激光干涉仪测量方法
激光干涉仪平行度测量原理与方法
激光干涉仪平行度测量原理与方法
激光干涉仪是一款功能强大的几何量检测仪器,可以测量线性定位、直线度、垂直度、平行度、角度等多个参数,很多朋友熟悉线性定位测量,但是对于平行度测量却不太清楚,今天就给大家讲解如何进行平行度测量。
▲SJ6000激光干涉仪
1、平行度测量原理
平行度测量由两组直线度测量组成,两次测量都以直线度反射镜的光学轴为参考基准。
需要说明的是,要得到两轴的平行度,要在两个正交平面内沿每个要被比较的轴测量直线度。
因此,平行度或平行线测量实际是四次直线度测量,每次的步骤和方法同测量直线度一样,如下图所示。
得到平行度的计算公式为:
线性平行度=|θ1−θ2 |
其中,θ1为第1运动轴的斜度,θ2为第2运动轴的斜度。
第一步(测第1运动轴)
第二步(测第2运动轴)
▲ 平行度测量的光路原理构建图
2、数据采集和处理
按照上面的分析,平行度测量分成正交平面内的两次直线度测量,在同一个面内的测量分两步:第一步测量其中一轴的直线度,其方法跟直线度测量一样;第二步测量另一轴的直线度。
每次测量后均把以共同反射镜为参考基准所采集的直线度数据保存。
最后根据上述四个直线度测量结果,计算得到两轴之间的平行度或平行线误差。
3、平行度测量用组件
平行度测量用到的激光干涉仪组件:平行度测量配置主要由SJ6000激光干涉仪主机、短直线度镜组(或长直线度镜组)、SJ6000静态测量软件等组件构成。
Z 轴的平行度测量需增添可调转向镜。
4、平行度测量应用
数控机床/坐标测量机X、Y轴上多导轨平行度
▲双直线导轨安装的平行度测量。
激光干涉仪测量方法
激光干涉仪测量方法
激光干涉仪是一种高精度、高灵敏度的检测仪器,普遍应用于制造行业, SJ6000 激光干涉仪上市以来一直受到广大用户的热捧,尤其是机床和机器人生产企业。
但是小编了解到有许多的生产企业还是保持着观望的态度,一方面是因为不太清楚这款仪器的稳定性怎么样?再一方面是不了解仪器的测量方法,担心买回去无法使用。
小编就跟大家简单说一下激光干涉仪的测量方法。
就拿测量机床线性精度为例吧,首先,把三脚架和云台调整好,然后拿出激光器主机放置在云台上面固定好,连接好电源和数据线,再拿出线性测量镜组,架设在机床的被检轴上,在架设镜组的时候,要多次调试干涉镜与反射镜对准激光器主机发射出的光路,调整好线性镜组的位置后,把环境补偿单元的探头放置在被检轴的不同位置,连接数据线到电脑端,在电脑上设置好检定软件。
做好准备工作就可以开始操作机器从起始位置移动到下一个目标位置,在不同的位置暂停几秒钟,由激光干涉仪进行测量和采集数据。
检定软件有完善的用户
界面,会按顺序引导您完成检测的各个步骤。
激光点光源干涉仪的新测量方法
激光点光源干涉仪的新测量方法
激光点光源干涉仪是一种通过光的干涉现象来测量物体表面形状的仪器。
它的测量原理是将激光通过一个点光源照射到待测物体表面,然后通过收集反射回来
的光束进行干涉,最后通过对干涉图案进行分析得到物体表面形状的信息。
传统的激光点光源干涉仪需要通过调整点光源位置来获得不同位置的干涉图案,这种方法测量效率低下且误差较大。
为了解决这个问题,研究人员提出了一种新的测量方法,称为“多角度光源激
光点光源干涉仪”。
该方法使用多个不同角度的光源,通过控制光源的位置和角度
来获得多个干涉图案。
这种方法能够显著提高测量效率,同时减小误差。
使用多角度光源激光点光源干涉仪的测量步骤如下:首先,需要将多个光源放置在待测物体的不同角度。
然后,通过逐个打开每个光源,收集反射回来的光束,得到多个干涉图案。
最后,通过对多个干涉图案进行处理和分析,可以得到待测物体表面形状的信息。
多角度光源激光点光源干涉仪的优点在于能够同时获取多个干涉图案,从而提高测量效率和精度。
此外,该方法还可以应用于复杂表面形状的测量,例如弯曲、斜面等。
因此,多角度光源激光点光源干涉仪在工业制造、科学研究等领域具有广泛的应用前景。
外差激光干涉仪的测量方法
一、举例描述外差激光干涉仪的测量方法。
光外差干涉是指两只相干光束的光波频率产生一个小的频率差,引起干涉场中干涉条纹的不断扫描,经光电探测器将干涉场中的光信号转换为电信号,由电路和计算机检出干涉场的相位差。
特点:克服单频干涉仪的漂移问题;细分变得容易; 提高了抗干扰性能。
原理:在干涉场中,放入两个探测器,一个放在基准点(x0, y0)处,称之为基准探测器,其输出基准信号i(x0, y0, t),另一个放在干涉场某探测点(xi, yi)处,称之为扫描探测器,输出信号为i(xi, yi, t) 。
将两信号相比,测出信号的过零时间差Δt ,便可知道二者的光学位相差)/1/(π2),(),(00v t t y x φy x φ∆∆=∆∆=-ω由控制系统控制扫描探测器对整个干涉场扫描,就可以测出干涉场各点的位相差。
设测试光路和参考光路的光波频率分别为ω和ω+Δω,则干涉场的瞬时光强为[]{}[][]{}[][])(cos )()2(cos )(2cos 121)(2cos 121),(cos )cos(),,(222x,y t-φE E x,y φt E E x,y φt E t E y x φt E t E t y x I t r t r t r t r ωωωωωωωωω∆++∆+++++∆++=++∆+=由于光电探测器的频率响应范围远远低于光频ω,它不能跟随光频变化,所以式中含有2ω的交变项对探测器的输出响应无贡献。
)],(cos[2/2/),,(22y x φt E E E E t y x i t r t r -∆++∝ω干涉场中某点(x ,y )处光强以低频Δω随时间呈余弦变化 (1)激光外差干涉测长数据处理双频激光器1/4波片准直系统可动角隅棱镜检偏器v探测器前置放大器f2f1f1±Δff2f1f2f1±Δf图4-33双频激光器外差干涉测长原理图偏振分光镜f2-f1f2-(f1±Δf )⎰⎰⎰⎰∆±=±=∆tttt t f NL L t v t vt f 000d 222d 2d 2d λλλλλ所以===由于(2)激光外差干涉测量微振动方解石棱镜及1/4波片的作用是使测量光束的光路既作发射光路,又作接收光路。
[整理版]迈克尔逊激光干涉仪测量原理
迈克尔逊激光干涉仪测量原理激光器是60年代初期出现的一种新型光源,激光是从激光器发射出来的光,它与普通光源发出的光不同,具有亮度高,方向性、单色性和相干性好等特点。
自从氦氖激光器出现以后,用激光干涉法测量长度的技术取得了很大进展。
目前已广泛应用于精密长度计量(包括线纹尺、光栅检定、精密丝杠动态测量、振动测量等)、精密机床控制以及高精度电子精密机械设备的精密定位等方面。
在精密长度计量或电子精密机械设备定位技术中,迈克尔逊激光干涉仪是常用的一种型式,其原理如图9-34所示。
由氦氖激光器发出的激光,经过准直透镜变为一束平行光,投射到半透明半反射镜B上,光束被分成两路。
一路反射光a被反射到固定反射镜M1 ,另一路反射光b射向可动反射镜M2 。
M1和M2 又分别把两束光反射回半透明半反射镜B表面会合,由于B到M1 和M2 的距离不相等,两束光a和b的传播就产生了光程差,如果在P处设置一观察屏,两束光就在观察屏P上叠加产生干涉,可以看到明暗相间的干涉条纹。
两束光在观察屏P中心处相遇时产生干涉,干涉的结果,是两束光互相加强还是互相减弱或抵消,则由这两束光的光程差ΔL决定(光程等于光所走过的几何路程与介质折射率的乘积,空气的折射率近似等于1)。
由图9-23可见,a、b两束光到达观察屏P中心的光程差为ΔL = 2( BM2 – BM1) = 2( Lm-Lc) (9-6)当光程差ΔL为激光波长λ的整数倍时,即ΔL = Nλ(N为正整数)(9-7)则两束激光相互加强,在观察屏P中心处出现亮条纹。
当光程差ΔL为激光半波长奇数倍时,即(9-8)则两束激光相互抵消,在观察屏P中心处出现暗条纹。
若将动反射镜M2 移动距离L到M 2 ,由于光束b光程的变化,观察屏P中心处的干涉条纹将出现明暗交替变化。
显然,当M2移动λ/2距离时,干涉条纹就明暗交替变化一次。
若在观察屏中心处记录下明暗交替变化的次数N,那么,就可测量出M2 移动到M 2 所经过的距离L,即(9-9)这就是迈克尔逊激光干涉仪测量长度的公式。
使用激光干涉仪进行长度测量的技巧与注意事项
使用激光干涉仪进行长度测量的技巧与注意事项激光干涉仪是一种常用的精密测量设备,广泛应用于科技研究、工程测量和制造领域。
它通过使用激光干涉原理,可以实现高精度的长度测量。
然而,使用激光干涉仪进行测量并非易事,需要掌握一些技巧和注意事项。
本文将介绍一些常用的技巧与注意事项,以帮助读者正确地使用激光干涉仪进行长度测量。
首先,在使用激光干涉仪进行测量前,要确保仪器处于良好的工作状态。
检查激光源是否正常工作,激光束是否稳定,以及干涉信号是否清晰。
如果有异常情况,需要及时修复或更换设备。
此外,应在使用过程中避免仪器受到撞击和振动,以免影响测量结果的精确性。
其次,在进行测量时,要注意调节测量系统的各项参数。
首先,要调整光源的功率和聚焦距离,使激光束能够精确照射到被测物体上。
然后,根据被测物体的特点选择合适的测量范围和放大倍数,以确保干涉信号的清晰可见。
此外,还需要调整干涉仪的分束板和叠加板,使干涉图样对称清晰,以便准确地读取测量结果。
在进行测量时,还需要注意环境因素对测量结果的影响。
激光干涉仪对温度和空气流动比较敏感,因此应尽量在稳定的温度条件下进行测量,并避免有风的地方。
此外,需要注意避免干扰源的存在,如强光和电磁场等,因为这些干扰源可能会导致干涉信号的变化,从而影响测量的准确性。
另外,为了获得更准确的测量结果,可以采取一些提高精度的措施。
首先,测量前应对被测物体进行清洁,以避免因灰尘或污渍对测量结果产生误差。
其次,可以采用多点测量的方法,将多个测量值取平均,以降低随机误差的影响。
此外,可以通过对比和校准的方式,确定测量系统的零点,从而提高测量的绝对精度。
最后,使用激光干涉仪进行测量时,要注意数据的处理和分析。
首先,要合理选择数据采集的频率和时间间隔,以充分反映被测物体的变化情况。
其次,对于连续变化的信号,可以进行插值或拟合处理,以获得更精确的测量结果。
最后,要注意对测量结果进行误差分析,评估测量的精确性和可靠性,并及时修正和改进测量的方法和装置。
利用激光干涉仪测量薄膜厚度的实验方法
利用激光干涉仪测量薄膜厚度的实验方法激光干涉仪是一种常用的实验装置,广泛应用于薄膜厚度的测量。
通过利用激光的干涉原理,可以非常精确地测量薄膜的厚度。
本文将介绍利用激光干涉仪测量薄膜厚度的实验方法。
首先,让我们来了解一下激光干涉的基本原理。
激光干涉是指两束相干光在空间中叠加形成干涉条纹的现象。
当两束光的光程差等于波长的整数倍时,它们相互叠加时会发生干涉,形成明暗相间的干涉条纹。
而当两束光的光程差不够整数倍时,干涉条纹就会发生相移。
在利用激光干涉仪测量薄膜厚度时,我们需要借助薄膜产生的干涉条纹来判断其厚度。
为了实现这一目的,我们需要准备一台激光干涉仪,以及一块具有薄膜的样品。
首先,我们将样品放置在激光束的路径上。
激光束穿过样品后,经过反射和透射,形成两束光束。
这两束光束在干涉仪的分束器处再次叠加,形成干涉条纹。
通过观察干涉条纹的形态,我们可以得到样品表面的薄膜厚度信息。
干涉条纹的形态受到光程差的影响。
当样品表面的薄膜厚度发生变化时,光程差也会发生变化,进而改变干涉条纹的形态。
例如,当薄膜厚度增加时,光程差也会增加,干涉条纹疏密变化。
而当薄膜厚度减少时,则相反。
为了实现测量,我们需要进行定量的分析。
一种常用的方法是利用分束器将干涉条纹分成两束光,其中一束光通过调节透镜到达光敏元件,另一束光到达参考光程。
通过调节透镜位置,我们可以使得光电元件输出最小值,这时光路的光程差为波长的整数倍。
通过这种方法,我们可以确定波长与光程差的关系,进而得到薄膜的厚度。
除了利用透镜进行精确测量外,我们还可以通过观察干涉条纹的位移来估计薄膜厚度的变化。
当我们探测到干涉条纹的位移时,可以利用干涉的相位差来计算薄膜的厚度。
相位差与光程差的关系可以通过标定得到。
需要指出的是,在实际的实验中,我们常常会遇到干涉条纹较为模糊的情况。
这时,我们可以通过调整激光干涉仪的参数,例如改变激光的功率或调整分束器的角度,来改善干涉条纹的质量。
另外,在测量薄膜厚度时,我们还需要注意薄膜的特性,例如透明度和折射率等,以便更准确地估计厚度值。
激光干涉仪测量距离和表面精度
激光干涉仪测量距离和表面精度激光干涉仪是一种常用的精密测量仪器,可用于测量距离和表面精度。
通过利用光波的干涉现象,激光干涉仪能够实现高精度的测量。
本文将介绍激光干涉仪的原理、测量距离和表面精度的方法,以及激光干涉仪在不同领域中的应用。
激光干涉仪是基于光波的干涉现象进行测量的仪器。
光波的干涉是指两束或多束光波相遇时发生的波的叠加现象。
激光干涉仪通过将激光分成两束,一束作为参考光束,一束照射到待测物体上反射回来作为待测光束,再将两束光波进行干涉,通过测量干涉条纹的变化来获得距离和表面精度的信息。
激光干涉仪的测量距离的原理基于光波的干涉,利用干涉条纹的变化来获得物体到仪器的距离。
当两束光波相遇时,它们会发生干涉,干涉条纹的间距和形态会随着物体到仪器的距离的变化而改变。
通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体到仪器的距离。
这种测量方法具有高精度和高分辨率的特点,适用于微小距离的测量。
激光干涉仪的测量表面精度的方法基于光波的干涉,利用干涉条纹的形态和间距来获得表面精度的信息。
当光波照射到物体表面时,由于表面的形态和光的反射特性的影响,干涉条纹的形态和间距会发生变化。
通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体表面的精度。
这种测量方法具有高精度和高分辨率的特点,适用于表面平整度和粗糙度的测量。
激光干涉仪广泛应用于多个领域,如制造业、科学研究和地质勘探等。
在制造业中,激光干涉仪可用于检测零件的尺寸和形状,以及测量零件表面的精度。
在科学研究中,激光干涉仪可用于研究光学现象、材料的性质和微小物体的运动。
在地质勘探中,激光干涉仪可用于测量地表的高程和形态,以及探测地下的岩层和地下水位。
总结一下,激光干涉仪是一种常用的精密测量仪器,可用于测量距离和表面精度。
通过利用光波的干涉现象,激光干涉仪能够实现高精度的测量。
通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体到仪器的距离和物体表面的精度。
激光干涉仪测量步骤
激光干涉仪线性测量步骤一、做以下准备:(1)将云台所有旋钮(仰俯、摆动、平移)调至中间位置;(2)将三角架支座脚调至中间位置;(3)带5m长接线板;(4)带百分表、磁力表座、直角尺;(5)带两块水平仪,看机床工作台安装水平;(6)电脑提前开机,并打开测量软件;(7)补偿装置带进场之前提前接好;(8)两个人调光路的同时,一个人输入测量程序。
二、光路调整1. 将激光头置于三角架上,放在机床的右侧。
接电源线预热5分钟左右(激光头指示灯,红灯常亮或闪烁 绿灯常亮),预热时将激光头与电脑之间相连的数据线连接上,之后调节三角架的高低,并用水平仪将激光头调水平。
技巧:(1)大调调三角架支架腿,微调调脚架支座脚。
2)目测激光头相对于反光镜的高低,此时调整可用三角架中间升降摇把。
2. 将反射镜固定在工作台左侧。
注:(1)提前综合布局干涉镜、反光镜与激光头的位置,使它们上下左右对齐,并且反射镜尽量靠近干涉镜。
反射镜红点朝下安装。
(2)反射镜架设应满足全行程(例如:450mm)要求,并且不能和干涉镜相撞。
(3)将激光头尽可能接近工作台右侧行程限位。
技巧:(1)用直角尺将反射镜磁力表座与工作台T型槽调平行;2)用百分表将反射镜磁力表座与工作台T型槽拉平行。
3. 调整反光镜和激光头之间的光路。
(1)旋转激光器的光靶,白点朝下,使激光器发出较小的光束;(2)将机床工作台移动到激光器最近处,将一个光靶置于前端,白点朝上;(3)搬动激光头三角架,并调节三角架中间升降摇把,使激光束打到反射镜光靶白点中心;(4)移动机床X轴,使其逐渐远离激光头,观察反射镜光靶白点上的激光束,看其是否偏移出中心位置,一旦偏移出白点,则暂停机床,调整激光头云台上的水平摆动旋钮(左后侧小旋钮),使光束移动到以光靶白点为中心的水平对称位置,再调整激光头云台上的平移旋钮(左前侧大旋钮),使光束移动到光靶白点中轴线位置,然后调整三角架中间升降摇把,使光束移动到光靶白点中心位置。
高精度激光干涉仪的调试步骤与测量结果分析方法
高精度激光干涉仪的调试步骤与测量结果分析方法激光干涉仪是一种用于测量光程差的精密仪器,在科研、工业制造和生物医学等领域得到了广泛应用。
高精度激光干涉仪能够实现亚纳米级的测量精度,因此其调试步骤和测量结果分析方法非常关键。
一、激光干涉仪的调试步骤1. 光学路径的校准:激光干涉仪中最重要的部分是干涉仪的光路。
首先要保证光源的稳定性和亮度,通常使用氦氖激光器作为光源,并使用聚焦透镜获得平行光。
然后要调整两束光线的平行度,使用准直器或像差调节器进行调整。
最后,通过调整反射镜和平行板的位置,使两束光线相互平行,保证光束之间的光程差为零。
2. 干涉图案的调试:将两束光线合并后,会出现一条干涉条纹。
通过调节平行板的角度或物镜的位置,可以调整干涉条纹的间距和亮度。
要使条纹清晰且对称,可以适当调整反射镜的位置。
3. 线性度和非线性度的校准:利用参考杆来测试激光干涉仪的线性度和非线性度。
将参考杆平行放置在干涉仪的测量平台上,测量不同位置处光程差与参考杆长度的关系。
通过分析这些数据,可以得到激光干涉仪的线性度和非线性度,并进行校准。
4. 测量系统误差的校正:激光干涉仪在实际测量中可能存在系统误差,如温度变化、机械振动等。
通过在实验中引入补偿措施,可以对这些误差进行校正。
例如,可以在实验过程中保持温度稳定,使用防振设备减小机械振动对测量的影响。
5. 预处理与信号分析:在测量过程中,激光干涉仪会产生一系列干涉信号。
这些信号需要进行预处理和信号分析,以获得最终的测量结果。
常用的方法包括锁相放大器、频谱分析仪等。
二、测量结果分析方法1. 干涉条纹解析:干涉仪产生的干涉条纹是通过测量光程差得到的。
根据不同的应用需求,可以利用不同的方法对条纹进行解析,如三角法、Fourier变换等。
解析干涉条纹可以得到物体的形貌信息和变形分布等。
2. 测量结果精度评估:对于高精度激光干涉仪的测量结果,需要进行精度评估来判断测量结果的可靠性。
常用的方法包括误差分析、重复性测试和对比实验等。
激光干涉仪检测平行度的方法
激光干涉仪检测平行度的方法《激光干涉仪检测平行度的方法》激光干涉仪是一种用于测量光程差的仪器,广泛应用于工业领域中对平行度的测量。
平行度是指两个平面之间的相对姿态偏差,常被用于评估工件制造过程中的精度和质量。
在实际工作中,精确测量物体的平行度是非常重要的,因为偏离平行的物体会导致部件与设备的不匹配,从而影响产品的精度和功能。
本文将介绍一种使用激光干涉仪来检测平行度的方法。
首先,需要准备一台激光干涉仪,以及待测物体和支撑系统。
激光干涉仪通常由激光发生器、分束器、反射器和干涉场镜等组成。
待测物体和支撑系统可以是精密加工的平行块或平行导轨,确保其表面光滑,没有明显的缺陷或杂质。
首先,将激光干涉仪放置在一个稳定的台面上,以确保其不受外界振动的干扰。
然后,将激光束从激光发生器中发出,并由分束器将其分成两束。
一束经过反射器反射,然后射向待测物体的一个表面,而另一束直接通过分束器射向对应的表面。
接下来,观察干涉场镜中的干涉图案。
干涉图案是由两束光产生的干涉而形成的,其形状和干涉条纹的数量取决于待测物体的平行度。
如果待测物体是完全平行的,则干涉条纹将呈现平行的形状。
如果待测物体存在平行度偏差,则干涉条纹将出现扭曲、错位或形状不规则的情况。
通过调整待测物体的姿态,可以观察到干涉图案的变化。
如果待测物体的平行度不符合要求,可以根据干涉图案的变化来调整其姿态,直到干涉图案呈现平行形状。
此外,还可以借助计算机和图像处理软件来分析干涉图案。
通过将干涉图案转换为数字图像,并进行图像处理算法,可以快速检测出干涉条纹的数量、间距和形状,从而 quant 获得待测物体的平行度偏差值。
综上所述,激光干涉仪是一种非常有效的工具,可以用于检测平行度。
通过观察和分析干涉图案,可以快速准确地确定待测物体的平行度偏差并进行调整。
这种方法不仅具有高精度和可靠性,而且操作简便,适用于大多数平行度测量的场景。
激光干涉测量技术
12
只用一个角锥棱镜反射器作动镜还可以组成图(d)所示的 双光束干涉仪,它也是一种较理想的光路布局,基本上不 受镜座多余自由度的影响,而且光程增加一倍。 (2)整体式布局 这是一种将 多个光学元件结合在一起,构 成一坚固的组合结构的布局。 如右图所示,立方体分光器上 蒸镀了其他元件。整个系统对 外界的抗干扰性较好,抗动镜 多余自由度能力强,测量灵敏 度提高一倍。但这种布局调整 起来不方便,对光的吸收较严 重。 1.立方体分光器;2.移动反射镜
14
(4)零光程差的结构布局 在干涉仪中,为使初始光程差 不随环境条件的变化而变化,常采用参考臂Lc和测量臂Lm相 等,并使两臂布置在仪器同一侧的结构形式。此时,干涉仪 的初始光程差Lm-Lc=0,即所谓的零光程差结构形式,如图所 示。这种结构布局可以提高干涉仪的测量精度。
(a)测量时测量光路光程增加;(b)测量时测量光路减小
式中,nj、ni分别为干涉仪两支光路的介质折射率:li,lj 分别为干涉仪两支光路的几何路程差。若把被测件放入 干涉仪的一支光路中,干涉仪的光程差将随着被测件的
位置与形状而变,干涉条纹也随之变化,测量出干涉条
纹的变化量,便可直接获得l或n,还可间接获得l或n有关
的各种被测信息。
2
激光干涉测量长度和位移
二、测量系统组成
激光干涉测量仪的主要部分有:激光干涉仪系统、干涉条纹 计数和处理测量结果的电子系统及机械系统。 (一)干涉仪系统 干涉仪系统主要包括光源、分束器和反射器。 1.激光干涉仪常用光源 因为He-Ne激光器输出激光的频率和功率稳定性高,它以 连续激励的方式运转,在可见光和红外光区域里可产生多种波 长的激光谱线,所以,He-Ne激光器特别适合作相干光源; 2.干涉仪将一束光分为两束或几束的方法 (1)分波阵面法 激光器发出的光经准直扩束后,得到一平而 光波的波阵面。利用有微小夹角的两反射镜Ml和M2(菲涅尔双 面镜)的反射,将光波的波阵面分为两部分,然后使二者在屏幕 P相遇,在屏上出现明暗相间的干涉条纹,如下图(a)所示。 (2)分振幅法 把一束光分成两束以上的光束,它们全具有原 来波的波前,但振幅减小了。如迈克尔逊干涉仪。常用的分光 器有:平行平板分光器和立方体分光器.如下图(b)所示
激光干涉仪测量原理及应用
激光干涉仪测量原理及应用激光干涉仪是一种基于干涉原理的精密测量仪器,广泛应用于科学研究、工业制造和医疗领域。
本文将介绍激光干涉仪的测量原理、测量对象以及应用领域。
一、测量原理激光干涉仪利用激光光束的干涉现象进行测量。
首先,通过激光发生器产生一个相干的激光束,然后将光束分为两束,其中一束通过参比光路径传播,另一束通过待测物体的表面反射。
两束光束重新合并后,通过干涉现象形成干涉条纹。
根据干涉条纹的变化,可以计算出待测物体的表面形态、位移或变形信息。
在激光干涉仪中,常用的测量原理有两条著名的分支:相位差法和长度差法。
1. 相位差法相位差法通过测量干涉条纹的相位差来确定待测物体的形态、位移或变形信息。
当待测物体发生形变或位移时,相位差会发生变化。
利用激光干涉仪测量相位差,并通过相位差与位移间的关系,可以获得待测物体的位移信息。
2. 长度差法长度差法通过测量干涉条纹的长度差来确定待测物体的形态、位移或变形信息。
待测物体的表面形态、位移或变形导致光程差的改变,进而影响干涉条纹的长度差。
通过测量长度差,并通过长度差与位移间的关系,可以获得待测物体的位移信息。
二、测量对象激光干涉仪广泛应用于各个领域的测量任务中,包括科学研究、工业制造和医疗领域。
1. 科学研究在科学研究领域,激光干涉仪常用于测量微小位移和形变。
例如,在光学领域,激光干涉仪可用于测量光学元件的表面形态和位移,以及光学系统的变形;在材料科学中,激光干涉仪可用于测量材料的热膨胀、压力变形等。
2. 工业制造在工业制造领域,激光干涉仪被广泛应用于检测和测量任务中。
例如,激光干涉仪可以用于检测零件的形状和尺寸,以确保制造过程的准确性和一致性。
此外,激光干涉仪还可以用于测量机械零部件的运动、振动和变形。
3. 医疗领域在医疗领域,激光干涉仪被应用于眼科手术和体内干涉成像。
在眼科手术中,激光干涉仪可以测量眼角膜的形态和厚度,以辅助眼科医生进行手术;在体内干涉成像中,激光干涉仪可以测量生物组织的纤维结构和表面形态,以帮助医生进行疾病诊断。
激光干涉仪垂直度测量原理与方法
激光干涉仪垂直度测量原理与方法
激光干涉仪是一款功能强大的几何量检测仪器,可以测量线性定位、直线度、垂直度、平行度、角度等多个参数,很多朋友熟悉线性定位测量,但是对于垂直度测量却不太清楚,今天就给大家讲解如何进行垂直度测量。
▲SJ6000激光干涉仪
1、垂直度测量原理
垂直度测量的主要采用同一个测量基准轴对两个标称正交坐标中的每一个轴测量直线度。
对两个直线度测量值进行比较,算出两个轴之间的垂直度。
共同的参考基准是直线度反射镜的光学基准轴。
需要注意的是,两次测量直线度之间既不移动也不调整。
两次直线度测量过程中至少一次用到光学直角尺,用于将激光光束调整到与待测轴垂直。
垂直度误差=光学直角尺误差-斜度θ1-斜度θ2。
▲垂直度测量的光路原理构建图
2、测量步骤和数据处理
测量分两步:第一步测量其中一轴的直线度,其方法跟直线度测量一样;第二步测量另一轴的直线度,同样的方法;最后根据上述两个直线度测量结果,计算得到两轴之间的垂直度误差。
3、垂直度测量用组件
垂直度测量用到的激光干涉仪组件:垂直度测量配置主要由SJ6000激光干涉仪主机、短直线度镜组(或长直线度镜组)、垂直度镜组(含光学直角尺)、SJ6000激光干涉仪静态测量软件等组件构成。
Z轴的垂直度测量需增添直线度附件。
4、垂直度测量应用
机床X/Y轴垂直度对准;坐标机上垂直轴和水平轴之间的垂直度测量。
▲X/Y工作台的垂直度测量。
激光干涉仪检测与调整过程讲解
激光干涉仪检测与调整过程讲解激光干涉仪是一种常用的光学测量工具,可以用于测量非常小的距离和角度变化。
它通常由两个关键组件组成:稳定的激光源和一个高质量的干涉仪。
在本文中,我们将介绍激光干涉仪的工作原理、使用方法和调整过程。
激光干涉仪的工作原理激光干涉仪的设计基于激光干涉原理,该原理是将激光束分为两个光束,分别通过被测物体的两个侧面,然后将两束光重新合成。
当光束互相干涉时,它们会产生间隔的明暗条纹,这些条纹的间隔可以被用于测量小的长度变化。
在实践中,激光干涉仪使用的激光源通常是由半导体光源提供的,这种光源在可见光范围内有非常狭窄的频谱分布。
可以使用反射镜和分束器将光分为两束。
在光路上分别安装一个光栅使得干涉仪可以使用逆反射干涉,提高测量的精度。
使用激光干涉仪进行测量在进行测量时,需将两束光线分别传输给要被测量的物体的两个侧面。
当两束光线重新合并时,它们会形成明暗相间的条纹图案,这是干涉产生的结果。
通过测量条纹的间隔,我们可以轻松地计算出被测物体的位移变化。
激光干涉仪可用于测量非常小的长度、位移和角度变化,其度量精度可以达到亚微米级别。
此外,通过使用高质量的干涉仪,我们可以将其用于高精密表面形貌测量。
调整激光干涉仪如果干涉仪的调试不当,会导致干涉条纹模糊或者严重扭曲的情况,降低干涉仪的度量精度。
因此,在使用激光干涉仪进行测量之前,必须对其进行调整。
以下是调整激光干涉仪的步骤:1.调整激光源:确保激光源光束的宽度和强度足够稳定。
可以将激光传输到墙上的标定留置板来检查光束的准直性和焦点。
2.双色干涉圈合并:在数字式激光干涉仪中,需要将蓝色和红色光线重合在一个干涉圈内。
使用向一侧旋转/切向板识别同步点,其中图案由蓝色和红色光线表示。
提示:每次转动方向8分钟。
3.气象因素:排除湿度、温度固定输出、地面震动等因素的影响。
工作时确保放在一个平稳的场所,切不可震动。
4.探头选择:一般选其低灵敏度的测头。
不完全平整的表面则需要高灵敏度的探头。
激光干涉仪角度、垂直度、直线度、平面度测量原理
激光干涉仪角度、垂直度、直线度、平面度测量原理激光干涉仪是一种利用光的干涉原理进行高精度测量的仪器。
以下是激光干涉仪在角度、垂直度、直线度和平面度测量中的原理:1.角度测量原理:当角度反射镜旋转或移动产生角摆时,两束反射光会有相对应的光程差产生。
激光干涉仪采集到该光程差的干涉信号,经过运算处理,即可得出对应的角度值。
这种技术主要应用于运动轴的角摆测量和转轴的旋转角度测量。
2.垂直度测量原理:垂直度测量是通过比较正交轴的直线度值从而确定正交轴的非直角度。
例如,三坐标测量机的垂直度误差可能由导轨磨损、事故造成导轨损坏、机器地基差、正交轴上两原点传感器未准直等因素造成。
垂直度误差将对机器的定位精度及插补能力产生直接影响。
SJ6000激光干涉仪以光波为载体,在动态测量软件的配合下,可实现三坐标测量机的垂直度检测分析。
3.直线度测量原理:通过检测光路与干涉镜和反射镜之间的横向位移,可以得到导轨相对于激光光路参考线的直线度误差。
这可以在水平面或垂直面上进行,取决于直线度干涉镜和反射镜的布置。
激光干涉仪的直线度测量组件包括LH2000激光测头、直线度光学镜组、直线度测量附件和LaserLC测量软件。
数据采集方法通常涉及使待测机床轴移动到若干个不同位置(或“目标”),然后测量直线度误差。
4.平面度测量原理:激光干涉仪中的一束光经过分束器分成两束光线,经过不同的光路后重合在屏幕上形成干涉条纹。
根据干涉条纹的形状和变化,可以获得被测物体表面的形状、位移和平面度等信息。
在测量平面度时,首先在被测试的表面上涂抹一层反光涂料,以便激光光线能够被反射回来形成干涉条纹。
然后将激光干涉仪垂直于被测表面,调整其位置和角度,使得激光光线能够正常照射到被测表面上。
通过观察和记录干涉条纹的图案,可以确定表面的平整度和精度。
请注意,这些测量原理都依赖于激光干涉技术,它利用光的干涉现象来测量物体的几何特性。
激光干涉仪具有高精度和高灵敏度的特点,因此在工业测量和质量控制等领域中得到了广泛应用。
测量天体距离的激光干涉仪操作指南
测量天体距离的激光干涉仪操作指南激光干涉仪是一种常用的仪器,它能够精确测量物体的距离。
在天文学领域,激光干涉仪也被广泛应用于测量天体之间的距离。
本文将为您提供一份激光干涉仪的操作指南,帮助您在天文学研究中运用激光干涉仪进行精确的距离测量。
1. 准备工作在使用激光干涉仪之前,首先需要做一些准备工作。
确定测量的目标天体,并将激光干涉仪设定为相应的模式。
同时,确保仪器的稳定性,消除任何可能影响测量结果的干扰因素。
2. 设置参考平面激光干涉仪需要一个参考平面来确定测量的基准。
在天文学中,我们通常选择恒星作为参考平面。
通过测量天体与恒星之间的干涉条纹变化,我们可以计算出天体的距离。
3. 进行测量在设置好参考平面后,即可进行距离测量。
激光干涉仪会发出一束激光并照射到目标天体上。
激光从天体上反射回来后,会与参考激光产生干涉,形成一系列的干涉条纹。
4. 记录干涉条纹在测量过程中,需要记录下干涉条纹的变化情况。
可以使用相机或其他光学设备将干涉条纹投影到探测器上。
确保记录到清晰、准确的干涉条纹图像,以便后续的数据分析和处理。
5. 数据处理获得干涉条纹图像后,需要进行数据处理来获取天体的距离。
首先,利用图像处理软件对图像进行处理和增强,以提高数据的可靠性和准确性。
其次,通过分析干涉条纹的相位变化,利用干涉仪的原理计算出天体的距离。
6. 精度评估在进行距离测量后,需要对测量结果进行精度评估。
可以通过与其他独立的测量结果进行对比来验证数据的可靠性。
如果有必要,可以进行多次测量并取平均值,以提高测量的精确性。
总结:激光干涉仪是一种重要的测量工具,可用于测量天体之间的距离。
本文提供了一份激光干涉仪的操作指南,包括准备工作、设置参考平面、测量过程、数据处理和精度评估等步骤。
通过正确操作激光干涉仪,我们可以获取准确的天体距离数据,进一步深入研究天文学领域的问题。
在实际操作中,需要注意仪器的稳定性和准确性,以确保结果的可信度。
激光干涉仪的使用方法和技巧
激光干涉仪的使用方法和技巧激光干涉仪(Laser Interferometer)是一种常用于测量物体长度和表面形貌等精密测量的仪器。
本文将介绍激光干涉仪的基本原理、使用方法和技巧,以帮助读者更好地应用激光干涉仪进行精密测量。
一、激光干涉仪的基本原理激光干涉仪基于干涉现象进行测量。
激光光源发出的单色光通过分束板分成两束光,然后分别经过两个光路,最后再次汇聚到一起。
当两束光的相位差为整数倍的波长时,两束光相互叠加干涉,形成明暗交替的干涉条纹。
通过测量干涉条纹的特征,可以计算出被测物体的长度、形状等信息。
二、激光干涉仪的使用方法1. 准备工作在使用激光干涉仪之前,需要确保仪器处于良好的工作状态。
首先,检查激光光源是否正常工作,确保光束的稳定性和质量。
其次,校准激光干涉仪的光路,确保两束光在汇聚时能够产生明确的干涉条纹。
2. 调整测量位置将激光干涉仪放置在待测物体的旁边或上方,并使用调节装置将光束对准物体表面。
确保光束垂直于物体表面,以获得准确的测量结果。
3. 观察干涉条纹打开激光干涉仪的显示屏或调节装置上的干涉条纹显示功能。
观察干涉条纹的形态和变化,根据实际测量需求调整光路或物体位置,使干涉条纹清晰可辨。
4. 实施测量根据所需测量的参数,选择合适的测量模式和功能。
根据干涉条纹的特征,采集测量数据,并使用仪器自带的软件或计算工具进行数据处理和分析。
三、激光干涉仪的使用技巧1. 注意环境条件激光干涉仪对环境条件相对敏感,尤其是光线和振动。
在测量过程中,尽量避免光线的干扰,选取较为安静的环境。
如果必要,可以使用隔离罩或振动吸收装置来降低外界环境对测量的影响。
2. 规避反射干扰激光干涉仪对光线的反射比较敏感,测量时应注意避免光线被反射到其他表面上,产生干涉干扰。
可以通过调整光源角度、使用吸光材料等方式减少反射干扰。
3. 熟悉仪器功能熟悉激光干涉仪的各种功能和测量模式,合理选择并设置相应的参数。
根据不同测量对象和要求,调整仪器的测量范围、采样率、干涉条纹的对比度等,以获得最佳的测量结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
或 =∑
某一目标位置的反向偏差为 ,即
= ↑- ↓
沿轴线或绕轴线的各目标位置的反
在某一目标位置的单向定位标准不确定度的估算值为 ↑ 或 ↓即
↑=
∑(
)
()
或
=
(
∑
)
(
)
某一目标位置的单向重复定位精度为 ↑或 ↓,即
↑ = 4 ↑或 ↓ = 4 ↓
( 3) 确定采集移动方式采集数据方式有两种:一种是线性循环
采集方法,另一种是线性多阶梯循环方法。GB17421 评定标准中采用 线性循环采集方法。测量移动方式: 采用沿着机床轴线快速移动,分 别对每个目标位置从正负两个方向上重复移动五次测量出每个目标 位置偏差,即运动部件达到实际位置减去目标位置之差。
(图2) ( 2) 确定测量目标位置根据GB17421 评定标准中规定,机床规 格小1 000mm 取不少于10 个测量目标位置,大于1 000mm 测量目标 位置点数适当增加,一般目标值取整数,但是我们建议在目标值整数 后面加上三位小数。主要考虑机床滚珠丝杠的导程及编码器的节距所 产生的周期误差,同时也考虑机床全程上各目标位置上得到充分地采 集。
沿轴线或绕轴线的任一位置 的重复定位精度的最大值。即
R↑ = max [ ↑],R↓ = max [ ↓]
R = max [ ] 轴线单向定位精度A↑或A↓,即 A↑ = max [ + 2 ↑] - min [ - 2 ↑] 或 A↓ = max [ ↓ + 2 ↓] - min [ ↓ - 2 ↓] 轴线双向定位精度A,即 A = max [ ↑ + 2 ↑; ↓ + 2 ↓] - min[ ↑ - 2 ↑;
( 4) 评定方法采用双向计算方法进行评定机床的位置精度。目
标位置为 ,下标i 表示移动目标位置中的指定位置。实际位置为 ,
下标j 表示移动第j 次向第i 个目标位置移动时实际到达的位置。目
标位置偏差为 , = - 。正、负方向目标位置为 ↑、 ↓。
某一目标位置的单向平均位置偏差为 ↑或 ↓,即
↑= ∑
(图1)
3.机床位置精度测量方法 ( 1) 安装调试激光干涉仪的线性折射镜和线性反射镜的安装尽 量选择机床测量轴线位置( 刀具实际工作范围内) ,可以减少产生阿 贝误差( 见图2) 。线性折射镜一般安装在机床固定位置上( 机床主 轴位置) ,线性反射镜一般安装在机床可动位置上( 机床回转刀架位 置) 。特别指出的是线性折射镜与激光头安装位置尽量靠近,因为它 们之间是盲区,激光干涉仪自动补偿功能无法进行,将会产生死程误 差。在调试线性折射镜和线性反射镜的光路时尽量使激光头放射的两 束平行光的光路相互一致。但是我们在实际调试光路时由于操作水平 及安装环境条件限制,可能产生光路的偏移,同时也就产生余弦误差。 不过我们在实际测量中做过试验返回到激光头光路的偏移量在0. 5mm 范围内,将不会影响机床测量精度。如果光路偏移量过大,光路 信号不在测量区域范围内,也就无法测量了。
↓ - 2 ↓] ( 5) 分析数据在分析数据过程中,我们发现通过采用不同的评
定标准将得到不同的测量结果,如同一台机床用同一方法采集数据, 但采用不同的评定标准将会得到不同的测量结果。例如,机床某一轴 的测量数据如图3 和图4 所示。
(图3)
(图4) 4.结语 测量数控机床位置精度的方法很多,但最重要的是看合同书上标 注的所采用的那种评定标准。各国家有各自不同的评定标准及测量方 法,好在我们有一个可以共同遵守的国际标准ISO230—2: 1997。目 前我国采用的GB/T17421. 2—2000 标准是依据ISO230—2: 1997 标 准修订演变过来的,两个标准在数据分析数理统计和测量结果上是完 全一致,完全可以等同采用。
1.激光干涉仪简介 激光干涉仪是以光波为载体,以光波波长为单位的一种计量测试 方法,是公认的高精度、高灵敏度的检测手段,在高端制造领域应用 广泛。 2.激光干涉仪原理 激光器发射单一频率光束射入线性干涉镜,然后分成两道光束, 一道光束( 参考光束) 射向连接分光镜的反射镜,而第二道透射光束 ( 测量光束)则通过分光镜射入第二个反射镜,这两道光束再反射回 到分光镜,重新汇聚之后返回激光器,其中会有一个探测器监控两道 光束之间的干涉(见图1) 。若光程差没有变化时,探测器会在相长 性和相消性干涉的两极之间找到稳定的信号。若光程差有变化时,探 测器会在每一次光程变化时,在相长性和相消性干涉的两极之间找到 变化信号,这些变化会被计算并用来测量两个光程之间的差异变化。