1、美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【黑/26】2、小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.第10颗黄珠子是从头起第几颗?第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【47/14】3、如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A”,第二组是“们,B”……第62组是什么?如果“爱,C”代表1991年,“科,D”代表1992年……问2008年对应怎样的组?【们,F/学,F】4、如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。

举一反三- 四年级奥数 - 第28讲 周期问题

举一反三- 四年级奥数 - 第28讲 周期问题

第28讲周期问题一、知识要点:在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。

我们把这种特殊的规律性问题称为周期问题。

解答周期问题的关键是找规律,找出周期。

确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。

二、精讲精练例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。

(1)□△□△□△□△……(2)□△△□△△□△△……练习一(1)□□△△□□△△□□△△……第28个图形是什么?(2)盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一…第2001个字是什么字?例2:有一列数,按5、6、2、4、5、6、2、4…排列。

(1)第129个数是多少?(2)这129个数相加的和是多少?练习二1、有一列数:1,4,2,8,5,7,1,4,2,8,5,7…(1)第58个数是多少?(2)这58个数的和是多少?2、小青把积存下来的硬币按先四个1分,再三个2分,最后两个5分这样的顺序一直往下排。

(1)他排到第111个是几分硬币?(2)这111个硬币加起来是多少元钱?例3:假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89…练习三1、有a、b、c三条直线,从a线开始,从1起依次在三条直线上写数(如下图),22、59、2001各在哪一条线上?c b2、假设所有自然数如下图排列起来,36、43、78、2000应分别排在哪个字母下面?A B C D1 2 3 48 7 6 59 10 11 12…例4:1991年1月1日是星期二。

(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?练习四1、1990年9月22日是星期六,1991年元旦是星期几?2、1989年12月5日是星期二,那么再过10年的12月5日是星期几?例5:我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号,例如,第一年如果属鼠年,第二年就属牛年,第三年就是虎年…。

人教版四年级上册数学奥数 周期问题(课件)(共19张PPT)

人教版四年级上册数学奥数 周期问题(课件)(共19张PPT)

【例3】下表中,将每列上面的汉字和下面的字母组成一组,例如,第一组为(我,A), 第二组为(们,B),那么第136组是什么?
【分析与解答】 咦,这道题中上、下两行的周期不一样啊!上面是5个汉字为一个周期,下面是4个字母为一个 周期。对,这就是这道题与前面例题不同的地方,上、下两行的变化规律不统一,也就是周期 里汉字、字母的个数不同。因此,我们必须分别找出两行中第136个汉字或字母是什么,把它们 组成一组。这样,问题就迎刃而解了。
我来解答:130÷4=32(组)……2(个) (5+6+4+2)×32+5+6=17×32+11=555
小结与提示 解答这道题时要注意:求和时,最后多出来的两个数是5和6,别漏加或错加。
实践与应用
【练习2】 P124 有一列数:6,1,0,8,6,1,0,8,··· (1)第122个数是多少? (2)这122个数相加的和是多少?
实践与应用
【练习4】 P126 2016年植树节是星期六,则2017年植树节是星期几?
【例5】 10个2连乘的积的个位上是几?
【分析与解答】 这道题很简单,只要把10个2连乘起来,不就知道积的个位上的数字了吗?这个方法虽行得通, 但太麻烦,假如有100个2连乘,那该怎么算啊?我们应该找出积的个位上的变化规律。 对,这道题只要求出积的个位上的数字,就可以利用列表的方法找出积的个位上的变化规律。 从表中可以清楚地看出,积的个位上的数字以2,4,8,6为一个周期。 我来解答:10÷4=2(组)…2(个),所以,10个2连乘的积的个位上是4。 小结与提示 当求许多个相同的数相乘的积的个位上的数字时,一个一个求积太麻烦,我们不妨过列表 一一列举,这样就能发现规律。即使100个相同的数相乘,也能快速解答。

四年级奥数+周期问题

四年级奥数+周期问题

周期问题(一)我们知道,一年有12个月,从一月开始,一月、二月、三月、……十二月;每周有七天,从星期一开始,星期一、星期二、……星期天。

在日常生活中有许多类似这样重复出现的现象,一些数、图形的变化也是周而复始地循环出现的,我们把这种特殊的规律性问题称为周期问题。

解答这类题目只有找到规律,才能获得正确的方法。

【例1】●●○●●○●●○……上面黑、白两色小球探险一定的规律排列着,其中第90个是()【例2】有同样大小的红、白黑珠共150个,按先5个红的,再4个白的,再3个黑的排列着。

第144个珠是什么颜色?【例3】有249朵花,按5朵红花、9朵黄花、13朵绿花的顺序排列,最后一朵花是什么颜色的?【例4】有同样大小的红、黄、蓝弹子共180个,按先4个红的,再2个黄的,再3个蓝的排列着。

三种颜色的弹子各有多少个?【例5】上表中,将每列上下两个字组成一组,例如,第一组为(共,社),第二组为(产,会),那么,第128组是()练习与思考:1.根据图中物体的排列规律,填空。

(2)□○△□○△……第55个是()2.四(1)班六位同学在进行报数游戏,他们围成一圈,小娟报“1”,小华报“2”,小丽报“3”,小勇报“4”,小强报“5”,小琳报“6”,每位报的数总比前一位多1。

“72”是谁报的?“190”呢?3.一些黑白珠子按一定规律排列(如图),如果这些珠子共有50个,则倒数第六个珠子是什么颜色?●●●○●●●○●●●○……4.有100朵花,按4朵红花,3朵绿花,5朵黄花,2朵紫花的顺序排列,最后一朵是什么颜色的花?四种花各有几朵?5.第26列的字母和数字各是什么?周期问题(二)【例1】10个2连乘的积的个位数是几?【例2】1998年元旦是星期四,1998年元旦是星期几?【例3】黑珠、白珠共185个串成一串,排列如图:○●○○○●○○○●○○○……【例4】把自然数按下图的规律排列后,分成A 、B 、C 、D 、E 五类,例如,4在D 类,10在B 类。

四年级奥数综合复习之【周期问题】

四年级奥数综合复习之【周期问题】

四年级奥数综合复习之【周期问题】四年级奥数复习之:周期问题周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期。

周期性问题的基本解题思路:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

1、观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,18÷2=9,所以第18个数是2。

2、如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16÷3=5……1,所以第16个数是1。

3、如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算。

例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(16-1) ÷2=7……1,所以第16个数是2.4、遇到日期问题,求星期几,如果求的日期 > 已知日期,则使用顺推,如果求的日期 < 已知日期,则倒推。

第一讲:图形中的周期问题1、美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【黑/26】2、小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.第10颗黄珠子是从头起第几颗?第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【47/14】3、如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A”,第二组是“们, B”……第62组是什么?如果“爱,C”代表1991年,“科,D”代表1992年……问2008年对应怎样的组?【们,F/学,F】4、如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。

四年级奥数题第28讲周期问题

四年级奥数题第28讲周期问题

四年级奥数题第28讲周期问题第28讲周期问题⼀、知识要点:在⽇常⽣活中,有⼀些现象按照⼀定的规律不断重复出现,例如,⼈的⽣肖、每周的七天等等。

我们把这种特殊的规律性问题称为周期问题。

解答周期问题的关键是找规律,找出周期。

确定周期后,⽤总量除以周期,如果正好有整数个周期,结果为周期⾥的最后⼀个;如果⽐整数个周期多n个,那么为下个周期⾥的第n个;如果不是从第⼀个开始循环,可以从总量⾥减掉不是特球的个数后,再继续算。

⼆、精讲精练例1:你能找出下⾯每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。

(1)□△□△□△□△……(2)□△△□△△□△△……练习⼀(1)□□△△□□△△□□△△……第28个图形是什么?(2)盼望祖国早⽇统⼀盼望祖国早⽇统⼀盼望祖国早⽇统⼀…第2001个字是什么字?例2:有⼀列数,按5、6、2、4、5、6、2、4…排列。

(1)第129个数是多少?(2)这129个数相加的和是多少?练习⼆1、有⼀列数:1,4,2,8,5,7,1,4,2,8,5,7…(1)第58个数是多少?(2)这58个数的和是多少?2、⼩青把积存下来的硬币按先四个1分,再三个2分,最后两个5分这样的顺序⼀直往下排。

(1)他排到第111个是⼏分硬币?(2)这111个硬币加起来是多少元钱?例3:假设所有的⾃然数排列起来,如下所⽰39应该排在哪个字母下⾯?88应该排在哪个字母下⾯?A B C D1 2 3 45 6 7 89…练习三1、有a、b、c三条直线,从a线开始,从1起依次在三条直线上写数(如下图),22、59、2001各在哪⼀条线上?c b2、假设所有⾃然数如下图排列起来,36、43、78、2000应分别排在哪个字母下⾯?A B C D1 2 3 48 7 6 59 10 11 12…例4:1991年1⽉1⽇是星期⼆。

(1)该⽉的22⽇是星期⼏?该⽉28⽇是星期⼏?(2)1994年1⽉1⽇是星期⼏?练习四1、1990年9⽉22⽇是星期六,1991年元旦是星期⼏?2、1989年12⽉5⽇是星期⼆,那么再过10年的12⽉5⽇是星期⼏?例5:我国农历⽤⿏、⽜、虎、兔、龙、蛇、马、⽺、猴、鸡、狗、猪12种动物按顺序轮流代表年号,例如,第⼀年如果属⿏年,第⼆年就属⽜年,第三年就是虎年…。

四年级下册奥数第28讲 周期问题

四年级下册奥数第28讲    周期问题

第28讲周期问题知识要点:在日常生活中,有一些现象是按照一定的规律不断重复出现的。

例如,人的生肖鼠、牛、虎、免、龙、蛇、马、羊、猴、鸡、狗、猪都是按照顺序出现的;又如每周有7天,从星期一开始,到星期日结束,总是以7天为一个循环不断重复出现的。

我们把这种特殊的规律性问题称为周期问题。

解答周期问题的关键是找规律,找出周期。

确定周期后,用总量除以周期。

如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么结果为下一个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算。

例1、黑珠和白珠共2000颗,按照下面的规律排列:○●○○○●○○○●○○○……第2000颗珠子是( )色的。

练习: (1)下列图形共150个,按照下面的规律排列:△△☆☆☆△△☆☆☆△△☆☆☆……第150个图形是( )。

(2)下列图形共47个,按照下面的规律排列:△△○○□□□□□○○□□□□□……第47个图形是( )。

(3)下列图形共用小棒46根,按照下面的规律排列:共拼成了( )个连续正方形……例2、下列图形共150个,按下面的规律排列:△△○□□□△△○□□□△△○□□□……다其中共有( )个三角形,( )个正方形。

练习: (1)下列图形共270个,按下面的规律排列:○○●●●○○●●●○○●●●……其中共有( )个●。

(2)下列图形共有540个,按下面的规律排列:☆□□△△△☆□□△△△☆□□△△△……其中一共有( )个□,( )个△。

(3)下列图形共有375个,按下面的规律排列:△△○○○○△△○○○○△△○○○○……第250个图形是( ),在它之前有( )个△,( )个○。

例3、2011年1月1日是星期六,(1)该月的22日是星期几?(2)2011年4月5日是星期几?练习: (1)2011年6月1日是星期三,8月1日是星期几?(2)2012年10月1日是星期一,2012年的元旦是星期几?(3)2011年2月4日是星期五,那么再过10年的2月4日是星期几例4、假设所有的自然数排列起来,如下图所示,那么39应该排在哪个字母下面?88应该排在哪个字母下面?练习:(1)有a,b,c三条射线,从a线开始,从1起依次在三条射线上写数(如下图所示),22,59,2001各在哪一条线上?(2)假设所有自然数排列起来,如下图所示,36,43,78,2000应分别排在哪个字母下面?(3)2001个学生按下列方法编号排成五列:问最后一个学生应该在第几列?例5、用1,2,3,4这四张卡片可以组成不同的四位数,如果把它们从小到大依次排列出来,第一个数是1234,第二个数是1243,第十五个数是多少?练习:(1)用2,3,4,5四个数字组成不同的四位数,把它们从小到大排列,第十六个数是多少?(2)用1,3,4,5四个数字组成不同的四位数,把它们从大到小排列,第十五个数是多少?(3)用1~5这5个不同数字可以组成120个不同的五位数,把它们从小到大排列,第二十五个数是多少?课后练习1、小旭把折的100朵纸花按先2朵红花,再4朵黄花,再3朵紫花这样的顺序一直往下排。

(精选)小学奥数周期问题--周期问题精讲

(精选)小学奥数周期问题--周期问题精讲

第十四讲:周期问题知识点说明周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.板块一、图形中的周期问题【例 1】小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【解析】仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330÷=,正好有30个周期,第90个是白球.100333÷=…1,有33个周期还多1个,所以,第100个是黑球.【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425÷=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【例 2】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第73颗是什么颜色的?⑵第10颗黄珠子是从头起第几颗?⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【解析】⑴这些珠子是按红、黄、蓝、绿、白的顺序排列,每一组有5颗.73514÷=(组)……3(颗),第73颗是第15组的第3颗,所以是蓝色的.⑵第10颗黄珠子前面有完整的9组,一共有5945⨯=(颗)珠子.第10颗黄珠子是第l0组的第2颗,所以它是从头数的第47颗.列式:592=(颗)=+47⨯+452⑶第8颗红珠子与第11颗红珠子之间一共有14颗珠子.第8颗红珠子与第11颗红珠子之间有完整的两组(第9、10组),共l0颗珠子,第8颗红珠子后面还有4颗珠子,所以是14颗.列式:524=+=(颗).⨯+10414【巩固】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?【解析】这道题是按“北京欢迎你”的规律重复排列,即5个字为一个周期.因为2855÷=…3,所以28个字里含有5个周期还多3个字,即第28个字就是所列一个周期中的第3个字,所以第28个字是“欢”字.【巩固】节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯.那么第73盏灯是什么颜色的灯?【解析】从第一盏白灯开始,每隔三盏彩灯就又出现一盏白灯,不难看出白灯的编号依次是:1,5,9,13,……,这些编号被4除所得的余数都是1.734181=⨯+,即73被4除的余数是1,因此第73盏灯是白灯.【例 3】节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后又是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:⑴第150盏灯是什么颜色?⑵前200盏彩灯中有多少盏蓝灯?【解析】⑴街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,这样一个周期变化的,实际上一个周期就是54110++=(盏)灯.150(541)15÷++=,150盏灯刚好15个周期,所以第150盏应该是这个周期的最后一盏,是黄色的灯.⑵如果是200盏灯,就是200(541)20⨯=÷++=的周期.每个周期都有4盏蓝灯,20480(盏)前200盏彩灯中有80盏蓝灯.【巩固】在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?【解析】50(225) 5⨯+=(个).÷++=…5.52212【巩固】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是几分硬币⑵这200枚硬币一共价值多少钱?【解析】 ⑴每个周期有3216++=枚硬币,要求最后一枚,用这个数除以6,根据余数来判断200633÷=……2,所以最后一枚是1分硬币⑵每个周期中6枚硬币共价值13221512⨯+⨯+⨯=(分),用这个数乘以周期次数再加上余下的,就可以得到一共价值多少了12332398⨯+=(分),所以,这200枚硬币一共价值398分.【巩固】 桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【解析】 1963÷=…1,1462÷=…2,所以,第19枚硬币是一角的,第14枚硬币是五角的.【巩固】 有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,什么花最多,什么花最少?最少的花比最多的花少几朵?【解析】 这些花按5红、9黄、13绿的顺序轮流排列,它的一个周期内有591327++=(朵)花.因为249279÷=……6,所以,这249朵花中含有9个周期还余下6朵花.按花的排列规律,这6朵花中前5朵应是红花,最后一朵应是黄花.在这一个周期里,绿花最多,红花最少,所以在249朵花中,自然也是绿花最多,红花最少.少几朵呢?有两种解法:(方法1)249(5913)9÷++= (6)红花有:59550⨯+=(朵)绿花有:139117⨯=(朵)红花比绿花少:1175067-=(朵)(方法2)249(5913)9÷++=……6,一个周期少的:1358-=(朵),9872⨯=(朵),余下的6朵中还有5朵红花,所以72567-=(朵).【例 4】 如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A ”,第二组⑵如果“爱,C ”代表1991年,那么“科,D ”代表1992年……问2008年对应怎样的组?【解析】 (1)要求第62组是什么数,我们要分别求出上、下两行是什么字(字母),上面一行是以“我们爱科学”五个字为一个周期,下面一行则是以“ABCDEFG ”七个字母为一个周期62512÷=……2 ,6278÷=……6,所以第62组是“们,F ”⑵2008是1991之后的第17组,现在上面一行按“科学我们爱”五个字为一个周期,下面一行则按“DEFGABC ” 七个字母为一个周期:2008199117-=(组),1753÷= (2)1772÷=……3,所以2008年对应的组为“学,F ”.【巩固】 在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北【解析】 要知道第50组是哪两个数,我们首先要弄清楚第一行和第二行的第50个字分别应该是什么.第一行“新北京新奥运”是6个字一个周期,5068÷=…2,第50个字就是北.再看第二行“奥林匹克运动会”是7个字一个周期,5077÷=…1,第50个字就是奥.把第一行和第二行合在一起,第50组就是“北奥”.【例 5】如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。

四年级奥数知识讲解_周期问题

四年级奥数知识讲解_周期问题

周期问题专题简析:在日常生活中,有一些按照一定的规律不断重复出现。

如:人的12生肖,一年有春夏秋冬四个季节,一个星期有七天等等。

像这些问题,我们称为“简单周期问题”。

这一类问题一般要利用余数的知识来解答。

所以这就要求我们对题目要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果。

例题1:100个3相乘,积的个位数字是几?分析:我们只需考虑积的个位数的排列规律就可以了。

解:(1)、1×3=3……1个3相乘积的个位数字是:3(2)、3×3=9……2个3相乘积的个位数字是:9(3)、3×3×3=27……3个3相乘积的个位数字是:7(4)、3×3×3×3=81……4个3相乘积的个位数字是:1(5)、3×3×3×3×3=243……5个3相乘积的个位数字是:3(已经重复出现)(说明:可以发现积的个位数分别以3、9、7、1不断出重复出现的。

即每4个3的积的个位数为一个周期。

)所以100个有多少个周期?100÷4=25(个)(整除说明是最后一个即个位为1)答:积的个位数字是1。

练习题:1、23个3相乘,积的个位数字是几?答:。

2、100个2相乘,积的个位数字是几?答:。

3、50个7相乘,积的个位数字是几?答:。

例题2:A B C A B C A B ……万事如意万事如意……上表是中,每一列两个符号组成一组,如第一组“A万”,第二组“B事”,……问第20个组是什么?分析:观察上表,发现有两个独立的排列规律。

上面一组是以“A、B、C”三个字母为一个周期重复出现的,下一组是以“万、事、如、意”四个字为一个周期重复出现的。

要求出第20个组是什么,就要分别求出上下两行各是什么才行。

解:(1)、上面一组:20÷3=6(组)……2(个)(说明第20个字母是:“B”)(2)、下面一组:20÷4=5(组)(说明第20个字是:“意”)答:第20个组是“B意”两个符号。

小学四年级奥数(周期问题)

小学四年级奥数(周期问题)

小学四年级奥数第8讲周期问题知识方法…………………………………………………我们发现在日常生活和学习中,有许多现象都是按照一定的规律、依次不断重夏出现的,我们把这种现象叫周期现象,而重复出现一次的时间或重复出现一次的个数做周期。

在研究这些筒单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环一次的个数,如果正好有个整数周期,结果为周期里的最后一个;如果不是从第一个开始循环,利用除法算式求出余数,最后根据余数的大小得出正确的结果。

重点点拨…………………………………………………【例1】假设所有的自然数排列起来,如下所示,49应该排列在第几个循环及哪个字母下面?(1) A B C D E1 2 3 4 56 7 8 9 1011 ……(2) A B C D E1 2 3 4 510 9 8 7 611 ……分析与解从排列情况可以知道,这些自然数是按从小到大5个数一个循环,我们可以根据这些数除以5所得的余数来分析判断:(1)49÷5=9 (4)49应该排在第10个循环第4个字母D下面。

(2)49÷10=4…9应该在B的下面。

【例2】用1,2,3,4这四张卡片可以组成不同的四位数,如把它们从小到大依次排列,第一个是1234,第二个是1243,第20个是多少?分析与解每个数字在千位上都出现6次,一共可以组成24个不同的四位数,以6次为一周期。

20÷6=3 (2)应是第四周期中的第2个数,千位上是4的数从小到大是4123,4132,4213等,所以第20个数是4132。

【例3】下面是一个11位数,它的每三个相邻的数字之和都是位a1,a2, (11)每三个相邻数字和都是24可知,a1+a2+a3=a2+a+a4=a+a1+a3=24 因为a1=8,所以a2+a3=16,而a2+a3+a1=24,所以a4=8,同理a7=8,a10=8,由此可见这个数字的周期是3。

四年级周期问题含答案

四年级周期问题含答案

周期问题一、图形中的周期问题【例 1】小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【解析】因为90330÷=…1,有33个周÷=,正好有30个周期,第90个是白球.100333期还多1个,所以,第100个是黑球.【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【解析】因为102425÷=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【例 2】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第73颗是什么颜色的?⑵第10颗黄珠子是从头起第几颗?⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【解析】⑴这些珠子是按红、黄、蓝、绿、白的顺序排列,每一组有5颗.73514÷=(组)……3(颗),第73颗是第15组的第3颗,所以是蓝色的.⑵第10颗黄珠子前面有完整的9组,一共有5945⨯=(颗)珠子.第10颗黄珠子是第l0组的第2颗,所以它是从头数的第47颗.列式:592=(颗)⨯+452=+47⑶第8颗红珠子与第11颗红珠子之间一共有14颗珠子.第8颗红珠子与第11颗红珠子之间有完整的两组(第9、10组),共l0颗珠子,第8颗红珠子后面还有4颗珠子,所以是14颗.列式:524=+=(颗).⨯+10414【巩固】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?【解析】这道题是按“北京欢迎你”的规律重复排列,即5个字为一个周期.因为2855÷=…3,所以28个字里含有5个周期还多3个字,即第28个字就是所列一个周期中的第3个字,所以第28个字是“欢”字.【例 3】节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后又是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:⑴第150盏灯是什么颜色?⑵前200盏彩灯中有多少盏蓝灯?【解析】⑴街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,这样一个周期变化的,实际上一个周期就是54110÷++=,150盏灯刚好15++=(盏)灯.150(541)15个周期,所以第150盏应该是这个周期的最后一盏,是黄色的灯.⑵如果是200盏灯,就是200(541)20÷++=的周期.每个周期都有4盏蓝灯,⨯=(盏)前200盏彩灯中有80盏蓝灯.20480【巩固】在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?【解析】50(225) 5÷++=…5.52212⨯+=(个).【巩固】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是几分硬币⑵这200枚硬币一共价值多少钱?【解析】⑴每个周期有3216++=枚硬币,要求最后一枚,用这个数除以6,根据余数来判断200633÷=……2,所以最后一枚是1分硬币⑵每个周期中6枚硬币共价值13221512⨯+⨯+⨯=(分),用这个数乘以周期次数再加上余下的,就可以得到一共价值多少了12332398⨯+=(分),所以,这200枚硬币一共价值398分.【例 4】如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A”,第二组是“们,B”……我们爱科学我们爱科学我……A B C D E F G A B C D……⑴写出第62组是什么?⑵如果“爱,C”代表1991年,那么“科,D”代表1992年……问2008年对应怎样的组?【解析】(1)要求第62组是什么数,我们要分别求出上、下两行是什么字(字母),上面一行是以“我们爱科学”五个字为一个周期,下面一行则是以“ABCDEFG”七个字母为一个周期÷=……6,所以第62组是“们,F”62512÷=……2 ,6278⑵2008是1991之后的第17组,现在上面一行按“科学我们爱”五个字为一个周期,下面一行则按“DEFGABC”七个字母为一个周期:2008199117-=(组),÷= (2)1753÷=……3,所以2008年对应的组为“学,F”.1772【巩固】在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北林),那么第50组是什么?新北京新奥运新北京新奥运新北京新奥运……奥林匹克运动会奥林匹克运动会奥林匹克运动会……【解析】要知道第50组是哪两个数,我们首先要弄清楚第一行和第二行的第50个字分别应该是什么.第一行“新北京新奥运”是6个字一个周期,5068÷=…2,第50个字就是北.再看第二行“奥林匹克运动会”是7个字一个周期,5077÷=…1,第50个字就是奥.把第一行和第二行合在一起,第50组就是“北奥”.二、数列中的周期问题【例 5】小和尚在地上写了一列数:7,0,2,5,3,7,0,2,5,3…你知道他写的第81个数是多少吗?你能求出这81个数相加的和是多少吗?【解析】⑴从排列上可以看出这组数按7,0,2,5,3依次重复排列,那么每个周期就有5个数.81个数则是16个周期还多1个,第1个数是7,所以第81个数是7,÷= (1)81516⑵每个周期各个数之和是:7025317++++=.再用每个周期各数之和乘以周期次数再加上余下的各数,即可得到答案.17167279⨯+=,所以,这81个数相加的和是279.【巩固】 根据下面一组数列的规律求出51是第几个数?1、2、3、4、6、7、8、9、11、12、13、14、16、17……【解析】 观察题目可知数列个位数字每九个数一组,十位数字依次增加,0~4共五个数,则可列式为:5×9+1=46,即51为第46个数。

四年级奥数周期问题二(数列中的周期问题)

四年级奥数周期问题二(数列中的周期问题)

教学主题:周期问题二(数列中的周期问题)教学重难点:正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;要确定解题的突破口,解决实际问题。

教学过程:1.导入问题导入例如:1,2,1,2,1,2,…那么第18个数是多少?2.呈现例1.小和尚在地上写了一列数:7,0,2,5,3,7,0,2,5,3…你知道他写的第81个数是多少吗?你能求出这81个数相加的和是多少吗?解析:⑴从排列上可以看出这组数按7,0,2,5,3依次重复排列,那么每个周期就有5个数.81个数则是16个周期还多1个,第1个数是7,所以第81个数是7,81516÷= (1)⑵每个周期各个数之和是:7025317++++=.再用每个周期各数之和乘以周期次数再加上余下的各数,即可得到答案.17167279⨯+=,所以,这81个数相加的和是279.例2.⑴44⨯⨯……4⨯(25个4),积的个位数是几?⑵24个2相乘,积末位数字是几?解析:⑴按照乘数的个数,积的末位数字的规律是:4,6,4,6,4,6,……,奇数个4相乘得数的末位数字是4,偶数个4相乘得数的末位数是6,所以25212÷=…1,25个4相乘,积的末位数字是4.⑵按照乘数的个数,末位数字的规律是2,4,8,6,2,4,8,6,……,4个一组2446÷=,所以24个2相乘,积末位数字是6.例3.12个同学围成一圈做传手绢的游戏,如图.⑴从1号同学开始,顺时针传l00次,手绢应在谁手中?⑵从1号同学开始,逆时针传l00次,手绢又在谁手中?⑶从1号同学开始,先顺时针传l56次,然后从那个同学开始逆时针传143次,再顺时针传107次,最后手绢在谁手中?121110987654 3 21解析:⑴因为一圈有l2个同学,所以传一圈还回到原来同学手中,现在,从1号开始,顺时针传l00次,我们先用除法求传了几圈、还余几次.100128÷=(圈)……4(次)从1号同学顺时针传4次正好传到5号同学手中.⑵与第一小题的道理一样,先做除法.100128÷=(圈)……4(次)这4次是逆时针传,正好传到9号同学手中(如图).⑶先顺时针传156次,然后逆时针传l43次,相当于顺时针传15614313-=(次);再顺时针传l07次,与13次合并,相当于顺时针传13107120+=(次),1201210÷=(圈),手绢又回到l号同学手中.1211 10987654 3 21例4.甲、乙两人对一根3米长的木棍涂色。

四年级奥数星期类型的周期问题类型全带知识点

四年级奥数星期类型的周期问题类型全带知识点

【例1】有一列数,按5、6、2、4、5、6、2、4…的顺序排列。

(1)第129个数是多少?(2)这129个数相加的和是多少?
1.有一串数,按照4、3、2、9、1、4、3、2、9、1、4、3、2、9、1…的顺序排列,第125个数是多少?这125个数的和是多少?
2.有一串数,按照8、9、2、8、6、8、9、2、8、6…的顺序排列,第304个数是几?前304个数中“8”出现了几次?
【例2】5月4日是星期一,再过19天是星期几?
1.6月2日是星期三,再过21天是星期几?
2.4月9日是星期六,再过15天是星期几?
【例3】1991年元旦是星期二,该月的22日是星期几?1.2016年2月1日是星期一,该月的27日是星期几?
2.2017年的3月5日是星期曰,该月的植树节是星期几?
【例4】今天是11月19日星期四,12月5日是小华的生日,12月5日这一天是星期几?
1.2015年7月25日是星期六,9月13日是星期几?
2.2012年的元旦是星期日,2012年的国庆节是星期几?
【例5】2015年6月5日是星期五,2017年7月1日是星期几?
1.1991年元旦是星期二,1993年的元旦是星期几?
2.2015年元旦是星期四,2018年3月2日是星期几?
课堂总结
(1)解一般周期问题的步骤∶
①找周期②算除法③看余数
(2)日期中的周期问题,求出总天数是关键。

(3)同月的日期计算总天数,算头时∶总天数=尾-头+1 (4)跨月的日期算总天数
(5)跨年的日期算总天数
注意∶一定要判断2月所在年是平年还是间年。

奥数四年级—周期问题(一)

奥数四年级—周期问题(一)

例1、有同样大小的红色、蓝色、黑色圆形纸片共200张,按先4张红的,再5张蓝的,再3张黑的顺序排列。 第168张是什么颜色?
规律:4红-5蓝-3黑-4红-5蓝-3黑... 4-5-3,4-5-3...因此这题的周期为 4+5+3=12
解:4+5+3=12 168÷12=14 (正好有14个周期)
答:第168张是黑色的。
例3、有一列数:5,6,2,4,5,6,2,4... 问:(1)第130个数是多少?
(2)前130个数相加的和是多少?
规律:这组数是5,6,2,4 四个数为一个循环排列的,则一个周期就是4个数。
130里包含有32个周期还余2,所以第130个数是6。
解:130÷4=32......2, 第130个数是6; (5+6+2+4)×32+5+6=555
答:红旗有80面,黄旗有40面,蓝旗有60面。
例5
我们 爱 数


们爱 数
学 ...
AB
C
D
A
B
C
D
A
B ...
上表中,将每列上下的字和字母组成一组,例如, 第一组为(我,A),第二组为(们,B),则第136组是什么?
特征:这道题中上下两行的周期不一样! 上面是5个字一个周期,下面是4个字母一个周期。
怎么办?分别找出第136个是什么?
解:136÷5=27...1 (我) 136÷4=34 (D)
答:第136组是(我,D)。
小结
解周期问题的关键是发现规律,找出周期。找规律时一定要仔细观察,认真比较,也可以用列表的方 法帮助发现规律。确定周期后,再用总量除以周期, 如果正好有整数个周期,结果为周期里的最后一个; 如果有余数,那就是下个周期里的第几个。

小学四年级奥数(周期问题)

小学四年级奥数(周期问题)

小学四年级奥数(周期问题)小学四年级奥数第8讲周期问题知识方法:我们在日常生活和研究中会发现很多现象都是按照一定规律不断重复出现的,这种现象叫周期现象。

周期是指重复出现一次的时间或个数。

在研究这些周期问题时,我们需要仔细审题,找出循环一次的个数和规律。

如果有整数个周期,结果为周期里的最后一个;如果不是从第一个开始循环,可以用除法算式求出余数,最后根据余数的大小得出正确的结果。

重点点拨:例1:所有自然数排列起来,49应该排在第几个循环及哪个字母下面?分析与解:这些自然数是按从小到大5个数一个循环,我们可以根据这些数除以5所得的余数来判断。

49÷5=9…4,因此49应该排在第10个循环第4个字母D下面。

例2:用1,2,3,4这四张卡片可以组成不同的四位数,第20个是多少?分析与解:每个数字在千位上都出现6次,一共可以组成24个不同的四位数,以6次为一周期。

20÷6=3……2,应是第四周期中的第2个数,千位上是4的数从小到大是4123,4132,4213等,所以第20个数是4132.例3:一个11位数,每三个相邻的数字之和都是24,求每一位数上的数字分别是多少?分析与解:我们把从左边算起的第一数记做a1(a1=8),依次编号为a1,a2,……a11.每三个相邻数字和都是24可知,a1+a2+a3=a2+a+a4=a+a1+a3=24.因为a1=8,所以a2+a3=16,而a2+a3+a1=24,所以a4=8,同理a7=8,a10=8,由此可见这个数字的周期是3.因为a11=9,所以a9=7,由此可知这列数是以8,9,7这三个数字为循环周期的,因此这个11位数是xxxxxxxx.例4:有一列数6,5,4,2,6,5,4,2,……(1)第130个数是多少?(2)这130个数相加的和是多少?分析与解:这列数是以4,2,6,5为循环周期的,因此第130个数是5.这130个数可以分成若干个周期,每个周期的和为4+2+6+5=17,共有32个完整周期,剩下的2个数分别是6和5,因此这130个数相加的和为17×32+6+5=549.6.这是一个满足每三个相邻数字之和为18的11位数。

四年级奥数专题 周期性问题(学生版)

四年级奥数专题 周期性问题(学生版)

周期性问题学生姓名授课日期教师姓名授课时长知识定位本讲是小升初的热点内容。

通过本讲的学习,主要是锻炼学生观察和总结的能力。

要求学生能够发现问题的周期,并且能够确定周期。

本讲除了讲解一般排序的周期问题外,还将讲解数表、末尾数字和圆周上的周期问题。

在学习这部分内容时应当注意:数字或图形或事物是从什么位置开始循环的,能够确定周期。

并且会处理余数问题,能够准确的根据余数确定问题中的事物所在的位置。

重点难点:1.找准变化的规律2.确定解题的突破口知识梳理【授课批注】在给学生讲解周期性问题时,要结合具体的事例(比如星期问题),让学生更深刻的理解周期性问题,并带领学生总结出最后的余数如何处理才能正确的解决问题。

【授课批注】在给学生讲解周期性问题时,要结合具体的事例(比如星期问题),让学生更深刻的理解周期性问题,并带领学生总结出最后的余数如何处理才能正确的解决问题。

一、周期问题的一般定义和解题思路周期问题的定义:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.阳历中有闰日的年份叫闰年,相反就是平年,平年为365天,闰年为366天. 在公历纪年中,平年的二月为28天,闰年的二月为29天. 闰年的2月29日为闰日.一般的,能被4整除的年份是闰年,不能被4整除的年份是平年.如:1988年2008年是闰年;2005年2006年2007年是平年.但是如果是世纪年(也就是整百年),就只有能被400整除才是闰年,否则就是平年.如:2000年就是闰年,1900年就是平年.解题思路:周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

二、竞赛考点:同余知识的应用 例题精讲【试题来源】【题目】今天是星期_________ ;那么80天后是星期______________ 。

四年级奥数知识讲解-周期问题汇编

四年级奥数知识讲解-周期问题汇编

★小学四年级奥数专题讲解之“周期问题”杨启令专题简析:在日常生活中,有一些按照一定的规律不断重复出现。

如:人的12生肖,一年有春夏秋冬四个季节,一个星期有七天等等。

像这些问题,我们称为“简单周期问题”。

这一类问题一般要利用余数的知识来解答。

所以这就要求我们对题目要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果。

例题1:2001年10月1日是星期一,问10月25日是星期几?分析:我们知道,每个星期有7天,也就是说以7天为一个周期不断地重复。

那么从10月1日到10月25日经过了25—1=24(天)。

因此用除法算式解答。

解:(1)、从10月1日到10月25日有:25—1=24(天)(2)、24天里有多少个星期余多少天?24÷7=3(个星期)……3(天)(说明24天中包含3个星期还多3天,最后一天起,再过3天就应是星期四)答:10月25日是星期四。

练习题:1、2001年5月3日是星期四,问5月20日是星期几?2、2008年8月1日是星期三,问8月28日是星期几?3、2001年6月1日是星期五,问9月1日是星期几?例题2:100个3相乘,积的个位数字是几?分析:我们只需考虑积的个位数的排列规律就可以了。

解:(1)、1×3=3……1个3相乘积的个位数字是:3(2)、3×3=9……2个3相乘积的个位数字是:9(3)、3×3×3=27……3个3相乘积的个位数字是:7(4)、3×3×3×3=81……4个3相乘积的个位数字是:1(5)、3×3×3×3×3=243……5个3相乘积的个位数字是:3(已经重复出现)(说明:可以发现积的个位数分别以3、9、7、1不断出重复出现的。

即每4个3的积的个位数为一个周期。

)所以100个有多少个周期?100÷4=25(个)(整除说明是最后一个即个位为1)答:积的个位数字是1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★小学四年级奥数专题讲解之“周期问题”
杨启令
专题简析:在日常生活中,有一些按照一定的规律不断重复出现。

如:人的12生肖,一
年有春夏秋冬四个季节,一个星期有七天等等。

像这些问题,我们称为“简单周期问题”。

这一类问题一般要利用余数的知识来解答。

所以这就要求我们对题目要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果。

例题1 : 2001年10月1日是星期一,问10月25日是星期几?
分析:我们知道,每个星期有7天,也就是说以7天为一个周期不断地重复。

那么从10月1日到10月25日经过了25—仁24 (天)。

因此用除法算式解答。

解:(1)、从10月1日到10月25日有:25—仁24 (天)
(2)、24天里有多少个星期余多少天?24 - 7=3 (个星期)……3 (天)
(说明24天中包含3个星期还多3天,最后一天起,再过3天就应是星期四)答:10月25日是星期四。

练习题:
1、2001年5月3日是星期四,问5月20日是星期几?
2、2008年8月1日是星期三,问8月28日是星期几?
3、2001年6月1日是星期五,问9月1日是星期几?
例题2:100个3相乘,积的个位数字是几?分析:我们只需考虑积的个位数的排列规律就可以了。

解: (1 )、1X 3=3……1个3相乘积的个位数字是:3
(2)、3X 3=9……2个3相乘积的个位数字是:9
(3)、3X 3X 3=27……3个3相乘积的个位数字是:7
(4)、3X 3X 3X 3=81……4个3相乘积的个位数字是:1
(5)、3X 3X 3X 3X 3=243…… 5个3相乘积的个位数字是:3 (已经重复出现)
(说明:可以发现积的个位数分别以3、9、7、1不断出重复出现的。

即每4个3的积的个
位数为一个周期。


所以100个有多少个周期?100十4=25 (个)(整除说明是最后一个即个位为1)
答:积的个位数字是1。

练习题:
1、23个3相乘,积的个位数字是几?答:______________________________ 。

2、100个2相乘,积的个位数字是几?答:______________________________ 。

3、50个7相乘,积的个位数字是几?答:______________________________ 。

例题3:
组是什么?分析:观察上表,发现有两个独立的排列规律。

上面一组是以“A、B、C”三个字母为
个周期重复出现的,下一组是以“万、事、如、意”四个字为一个周期重复出现的。

要求出第20个组是什么,就要分别求出上下两行各是什么才行。

解:(1 )、上面一组:20+ 3=6 (组)……2 (个)(说明第20个字母是:“B”)(2)、下面一组:20 + 4=5(组)(说明第20个字是:“意”)答:第20个组是“ B意”两个符号。

练习题:1、
么?
2、有同样大小的红、白、黑球共120个,按先3个红的,后2个白的,再1个黑的排列, 问(1)、白球一共有多少个?(2、、第68个球是什么颜色球?
例题4:有一列数按“ 432791864327918643279186……”排列。

那么前54个数字之和是多少?
分析:观察发现,重复出现的部分是“43279186”,周期数是8。

要求出这列数字的和,就
要求出这一列数里共有多少组“43279186”,再求出这组的和。

解:(1 )、54 + 8=6 (组)……6 (个)
(2)、4+3+2+7+9+1+8+6=40 (3)、6X 40=240
(4)、余下的6个数的和为:4+3+2+7+9+仁26
(5)、240+26=266
答:前54个数字之和是266。

练习题:
1、有一列数按“ 294736294736294……”排列。

那么前40个数字之和是多少?
2、有一列数按“ 9453672945367294 排列。

那么前50个数字之和是多少?
例题5:小红买了一本童话书,每两页文字之间有 3 页插图,也就是说 3 页插图前后各有1
页文字,如果这本书有128 页,而第 1 页是文字,这本书共有插图多少页?分析:已知这本书3页插图前后各有 1 页文字,也就是说这本书是按“ 1页文字 3 页插图” 的规律重复排列的,把“ 1 页文字3页插图”看做一周期。

128 页中含有:
128+( 1+3) =32 (个)周期。

所以这本书共有插图: 3 X 32=96 (页)
解:(1 )、128+( 1+3) =32 (个) (2)、3 X 32=96 (页)
答:这本书共有插图96 页。

练习题:
1 、校门口摆了一排花,每两盆菊花之间摆3 盆月季花。

一共摆了11
2 盆花,如果第一盆花是菊花,那么共摆了多少盆月季花?
2、同学们做早操,36 个同学排成一列,每两个女生中间是两个男生,第一个是女生,这列队伍中男生有多少人?
3、一个圆形花坛周围长30米,沿周围每隔3米插一面红旗,每两面红旗中间插两面黄旗,
花坛周围共插了多少面黄旗?。

相关文档
最新文档