实数指数幂及其运算教学设计新部编版+姚璐
实数指数幂及其运算教学设计新部编版 姚璐
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校实数指数幂及其运算(Ⅰ)教学设计首都师范大学附属中学 姚璐课程名称:3.1.1实数指数幂及其运算(第一节)教材分析:1. 数系的扩充众所周知,人类对于数的认识经历了漫长的过程,从Z 到Q ,从Q 到R ,从R 到C ,乃至扩充到四元数等等。
虽然每一次数的范围的扩大往往伴随着质疑,但随着时间的发展,人们逐渐能够接受越来越多的数,而且寻找到了许多新的数背后所蕴含的实际意义。
数系扩充的动力主要包括两个方面:(1)生产生活的推动就本节课所涉及内容而言,指数模型是一种重要的数学模型,能较好的刻画许多自然现象(如放射性元素的衰变),在模型中变量t 显然是连续的,因此要求我们将指数推广到实数范围内。
(2)数学本身的推动许多数的出现都与方程有关(如负数,分数,复数等),根式也不例外。
当我们将数系扩充后,我们任然希望新的数系能较好的继承原有数系的一些性质。
事实上,如果我们假定指数运算拓展到实数范围内后,仍然继承下述性质:(1)m n m n a a a +=⋅(0a >,,m n ∈R )(2)当1a >时,若m n >,则m n a a >(0a >,,m n ∈R )当1a =时,若m n >,则m n a a =(0a >,,m n ∈R )当1a <时,若m n >,则m n a a <(0a >,,m n ∈R )则指数n a 的定义是唯一的2. Cauchy 法从Z 到Q 是非常重要的一步,这一步将一个疏集上定义的函数延拓到了一个稠密集上的函数,依靠的是,,<+⋅>Q 是,,<+⋅>Z 的分式环;从Q 到R 也是非常重要的一步,这一步将一个稠密集上的函数延拓到了一个连续集上的函数,依靠的是逼近的想法。
《实数指数幂及其运算》教案
《实数指数幂及其运算》教案第一课时学习目标1.知识与技能目标理解整数指数幂的概念和性质,并能用于相关计算中;理解根式的概念和性质,并能用于相关计算中.2.过程与方法目标通过复习回顾初中所学二次根式的相关性质,用类比的思想来完成根式的学习;3.情感态度与价值观目标通过复习回顾旧知识,来完成新知识的学习,在这一过程中培养观察分析、抽象概括能力、归纳总结能力、化归转化能力;重点难点教学重点:根式的概念、性质教学难点:根式的概念教学过程(I)复习回顾师:在初中,我们已经学习了整数指数幂的概念及其性质.现在,我们一起来看屏幕.a0=1(a≠0)(a≠0,n)师:这儿我们为什么都要求a≠0?(引导学生分析清楚)师:另外,我们在初中还学习了平方根、立方根这两个概念.师(生):我们来看,若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n=a,则2叫a的n次方根.这样,我们可以给出n次方根的定义.(II)讲授新课1.n次方根的定义:若x n=a(n>1且n∈N*),则x叫做a的n次方根.师:n次方根的定义给出了,我们考虑这样一个问题,x如何用a 表示呢?生:正数的平方根有两个且互为相反数,负数没有平方根;正数的立方根是正数,负数的立方根是负数.师:跟平方根一样,偶次方根有下列性质:在实数范围内,正数的偶次方根有两个且互为相反数,负数没有偶次方根;跟立方根一样,奇次方根有下列性质:在实数范围内,正数的奇次方根是正数,负数的奇次方根是负数.这样,再由n次方根的定义我们便可得到n次方根的性质:2.根式运算性质:①(n>1,且n)②师:关于性质的推导,我们一起来看:师:性质②有一定变化,大家应重点掌握,接下来,我们来看例题:3.例题讲解师:根指数 n为奇数的题目较易处理,而例题侧重于根指数n为偶数的运算,说明此类题目容易出错,应引起大家的注意.为使大家进一步熟悉性质运用,请大家来做练习题.(III)课堂练习(IV)课时小结(V)课后作业教材练习A:1第二课时学习目标1.知识与技能目标理解分数指数幂的概念和性质,并能用于相关计算中;会对根式、分数指数幂进行互化;了解无理指数幂.2.过程与方法目标通过复习回顾初中所学的整数指数幂及上节课所学根式的相关性质,用类比的思想来完成分数指数幂的学习;3.情感态度与价值观目标培养学生用联系观点看问题;教学重难点教学重点:1.分数指数幂的概念.2.分数指数幂的运算性质.教学难点:对分数指数幂概念的理解.教学过程(I)复习回顾师:上一节课,我们一起复习了整数指数幂折运算性质,并学习了根式的运算性质.师:对于整数指数幂运算性质(2),当a>0,m,n是分数时也成立.(说明:对于这一点,课本采用了假设性质(2)对a>0,m,n是分数也成立这种方法,我认为不妨先推广性质(2),为下一步利用根式运算性质推导正分数指数幂的意义作准备).师:对于根式的运算性质,大家要注意被开方数a n的幂指数n与根式的根指数n的一致性.接下来,我们来看几个例子.幂运算性质(2).因此,我们可以得出正分数指数幂的意义.(II)讲授新课1.正数的正分数指数幂的意义:师:大家要注意两点,一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定.2.规定:(1)(2)0的正分数指数幂等于0.(3)0的负分数指数幂无意义.师:规定了分数指数幂的意义以后,指数的概念就从整数推广到有理数指数.当a>0时,整数指数幂的运算性质,对于有理指数幂也同样适用.即对于任意有理数r,s,均有下面的运算性质:3.有理指数幂的运算性质:(1)a r•a s=a r+s(a>0,r,s∈Q)(2)(a r)s=ar•(a>0,r,s∈Q)(3)(a•b)r=a r•b r(a>0,b>0,r∈Q)4.例题讲解例2:求值:分析:此题主要运用有理指数幂的运算性质.解:例3:用分数指数幂的形式表示下列各式:分析:此题应结合分数指数幂意义与有理指数幂运算性质.解:5.无理指数幂师:若a>0,p是一个无理数,则a p(如)表示一个确定的实数,即有理指数幂还可以推广到无理指数幂.我们现在还无法给出无理指数幂严格的定义,但是上述有理指数幂的运算性质,对于无理数指数幂都适用,而有关概念和证明我们现在也不考虑.现在我们可能还有一些疑问,究竟是一个什么样的数呢?我们按照要求的精确度,取无理数的不足近似值或过剩近似值:1.4,1.41,1.414,……(的不足近似值);1.5,1.42,1.415,……(的过剩近似值).其次,我们相应地可用有理指数幂的序列31.4,31.41,31.414,……或31.5,31.42,31.415,……来近似地计算无理指数幂的不足或过剩近似值.一般地,当a>0,α为任意实数时,实数指数幂aα都有意义.例1.利用科学计算器计算(精确到0.001):例2.利用科学计算器计算函数值.已知课后作业教材练习A:2,3;B:1,2,3。
教学设计2: 实数指数幂及其运算(二)
§3.1.1 实数指数幂及其运算(二)一.教学目标:1.知识与技能:(1)理解分数指数幂的概念;(2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质; (4)培养学生观察分析、抽象等的能力. 2.过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质. 3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; (3)让学生体验数学的简洁美和统一美. 二.重点、难点1.教学重点:(1)分数指数幂概念的理解;(2)掌握并运用分数指数幂的运算性质; 2.教学难点:分数指数幂概念的理解 三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体四、教学过程: 提问:1.习初中时的整数指数幂,运算性质?00,1(0),0n a a a a a a a =⋅⋅⋅⋅⋅=≠无意义1(0)n na a a -=≠;()m n m n m n mn a a a a a +⋅== (),()n m mn n n n a a ab a b ==什么叫实数?有理数,无理数统称实数.2.观察以下式子,并总结出规律:a>0①1025a a===②842a a===③1234a a===1025a a===小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:23(0)a a==>12(0)b b==>54(0)c c==>*(0,,1)mna a n N n=>∈>为此,我们规定正数的分数指数幂的意义为:*0,,)mna a m n N=>∈正数的定负分数指数幂的意义与负整数幂的意义相同.即:*1(0,,)mnmna a m n Na-=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)nm m m ma a a a a=⋅⋅⋅⋅>由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(0,,)r s r sa a a a r s Q+⋅=>∈(2)()(0,,)r S rsa a a r s Q=>∈(3)()(0,0,)r r ra b a b Q b r Q⋅=>>∈若a>0,P是一个无理数,则(0,)pa a p>是一个无理数该如何理解?为了解决这个问题,引导学生先阅读课本P62——P62.的不足近似值,的.所以,的方向逼近时,的过剩似值从大于时,(如课本图所示)所以,.一般来说,无理数指数幂(0,)pa a p >是一个无理数是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:(0,,)r s r s a a a a r R s R +⋅=>∈∈ ()(0,,)r s rs a a a r R s R =>∈∈ ()(0,)r r r a b a b a r R ⋅=>∈例1求值:①832;②2521-③(21)-5;④(8116)43-.活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,21写成2-1,8116写成(32)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①832=(23)32=2323⨯=22=4; ②2521-=(52)21-=5)21(2-⨯=5-1=51; ③(21)-5=(2-1)-5=2-1×(-5)=32;④(8116)43-=(32))43(4-⨯=(32)-3=827.点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如832=328=364=4. 例2用分数指数幂的形式表示下列各式. a 3·a ;a 2·32a ;3a a (a >0).活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·a =a 3·a 21=a 213+=a 27;a 2·32a =a 2·a 32=a232+=a 38;3a a =(a ·a 31)21=(a 34)21=a 32.点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.例3计算下列各式(式中字母都是正数): (1)(2a 32b 21)(-6a 21b 31)÷(-3a 61b 65); (2)(m 41n83-)8. 活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤. 解:(1)原式=[2×(-6)÷(-3)]a612132-+b653121-+=4ab 0=4a ;(2)(m 41n83-)8=(m 41)8(n 83-)8=m 841⨯n883⨯-=m 2n -3=32nm.点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了. 本例主要是指数幂的运算法则的综合考查和应用. 变式训练 求值:(1)33·33·63;(2)6463)12527(nm . 解:(1)33·33·63=3·321·331·361=36131211+++=32=9;(2)6463)12527(n m =(6463)12527(n m =(646333)53(n m =646643643643)()5()()3(n m =42259n m =42259-n m . 例4求值或化简. (1)3224ab ba -(a >0,b >0);(2)(41)21-213321)()1.0()4(---b a ab (a >0,b >0);(3)246347625---+-.活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律. 解:(1)3224ab ba -=2224b a -(a 31b 32)21=a -2ba 61b 31=a611-b 34=61134ab .点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.(2)(41)21-2133231)()1.0()4(---b a ab =223211044•a 23a 23-b 23-b 23=254a 0b 0=254.点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数. (3)246347625---+-=222)22()32()23(---+- =3-2+2-3-2+2 =0.点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用. 例5化简下列各式: (1)323222323222--------+--++yxy x yxy x ;(2)(a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a -a -1)].活动:学生观察式子的特点,特别是指数的特点,教师引导学生考虑题目的思路,这两题要注意分解因式,特别是立方和和立方差公式的应用,对有困难的学生及时提示:对(1)考查x 2与x 32的关系可知x 2=(x32)3,立方关系就出来了,公式便可运用,对(2)先利用平方差,再利用幂的乘方转化为立方差,再分解因式,组织学生讨论交流. 解:(1)原式=323222323222--------+--++yxy x yxy x=])())(()[()()(23232322322323232232--------++-+-yyx x yy x x=343234343234)()(---------+-yxy xy xy x=xyxy xy 3322)(2-=--; (2)原式=[(a 3)2-(a -3)2]÷[(a 4+a -4+1)(a -a -1)]=))(1()()(1442222----++-a a a a a a =))(1()1)((1444422-----++++-a a a a a a a a =1212)(----a a a a =a +a -1.点评:注意立方和立方差公式在分数指数幂当中的应用,因为二项和、差公式,平方差公式一般在使用中一目了然,而对立方和立方差公式却一般不易观察到,a 23=(a 21)3还容易看出,对其中夹杂的数字m 可以化为m ·a 21a 21-=m ,需认真对待,要在做题中不断地提高灵活运用这些公式的能力. 知能训练课本P 59习题2.1A 组 3. 利用投影仪投射下列补充练习: 1.化简:(1+2321-)(1+2161-)(1+281-)(1+241-)(1+221-)的结果是( )A.21(1-2321-)-1 B.(1-2321-)-1 C.1-2321- D.21(1-2321-) 分析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形. 因为(1+2321-)(1-2321-)=1-2161-,所以原式的分子分母同乘以(1-2321-),依次类推,所以321212121)21)(21(----+-=32112121----=21(1-2321-)-1. 答案:A2.计算(297)0.5+0.1-2+(22710)32--3π0+9-0.5+490.5×2-4.解:原式=(925)21+100+(6427)32-3+4921×161=53+100+169-3+31+167=100.3.计算1212--+-+a a a a (a ≥1). 解:原式=|11|11)11()11(22--++-=--++-a a a a (a ≥1).本题可以继续向下做,去掉绝对值,作为思考留作课下练习.4.设a >0,x =21(a n 1-a n 1-),则(x +2x 1+)n 的值为_______.分析:从整体上看,应先化简,然后再求值,这时应看到解:1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.这样先算出1+x 2,再算出2x 1+,将x =21(a n 1-a n 1-)代入1+x 2,得1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.所以(x +2x 1+)n=[21(a n 1-a n1-)+41(a n 1+a n 1-)2]n=[21(a n 1-a n1-)+21(a n 1+a n 1-)]n=a .答案:a 课堂小结(1)无理指数幂的意义.一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数. (2)实数指数幂的运算性质:对任意的实数r ,s ,均有下面的运算性质: ①a r ·a s =a r +s (a >0,r ,s ∈R ). ②(a r )s =a rs (a >0,r ,s ∈R ). ③(a ·b )r =a r b r (a >0,b >0,r ∈R ). (3)逼近的思想,体会无限接近的含义. 作业课本P 60习题2.1 B 组 2.。
实数指数幂及运算法则教案
一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及运算法则解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳实数指数幂的运算法则;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生的团队合作精神。
二、教学重点与难点1. 教学重点:(1)实数指数幂的概念;(2)实数指数幂的运算法则;(3)运用实数指数幂及运算法则解决实际问题。
2. 教学难点:(1)实数指数幂的运算法则的推导和理解;(2)运用实数指数幂及运算法则解决实际问题。
三、教学准备1. 教师准备:(1)实数指数幂的相关知识;(2)实数指数幂的运算法则的例题和练习题;(3)实数指数幂的实际问题。
2. 学生准备:(1)掌握实数的基本概念;(2)具备一定的数学运算能力。
四、教学过程1. 导入:(1)复习实数的基本概念;(2)引导学生思考实数指数幂的概念。
2. 知识讲解:(1)讲解实数指数幂的概念;(2)推导和讲解实数指数幂的运算法则;(3)运用实际例子解释实数指数幂及运算法则的应用。
3. 课堂练习:(1)让学生独立完成练习题;(2)讲解练习题的解题思路和方法。
4. 课堂小结:(1)回顾本节课所学内容;(2)强调实数指数幂及运算法则的重要性和应用。
五、课后作业1. 复习本节课所学内容;2. 完成课后练习题;3. 思考和解决实际问题。
六、教学评估1. 课堂讲解评估:(1)观察学生对实数指数幂概念的理解程度;(2)评估学生对实数指数幂运算法则的掌握情况;(3)评价学生的课堂参与度和提问回答情况。
2. 课堂练习评估:(1)检查学生练习题的完成情况;(2)分析学生解题思路和方法的正确性;(3)针对学生易错点进行讲解和辅导。
七、教学反思1. 反思教学内容:(1)是否全面讲解了实数指数幂的概念和运算法则;(2)是否结合实际例子让学生更好地理解实数指数幂的应用;(3)是否注重了学生的课堂参与和思维能力的培养。
实数指数幂及运算法则教案
实数指数幂及运算法则教案一、教学目标1. 理解实数指数幂的概念,掌握有理数指数幂的性质。
2. 掌握实数指数幂的运算法则,能够熟练进行相关计算。
3. 能够运用实数指数幂及运算法则解决实际问题。
二、教学重点与难点1. 教学重点:实数指数幂的概念,有理数指数幂的性质,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法1. 采用讲授法,讲解实数指数幂的概念、性质和运算法则。
2. 利用例题解析,让学生掌握实数指数幂的运算方法。
3. 开展小组讨论,引导学生探索实数指数幂的运算法则的应用。
四、教学内容1. 实数指数幂的概念2. 有理数指数幂的性质3. 实数指数幂的运算法则4. 实数指数幂的运算法则在实际问题中的应用五、教学安排1. 第一课时:实数指数幂的概念、有理数指数幂的性质2. 第二课时:实数指数幂的运算法则、例题解析3. 第三课时:实数指数幂的运算法则的应用、小组讨论4. 第四课时:课堂小结、作业布置5. 第五课时:作业批改与讲解、课后辅导六、教学过程1. 导入新课:回顾上一节课的内容,引出实数指数幂的运算法则。
2. 讲解实数指数幂的运算法则:引导学生通过观察、分析、归纳实数指数幂的运算法则。
3. 例题解析:讲解典型例题,让学生掌握实数指数幂的运算方法。
4. 小组讨论:让学生探讨实数指数幂的运算法则的应用,分享解题心得。
5. 课堂小结:对本节课的内容进行总结,强调实数指数幂的运算法则的重要性。
七、课后作业1. 复习实数指数幂的运算法则。
2. 完成课后练习题,巩固所学知识。
3. 思考实际问题,运用实数指数幂的运算法则解决问题。
八、作业批改与讲解1. 及时批改学生作业,了解学生掌握情况。
2. 针对学生作业中出现的问题,进行讲解和辅导。
3. 鼓励学生提问,解答学生心中的疑惑。
九、课后辅导1. 针对学习有困难的学生,进行个别辅导。
2. 组织课后讨论小组,帮助学生巩固实数指数幂的运算法则。
实数指数幂及运算法则教案
实数指数幂及运算法则教案一、教学目标1. 理解实数指数幂的概念,掌握有理数指数幂的运算性质。
2. 掌握实数指数幂的运算法则,能够运用运算法则解决实际问题。
3. 培养学生的数学思维能力,提高学生的数学素养。
二、教学重点与难点1. 教学重点:实数指数幂的概念,有理数指数幂的运算性质,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法采用问题驱动法、案例分析法、分组讨论法等多种教学方法,引导学生主动探究、合作学习,提高学生解决问题的能力。
四、教学准备1. 教师准备:实数指数幂的相关知识,运算法则的案例,教学PPT等。
2. 学生准备:预习实数指数幂的相关知识,准备好笔记本。
五、教学过程1. 导入新课教师通过复习实数的基本概念,引导学生进入实数指数幂的学习。
2. 知识讲解(1)实数指数幂的概念教师讲解实数指数幂的定义,引导学生理解指数幂的意义。
(2)有理数指数幂的运算性质教师讲解有理数指数幂的运算性质,引导学生掌握运算规律。
(3)实数指数幂的运算法则教师讲解实数指数幂的运算法则,引导学生掌握运算法则。
3. 案例分析教师展示实数指数幂的运算案例,引导学生运用运算法则解决问题。
4. 课堂练习教师布置课堂练习题,学生独立完成,教师进行讲解和辅导。
5. 总结与拓展教师对本节课的知识进行总结,引导学生思考实数指数幂在实际问题中的应用。
6. 课后作业教师布置课后作业,巩固所学知识。
六、教学反思教师在课后对教学情况进行反思,针对学生的掌握情况,调整教学策略,以提高教学效果。
七、教学评价通过课堂表现、课后作业和课堂练习,评价学生对实数指数幂及运算法则的掌握程度。
八、教学时间本节课计划用2课时完成。
九、教学资源1. 教学PPT2. 实数指数幂的案例分析资料3. 课堂练习题十、教学拓展引导学生学习实数指数幂在实际问题中的应用,如科学计算、经济学等领域。
六、教学活动设计1. 导入新课:通过复习实数的乘方概念,引导学生自然过渡到实数指数幂的学习。
《实数指数幂及其运算》(第1课时) 示范公开课教学设计
《实数指数幂及其运算》教学设计◆教学目标(1)理解有理指数幂的含义,能运用有理指数幂的运算性质进行运算和化简,会进行根式与分数指数幂的相互转化;提升学生的数学抽象素养;(2)了解实数指数幂的意义,体会有理指数幂向无理指数幂逼近的过程.提升学生的直观想象素养.(3)掌握有理数指数幂的运算性质,能运用性质进行化简计算,提升学生的数学运算素养.◆教学重难点◆教学重点:分数指数幂的概念及分数指数的运算性质.教学难点:分数指数概念,对非整数指数幂意义的了解,特别是对无理指数幂意义的了解.◆课前准备PPT课件.◆教学过程一、整体概览问题1:阅读课本第2页,回答下列问题:(1)本章将要研究哪类问题?(2)本章要研究的对象在高中的地位是怎样的?(3)本章研究的起点是什么?目标是什么?师生活动:学生带着问题阅读课本,老师指导学生概括总结章引言的内容.预设的答案:(1)本章将要研究指数函数、对数函数、幂函数这三类基本初等函数的性质与图像.(2)本章是继上一章学习函数及其性质的基础上继续深入学习的一部分,是高中函数学习的第二个阶段,目的是使学生获得较为系统的函数知识,并初步了解函数的一般方法,培养函数应用的意识,为今后的学习打下坚实的基础,同时使学生对函数的认识由感性上升到理性,因此,这一章起到了承前启后的重要作用.(3)起点是分数指数幂和根式的概念,目标是通过研究分数指数幂和根式使学生对指数函数及对数函数等基本初等函数的图像及其性质有更加理性的认知,对掌握基础的数学语言有不可或缺的作用.设计意图:通过章引言的学习,让学生明晰下一阶段的学习目标,初步搭建学习内容的框架.二、问题导入问题2:国家统计局有关数据显示,我国科研和开发机构基础研究经费支出近些年呈爆炸式增长:2013年为221.59亿元,2014年、2015年、2016年的年增长率分别为16.84%,14.06%,14.26%.你能根据这三个年增长率的数据,算出年平均增长幸,并以2013年的经费支出为基础,预测2017年及以后各年的经费支出吗?师生活动:考虑到学生可能对平均增长率不太熟悉,在课堂上可以先不要求进行相关计算,但是用利用本节将要学习的内容解决相关问题.相关的计算和预测数据等,在本节最后将会呈现.设计意图:从学生熟悉的现实生活中常见的但又不知如何解决此类问题的情境导入,制造一种熟悉又陌生的感觉,激起学生的疑惑,激发学生的兴趣.引语:为了解决类似情境中的问题,我们需要对指数运算有更多的了解.(板书:实数指数幂及其运算)【新知探究】1.把初中学过的知识作为实例,感知指数幂,分析出有理指数幂的概念,并逐步引到实数指数幂的研究上.初中我们已经学习了整数指数幂的知识,例如25=2×2×2×2×2=32, 30=师生活动:问题1 整数指数幂a n (n ∈N +)的意义是什么?a n 、a 、n 分别叫做什么?一般地,a n 中的a 称为底数,n 称为指数①.==-53153追问1:正整指数幂有哪些运算法则?整数指数幂运算的运算法则有a m a n=a m+n,(a m)n=a mn,(ab)m=a mb m.追问2:对于幂指数0,是否满足上述法则?(让学生自由发挥,分组讨论,一起判断,教师点评.)预设的答案:(1)非零实数的0次幂等于1;(2)0的0次幂无意义.2、初中我们还学习了平方根和立方根:(1)如果x2=a,则称x为a的平方根(或二次方根):当a>0时,a有两个平方根,它们互为相反数,负的平方根记为当a=0时,a只有一个平方根,=;当a<0时,a在实数范围内没有平方根.例如,=二次根式的运算法则有2a===(2)如果x3=a,则x称为a的立方根(或三次方根),在实数范围内,任意实数a有且只例如,=问题3:类比二次方根和三次方根,给出四次方根和五次方根的定义?预设的答案:(1)如果,4ax=则x称为a的四次方根:当a>0时,a有两个四次方根,它们互为相反数,正的四次方根记作4a,负的四次方根记作a=0时,a只有一个四次方根,记作04=;当a<0时,a在实数范围内没有四次方根.(2)如果,5ax=则x称为a的五次方根:在实数范围内,任意实数a有且只有一个五次方根,记作5a.师生活动:问题4:通过上述问题的探讨,请同学们自行归纳出n次方根的概念938预设的答案:一般地,给定大于1的正整数n 和实数a ,如果存在实数x ,使得 x n =a ,则x 称为a 的n 次方根.总结:本章中,所有字母的取值范围均默认为使式子有意义的取值范围.例如,因为方程x 4=81的实数解为3与-3,因此3与-3都是81的4次方根:因为25=32,而且x 5=32只有一个实数解,所以32的5次方根为2 根据方程x n =a 解的情况不难看出:(1)0的任意正整数次方根均为0,记为000=.(2)正数a 的偶次方根有两个,它们互为相反数,其中正的方根称为a 的n 次算术根,记为n a ,负的方根记为-n a ;负数的偶数次方根在实数范围内不存在,即当a <0且n 为偶数时,n a 在实数范围内没有意义.(3)任意实数的奇数次方根都有且只有一个,记为n a .而且正数的奇数数次方根是一个正数,负数的奇数数次方根是一个负数.当n a 有意义的时候,n a 称为根式,n 称为根指数,a 称为被开方数. 一般地,根式具有以下性质: (1)a a nn =)((2)当n 为奇数时,a a n n=;当n 为偶数时,||a a n n =强调:(1)n a 一般读作“n 次根号a ”(2)当a <0且n 为偶数时,n a 在实数范围内没有意义;(3)当n a 有意义时,n a 是一个实数,而且它的n 次方等于a ,即a a nn =)(预设的答案:(1)2- (2)23) 4- (4)2 (5)|a −b | (6)2)(b a - 设计意图:通过让学生自行归纳n 次方根的概念,培养学生利用类比等方式学习新知识的能力,通过特殊情况归纳得到一般情况是本书反复强调的一点,符合学生的认知习惯.问题5:对于n a ,当n 是正整数时的意义我们已经知道,那么这里的n 能不能是分数呢?当n 是分数时,n a 的意义又是什么呢?预设的答案:n 可以是分数,比如215,215应该满足555)5(1221221===⨯,这表示215应该是5的平方跟,但是5的平方根有两个,即5和5-,为了方便起见,我们规定5521=.当n 是分数时,na 的意义是如果n 是正整数,那么:当n a 有意义时,规定n na a =1设计意图:通过让学生对具体实例的理解,快速的理解一般情况的事实.总结:对于一般的正分数nm ,也可作类似规定,即 nm m n n ma a a ==)(但值得注意的是,这个式子在nm不是既约分数(即m ,n 有大于1的公约数)时可能会有歧义.追问:当0≠a 且m 与n 都是正整数时,n mnm a a=,那么此时该如何理解nm a-呢?预设的答案:可以从运算法则的角度来理解,即nmnm nm aaa10==--.设计意图:培养学生分析和归纳的能力.因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即: (1)(2) (3)(0,,)rsr sa a aa r s Q +⋅=>∈()(0,,)r S rsa a a r s Q =>∈()(0,0,)rr ra b a b Q b r Q ⋅=>>∈本资源展现分数指数幂的意义,辅助教师教学,加深学生对于知识的理解和掌握.本资源适用于分数指数幂的意义的教学,供教师备课和授课时参考.若需使用,请插入微课【知识点解析】分数指数幂的意义问题6:求证:如果a >b >0,n 是大于1的自然数,那么11nna b > 证明 假设nnb a 11<或nnb a 11=根据不等式的性质与根式的性质,得a <b 或a =b . 这都与a >b 矛盾,因此假设不成立,从而nnb a 11> 利用上述结论,可以证明(留作练习): (1)如果a >s >0,s 是正有理数,那么a s >b s ; (2)如果a >1,s 是正有理数,那么a s >1,a -s <1; (3)如果a >1,s >t >0,且s 与t 均为有理数,那么a s >a t问题7:若>0,P 是一个无理数,则该如何理解?为了解决这个问题,引导学生先阅读课本6页.a (0,)pa a p >是一个无理数此图片是动画缩略图,本资源通过数轴上近似值逼近的方法认识无理数指数幂,通过交互式动画的方式,运用了本资源,可以吸引学生的学习兴趣,增加教学效果,提高教学效率. ,本资源适用于认识无理数指数幂的教学,供教师备课和授课使用..若需使用,请插入【数学探究】认识无理数指数幂 .预设的答案:一般来说,无理数指数幂是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:(0,)pa a p >是一个无理数(0,,)r s r s a a a a r R s R +⋅=>∈∈()(0,,)r s rs a a a r R s R =>∈∈()(0,)r r r ab a b a r R ⋅=>∈本资源展现无理数指数幂的意义,辅助教师教学,加深学生对于知识的理解和掌握.本资源适用于无理数指数幂的意义的教学,供教师备课和授课时参考.若需使用,请插入图片【知识点解析】无理数指数幂的意义 例1.求值:①8;②25③()-5;④().师生活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,写成2-1,写成()4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①8=(23)=2=22=4; ②25=(52)=5=5-1=; ③()-5=(2-1)-5=2-1×(-5)=32; ④()=()=()-3=.设计意图:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如8===4.3221-21811643-218116323232323⨯21-21-)21(2-⨯5121811643-32)43(4-⨯3282732328364例2用分数指数幂的形式表示下列各式.a 3·;a 2·;(a >0).师生活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·=a 3·a =a=a ;a 2·=a 2·a =a=a ;=(a ·a )=(a )=a .设计意图:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数. 例3计算下列各式(式中字母都是正数): (1)(2a b )(-6a b )÷(-3a b ); (2)(m n)8.师生活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤. 解:(1)原式=[2×(-6)÷(-3)]a b=4ab 0=4a ;(2)(m n)8=(m )8(n)8=mn =m 2n -3=. 设计意图:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了. 本例主要是指数幂的运算法则的综合考查和应用.a 32a 3a a a 21213+2732a 32232+383a a 31213421323221213161654183-612132-+653121-+4183-4183-841⨯883⨯-32n m设计意图:巩固集合的概念,元素与集合之间的关系.关键是要搞清每个集合中的元素是什么,进而确定给定的元素与集合之间的关系.【课堂小结】1.板书设计:4.1指数与指数函数1.有理指数幂例12.有理指数幂的性质例23.实数指数幂例3练习与作业:教科书第8页练习A1,2题;教科书第8页练习B 1,4题.2.总结概括:问题8:(1)无理指数幂的意义是什么?.(2)实数指数幂的运算性质有哪些?(3)逼近的思想,体会无限接近的含义.师生活动:学生尝试总结,老师适当补充.预设的答案:(1一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.(2)对任意的实数r,s,均有下面的运算性质:①a r·a s=a r+s(a>0,r,s∈R).②(a r)s=a rs(a>0,r,s∈R).③(a·b)r=a r b r(a>0,b>0,r∈R).设计意图:通过梳理本节课的内容,能让学生更加明确指数幂的有关知识.布置作业:教科书第8页练习B 1-4题.【目标检测】1.下列说法中:①16的4次方根是2; ②416的运算结果是±2; ③当n为大于1的奇数时,na对任意a∈R都有意义;④当n为大于1的偶数时,na只有当a≥0时才有意义.其中正确的是()A.①③④B.②③④C.②③D.③④设计意图:考查学生对指数幂的掌握程度.2.2.已知x5=6,则x等于()A. 6B.56 C.-56 D.±56设计意图:考查学生对根式的理解.3.m是实数,则下列式子中可能没有意义的是()A.4m2 B.3m C.6m D.5-m 设计意图:考查学生对根式的理解及运算的素养.参考答案:1、①错,∵(±2)4=16,∴16的4次方根是±2; ②错,416=2,而±416=±2. ③④正确. 答案D2、由根式的定义知,x5=6,则x=56,故选B.3、要使6m有意义,m≥0.。
实数指数幂及运算法则教案
实数指数幂及运算法则教案一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及运算法则解决实际问题。
2. 过程与方法:(1)通过实例引入实数指数幂的概念;(2)引导学生发现并归纳实数指数幂的运算法则;(3)运用运算法则进行变形和求解。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生主动探索、合作学习的意识;(3)培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 实数指数幂的概念:(1)引入平方根、立方根的概念;(2)引导学生理解实数指数幂的概念,即a^n 表示n 个a 相乘。
2. 实数指数幂的运算法则:(1)同底数幂的乘法:a^m a^n = a^(m+n);(2)同底数幂的除法:a^m / a^n = a^(m-n);(3)幂的乘方:a^m^n = a^(mn);(4)积的乘方:(ab)^n = a^n b^n;(5)零指数幂:a^0 = 1(a ≠0);(6)负指数幂:a^-n = 1 / a^n(a ≠0)。
三、教学重点与难点1. 教学重点:(1)实数指数幂的概念;(2)实数指数幂的运算法则。
2. 教学难点:(1)实数指数幂的运算法则的应用;(2)解决实际问题中指数幂的运用。
四、教学方法1. 实例引入:通过实际问题引入实数指数幂的概念;2. 引导发现:引导学生发现并归纳实数指数幂的运算法则;3. 练习巩固:运用运算法则进行变形和求解;4. 实际应用:解决实际问题,巩固知识。
五、教学步骤1. 导入新课:通过实际问题引入实数指数幂的概念;2. 讲解与演示:讲解实数指数幂的概念,演示运算法则的运用;3. 练习与讨论:学生独立练习,小组讨论,共同解决问题;4. 总结与拓展:总结实数指数幂的运算法则,拓展相关知识;5. 作业布置:布置练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问了解学生对实数指数幂概念和运算法则的理解程度;2. 练习题:布置课堂练习题,检查学生掌握运算法则的情况;3. 小组讨论:观察学生在小组讨论中的参与程度和合作能力;4. 课后作业:检查课后作业的完成质量,了解学生对知识的掌握和运用能力。
实数指数幂及其运算教学设计
第三章 基本初等函数(Ⅰ) 3.1.1 实数指数幂及其运算 第1课时本章教材分析教材把指数函数、对数函数、幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,从而让学生体会建立和研究一个函数模型的基本过程和方法,学会运用具体的函数模型解决一些实际问题.本章总的教学目标是:了解指数函数模型的实际背景,理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念和意义,掌握f(x)=a x 的符号及意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点),通过应用实例的教学,体会指数函数是一种重要的函数模型;理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用;通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x 的符号及意义,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点);知道指数函数y=a x 与对数函数y=log a x 互为反函数(a >0,a≠1),初步了解反函数的概念和f -1(x)的意义;通过实例了解幂函数的概念,结合五种具体函数y=x,y=x 2,y=x 3,y=x -1,y=x 21的图象,了解它们的变化情况.本章的重点是三种初等函数的概念、图象及性质,要在理解定义的基础上,通过几个特殊函数图象的观察,归纳得出一般图象及性质,这种由特殊到一般的研究问题的方法是数学的基本方法.把这三种函数的图象及性质之间的内在联系及本质区别搞清楚是本章的难点.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情境创设.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容作了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想.建议教学中重视知识间的迁移与互逆作用.教材对反函数的学习要求仅限于初步的知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生的学习负担.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能.教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.3.1 指数与指数函数3.1.1 实数指数幂及其运算 整体设计教学分析我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n 次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持. 三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美. 重点难点 教学重点:(1)分数指数幂和根式概念的理解. (2)掌握并运用分数指数幂的运算性质. (3)运用有理指数幂性质进行化简、求值. 教学难点:(1)分数指数幂及根式概念的理解. (2)有理指数幂性质的灵活应用. 课时安排 3课时教学过程第1课时 实数指数幂及其运算(1)导入新课即时聊天工具qq 的强大传播功能 新知探究一、正整数指数幂(复习):1.()na n N +∈的意义: n na a aa =⋅2.()na n N +∈的运算:(1)m n m na a a+⋅= (2)()m n m na a⋅=(3)(,0)m m n n a a m n a a-=>≠ (4)()m m ma b a b ⋅=⋅3.负整数指数幂(拓展):规定: 01(0)a a =≠ 1(0)n n a a a-=≠ 练习1想一想=08 =-08)( =-≠0)时,(b a b a =-310=--621)( =-32)(x =-323)(r x =0001.0二、根式:1.复习:问题: 2x a = 3x a = 则x 的取值是什么? 2.拓展:如果存在实数x ,使得nx a =(,1,)a R n n N +∈>∈,则x 叫做a 的n 次方根;求a 的n 次方根,叫做把a 开n 次方,称作开方运算, 正数a 的正n 次方根叫做a 的n 次算术根。
实数指数幂及运算法则教案
实数指数幂及运算法则教案一、教学目标:1. 理解实数指数幂的概念及性质。
2. 掌握实数指数幂的运算法则。
3. 能够运用实数指数幂及运算法则解决实际问题。
二、教学重点与难点:重点:实数指数幂的概念、性质及运算法则。
难点:实数指数幂在实际问题中的应用。
三、教学准备:1. 教学课件或黑板。
2. 教学素材(例如:数学题、实际问题等)。
四、教学过程:1. 引入:通过生活中的实际例子(如电话号码、楼层等)引出实数指数幂的概念。
2. 讲解:讲解实数指数幂的定义、性质及运算法则。
3. 练习:让学生通过练习题巩固所学知识。
4. 应用:结合实际问题,让学生运用实数指数幂及运算法则解决问题。
五、课后作业:1. 完成练习册相关题目。
2. 举出生活中的实际例子,运用实数指数幂及运算法则进行解释。
六、教学评价:1. 课堂讲解:评价学生对实数指数幂概念、性质及运算法则的理解程度。
2. 课后作业:评价学生运用实数指数幂及运算法则解决实际问题的能力。
3. 单元测试:评价学生对实数指数幂及运算法则的掌握程度。
七、教学反思:在教学过程中,要注重让学生理解实数指数幂的概念,引导学生掌握运算法则,并通过实际问题激发学生的学习兴趣。
在课后,要关注学生的学习情况,及时解答学生的疑问,提高学生运用知识解决实际问题的能力。
八、教学拓展:1. 研究其他数的指数幂及其运算法则。
2. 探索实数指数幂在科学、工程等领域的应用。
九、教学时间安排:1. 课时:本节课计划用2课时完成。
2. 教学进程:第一课时讲解实数指数幂的概念、性质及运算法则;第二课时进行练习、应用及课后作业布置。
十、教学素材来源:1. 人教版《数学》教材。
2. 网络资源。
3. 教师自编练习题。
六、教学活动设计:1. 导入:通过回顾上一节课的内容,引导学生进入本节课的学习。
2. 新课导入:讲解实数指数幂的运算法则,包括同底数幂的乘法、除法、幂的乘方与积的乘方等。
3. 案例分析:分析实际问题,运用实数指数幂的运算法则进行解答。
教学设计1: 实数指数幂及其运算(一)
3.1.1 实数指数幂及其运算(一)一.教学目标:1.知识与技能:理解n 次方根和根式的概念;2.过程与方法:(1)通过与初中所学的知识进行类比,掌握n 次方根及根式的概念.(2)正确运用根式运算性质进行运算,体验分类讨论思想的应用.3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.二.重点、难点1.教学重点:(1)根式概念的理解;(2)掌握根式的运算性质;2.教学难点:根式概念的理解三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体教学过程一、复习提问:什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若2x a =,则x 叫做a 的平方根.同理,若3x a =,则x 叫做a 的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零.二、新课讲解类比平方根、立方根的概念,归纳出n 次方根的概念.n 次方根:一般地,若n x a =,则x 叫做a 的n 次方根(throot ),其中n >1,且n ∈N*,当n 为偶数时,a 的n 次方根中,表示,如果是负数,用叫做根式.n 为奇数时,a 的nn 称为根指数,a 为被开方数.类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?,,:,,n a n a n a n ⎧⎪⎨±⎪⎩为奇数 的次方根有一个为正数为偶数 的次方根有两个为n a n a n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为负数:为偶数, 的次方根不存在.零的n0=举例:16的次方根为2±,275-的27-的4次方根不存在. 小结:一个数到底有没有n 次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n 为奇数和偶数两种情况.例1 求下列各式的值: (1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a >b ).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.解:(1)33)8(-=-8; (2)2)10(-=10; (3)44)3(π-=π-3; (4)2)(b a -=a -b (a >b ).点评:不注意n 的奇偶性对式子n na 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.变式训练求出下列各式的值: (1)77)2(-; (2)33)33(-a (a ≤1); (3)44)33(-a .解:(1)77)2(-=-2, (2)33)33(-a (a ≤1)=3a -3, (3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a 点评:本题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解.例2 223++223-=_________活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路. 解:223+=2)2(221++=2)21(+=2+1. 223-=122)2(2+-=2)12(-=2-1. 所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式.思考:上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x =223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x =22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.变式训练a -1,求a 的取值范围.解:a -12)1(-a =|a -1|=a -1,即a -1≥0,所以a ≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.知能训练(教师用多媒体显示在屏幕上)1.以下说法正确的是( )A.正数的n 次方根是一个正数B.负数的n 次方根是一个负数C.0的任何次方根都是零D.a 的n 次方根用n a 表示(以上n >1且n ∈N *).答案:C2.化简下列各式:(1)664;(2)42)3(-;(3)48x ;(4)636y x 答案:(1)2;(2)9;(3)x 2;(4)|x |y ;(5)|x -y |.3.计算407407-++=__________. 解:407407-++=2222)2(252)5()2(252)5(+•-++•+ =22)25()25(-++ =5+2+5-2- =25.答案:25拓展提升 问题:n n a =a 与(n a )n =a (n >1,n ∈N )哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论.解答:①(n a )n =a (n >1,n ∈N ).如果x n =a (n >1,且n ∈N )有意义,则无论n 是奇数或偶数,x =n a 一定是它的一个n 次方根,所以(n a )n =a 恒成立.例如:(43)4=3,33)5(-=-5. ②n n a =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a 当n 为奇数时,a ∈R ,n na =a 恒成立. 例如:552=2,55)2(-=-2. 当n 为偶数时,a ∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a ≥0,那么n n a =a .例如443=3, 40=0;如果a <0,那么n n a =|a |=-a ,如2(-3)=23=3. 即(n a )n =a (n >1,n ∈N )是恒等式,n n a =a (n >1,n ∈N )是有条件的.点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解.三.归纳小结:1.根式的概念:若n >1且*n N ∈,则n x a x 是的次方根,n 为奇数时,n 为偶数时,x =2.掌握两个公式:(0),||(0)n a a n n a a a ≥⎧==⎨-<⎩为奇数时为偶数时 四.作业:P 69习题2.1 A 组 第1题。
实数指数幂及其运算运算教案
3.1.1实数指数幂及其运算知识与技能: (1)掌握根式的概念;(2)规定分数指数幂的意义;(3)学会根式与分数指数幂之间的相互转化; (4)理解有理指数幂的含义及其运算性质; (5)了解无理数指数幂的意义过程与方法: 通过指数范围的扩大,使学生能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力.情感态度与价值观: 通过对根式与分数指数幂的关系的认识,使学生能学会透过表面去认清事物的本质. 一、引入课题有典故引入课题,了解指数指数概念提出背景,体会引入指数的必要性; 二、研探新知 (一)整数指数幂1、整整指数幂:n a 叫做a 的n 次幂,n →幂指数,a →幂底数,n 是正整数→正整数指数幂规定:a a =12、正整数指数幂的运算法则:(1)n m n m a a a +=⋅ (2)()mn nma a =(3))0,(≠>=-a n m a aa n m n m 且 (4)()m m mb a ab ⋅=3、零指数幂和负整数指数幂 规定:(1))0(0≠=a a a (2)),0(1+-∈≠=N n a a a nn 例:96页A-1二组:(1)若,m n Z ∈,满足5m a =,15n b=,则25m n -= .(2)已知21na=,*()n N ∈,则33n nnna a a a---=- (3)已知11a a --=,则66a a -+的值为(二)分数指数幂1、根式的概念:一般地,如果存在实数x,使得)(+N ∈>∈=n n R a a x n ,1,,那么x 叫做a 的n 次方根,求a 的n 次方根,叫做把a 开n 次方,称作开方运算。
a 的n 次方根用符号n a 表示.(1)正数a 的偶次方根有两个,它们互为相反数,分别表示为n a , -n a (a >0,n 为偶数)(2)负数的偶次方根在实数范围内不存在 (3)当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.都表示为n a (n 为奇数).(4)正数a 的正n 次方根,叫a 的n 次算数方根 2、根式的概念及性质:(1n 叫做根指数。
实数指数幂及其运算教案
实数指数幂及其运算一、教学目标: 知识与技能:(1)规定0指数幂和负数指数幂(2)掌握根式的概念与性质,熟练地将根式与分数指数幂之间的转化 (3)理解有理数指数幂的含义及其运算法则 过程与方法:通过指数范围的扩大,使学生理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力。
情感态度与价值观:通过对根式与分数指数幂的关系的认识,使学生能学会透过表面去认清事物的本质。
二、教学重点与难点教学重点:分数指数幂及根式的性质,实数指数幂的化简、求值 教学难点:实数指数幂的灵活应用 三、教学资源与教学手段 多媒体教室;学生自主思考,合作探究,教师加以引导。
四、教学过程模块一:首先,我们复习一下初中学过的正整数指数幂的概念及运算法则: a a a ⋅=2 a a a a ⋅⋅=3 a a a a n ⋅⋅⋅=定义:n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数。
法则:(1)nm nma a a +=⋅ (3) )0,(≠>=-a n m a aa nm n m(2) mnn m aa =)( (4)mmmb a ab =)(如果我们取消上述公式(3)中n m >的限制,令n m =或n m <比如:103333===-a a a a 2253531aa a a a ===--所以我们规定:)0(10≠=a a ),0(1+-∈≠=N n a aa n n 练一练:180= 1)8(0=- )(1)(0b a b a ≠=- 001.01011033==-64)21(6=-- 3381)2(xx =- 64223)(x r r x =- 4100001.0-= 12222--=c b a c b a模块二:在初中我们还学过平方根和立方根的概念。
如果a x =2,则x 叫做a 的平方根。
0>a 时,a x =或a x -=;0=a 时,00==x ;0<a 时,无实根。
实数指数幂及运算法则教案
实数指数幂及运算法则教案第一章:实数指数幂的概念与性质1.1 实数指数幂的定义解释实数指数幂的概念,如a^n 表示a 乘以自身n 次。
强调正实数指数幂表示正数的乘方,负实数指数幂表示分数的概念。
1.2 实数指数幂的性质介绍实数指数幂的基本性质,如a^n a^m = a^(n+m),(a^n)^m = a^(nm),以及a^n / a^m = a^(n-m)。
解释零指数幂和无穷大指数幂的性质,如a^0 = 1 和a^∞= ∞。
第二章:实数指数幂的运算规则2.1 同底数幂的乘法讲解同底数幂相乘的规则,即a^n a^m = a^(n+m)。
提供多个例子进行解释和练习。
2.2 同底数幂的除法解释同底数幂相除的规则,即a^n / a^m = a^(n-m)。
提供多个例子进行解释和练习。
第三章:幂的乘方与积的乘方3.1 幂的乘方介绍幂的乘方规则,即(a^n)^m = a^(nm)。
提供多个例子进行解释和练习。
3.2 积的乘方解释积的乘方规则,即(ab)^n = a^n b^n。
第四章:实数指数幂的指数函数4.1 指数函数的定义解释指数函数的概念,如f(x) = a^x,其中a 是底数,x 是指数。
强调指数函数的图像和性质,如当a > 1 时,函数是增函数;当0 < a < 1 时,函数是减函数。
4.2 指数函数的性质介绍指数函数的性质,如f(x) = a^x 的导数为f'(x) = a^x ln(a)。
提供多个例子进行解释和练习。
第五章:实数指数幂的应用5.1 指数幂在科学计算中的应用解释指数幂在科学计算中的应用,如放射性衰变、人口增长等。
提供实际例子进行解释和练习。
5.2 指数幂在代数表达式求值中的应用讲解如何使用指数幂的性质和运算法则来求解代数表达式。
提供多个例子进行解释和练习。
第六章:对数与指数幂的关系6.1 对数与指数幂的定义解释对数的概念,如log_a(b) 表示以a 为底数,b 的对数。
中职数学基础模块上册《实数指数幂及其运算法则》word教案
中职数学基础模块上册《实数指数幂及其运算法则》word教案教案目录:一、教学目标1.1 知识与技能目标1.2 过程与方法目标1.3 情感态度与价值观目标二、教学内容2.1 实数指数幂的定义与性质2.2 运算法则2.3 指数幂的应用三、教学重点与难点3.1 教学重点3.2 教学难点四、教学方法与手段4.1 教学方法4.2 教学手段五、教学过程5.1 导入新课5.2 知识讲解5.3 例题解析5.4 课堂练习5.5 总结与拓展教案一、教学目标1.1 知识与技能目标通过本节课的学习,使学生掌握实数指数幂的定义与性质,能够运用运算法则进行简单的计算。
1.2 过程与方法目标通过自主学习、合作探讨的方式,培养学生分析问题、解决问题的能力。
1.3 情感态度与价值观目标激发学生对数学的学习兴趣,培养学生的逻辑思维能力。
二、教学内容2.1 实数指数幂的定义与性质实数指数幂是指以实数为底数的指数幂,例如:2^3、3^4等。
2.2 运算法则同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于每个因式的乘方再相乘。
2.3 指数幂的应用指数幂在实际生活中有广泛的应用,如计算利息、折扣等。
三、教学重点与难点3.1 教学重点实数指数幂的定义与性质,运算法则的应用。
3.2 教学难点指数幂的运算法则的理解与运用。
四、教学方法与手段4.1 教学方法采用问题驱动法、案例教学法、小组合作学习法等。
4.2 教学手段利用多媒体课件、教学挂图、实物模型等辅助教学。
五、教学过程5.1 导入新课通过复习实数的基本概念,引出实数指数幂的概念。
5.2 知识讲解讲解实数指数幂的定义与性质,运算法则的推导与解释。
5.3 例题解析举例说明实数指数幂的运算法则的应用,引导学生进行思考。
5.4 课堂练习布置一些相关的练习题,让学生巩固所学知识。
5.5 总结与拓展对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。
实数指数幂及运算法则教案
实数指数幂及运算法则教案一、教学目标:1. 理解实数指数幂的概念,掌握有理数指数幂的运算性质。
2. 能够运用实数指数幂及运算法则解决实际问题。
3. 培养学生的逻辑思维能力,提高学生对数学知识的运用能力。
二、教学内容:1. 实数指数幂的定义与性质2. 有理数指数幂的运算性质3. 实数指数幂在实际问题中的应用三、教学重点与难点:1. 实数指数幂的定义与性质2. 有理数指数幂的运算性质3. 实数指数幂在实际问题中的应用四、教学方法:1. 采用讲授法,讲解实数指数幂的定义与性质,有理数指数幂的运算性质。
2. 利用案例分析法,分析实数指数幂在实际问题中的应用。
3. 组织学生进行小组讨论,分享学习心得。
五、教学步骤:1. 引入实数指数幂的概念,讲解实数指数幂的定义与性质。
2. 讲解有理数指数幂的运算性质,引导学生进行实际例子的计算。
3. 分析实数指数幂在实际问题中的应用,引导学生运用所学知识解决实际问题。
5. 对本节课的内容进行复习,布置作业,巩固所学知识。
六、教学评价:1. 课堂讲解的准确性,学生的理解程度。
2. 学生作业的完成情况,对实数指数幂及运算法则的掌握程度。
3. 学生小组讨论的活跃程度,对实际问题分析的能力。
七、教学资源:1. 教材《数学》2. 教案3. PPT4. 习题八、教学时间:1课时(45分钟)九、课后作业:1. 复习实数指数幂及运算法则,整理课堂笔记。
2. 完成课后习题,巩固所学知识。
3. 思考实数指数幂在实际问题中的应用,准备课堂分享。
十、板书设计:实数指数幂及运算法则教案一、教学目标:1. 理解实数指数幂的概念,掌握有理数指数幂的运算性质。
2. 能够运用实数指数幂及运算法则解决实际问题。
3. 培养学生的逻辑思维能力,提高学生对数学知识的运用能力。
二、教学内容:1. 实数指数幂的定义与性质2. 有理数指数幂的运算性质3. 实数指数幂在实际问题中的应用三、教学重点与难点:1. 实数指数幂的定义与性质2. 有理数指数幂的运算性质3. 实数指数幂在实际问题中的应用四、教学方法:1. 采用讲授法,讲解实数指数幂的定义与性质,有理数指数幂的运算性质。
实数指数幂及运算法则教案
实数指数幂及运算法则教案一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及运算法则解决实际问题。
2. 过程与方法:(1)通过观察、探究、归纳实数指数幂的运算法则;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣;(2)培养学生的团队合作精神。
二、教学重点与难点1. 教学重点:(1)实数指数幂的概念;(2)实数指数幂的运算法则。
2. 教学难点:(1)实数指数幂的运算法则的灵活运用;(2)解决实际问题。
三、教学准备1. 教具准备:(1)黑板;(2)粉笔;(3)多媒体教学设备。
2. 学具准备:(1)练习本;(2)计算器。
四、教学过程1. 导入新课(1)复习相关知识:幂的定义、运算法则;(2)提出问题:实数指数幂是什么?它有哪些运算法则?2. 自主探究(1)学生自主探究实数指数幂的定义;(2)学生分组讨论实数指数幂的运算法则;(3)各组汇报讨论成果。
3. 课堂讲解(1)讲解实数指数幂的定义;(2)讲解实数指数幂的运算法则;(3)举例说明实数指数幂的运算法则的应用。
4. 巩固练习(1)学生自主完成练习题;(2)教师点评答案,解答疑问。
5. 课堂小结(1)回顾本节课所学内容;(2)强调实数指数幂的运算法则的运用。
五、课后作业1. 完成练习册相关题目;2. 运用实数指数幂及运算法则解决实际问题。
六、教学拓展1. 对比实数指数幂与整数指数幂的差异;2. 探讨实数指数幂在实际问题中的应用,如放射性衰变、人口增长等。
七、实践操作1. 学生分组,利用计算器验证实数指数幂的运算法则;2. 每组选取一个实际问题,运用实数指数幂及运算法则求解,并分享解题过程。
八、课堂互动1. 教师提问,学生回答;2. 学生互相提问,共同解答;3. 教师点评互动过程,解答疑问。
九、总结反思1. 学生总结本节课所学内容;2. 学生分享自己在实践操作中的收获;3. 教师点评学生表现,总结实数指数幂及运算法则的重要性和实际应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校实数指数幂及其运算(Ⅰ)教学设计首都师范大学附属中学 姚璐课程名称:3.1.1实数指数幂及其运算(第一节)教材分析:1. 数系的扩充众所周知,人类对于数的认识经历了漫长的过程,从Z 到Q ,从Q 到R ,从R 到C ,乃至扩充到四元数等等。
虽然每一次数的范围的扩大往往伴随着质疑,但随着时间的发展,人们逐渐能够接受越来越多的数,而且寻找到了许多新的数背后所蕴含的实际意义。
数系扩充的动力主要包括两个方面:(1)生产生活的推动就本节课所涉及内容而言,指数模型是一种重要的数学模型,能较好的刻画许多自然现象(如放射性元素的衰变),在模型中变量t 显然是连续的,因此要求我们将指数推广到实数范围内。
(2)数学本身的推动许多数的出现都与方程有关(如负数,分数,复数等),根式也不例外。
当我们将数系扩充后,我们任然希望新的数系能较好的继承原有数系的一些性质。
事实上,如果我们假定指数运算拓展到实数范围内后,仍然继承下述性质:(1)m n m n a a a +=⋅(0a >,,m n ∈R )(2)当1a >时,若m n >,则m n a a >(0a >,,m n ∈R )当1a =时,若m n >,则m n a a =(0a >,,m n ∈R )当1a <时,若m n >,则m n a a <(0a >,,m n ∈R )则指数n a 的定义是唯一的2. Cauchy 法从Z 到Q 是非常重要的一步,这一步将一个疏集上定义的函数延拓到了一个稠密集上的函数,依靠的是,,<+⋅>Q 是,,<+⋅>Z 的分式环;从Q 到R 也是非常重要的一步,这一步将一个稠密集上的函数延拓到了一个连续集上的函数,依靠的是逼近的想法。
这种方法即为Cauchy 法.事实上,如果附加上连续性条件,我们可以得到许多函数的“特征性质”如:(1)()f x 是正比例函数或零函数()()(),,f m n f m f n m n ⇔+=⋅∀∈R(2)()f x 是指数函数或零函数()()(),,f m n f m f n m n ⇔+=⋅∀∈R(3)()f x 是对数函数或零函数()()(),,0f m n f m f n m n ⇔⋅=+∀>(4)()f x 是幂函数或零函数()()(),,0f m n f m f n m n ⇔⋅=⋅∀>3. 指数运算和加法运算,乘法运算的区别乘法运算是连加法运算的推广,指数运算是连乘法运算的推广。
但是同加法运算以及乘法运算相比,指数运算有一个非常大的区别,即一个幂的底数与指数的地位是不平等的。
换言之,一般的b a a b ≠因此尽管有幂指数对底数的分配律成立,即()c c c a b a b ⋅=⋅一般的,仍然有: ()()c c b b a a ≠,b c b c a a a ⋅≠⋅而这恰恰是学生的易错点学情分析:1. 初中阶段,学生学习过整数指数幂,经历了从正整数指数幂到整数指数幂的推演过程,能较为熟练的运用整数指数幂的运算性质解题,但零次幂和负整数指数幂为何选用该方式定义则较模糊,不够深刻。
初中阶段,学生学习过平方根运算和立方根运算,对于平方根和立方根运算相关性质掌握较好,易于接受高次方根的概念。
2. 本班是一个普通班,纯数学的推导较为抽象,相对较难,从具体模型入手则相对容易。
教学目标:知识与技能: 1.了解指数模型的实际背景2.理解根式及有理指数幂的含义3.掌握有理指数幂的运算性质过程与方法: 在解决简单实际问题的过程中,体会有理指数幂的含义 情感态度与价值观:体验数学与生产实践的紧密联系,提高数学应用意识 教学重点、难点:教学重点:分数指数幂的概念和分数指数幂的运算性质教学难点:根式的概念及分数指数概念教学设计:一、课前阅读:阅读下述材料,回答问题衰变是放射性元素放射出粒子后变成另一种元素的现象。
不稳定(即具有放射性)的原子核在放射出粒子及能量后,可变得较为稳定,这个过程称为衰变。
放射性同位素衰变的快慢有一定的规律。
例如,氡-222经过α衰变为钋-218,如果隔一段时间测量一次氡的数量级就会发现,每过3.8天就有一半的氡发生衰变。
也就是说,经过第一个3.8天,剩下一半的氡,经过第二个3.8天,剩有1/4的氡;再经过3.8天,剩有1/8的氡......因此,我们可以用半衰期来表示放射性元素衰变的快慢。
放射性元素的原子核有半数发生衰变所需的时间,叫做这种元素的半衰期。
不同的放射性元素,半衰期不同,甚至差别非常大。
例如,氡-222衰变为钋-218的时间为3.8天,镭-226衰变为氡-222的时间为1620年,铀-238衰变为钍-234的半衰期竟长达4.5×109年。
设计意图:创设问题情境问题一:现有一种新的放射性物质M,自然条件下每经过一年,剩余M的量为一年前的量的a倍。
假设某时刻放射性物质M的量为1,则在自然条件下:(1)1年后,剩余放射性物质M的量为多少?(2)2年后,剩余放射性物质M的量为多少?(3)3年后,剩余放射性物质M的量为多少?(4)n年后,剩余放射性物质M的量为多少?为什么?问题二:现有一种新的放射性物质M,自然条件下每经过一年,剩余M的量为一年前的量的a倍。
假设在自然条件下,放射性物质M放置了一段时间,剩余的量为1,则:(1)若放置时间为1年,则1年前放射性物质M的量为多少?(2)若放置时间为2年,则2年前放射性物质M的量为多少?(3)若放置时间为3年,则3年前放射性物质M的量为多少?(4)若放置时间为n年,则n年前放射性物质M的量为多少?为什么?二、问题引入问题四:前述表达中,n的取值范围是什么?问题五:现有一种新的放射性物质M,自然条件下每经过一年,剩余M的量为一年前的量的a倍。
假设某时刻放射性物质M的量为1,则在自然条件下:(1)半年后,剩余放射性物质M的量为多少?为什么?(2)一个月后,剩余放射性物质M的量为多少?为什么?(3)一年半后,剩余放射性物质M的量为多少?为什么?设计意图:结合具体模型为进一步引入有理指数幂及根式的概念作必要的准备三、概念形成:一般地,设a,b是实数,n为正整数.若n b a,则称b为a的n次单位根.(1)当n为奇数时,任何实数均恰有一个n(2)当n为偶数时,负数没有n次单位根;0有唯一的n次单位根0;正数有两个n次单位根,记作根式运算性质:,||,a na n⎧=⎨⎩为奇数为偶数问题六:观察等式332a==,mna(其中m、n是正整数)应该如何定义?设计意图:引入正有理指数幂的概念问题七:参考负整数次幂的实际意义,mna-(其中m、n是正整数)有何实际意义?应该如何定义?设计意图:引入负有理指数幂的概念问题八:为了对任意的整数m、n,mna和mna-都有意义,应该对a的取值范围补充哪些规定?设计意图:强调底数的取值范围.例1. 用分数指数幂表示下列各式①②③④⑤设计意图:有理指数幂形式与根式形式相互转化例2. 先将下列各式写成根式形式,再求值①1236②126449-⎛⎫⎪⎝⎭③2327④1410000⑤124-⑥32164⎛⎫⎪⎝⎭设计意图:体验根式形式的优点四、运算律:问题九:观察等式:()33113222a a a⎛⎫==⎪⎝⎭,31122a a a=⋅,它们分别是初中阶段哪条性质的推广?设计意图:引入指数运算的性质问题十:结合模型,说明m n m na a a+=⋅的含义.设计意图:阐明指数运算律的意义,帮助学生理解运算律.设a ,b 是任意正数,m ,n 是任意有理数,则:m n m n a a a +=⋅,()n m mn a a =,()m m m a b ab =例3. 计算① 151384a a a ⋅⋅ ② 61132x y -⎛⎫⋅ ⎪⎝⎭ 设计意图:有理指数运算性质应用例4. 计算①②0)x > 设计意图:体验有理指数运算的优点五、课堂小结:1. 本节课我们学习了分数指数幂的概念及与根式的关系2. 本节课我们将指数运算性质从整数指数推广到了有理指数幂3. 回顾数系的扩充,我们经历了++→→↓→→N N Q Z QR 回顾幂指数的扩充,我们经历了 ++→→↓↓→N N Q Z Q R六、课后作业:1. 课本90页B 组1、2题的偶数题2. 三新(3.1.1 实数指数幂及其运算(一))板书设计:3.1.1 实数指数幂及其运算一、根式 二、分数指数幂 三、运算律若n x a =(n +∈N )m m n a == a a a αβαβ+⋅=则 x 为a 的n 次方根 (0a ≥,,m n +∈N ,m n 既约) ()a a βααβ⋅=若n为奇数,则x = 1mn mn a a -= ()ab a b ααα=若n 为偶数,则x =0a >,,m n +∈N ,m n既约) ,Q αβ∈,0a > 教学反思:课堂实践基本实现了课前预期.以应用背景为主线,贯穿本节课的教学,有效的克服了本节课的难点,使学生较易接受有理指数幂的概念,为后期进一步学习实数指数幂、指数函数,乃至对数运算、对数函数、幂函数都提供了素材. 学生在得到下述连等式时:313122a a a ===⋅ 往往仅能关注到其中的一个或两个等式,生成的顺序也不尽相同,需要教师对各种可能情况做好预案,根据课堂进程加以引导.学生虽然较为容易的得到了公式:m n m n a a a +=⋅,()n m mn a a =但是后续还需要不断强化和训练,加深学生的熟练度本节课中关于根式运算的概念及其相关性质涉及较少,后续的课堂教学中需有针对性的补充和训练,否则可能会影响幂函数的学习(研究幂函数性质的一个重要方法,即将其改写为根式形式).。