第三章液流型态及水头损失习题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0= 7803020.8 00 2.5 0220.0071cm
0.05
701
0 0.0071
.
• Q 7.1 6 属于粗糙区,故采用尼库拉兹公式
0
1
0.023
[2lg(3.7d)]2
• 求出的λ值与假设相符合
• 通过上述计算说明同一个管径的水管中流过不同 的流量Q,其管壁可以是光滑区,或过渡粗糙区,
第三章习题解答
.
• 3-3 一矩形渠道,底宽为200cm,水深为15cm, 若水流流速为0.5m/s,水温为20℃,试判断其流 动型态。
• 解: RAbh 13.04cm x b2h
• 当t= 20℃时, =ע0.0101 cm2/s
Re vR64554500
故渠道流态为紊流 •
.
• 3-5 某二元明渠均匀流的流速分布规律为,如图 所示。
• (1)A、B两测压管的水头差为0.80m, • (2)经90秒钟流入量水箱的水体积为0.247m3。
试求该管段的沿程阻力系数λ值。
.
• 3-8 • 解:流量 QV0.2470.027m3/s
T 90
v Q 1.37m/ s
A
Q
hf
l d
v2 2g
hf
d2g lv2 0.042
.
• 3-10 为测定90°弯管的局部水头损失系数ζ值, 可采用如图所示的装置。已知AB段管长l为l0m, 管径d为50mm,该管段的沿程阻力系数λ为0.03, 今测得实验数据:
也可以是粗糙区。
.
• 若l=100m,求hf
• (1)Q5000cm3/s v10.2cm/s0.102m/s
0.028 ,
hf
l v2
d2g
hf 0.0280 1.0 2 0 5(01 .1 9 0 .6 2)20.006m
• (2)Q 2 0 0 0 0 c m 3 /sv 0 .4 1 m /s 0 .0 2 6
6.2734
0 .0 2 5 6 0 .0 2 6
.
• (3)当 Q200000cm3/s
v200000408cm/s 490
R e v d 4 0 0 .8 0 1 3 2 1 5 7 8 0 0 0 0 2 0 0 0 水 流 为 紊 流
设 0 .0 2 2求 层 流 底 层 0
设 0 .0 2 6求 层 流 底 层 0
0= 783 22 0.0802 .0 5260.0647cm
0.05 0.775
0 0.0647
.
Q 3000Re106
• •
且故采0.用3柯0列布0.鲁77克5-6怀属特于公过式渡求粗λ糙区
1 2lg[ 2.51 ]
Re 3.7d
2lg[ 2.51 0.5 ] 782000.162 3.7350
.
• 解:
• (1)当 Q5000cm3/s
A490cm2
v500010.2cm/s 490
R ev d1 0 0 ..0 2 1 3 2 1 5194502000
• 故水流为紊流
.
• 判别紊流属于何区
设 0 .0 2 8求 层 流 底 层 0
0=3R2e.8d 0.25cm
0 .0 5 0 .2 0 .3 故 属 于 光 滑 管 区 0 0 .2 5
Q
hj
v2 2g
2ghj v2
0.29
.
• 3-11 如图所示,水从水箱A流入水箱B,管路长l 为25m,管径d为25mm,沿程阻力系数λ为0.03, 管路中有两个90°弯管(d/p)=1及一个闸板式阀门 (a/d)=0.5 ,当两水箱的水位差H为1.0m时,试求 管内通过的流量为若干?
.
• 3-11
• (1)A、B两测压管的水头差为0.629m • (2)经2分钟流入量水箱的水量为0.329m3。试
求弯管的局部水头损失系数ζ值。
.
• 3-10
• 解:流量 QV0.3290.00274m 3/s
T 120
v Q 1.4m/ s
A
hf
l
d
v2 2g
0.6m
h j h w h f 0 .6 2 9 0 .6 0 .0 2 9 m
• 解:以B水箱的水面为基准面,列1-1,2-2断
面的能量方程
Hhw
1hf hj (dl 进2弯阀出 ) 2vg 2
式 中 进 = 0 .5弯 = 0 .1 3 1 0 .1 6 3 2 1 7/20 .2 9 4 2
阀 2 .0 6出 1 .0
1(0.03 25 0.520.29422.061) v2
采 用 伯 拉 修 斯 公 式 求 :
Q 4000Re105
0 R .e 1 0 3 .2 6 5 0 1 .1 1 . 3 8 6 0 .0 2 7求 出 得 值 与 假 设 相 符 合
.
• (2)当 Q20000cm3/s
v2000041.0cm/s 490
R e v d 4 0 1 .0 1 2 3 5 1 7 8 2 0 0 2 0 0 0 水 流 为 紊 流
0.025
2g
v0.75m/s
Q vA 0 .7 5 3 .1 4 0 .0 2 5 20 .0 0 4 m 3/s 4
hf 0.026400(0 1.9 4.1 6)20.09m
.
• (3)
Q 2 0 0 0 0 0 c m 3 /sv 4 . 0 8 m /s 0 . 0 2 3
(4.08)2 hf 0.02340019.6 7.85m
.
• 3-8 为了测定AB管段的沿程阻力系数λ值,可采 用如图所示的装置。已知AB段的管长l为10m,管 径d为50mm。今测得实验数据:
• (1)断面平均流速v与表面流速u0的比值是多少?
• (2)求流速分布曲线上与断面平均流速相等的点 的位置,即ym=?
ux
u0[1(
y)2 h
பைடு நூலகம்
]
.
• 3-5解: • (1)单位宽度明渠通过得流量为
q0huxdy0hu0[1(h y)2]dy
• 断面得平均流速
v q u0 h [1 ( y )2 ]dy
h h0
h
u0 h
2h 3
2 3
u0
.
• (2)
• 当ux=v时,即
2 3u0
u0[1(yhm)2]
2 [1 ( ym )2 ]
3
h
ym
3 h0.577h 3
.
• 3-7试求前题圆管中,通过的流量为5000 cm3/s, 20000cm3/s,200000cm3/s时,液流型态各为层 流还是紊流?若为紊流应属于光滑区、过渡粗糙 区还是粗糙区,其沿程阻力系数各为若干?若管 段长度为100m,问沿程水头损失各为若干?
0.05
701
0 0.0071
.
• Q 7.1 6 属于粗糙区,故采用尼库拉兹公式
0
1
0.023
[2lg(3.7d)]2
• 求出的λ值与假设相符合
• 通过上述计算说明同一个管径的水管中流过不同 的流量Q,其管壁可以是光滑区,或过渡粗糙区,
第三章习题解答
.
• 3-3 一矩形渠道,底宽为200cm,水深为15cm, 若水流流速为0.5m/s,水温为20℃,试判断其流 动型态。
• 解: RAbh 13.04cm x b2h
• 当t= 20℃时, =ע0.0101 cm2/s
Re vR64554500
故渠道流态为紊流 •
.
• 3-5 某二元明渠均匀流的流速分布规律为,如图 所示。
• (1)A、B两测压管的水头差为0.80m, • (2)经90秒钟流入量水箱的水体积为0.247m3。
试求该管段的沿程阻力系数λ值。
.
• 3-8 • 解:流量 QV0.2470.027m3/s
T 90
v Q 1.37m/ s
A
Q
hf
l d
v2 2g
hf
d2g lv2 0.042
.
• 3-10 为测定90°弯管的局部水头损失系数ζ值, 可采用如图所示的装置。已知AB段管长l为l0m, 管径d为50mm,该管段的沿程阻力系数λ为0.03, 今测得实验数据:
也可以是粗糙区。
.
• 若l=100m,求hf
• (1)Q5000cm3/s v10.2cm/s0.102m/s
0.028 ,
hf
l v2
d2g
hf 0.0280 1.0 2 0 5(01 .1 9 0 .6 2)20.006m
• (2)Q 2 0 0 0 0 c m 3 /sv 0 .4 1 m /s 0 .0 2 6
6.2734
0 .0 2 5 6 0 .0 2 6
.
• (3)当 Q200000cm3/s
v200000408cm/s 490
R e v d 4 0 0 .8 0 1 3 2 1 5 7 8 0 0 0 0 2 0 0 0 水 流 为 紊 流
设 0 .0 2 2求 层 流 底 层 0
设 0 .0 2 6求 层 流 底 层 0
0= 783 22 0.0802 .0 5260.0647cm
0.05 0.775
0 0.0647
.
Q 3000Re106
• •
且故采0.用3柯0列布0.鲁77克5-6怀属特于公过式渡求粗λ糙区
1 2lg[ 2.51 ]
Re 3.7d
2lg[ 2.51 0.5 ] 782000.162 3.7350
.
• 解:
• (1)当 Q5000cm3/s
A490cm2
v500010.2cm/s 490
R ev d1 0 0 ..0 2 1 3 2 1 5194502000
• 故水流为紊流
.
• 判别紊流属于何区
设 0 .0 2 8求 层 流 底 层 0
0=3R2e.8d 0.25cm
0 .0 5 0 .2 0 .3 故 属 于 光 滑 管 区 0 0 .2 5
Q
hj
v2 2g
2ghj v2
0.29
.
• 3-11 如图所示,水从水箱A流入水箱B,管路长l 为25m,管径d为25mm,沿程阻力系数λ为0.03, 管路中有两个90°弯管(d/p)=1及一个闸板式阀门 (a/d)=0.5 ,当两水箱的水位差H为1.0m时,试求 管内通过的流量为若干?
.
• 3-11
• (1)A、B两测压管的水头差为0.629m • (2)经2分钟流入量水箱的水量为0.329m3。试
求弯管的局部水头损失系数ζ值。
.
• 3-10
• 解:流量 QV0.3290.00274m 3/s
T 120
v Q 1.4m/ s
A
hf
l
d
v2 2g
0.6m
h j h w h f 0 .6 2 9 0 .6 0 .0 2 9 m
• 解:以B水箱的水面为基准面,列1-1,2-2断
面的能量方程
Hhw
1hf hj (dl 进2弯阀出 ) 2vg 2
式 中 进 = 0 .5弯 = 0 .1 3 1 0 .1 6 3 2 1 7/20 .2 9 4 2
阀 2 .0 6出 1 .0
1(0.03 25 0.520.29422.061) v2
采 用 伯 拉 修 斯 公 式 求 :
Q 4000Re105
0 R .e 1 0 3 .2 6 5 0 1 .1 1 . 3 8 6 0 .0 2 7求 出 得 值 与 假 设 相 符 合
.
• (2)当 Q20000cm3/s
v2000041.0cm/s 490
R e v d 4 0 1 .0 1 2 3 5 1 7 8 2 0 0 2 0 0 0 水 流 为 紊 流
0.025
2g
v0.75m/s
Q vA 0 .7 5 3 .1 4 0 .0 2 5 20 .0 0 4 m 3/s 4
hf 0.026400(0 1.9 4.1 6)20.09m
.
• (3)
Q 2 0 0 0 0 0 c m 3 /sv 4 . 0 8 m /s 0 . 0 2 3
(4.08)2 hf 0.02340019.6 7.85m
.
• 3-8 为了测定AB管段的沿程阻力系数λ值,可采 用如图所示的装置。已知AB段的管长l为10m,管 径d为50mm。今测得实验数据:
• (1)断面平均流速v与表面流速u0的比值是多少?
• (2)求流速分布曲线上与断面平均流速相等的点 的位置,即ym=?
ux
u0[1(
y)2 h
பைடு நூலகம்
]
.
• 3-5解: • (1)单位宽度明渠通过得流量为
q0huxdy0hu0[1(h y)2]dy
• 断面得平均流速
v q u0 h [1 ( y )2 ]dy
h h0
h
u0 h
2h 3
2 3
u0
.
• (2)
• 当ux=v时,即
2 3u0
u0[1(yhm)2]
2 [1 ( ym )2 ]
3
h
ym
3 h0.577h 3
.
• 3-7试求前题圆管中,通过的流量为5000 cm3/s, 20000cm3/s,200000cm3/s时,液流型态各为层 流还是紊流?若为紊流应属于光滑区、过渡粗糙 区还是粗糙区,其沿程阻力系数各为若干?若管 段长度为100m,问沿程水头损失各为若干?