大学物理(热力学部分)
大学物理第8章:热力学基础
说明:A. 准静态过程为理想过程
弛豫时间 ( ):系统的平衡态被 破坏后再恢复到新的平衡态所需 要的时间。
气缸
B.一个热力学过程为准静态过程的必要条件为过程 所经历的时间大于驰豫时间 t 如:若气缸缸长 L 101 (m ),则 103 ~ 104 ( s ) 若活塞以每秒几十次的频率运动时, 每移动一次经 1 tt 时 t 10 ( s ) ,则满足 , C.准静态过程可以用宏观参量图给予表示
讨论: (1) n=0, 等压过程,Cp=CV+R ,过程方程: T/V=C4; (2) n=1, 等温过程,CT = , 过程方程: pV=C5; (3) n= , 等体过程, CV =iR/2 , 过程方程: p/T=C6; (4) n= , 绝热过程,CQ=0, 过程方程:
pV C1 , TV
RdT
由 pV=RT 于是得
C CV
pdV
pdV+Vdp=RdT
R pdV (1 ) Vdp 0 C CV dp R dV (1 ) 0 p C CV V
令
R 1 n —多方指数 C C V
21
dp dV n 0 p V
完成积分就得多方过程的过程方程:
V1
V2
i ( p2V2 p1V1 ) 2
只与始末状态有关
M i RT 2
( if
c const )
Q cM (T2 T1 )
与过程有关
特点
与过程有关
对微小过程:dQ=dE + dA
M i dQ RdT pdV 2
14
例题 8-2 如图所示,一定量气体经过程abc吸热 700J,问:经历过程abcda吸热是多少? 解 Q= E2-E1 + A i 过程abc : 700= Ec -Ea+ Aabc= ( pcVc paVa ) Aabc
大学物理第十三章(热力学基础)部分习题及答案
第十三章热力学基础一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;4、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
5、什么是熵增加原理?答:一切不可逆绝热过程中的熵总是增加的,可逆绝热过程中的熵是不变的。
把这两种情况合并在一起就得到一个利用熵来判别过程是可逆还是不可逆的判据——熵增加原理。
6、什么是卡诺循环? 简述卡诺定理?答案:卡诺循环有4个准静态过程组成,其中两个是等温线,两个是绝热线。
卡诺提出在稳度为T1的热源和稳度为T2的热源之间工作的机器,遵守两条一下结论:(1)在相同的高温热源和低温热源之间工作的任意工作物质的可逆机,都具有相同的效率。
(2)工作在相同的高温热源和低温热源之间的一切不可逆机的效率都不可能大于可逆机的效率。
7、可逆过程必须同时满足哪些条件?答:系统的状态变化是无限缓慢进行的准静态过程,而且在过程进行中没有能量耗散效应。
二、选择题1、对于理想气体的内能,下列说法中正确的是( B ):( A ) 理想气体的内能可以直接测量的。
(B) 理想气体处于一定的状态,就有一定的内能。
大学物理《热力学基础》
热力学第二定律的实验验证
卡诺循环实验
通过比较可逆卡诺循环和不可逆卡诺循环的效率, 证明了热力学第二定律的正确性。
焦耳实验
通测量热量和功之间的转换关系,证明了热力 学第二定律的正确性。
热辐射实验
通过测量不同温度下物体的辐射能,证明了熵增 加原理的正确性。
05 热力学的应用
热机效率的提高
热机效率的概念
热力学第二定律定义
熵增原理
热力学第二定律的本质
不可能把热从低温物体传到高温物体而不产 生其他影响;不可能从单一热源取热使之完 全转换为有用的功而不产生其他影响;不可 逆热力过程中熵的微增量总是大于零。
在封闭系统中,自发过程总是向着熵 增加的方向进行,即熵增加原理。
揭示了热量传递和做功过程的不可逆 性,是能量耗散和转化过程的宏观规 律。
通过学习热力学基础,学生可以了解热现象的本质和规律,掌握热力学的 分析方法,为后续的物理学习和实际应用打下基础。
热力学的重要性
热力学在能源、化工、材料 、环保等领域有广泛应用, 是解决实际问题的重要工具
。
热力学的基本原理和方法对 于理解其他物理分支(如电 磁学、光学)以及交叉学科 (如生物物理、地球物理)
热力学第二定律的应用
空调制冷原理
利用制冷剂在蒸发器中吸热蒸发而降低温度,再通过冷凝器放出热 量,使室内温度降低。
汽车发动机效率
汽车发动机效率不可能达到100%,因为发动机工作时会产生热量 损失,这些热量无法完全转化为机械功。
热机效率
热机效率不可能达到100%,因为燃料燃烧产生的热量不可能完全转 化为机械功,其中一部分热量会以热量的形式散失到环境中。
THANKS FOR WATCHING
大学物理~热力学基础
气体的内能
E i RT
2
(内能是态函数!)
气体的内能的增量
E i RT
2
二. 功
热量
P
S
dl
(1)功
计算系统在准静态膨胀过程中所作的功: dW F dl P S dl PdV
当活塞移动一段有限距离时
压强作功
W V2 P dV V1
V2
W PdV
热机发展简介
1698年萨维利和1705年纽可门先后发 明了蒸气机 ,当时蒸气机的效率极低 . 1765年瓦特进行了重大改进 ,大大提高了 效率 . 人们一直在为提高热机的效率而努 力,从理论上研究热机效率问题, 一方面 指明了提高效率的方向, 另一方面也推动 了热学理论的发展 .
各种热机的效率
大型柴油机效率
通过外界对系统作功的方法,提高系统的温 度,当系统的温度高于外界时,系统将当初所 吸的热量及由外界作功所转变的内能全部交还 给外界,系统恢复了原状。
外界呢?总能量没减少,但原来付出的机械能 变成了热能,外界没有恢复原状。所以
结论
热量从高温物体传到低温物 体的过程是不可逆的!
(3)气体的自由膨胀过程
dQ dE CV ( dT )V (dT )V
∵
1mol理想气体dE=
i 2
RdT
∴
Cv
=
i 2
R
(i为分子自由度)
所以,理想气体内能表达式又可写成
E CvT
2.定压摩尔热容量(Cp):
1mol气体在定压过程中吸收热量dQ与温度的变化dT之比
Cp
dQ ( dT )p
dE+PdV ( dT )p
大学热学物理知识点总结
大学热学物理知识点总结1.热力学基本定律热力学基本定律是热学物理的基础,它包括三个基本定律,分别是热力学第一定律、热力学第二定律和热力学第三定律。
(1)热力学第一定律热力学第一定律是能量守恒定律的热学表述,它规定了热力学系统能量的守恒性质。
简单地说,热力学第一定律表明了热力学系统能量的增减只与系统对外界做功和与外界热交换有关。
热力学第一定律的数学表达式为ΔU=Q-W,其中ΔU表示系统内能的增量,Q表示系统吸热的大小,W表示系统对外界所作的功。
由此可以看出,系统的内能变化量等于吸收热量减去做的功。
(2)热力学第二定律热力学第二定律是热力学系统不可逆性的表述,它规定了热力学系统内部的熵增原理,即系统的熵不会减小,而只会增加或保持不变。
简单地说,热力学第二定律表明了热力学系统内部的任何一种热力学过程都是不可逆的。
这意味着热力学系统永远无法使热量全部转化为功,总会有一部分热量被转化为无效热。
热力学第二定律还表明了热力学过程的方向性,即热量只能从高温物体传递到低温物体,而不能反向传递。
(3)热力学第三定律热力学第三定律规定了当温度趋于绝对零度时,任何物质的熵都将趋于一个有限值,这个有限值通常被定义为零。
简单地说,热力学第三定律表明了在绝对零度时,任何系统的熵都将趋于零。
热力学第三定律的提出对于热学物理的研究具有非常重要的意义,它为我们理解热学系统的性质提供了重要的基础。
2.热力学过程热力学过程是指热力学系统内部发生的一系列变化,包括各种状态参数的变化和热力学系统对外界的能量交换。
常见的热力学过程有等温过程、绝热过程、等容过程和等压过程等。
这些过程在日常生活以及工业生产中都有着广泛的应用。
(1)等温过程等温过程是指在恒定温度下进行的热力学过程。
在等温过程中,系统对外界做的功和吸收的热量之比是一个常数。
这意味着等温过程的压强和体积成反比,在P-V图上表现为一条双曲线。
常见的等温过程有等温膨胀和等温压缩等。
(2)绝热过程绝热过程是指在无热交换的情况下进行的热力学过程。
大学物理-热力学
存在温差而发生的能量传递 .
功与热量的异同 1)过程量:与过程有关;
T1 T2
T1 Q T2
2)等效性:改变系统热运动状态作用相同;
1卡 = 4.18 J , 1 J = 0.24 卡
3)功与热量的物理本质不同 .
功
宏观运动
分子热运动
热量
分子热运动
分子热运动
五、 内 能 (状态量)
物体内分子做无规运动的动能和势能的总和叫做 物体的内能。内能由系统的状态唯一地决定。内能的 改变量只由初末状态决定,和变化的具体过程无关。
p
A*
1
p
A*
1
2 *B
o
V
2 *B
o
V
理想气体内能 : 表征系统状态的单值函数 ,
理想气体 的内能仅是温度的函数 U U (T )
永 动 机 的 设 想 图
第一类永动机试图在不获 取能源的前提下使体系持续 地向外界输出能量。历史上 最著名的第一类永动机是法 国人亨内考在十三世纪提出 的“魔轮”,十五世纪,著 名学者达芬奇也曾经设计了 一个相同原理的类似装置, 1667年曾有人将达芬奇的设 计付诸实践,制造了一部直 径5米的庞大机械,但是这些 装置经过试验均以失败告终。
Cp,m CV ,m R
CV ,m
CV ,m
CV ,m
R 1
R
1
W 1 (T1 T2 ) 1 ( p1V1 p2V2 )
绝热过程方程的推导
dQ 0, dW dU pdV vCV ,mdT
pV vRT
pdV Vdp R pdV CV ,m
整理得
dp dV 0
pV
p
p2
2 T2
大学物理(热学知识点总结)
热力发电
利用高温热源和低温热源 之间的温差,通过热力循 环将热能转化为机械能, 再转化为电能。
04
热传递原理
导热、对流和辐射的原理
01 02
导热原理
导热是物质内部微观粒子(如分子、原子等)相互碰撞,将能量从高温 处传到低温处的现象。导热速率与物质的导热系数、温度梯度以及热流 路径的长度有关。
对流原理
热学的发展历程
古代对热现象的认识
01
人类很早就开始对热现象进行观察和利用,如火的使用、烧制
陶器等。
近代热学的形成
02
随着工业革命和科学技术的发展,热学逐渐形成一门独立的学
科,开始有越来越多的学者对热现象进行研究。
现代热学的应用
03
热学在能源利用、环境保护、航天航空等领域得到广泛应用,
成为推动人类社会发展的重要力量。
大学物理(热学知识点总 结)
• 热学概述 • 热力学第一定律 • 热力学第二定律 • 热传递原理 • 热力学与日常生活
01
热学概述
热学的定义与重要性
定义
热学是一门研究热现象的学科,主要 探讨热量传递、热力学过程和热力学 定律等方面的内容。
重要性
热学是物理学的重要分支之一,与日 常生活、工程技术和科学研究密切相 关,对于理解物质的基本性质和变化 规律具有重要意义。
证明
热力学第一定律也可以通过实验来证明。例如,通过测量封闭系统中热量转移和相应体积变化等实验数据,可以 验证热力学第一定律。
定律的应用实例
实例1
在汽车发动机中,燃料燃烧产生的热量转化为机械能,驱动汽车行驶。这正是 热力学第一定律的应用,即能量从一种形式(化学能)转化为另一种形式(机 械能)。
大学物理热力学基础
2.过程方程:
V T
=
const.
P
等压膨胀
1
2
3.过程曲线:
o V1
V2
V
2
4.能量转换关系: W = 1 P dV = P(V2 - V1)
Q PC P(T 2T 1) EC V(T 2T 1)
吸热一部分用于对外做功,其余用于增加系统内能。
14
实用文档
上页 下页 返回 退出
三.等温过程(isothermal process) P
1
1.特点: T = const.
等温膨胀
2.过程方程: P V = const.
2
3.过程曲线:
o V1
V2 V
4.能量转换关系: E = 0
Q= W
2
W = 1 P dV =
RT
2
1
dV V
W
RTl nV( 2 ) V1
P1V1
ln(V2 V1
)
P1V1
ln(P1 P2
)
系统吸热全部用来对外做功。
=
CP CV
=
i +2 i
>1
对单原子分子, i = 3, = 1.67 对双原子分子, i = 5, = 1.40 对多原子分子, i = 6, = 1.33 (以上均为刚性理想气体分子)
12
实用文档
上页 下页 返回 退出
§7.3 热力学第一定律对理想气体等值过程的应用
一.等容过程(isochoric process)
所以循环过程的效率为:
1Q2 17p2(V1V2)
Q1
5V`1(p1p2)
29
实用文档
上页 下页 返回 退出
大学物理(热学部分)练习题2021
练习一(热学)姓名 学号 班级1.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度。
(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义。
(3) 温度的高低反映物质内部分子热运动剧烈程度的不同。
(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中,正确的是:(A) (1)、(2)、(4)。
(B) (1)、(2)、(3)。
(C) (2)、(3)、(4)。
(D) (1)、(3)、(4)。
[ ]2.一瓶氦气和一瓶氮气密度相同(He N ρρ=2),分子平均平动动能相同(kHe kN εε=2),而且它们都处于平衡状态,则它们:(A) 温度相同,压强相同。
(B) 温度、压强都不同。
(C) 温度相同,但氦气的压强大于氮气的压强。
(D) 温度相同,但氮气的压强大于氦气的压强。
[ ]3.若室内升起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了:(A) 0.5%。
(B) 4%。
(C) 9%。
(D) 21%。
[ ]4.一定质量的理想气体储存于某一容器中,温度为T ,气体分子质量为m ,根据理想气体分子模型和统计假设,分子速度在X 方向的分量的下列平均值为: =x v ;=2x v 。
5.容器中储有1mol 的氮气,压强为1.33Pa ,温度为7℃,试求(1) 1m 3氮气的分子数; (2) 容器中氮气的密度;(3) 1m 3中氮气分子的总平动动能。
6.容器内有M =2.66kg 氧气,已知其气体分子的平动动能总和是E k =4.14×105J ,求: (1) 气体分子的平均平动动能; (2) 气体温度。
(阿伏伽德罗常量N A =6.02×1023/mol ,波尔兹曼常量k =1.38×10-23J•K -1)练习二(热学)姓名 学号 班级1.三个容器A 、B 、C 中装有同种理想气体,其分子密度n 相同,而方均根速率之比为4:2:1::222 C B A v v v ,则气体的压强之比P A :P B :P C 为: (A) 1:2:4。
大学物理 热力学基础详解
§ 3 气体的摩尔热容量
热容量:
(简称热容) 表示升高1K所吸收的热量
dQ C dT
(JK-1)
摩尔热容Cm :当物质的量为1 mol 时的热容。 单位: (Jmol -1 K-1) 比热C比:当物质的量为 1 kg 时的热容。
C MC比
M C Cm M mol
单位: (J kg-1 K-1 )
(1)
理想气体状态方程 对其微分得:
M RdT PdV VdP M mol
M PV RT M mol
(2)
联立(1)、(2),得:
M PV const 将 与 PV RT 联立得: M mol
dP dV 0 P V
-1
PV const. ( 3)
(4)
V
T=const .
√ (C) -700J
(D) 1000J
1
e
c b
思路: Ta =Tb
Vb Va Vb Va
0 1 4 Eab 0
Va
V(10-3m3)
Qab Aab PdV
Vd
Eacbda 0
Qacbda Aacbda PdV PdV 500 - 1200( J )
-
P
-1
T =const . ( 5 )
(3)、(4)、(5)式称为绝热方程 (或泊松公式)。
注意:式中的各常数不相同!!!
绝热线比等温线陡 (1)、等温:PV=const
0 (2)、绝热: PV const
PA dp A点的斜率: dV VA a
PA dp A点的斜率: VA dV T
i2 Q A 2
大学物理第三章热力学第一定律第四章热力学第二定律
A1 A绝热 Q1 0 A2 A绝热 Q2 0
放热 吸热
(B)对
38
补充作业(4692)如图所示,C是固定的绝热壁, D是可动活塞,C、D将容器分成A、B两部分。 开始时A、B两室中各装入同种类的理想气体, 它们的温度T、体积V、压强P均相同,并与大 气压强相平衡。现对A、B两部分气体缓慢地 加热,当对A和B给予相等的热量Q以后,A室 中气体的温度升高度数与B室中气体的温度升 高度数之比为7:5。求:
内能:态函数,系统每个状态都对应着一定内能的数值。 功、热量:只有在状态变化过程中才有意义,状态不
变,无功、热可言。
8
五、热力学第一定律
1. 数学表式
★ 积分形式 Q E A
★ 微分形式 dQ dE dA
9
2. 热力学第一定律的物理意义
(1)外界对系统所传递的热量 Q , 一部分用于 系统对外作功,一部分使系统内能增加。
(4)内能增量: dE 2i(R适dT用于任C何V d过T程!!)
E E2 E1 CV (T2 T1 )
等容过程
Q等容 E E2 E1 CV (T2 T1 )
A等容 0
CV
iR 2
14
2. 等压过程
(1)特征: P=恒量 ,dP=0, P
参量关系: V T 恒量 (2)热一律表式:
E EA EB
E A
3
2
RTA
3 2
RTA
5 EB 2 RTB
C是导热板,因此A、B两部分气体的温度
始终相同。即:TA TB T
T A 4R
5
5
EB 2 RT 8 A
36
例4(4313)一定量的理想气体,从P-V图 上初态a经历(1)或(2)过程到达末 态b,已知a、b两态处于同一条绝热线 上(图中虚线是绝热线),问两过程中 气体吸热还是放热? (A)(1)过程吸热 (2)过程放热 (B)(1)过程放热 (2)过程吸热
大学物理概论第4章-热力学student
dV
VA
等温方程: pV C2
Vdp pdV 0
A
等温
V
dp pA dV VA
结论:绝热线在A点的斜率大于等温线在A点的斜率。
例4 有8×10-3 kg氧气,体积为0.41×10-3 m3 ,温度
注意:功和热量都是过程 量,而内能是物态量,通 过做功或传递热量的过程 使系统的物态(内能)发 生变化。
热功当量:
1 cal = 4.186 J
焦耳用于测定热功当 量的实验装置。
4-2-2 热力学第一定律的数学描述
热力学第一定律: 包括热现象在内的能量守恒 定律。
Q (E2 E1) W
p4 p3 1atm
V4
V3 2
3.69 103 m3
T4
V4 V3
T3
450K
p/atm
3
2
1 V
V1 V4 V3
等体过程:
W1 0
Q1
E1
m M
5 2 R(T2
T1) 1248 J
等温过程: E2 0
Q2 W2
m M
RT2
ln
V3 V2
823 J
Q 表示系统吸收的热量,W 表示系统所做的功, E 表示系统内能的增量。
热力学第一定律微分式: dQ dE dW
符号规定:
1. 系统吸收热量Q为正,系统放热Q为负。 2. 系统对外做功W为正,外界对系统做功W为负。 3. 系统内能增加E为正,系统内能减少E为负。
第一类永动机: 不需要外界提供能量,但可以 连续不断地对外做功的机器。
不变,热量变为什么?氢的T,V各为多少?
大学物理(热学篇)
v1
v´1
x
A1 y °
z
1秒钟A1受到分子的总冲量
2mv x
vx 2x
mv
2 x
x
第三步 N个分子在1秒内对A1的碰撞
A1在1秒内受到的冲量——平均作用力F
F 2mv1x
v1 x 2x
2mv2x
v2x 2x
2mv Nx
vNx 2x
m x
(v12x
v22x
vN2 x )
m x
N
即在平衡态,一个自由度,代表一种独立的 运动和一份能量
如某种分子有t个平动自由度,r个转动自由度v振动 自由度,则分子具有:
平均平动动能 平均转动动能 平均振动动能
为什么均分到各自由度所对应的运动能量都 是二分之一KT呢? 主要是分子不断碰撞以达到平衡态的结果。
注意
1、 一般温度下(T <10 3 K)振
(1)每个分子作用于气壁的冲量I
解(1)每个分子作用于气壁的冲量等于气体 分子动量增量的负值
I 2mv 1.21024kgm/ s
(2)每秒钟碰在器壁单位面积上的分子数n0
解(2)器壁ΔA面积上在Δt时间内碰撞的分子数
N A vt n
z
6
n0
N At
nv 6
n0
1 6
nv
0.31028
/
m3
物体运动形式:平动、转动、振动
自由度数目 i t r v
平转振 动动动
例1 自由运动的质点 (三维空间) 3 个 平动自由度 记作 t = 3
若受到限制,自由度降低 平面上 : t=2 直线上 :t=1
例2 自由运动刚体 (如手榴弹)自由度。
大学物理 热力学基础详解
内能增量
双原子分子 ∴
i i E ( M / M ) R T A mal 2 2
1 J Q E A iA A 7 2
i 5
3、等温过程:(dT=0) 内能: E=0
M P M V 1 2 RT ln A PdV RT ln V M P 1 M V mol 2 m ol 1
理想极限:将砝码无限 细分,足够缓慢地取走 它们,在 PV 图上
可得一曲线。
P
1
2
V
砂子 活塞 气体
p
p1
p2
1 (p , V , T ) 1 1 1
, V , T ) 2 (p 2 2 2
o
V1
V2
V
这种进行得足够缓慢, 以至于连续经过的每一 个中间过程
近似地看成平衡态的过 程称为准静态过程。
对于准静态过程,系统所经历
(3)、(4)、(5)式称为绝热方程 (或泊松公式)。
注意:式中的各常数不相同!!!
绝热线比等温线陡 (1)、等温:PV=const
0 (2)、绝热: PV const
PA dp A点的斜率: dVa V A
PA dp A点的斜率: VA dV T
一、内能 E(焦耳J)
理想气体内能:
内能是状态参量
M i E RT Mmol 2
T 的单值函数。
p Ⅰ E
内能的增量 E = E - E 2 1
只取决于系统的始末状态, 而与过程无关。
E
Ⅱ V
系统内能改变的两种方式: 做功 热传递
1、 功是能量传递与转化的量度。 功是过程量而非态函数。两个平衡态之间可经历 不同的过程,系统所做的功不同。 2、热量是系统与外界存在温度差而传递的能量
大学物理竞赛辅导0061(热学部分)大学物理竞赛辅导0061(热学部分)
(四)能量按自由度均分定理 气体处于温度为T的平衡态时,分子任何一个自由
度的平均动能都相等,均为 1 kT
2
理想气体的内能:
所有分子动能与分子内原子间势能的总和
气体的内能:
所有分子相对质心参照系的动能与分子间相互作用 势能的总和
分子的平均 分子的平 分子平 平动动能 均动能 均能量
理想气体 的内能
M kT
3、如果理想气体的温度保持不变,当压强降为原来 的一半时,分子的碰撞频率为原值的( ),分子的平 均自由程程为原值的( )。
z
2d 2vn
p T
1/2
kT
2
2d 2 p
8、有一个边长为10cm的立方容器,内盛有标准状态下 的He气,则单位时间内原子碰撞一个器壁面的次数的 数量级为( )
例:
一个系统经历的过程是不可逆的,就是说,该系统不可能 再回到原来的状态。
(二)准静态过程
无限缓慢进行的过程,有一系列依次接替的平衡态组成 的过程,可以系统状态图上一条曲线表示---过程曲线
四个等值过程:
V C; p C T
P C;V C T
T C; PV C 绝热;PV C,TV 1 C, P 1T C
kT
2d 2 p
pnkT
1 V
2d 2n
12、在下列四种情况中,何种将一定能使理想气体分子 的平均碰撞频率增大?( )
A增大压强,提高温度; B增大压强,降低温度;C降低压 强,提高温度;D降低压强,保持温度不变
z 2d 2vn
v 1.60
RT M
,p
nkT
2d 21.60 RT p
v2 v vp
O
v vp v2
大学物理热力学基础知识点及试题带答案
热力学基础一、基本要求1. 理解功、热量及准静态过程的概念。
2. 掌握热力学第一定律,能分析计算理想气体等容、等压、等温过程和绝热过程中的功、热量、内能改变量;理解循环过程概念及卡诺循环的特征,并能计算效率和致冷系数。
3. 了解可逆过程、不可逆过程及卡诺定理。
4. 了解热力学第二定律及其统计意义。
二、主要内容1. 准静态过程:过程进行的每一时刻,系统的状态都无限接近平衡态。
准静态过程可以用状态图上的曲线表示。
2. 热力学第一定律(1) 热力学第一定律的数学表达式Q=E 2 - E 1 +W对微分过程为dQ=dE +d W热力学第一定律的实质是能量守恒与转换定律在热现象中的应用,其内容表示系统吸收的热量一部分转换为系统的内能,一部分对外做功。
(2) 准静态过程系统对外做功:d W=pd V ,W=⎰12V V pd V(3) 热量:系统和外界之间或两个物体之间由于温度不同而交换的热运动量,热量也是过程量。
一定摩尔的某种物质,在某一过程中吸收的热量,)(C m12m c,T T M Q -=(4) 摩尔热容:1mo1物质温度变化1K 所吸收或放出的热量,定义式为 dTQd m,=m c C 其中m 为1mo1 物质吸热。
摩尔定容热容:CV , m =摩尔定压热容:Cp, m =理想气体的摩尔热容:CV, m =,Cp, m =Cp, m =CV, m + 摩尔热容比:=3. 热力学第一定律对理想气体等值过程和绝热过程的应用,详见表1 表1 d =0 =恒量=恒量p =恒量mmmM m T1nMm T1nCV, m =Cp, m =4. 循环过程(1)循环过程的特征是E =0热循环:系统从高温热源吸热,对外做功,向低温热源放热,致效率为== 1—致冷循环:系统从低温热源吸热,接受外界做功,向高温热源放热,致冷系数为==(2)卡诺循环:系统只和两个恒温热源进行热交换的准静态循环过程。
卡诺热机的效率为= 1—卡诺致冷机的致冷系数为三、习题与解答1、 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.解 S ABCD =1/2(BC +AD)×CD 故 W =150 J2、 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3倍,求空气膨胀时所作的功. 解 根据物态方程11RT pV v =, 则作功为()J 1097.92231112⨯===-=RT pv V V p W v3、64g 氧气(可看成刚性双原子分子理想气体)的温度由0℃升至50℃,〔1〕保持体积不变;(2)保持压强不变。
大学物理热力学知识点汇总
大学物理热力学知识点汇总热力学是大学物理中的一个重要部分,它研究的是热现象的规律以及与热相关的能量转化和传递。
以下将对大学物理热力学中的关键知识点进行汇总。
一、热力学系统和热力学平衡态热力学系统是指研究的对象,它可以是一个气体、液体或固体,也可以是由多个物体组成的系统。
而热力学平衡态则是指系统的宏观性质在长时间内不随时间变化的状态。
这包括热平衡(系统各部分温度相等)、力学平衡(系统各部分压力相等)、化学平衡(系统内各化学组分的浓度不再变化)。
二、热力学第零定律如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,那么这两个热力学系统也必定处于热平衡。
这个定律为我们定义了温度的概念,使我们能够通过比较不同系统之间的热平衡来测量温度。
三、热力学第一定律也被称为能量守恒定律,它表明一个热力学系统内能的增量等于外界向它传递的热量与外界对它所做的功之和。
用公式表示为:ΔU = Q + W。
其中,ΔU 是系统内能的变化,Q 是系统吸收的热量,W 是系统对外界所做的功。
在这个定律中,需要注意功的正负。
当系统对外做功时,W 为负;外界对系统做功时,W 为正。
同样,当系统吸收热量时,Q 为正;系统放出热量时,Q 为负。
四、等容过程等容过程是指系统的体积保持不变。
在等容过程中,系统不做功(W = 0),内能的变化等于吸收或放出的热量,即ΔU = Q。
五、等压过程等压过程中系统的压力保持不变。
此时,系统所做的功为 W =pΔV,内能的变化和吸收的热量的关系为ΔU =Q pΔV 。
六、等温过程等温过程中系统的温度保持不变。
在理想气体的等温过程中,内能不变(ΔU =0),系统吸收的热量等于对外界所做的功,即Q =W 。
七、绝热过程绝热过程是指系统与外界没有热量交换(Q =0)。
在绝热过程中,系统做功导致内能变化,即 W =ΔU 。
八、热力学第二定律它有多种表述方式,常见的有克劳修斯表述(热量不能自发地从低温物体传到高温物体)和开尔文表述(不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响)。
大学物理单元习题及答案(热学部分)
单元习题热学模块一、 判断题: 1、 只有处于平衡状态的系统才可用状态参数来表述。
( √ ) 2、温度是标志分子热运动激烈程度的物理量,所以某个分子运动越快,说明该分子温度越高。
( × ) 3、某理想气体系统内分子的自由度为i ,当该系统处于平衡态时,每个分子的能量都等于kT i2。
( × )4、单原子分子的自由度为3,刚性双原子分子的自由度为5,刚性多原子分子的自由度为6。
( √ ) 5、 理想气体物态方程nkT p =中,n 代表物质的量。
( × ) 6、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们的温度、压强都相同。
( √ ) 7、两种理想气体温度相等,则分子的平均平动动能不一定相等。
( × ) 8、 对给定理想气体,其内能只是温度的函数。
( √ ) 9、热力学第一定律是能量转换和守恒定律,所以凡是满足热力学第一定律的热力学过程都能够实现。
( × ) 10、 可逆过程一定是准静态过程,反之亦然。
( × )11、 热力循环过程中只要给出高温热源的温度和低温热源的温度,都可以用公式121T T -=η来计算热机效率。
( × )12、 循环输出净功越大,则热效率越高。
( × ) 13、 可逆循环的热效率都相等。
( × )14、 不可逆循环的热效率一定小于可逆循环的热效率。
( × ) 15、 从增加内能的角度来说,作功和热传递是等效的,在本质上无差别。
( × )16、 不可逆过程是不能回到初态的热力过程。
( × ) 17、 热机的循环效率不可能大于1。
( √ ) 18、 气体膨胀一定对外做功。
( × ) 二、 计算题1、 一容器内储有氧气,其压强为atm p 0.1=,温度为27℃。
求:(1)分子数密度; (2)氧分子质量; (3)氧气密度;(4)分子的平均平动动能; (5)分子间的平均距离。
大学物理D-04热力学基础
第4章 热力学基础 4.1热力学第一定律 4.2 热力学第一定律在典型理想等值 过程中的应用 4.3 热力学第二定律 4.4 熵
1
大学物理
结构框图
理想气体 物态方程 热力学系统 内能变化的 两种量度
热力学基础
等值过程 应用 热力学 第一定律 (理想气体) 热力学 第二定律 (对热机效 率的研究) 绝热过程 循环过程
V2
= pdV
V1
V2
dW 只表示微量功,不是数学上的全微分;
它的积分不仅与始末状态有关, 还与经历什么过程有关。
20
大学物理
注意: 功是过程量,
Example 功
W = pdV
V1
V2
例1. 摩尔理想气体从状态1状态2,设经历等温过程。 求气体对外所作的功是多少?
【解】
W = pdV = RT / V dV
6
大学物理
根据系统与外界的关系,系统可分为孤立、封闭 和开放系统。
封闭系统 孤立系统
Dm = 0, Q 0
热力学系统
开放系统
Dm = 0, Q = 0 Dm Q
物质 能量
Dm 0, Q 0
外界
7
大学物理
孤立系统:既不与外界交换能量,也不交换物 质的系统。
8
大学物理
封闭系统:与环境没有质量交换,但又能量交 换大系统。
( T )过程~0.1秒
~L/v = 0.1米/100(米/秒) = 0.001秒 ﹤﹤ ( T )过程---------准静态过程的条件
13
大学物理
3.准静态过程可以用 P-V 图上的一条曲线 (过程曲线)来表示。
图4-3用曲线表示准静态过程
《大学物理》第九章 热力学基础 (2)
吸收热量
m M mol
CV T
m M mol
C p T
m RT ln V2
M mol
V1
或 m RT ln p1
M mol
p2
对外作功
0
pV
或 m RT M mol
m RT ln V2
M mol
V1
或 m RT ln p1
M mol
p2
内能增量
m M mol
CV T
m M mol
CV T
0
pV 常量
返回 退出
例9-2 设有氧气 8 g,体积为0.4110-3 m3 ,温度为 300 K。如氧气做绝热膨胀,膨胀后的体积为4.110-3 m3 。问:气体做功多少?氧气做等温膨胀,膨胀后 的体积也是4.110-3 m3 ,问这时气体做功多少?
解: m=0.008 kg M =0.032 kg T1=300 K
941 (J)
等温膨胀做功:
A
m M
RT1 ln
V2 V1
1 8.31 300 ln 10 4
1.44 103 (J)
返回 退出
作业 Page70 9-1 9-6
返回 退出
理想气体热力学过程的主要公式
过程 特征 过程方程
等体 V=常量 p 常量 T
等压 p=常量 V 常量 T
等温 T=常量 pV 常量
C
(3)比较各过程吸热多少?
D
解:(1) A A B A A C A A D
(2)等压过程 E A B 0
O V1
V2 V
等温过程 E A C 0 绝热过程 E A D A A D 0
(3) Q A B Q A C Q A D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B→C等容过程:
W2 0
Q2 E2
M 5 R TC TB 2 5 5 pCVC pBVB VB pC pB 2 2 2 5.07 10 J CV TC TB
E
M i M RT CV T 2
M
2
W p(V2 V1 )
R(T2 T1 )
V Q
M (CV R)T
系统吸收的热量一部分作功,一部分增加内能. 从热容量 M 等压摩尔 C C R i 2 R Q C p T 吸收热量 热容量: p V 2
B W净
D
C
V
22
二、卡诺循环
理想热机:工作物质只与两个恒温热源交换能量, 没有其它方面的能量损耗—卡诺机. T1 卡诺循环:工质是理想气体; 热力学过程是准静态过程; Q1 热交换过程是等温过程; E 与热源分离的过程是绝热过程. Q W
1.卡诺热机
p
等温膨胀A~B吸热: M V Q1 RT1 ln 2 W1 0 V1
第四章 热力学基础
热力学:热运动的宏观理论,宏观热现象.
对象:大量物质粒子组成的系统, 热力学系统.
内容:热力学系统的状态 (P,V,T) 变化时, 功、热量、内能转化关系、条件、 效率. 方法:从实验结果,能量角度, 不考虑微观运动.
1
§1 热力学第一定律 §2 热力学第一定律对理想气体的应用 §3 循环过程和卡诺循环
四、绝热过程 M i dW dE RdT dQ 0 不交换热量
1. 过程方程 绝热过程中P、V、T之间关系: M M RdT 1 pV RT pdV Vdp M M 2 dW CV dT pdV CV dT (1)、(2)式分别移R和CV到左边后相加得: pdV Vdp pdV 0 (CV R) pdV CVVdp 0 R CV Cp pdV CVVdp 0 (CV R) CP 15
内能是状态的单值函数,与过程无关.
M 理想气体的 dE C dT 内能变化: V
E
M
CV T
8
§2 热力学第一定律对理想气体的应用
过程特点,过程方程,PV图,W Q ΔE计算,结论.
一、等容过程 按热力学第一定律: Q E W 过程 p1 p2 方程 T1 T2 p 2
16
ln V ln p c
ln pV c
pV A 1 (常数)
泊松公式 γ绝热指数
p1V1 p2V2
2. p -V图 等温线
绝热线
pV p AVA
pV pAVA
2 V 图上区别:绝热线大于等温线斜率的绝对值. 3. 功的计算 由1(p1,V1,T1)到2(p2,V2,T2)
系统内能全部转化为对外作功.
以上各过程得到的结论式可作为公式使用,但要 掌握它们的推出过程,自己小结找出最基本式18 .
例2:对于氩气γ=1.7,求此气体由体积V1=2L绝 热压缩至体积为V2=1L的压强,气体所作的功以 及内能增量.若是等温压缩过程,各量又是多少? 设开始时压强p1=1atm. 等温过程: E 0 解: 绝热过程: pV pV 1 1 p2V2 1 1 p2V2 V pV p2 p1 1 21.7 3.25atm p2 1 1 2atm V2 V2 p1V1 p2V2 V2 M W E W RT ln 1 V1 5 3 1 2 3.25 1 1.013 10 10 0.7 V p1V1 ln 2 2 1.8110 J 外界对气体作正功. V1 1.40 102 J 19 E 1.81102 J
2
1
17
p1V1 W (V2 1 V1 1 ) 1 pV p2 pV 1 1 p2V2 1 1 V2
W p1V1 p2V2 M C (T T ) E 1 V 1 2
C p CV R R 1 CV CV CV
2
CP pdV CV Vdp 0 CP dV dp 0 CV V p dV dp 0 V p
i Cp 2 R R 2 i i CV i R 2
再由理想气体状态方程 消去p或V可得另外两个 过程方程:
过 pV A 1 常 程 TV 1 A 2 方 数 1 程 p T A3
V2 V2
M RT dV V1 V1 V V2 M p1 M Q RT ln RT ln 2 V1 p2 V
11
系统吸收的热量全部用来作功.
例1:气缸内储存一定质量的氧气(可视为刚性双 原子分子),经历如图所示的三个等值过程.求(1) 各等值过程中气体吸收的热量,对外作功,内能增 量,及整个过程的热量.(2)若气体由初态A开始, 只经历等压膨胀过程到达末态D,该过程中的热 量,作功,内能增量各是多少. p(Pa) 解: (1) A→B等压过程: C 2 W1 pA VB VA 1.01102 J A M M5 D 1 E1 CV TB TA R TB TA B
本课要求: 1.掌握热一律和计算功、内能、热量的方法. 2.会计算理想气体等值过程的功、内能、热量. 3.理解CV和Cp的表达式及物理意义. 4.理解绝热过程的过程方程,会应用.
作业:
P189 习题 2、4、11
20
参考书:
1.大学物理(上下册),大学物理编写组, 天津大学出版社,2005年.
2.大学物理学(五册),张三惠主编, 清华大学出版社. 3.大学物理通用教程(四册),钟锡华等主编, 北京大学出版社.
M
C→D等温过程:
E3 0
Q3 W3 VD VC p pCVC ln C pD M RTC ln
p(Pa)
2 1 C
A 1
B
D V(L)
13
0
2
2.8110 J
2
A→B→C→D整个过程: p(Pa)
W W1 W2 W3 3.82 102 J
E E1 E2 E3 7.60 102 J
dV 0 dW PdV 0 W 0 M i Q E RT 2
1 V 系统吸收的热量全部用来增加内能. M i CV T CV R 从热容量吸收热量: Q 2
9
二、等压过程 按热力学第一定律: Q E W 过程 V1 V2 方程 T1 T2 p1
21
§3 循环过程和卡诺循环 一、循环过程
系统经一系列状态变化后回到初始状态的过程. ΔE=0, p-V图上闭合曲线,面积为循环净功W净. p B A 正循环(顺时针):W净>0 W净 C 逆循环(逆时针):W净<0
D
Q净=W净 热机(正循环)
热机循环效率: p
V
制冷机 (逆循环)
W净 Q吸
A
V4 W Q Q 1 2 1 V M Q1 Q1 RT1 ln 2 V1
2
T1 B
Q2
M V RT2 ln 3 V4
24
T2 V2 V3 1 1 T1 V1 V4 D ~ A : TV T2V4 1 1 1.必须有两个热源 卡诺热机 1 Q2 1 T2 供吸热、放热. 效率: Q1 T1 2.效率只与T有关, 与工质无关. 一般热机 1 Q2 3.效率小于1,提高 效率: Q1 效率,提高T1.25
§4 热力学第二定律
2
§1 热力学第一定律
一、内能 系统在一定状态下的内在的各种能量的总和. 理想气体内能:所有分子平动、转动、振动动能 和振动势能之和.只是温度的函数,态函数.
E
M i RT 2
E
M i R T2 T1 2
二、功和热量 热量Q:分子之间交换无规运动的能量.过程量. 作功W:宏观位移与无规运动能量转换.过程量 . 3
5
2. 功的计算 P 与过程有关. 对应P-V图上曲线下的面积. 计算膨胀作功:
p
V
s
dW psdl pdV
W dW
V2
dl
pdV V
1
膨胀 W>0,压缩 W<0. 利用热力学第一定律也可求功: Q E W 6
3. 热量的计算
热一律计算: Q E W 利用热容量计算: dQ dQ 1mol气体的热容量 C 比热c 1 dT MdT dQ M 质量为M的热容量 C M dQ CdT dT 摩尔热容量与过程有关: M CV dT 等容过程: dQ 等压过程: dQ
三、热力学第一定律 热力学第一定律:状态变化时功W、热量Q、 内能变化ΔE之间的关系.能量守恒.
Q E W
微分形式:dQ dE dW
正负规定: 吸热为正,放热为负; 系统对外作功为正,外界对系统作功为负; 温度升高,内能增加,温度降低,内能减小.
第一类永动机是不可能实现的!
4
四、功、热量和内能增量的计算 1. 准静态过程 中间态 外界扰动 平衡态 平衡被破坏 新平衡态 状态变化 热力学过程 弛豫时间(从非平衡到平衡) 准静态过程:状态变化的时间 间隔大于弛豫时间. 状态图:状态量关系图, 曲线代表准静态过程,无摩擦.
M
Q
M
C p dT
C (T2 T1 )
对液固体近定容 7 .
4. 内能增量的计算 理想气体 E M i RT M C T 2 V 内能: 理想气体的内能变化: E